xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision 705a4c149d8a3a414c6684a2c01ebbdcb98ccc21)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117   TM = &TgtM;
118 
119   CodeModel::Model CM = TgtM.getCodeModel();
120   InitializeELF(TgtM.Options.UseInitArray);
121 
122   switch (TgtM.getTargetTriple().getArch()) {
123   case Triple::arm:
124   case Triple::armeb:
125   case Triple::thumb:
126   case Triple::thumbeb:
127     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
128       break;
129     // Fallthrough if not using EHABI
130     LLVM_FALLTHROUGH;
131   case Triple::ppc:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
185         dwarf::DW_EH_PE_sdata8;
186       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
187       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
188         dwarf::DW_EH_PE_sdata8;
189     } else {
190       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
191       LSDAEncoding = dwarf::DW_EH_PE_absptr;
192       TTypeEncoding = dwarf::DW_EH_PE_absptr;
193     }
194     break;
195   case Triple::lanai:
196     LSDAEncoding = dwarf::DW_EH_PE_absptr;
197     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
198     TTypeEncoding = dwarf::DW_EH_PE_absptr;
199     break;
200   case Triple::mips:
201   case Triple::mipsel:
202   case Triple::mips64:
203   case Triple::mips64el:
204     // MIPS uses indirect pointer to refer personality functions and types, so
205     // that the eh_frame section can be read-only. DW.ref.personality will be
206     // generated for relocation.
207     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
208     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
209     //        identify N64 from just a triple.
210     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
211                     dwarf::DW_EH_PE_sdata4;
212     // We don't support PC-relative LSDA references in GAS so we use the default
213     // DW_EH_PE_absptr for those.
214 
215     // FreeBSD must be explicit about the data size and using pcrel since it's
216     // assembler/linker won't do the automatic conversion that the Linux tools
217     // do.
218     if (TgtM.getTargetTriple().isOSFreeBSD()) {
219       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
220       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
221     }
222     break;
223   case Triple::ppc64:
224   case Triple::ppc64le:
225     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
226       dwarf::DW_EH_PE_udata8;
227     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
228     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
229       dwarf::DW_EH_PE_udata8;
230     break;
231   case Triple::sparcel:
232   case Triple::sparc:
233     if (isPositionIndependent()) {
234       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
235       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
236         dwarf::DW_EH_PE_sdata4;
237       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238         dwarf::DW_EH_PE_sdata4;
239     } else {
240       LSDAEncoding = dwarf::DW_EH_PE_absptr;
241       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
242       TTypeEncoding = dwarf::DW_EH_PE_absptr;
243     }
244     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
245     break;
246   case Triple::riscv32:
247   case Triple::riscv64:
248     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
249     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
250                           dwarf::DW_EH_PE_sdata4;
251     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
252                     dwarf::DW_EH_PE_sdata4;
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::sparcv9:
256     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
257     if (isPositionIndependent()) {
258       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259         dwarf::DW_EH_PE_sdata4;
260       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261         dwarf::DW_EH_PE_sdata4;
262     } else {
263       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
264       TTypeEncoding = dwarf::DW_EH_PE_absptr;
265     }
266     break;
267   case Triple::systemz:
268     // All currently-defined code models guarantee that 4-byte PC-relative
269     // values will be in range.
270     if (isPositionIndependent()) {
271       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
272         dwarf::DW_EH_PE_sdata4;
273       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
274       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
275         dwarf::DW_EH_PE_sdata4;
276     } else {
277       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
278       LSDAEncoding = dwarf::DW_EH_PE_absptr;
279       TTypeEncoding = dwarf::DW_EH_PE_absptr;
280     }
281     break;
282   default:
283     break;
284   }
285 }
286 
287 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
288                                                      Module &M) const {
289   auto &C = getContext();
290 
291   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
292     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
293                               ELF::SHF_EXCLUDE);
294 
295     Streamer.SwitchSection(S);
296 
297     for (const auto *Operand : LinkerOptions->operands()) {
298       if (cast<MDNode>(Operand)->getNumOperands() != 2)
299         report_fatal_error("invalid llvm.linker.options");
300       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
301         Streamer.emitBytes(cast<MDString>(Option)->getString());
302         Streamer.emitInt8(0);
303       }
304     }
305   }
306 
307   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
308     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
309                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
310 
311     Streamer.SwitchSection(S);
312 
313     for (const auto *Operand : DependentLibraries->operands()) {
314       Streamer.emitBytes(
315           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
316       Streamer.emitInt8(0);
317     }
318   }
319 
320   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
321     // Emit a descriptor for every function including functions that have an
322     // available external linkage. We may not want this for imported functions
323     // that has code in another thinLTO module but we don't have a good way to
324     // tell them apart from inline functions defined in header files. Therefore
325     // we put each descriptor in a separate comdat section and rely on the
326     // linker to deduplicate.
327     for (const auto *Operand : FuncInfo->operands()) {
328       const auto *MD = cast<MDNode>(Operand);
329       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
330       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
331       auto *Name = cast<MDString>(MD->getOperand(2));
332       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
333           TM->getFunctionSections() ? Name->getString() : StringRef());
334 
335       Streamer.SwitchSection(S);
336       Streamer.emitInt64(GUID->getZExtValue());
337       Streamer.emitInt64(Hash->getZExtValue());
338       Streamer.emitULEB128IntValue(Name->getString().size());
339       Streamer.emitBytes(Name->getString());
340     }
341   }
342 
343   unsigned Version = 0;
344   unsigned Flags = 0;
345   StringRef Section;
346 
347   GetObjCImageInfo(M, Version, Flags, Section);
348   if (!Section.empty()) {
349     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
350     Streamer.SwitchSection(S);
351     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
352     Streamer.emitInt32(Version);
353     Streamer.emitInt32(Flags);
354     Streamer.AddBlankLine();
355   }
356 
357   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
358   M.getModuleFlagsMetadata(ModuleFlags);
359 
360   MDNode *CFGProfile = nullptr;
361 
362   for (const auto &MFE : ModuleFlags) {
363     StringRef Key = MFE.Key->getString();
364     if (Key == "CG Profile") {
365       CFGProfile = cast<MDNode>(MFE.Val);
366       break;
367     }
368   }
369 
370   if (!CFGProfile)
371     return;
372 
373   auto GetSym = [this](const MDOperand &MDO) -> MCSymbol * {
374     if (!MDO)
375       return nullptr;
376     auto V = cast<ValueAsMetadata>(MDO);
377     const Function *F = cast<Function>(V->getValue()->stripPointerCasts());
378     return TM->getSymbol(F);
379   };
380 
381   for (const auto &Edge : CFGProfile->operands()) {
382     MDNode *E = cast<MDNode>(Edge);
383     const MCSymbol *From = GetSym(E->getOperand(0));
384     const MCSymbol *To = GetSym(E->getOperand(1));
385     // Skip null functions. This can happen if functions are dead stripped after
386     // the CGProfile pass has been run.
387     if (!From || !To)
388       continue;
389     uint64_t Count = cast<ConstantAsMetadata>(E->getOperand(2))
390                          ->getValue()
391                          ->getUniqueInteger()
392                          .getZExtValue();
393     Streamer.emitCGProfileEntry(
394         MCSymbolRefExpr::create(From, MCSymbolRefExpr::VK_None, C),
395         MCSymbolRefExpr::create(To, MCSymbolRefExpr::VK_None, C), Count);
396   }
397 }
398 
399 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
400     const GlobalValue *GV, const TargetMachine &TM,
401     MachineModuleInfo *MMI) const {
402   unsigned Encoding = getPersonalityEncoding();
403   if ((Encoding & 0x80) == DW_EH_PE_indirect)
404     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
405                                           TM.getSymbol(GV)->getName());
406   if ((Encoding & 0x70) == DW_EH_PE_absptr)
407     return TM.getSymbol(GV);
408   report_fatal_error("We do not support this DWARF encoding yet!");
409 }
410 
411 void TargetLoweringObjectFileELF::emitPersonalityValue(
412     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
413   SmallString<64> NameData("DW.ref.");
414   NameData += Sym->getName();
415   MCSymbolELF *Label =
416       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
417   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
418   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
419   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
420   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
421                                                    ELF::SHT_PROGBITS, Flags, 0);
422   unsigned Size = DL.getPointerSize();
423   Streamer.SwitchSection(Sec);
424   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
425   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
426   const MCExpr *E = MCConstantExpr::create(Size, getContext());
427   Streamer.emitELFSize(Label, E);
428   Streamer.emitLabel(Label);
429 
430   Streamer.emitSymbolValue(Sym, Size);
431 }
432 
433 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
434     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
435     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
436   if (Encoding & DW_EH_PE_indirect) {
437     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
438 
439     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
440 
441     // Add information about the stub reference to ELFMMI so that the stub
442     // gets emitted by the asmprinter.
443     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
444     if (!StubSym.getPointer()) {
445       MCSymbol *Sym = TM.getSymbol(GV);
446       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
447     }
448 
449     return TargetLoweringObjectFile::
450       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
451                         Encoding & ~DW_EH_PE_indirect, Streamer);
452   }
453 
454   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
455                                                            MMI, Streamer);
456 }
457 
458 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
459   // N.B.: The defaults used in here are not the same ones used in MC.
460   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
461   // both gas and MC will produce a section with no flags. Given
462   // section(".eh_frame") gcc will produce:
463   //
464   //   .section   .eh_frame,"a",@progbits
465 
466   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
467                                       /*AddSegmentInfo=*/false) ||
468       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
469                                       /*AddSegmentInfo=*/false) ||
470       Name == ".llvmbc" || Name == ".llvmcmd")
471     return SectionKind::getMetadata();
472 
473   if (Name.empty() || Name[0] != '.') return K;
474 
475   // Default implementation based on some magic section names.
476   if (Name == ".bss" ||
477       Name.startswith(".bss.") ||
478       Name.startswith(".gnu.linkonce.b.") ||
479       Name.startswith(".llvm.linkonce.b.") ||
480       Name == ".sbss" ||
481       Name.startswith(".sbss.") ||
482       Name.startswith(".gnu.linkonce.sb.") ||
483       Name.startswith(".llvm.linkonce.sb."))
484     return SectionKind::getBSS();
485 
486   if (Name == ".tdata" ||
487       Name.startswith(".tdata.") ||
488       Name.startswith(".gnu.linkonce.td.") ||
489       Name.startswith(".llvm.linkonce.td."))
490     return SectionKind::getThreadData();
491 
492   if (Name == ".tbss" ||
493       Name.startswith(".tbss.") ||
494       Name.startswith(".gnu.linkonce.tb.") ||
495       Name.startswith(".llvm.linkonce.tb."))
496     return SectionKind::getThreadBSS();
497 
498   return K;
499 }
500 
501 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
502   // Use SHT_NOTE for section whose name starts with ".note" to allow
503   // emitting ELF notes from C variable declaration.
504   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
505   if (Name.startswith(".note"))
506     return ELF::SHT_NOTE;
507 
508   if (Name == ".init_array")
509     return ELF::SHT_INIT_ARRAY;
510 
511   if (Name == ".fini_array")
512     return ELF::SHT_FINI_ARRAY;
513 
514   if (Name == ".preinit_array")
515     return ELF::SHT_PREINIT_ARRAY;
516 
517   if (K.isBSS() || K.isThreadBSS())
518     return ELF::SHT_NOBITS;
519 
520   return ELF::SHT_PROGBITS;
521 }
522 
523 static unsigned getELFSectionFlags(SectionKind K) {
524   unsigned Flags = 0;
525 
526   if (!K.isMetadata())
527     Flags |= ELF::SHF_ALLOC;
528 
529   if (K.isText())
530     Flags |= ELF::SHF_EXECINSTR;
531 
532   if (K.isExecuteOnly())
533     Flags |= ELF::SHF_ARM_PURECODE;
534 
535   if (K.isWriteable())
536     Flags |= ELF::SHF_WRITE;
537 
538   if (K.isThreadLocal())
539     Flags |= ELF::SHF_TLS;
540 
541   if (K.isMergeableCString() || K.isMergeableConst())
542     Flags |= ELF::SHF_MERGE;
543 
544   if (K.isMergeableCString())
545     Flags |= ELF::SHF_STRINGS;
546 
547   return Flags;
548 }
549 
550 static const Comdat *getELFComdat(const GlobalValue *GV) {
551   const Comdat *C = GV->getComdat();
552   if (!C)
553     return nullptr;
554 
555   if (C->getSelectionKind() != Comdat::Any)
556     report_fatal_error("ELF COMDATs only support SelectionKind::Any, '" +
557                        C->getName() + "' cannot be lowered.");
558 
559   return C;
560 }
561 
562 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
563                                             const TargetMachine &TM) {
564   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
565   if (!MD)
566     return nullptr;
567 
568   const MDOperand &Op = MD->getOperand(0);
569   if (!Op.get())
570     return nullptr;
571 
572   auto *VM = dyn_cast<ValueAsMetadata>(Op);
573   if (!VM)
574     report_fatal_error("MD_associated operand is not ValueAsMetadata");
575 
576   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
577   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
578 }
579 
580 static unsigned getEntrySizeForKind(SectionKind Kind) {
581   if (Kind.isMergeable1ByteCString())
582     return 1;
583   else if (Kind.isMergeable2ByteCString())
584     return 2;
585   else if (Kind.isMergeable4ByteCString())
586     return 4;
587   else if (Kind.isMergeableConst4())
588     return 4;
589   else if (Kind.isMergeableConst8())
590     return 8;
591   else if (Kind.isMergeableConst16())
592     return 16;
593   else if (Kind.isMergeableConst32())
594     return 32;
595   else {
596     // We shouldn't have mergeable C strings or mergeable constants that we
597     // didn't handle above.
598     assert(!Kind.isMergeableCString() && "unknown string width");
599     assert(!Kind.isMergeableConst() && "unknown data width");
600     return 0;
601   }
602 }
603 
604 /// Return the section prefix name used by options FunctionsSections and
605 /// DataSections.
606 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
607   if (Kind.isText())
608     return ".text";
609   if (Kind.isReadOnly())
610     return ".rodata";
611   if (Kind.isBSS())
612     return ".bss";
613   if (Kind.isThreadData())
614     return ".tdata";
615   if (Kind.isThreadBSS())
616     return ".tbss";
617   if (Kind.isData())
618     return ".data";
619   if (Kind.isReadOnlyWithRel())
620     return ".data.rel.ro";
621   llvm_unreachable("Unknown section kind");
622 }
623 
624 static SmallString<128>
625 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
626                            Mangler &Mang, const TargetMachine &TM,
627                            unsigned EntrySize, bool UniqueSectionName) {
628   SmallString<128> Name;
629   if (Kind.isMergeableCString()) {
630     // We also need alignment here.
631     // FIXME: this is getting the alignment of the character, not the
632     // alignment of the global!
633     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
634         cast<GlobalVariable>(GO));
635 
636     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
637     Name = SizeSpec + utostr(Alignment.value());
638   } else if (Kind.isMergeableConst()) {
639     Name = ".rodata.cst";
640     Name += utostr(EntrySize);
641   } else {
642     Name = getSectionPrefixForGlobal(Kind);
643   }
644 
645   bool HasPrefix = false;
646   if (const auto *F = dyn_cast<Function>(GO)) {
647     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
648       raw_svector_ostream(Name) << '.' << *Prefix;
649       HasPrefix = true;
650     }
651   }
652 
653   if (UniqueSectionName) {
654     Name.push_back('.');
655     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
656   } else if (HasPrefix)
657     Name.push_back('.');
658   return Name;
659 }
660 
661 namespace {
662 class LoweringDiagnosticInfo : public DiagnosticInfo {
663   const Twine &Msg;
664 
665 public:
666   LoweringDiagnosticInfo(const Twine &DiagMsg,
667                          DiagnosticSeverity Severity = DS_Error)
668       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
669   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
670 };
671 }
672 
673 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
674     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
675   StringRef SectionName = GO->getSection();
676 
677   // Check if '#pragma clang section' name is applicable.
678   // Note that pragma directive overrides -ffunction-section, -fdata-section
679   // and so section name is exactly as user specified and not uniqued.
680   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
681   if (GV && GV->hasImplicitSection()) {
682     auto Attrs = GV->getAttributes();
683     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
684       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
685     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
686       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
687     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
688       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
689     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
690       SectionName = Attrs.getAttribute("data-section").getValueAsString();
691     }
692   }
693   const Function *F = dyn_cast<Function>(GO);
694   if (F && F->hasFnAttribute("implicit-section-name")) {
695     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
696   }
697 
698   // Infer section flags from the section name if we can.
699   Kind = getELFKindForNamedSection(SectionName, Kind);
700 
701   StringRef Group = "";
702   unsigned Flags = getELFSectionFlags(Kind);
703   if (const Comdat *C = getELFComdat(GO)) {
704     Group = C->getName();
705     Flags |= ELF::SHF_GROUP;
706   }
707 
708   unsigned EntrySize = getEntrySizeForKind(Kind);
709 
710   // A section can have at most one associated section. Put each global with
711   // MD_associated in a unique section.
712   unsigned UniqueID = MCContext::GenericSectionID;
713   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
714   if (GO->getMetadata(LLVMContext::MD_associated)) {
715     UniqueID = NextUniqueID++;
716     Flags |= ELF::SHF_LINK_ORDER;
717   } else {
718     if (getContext().getAsmInfo()->useIntegratedAssembler()) {
719       // Symbols must be placed into sections with compatible entry
720       // sizes. Generate unique sections for symbols that have not
721       // been assigned to compatible sections.
722       if (Flags & ELF::SHF_MERGE) {
723         auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags,
724                                                              EntrySize);
725         if (maybeID)
726           UniqueID = *maybeID;
727         else {
728           // If the user has specified the same section name as would be created
729           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
730           // to unique the section as the entry size for this symbol will be
731           // compatible with implicitly created sections.
732           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
733               GO, Kind, getMangler(), TM, EntrySize, false);
734           if (!(getContext().isELFImplicitMergeableSectionNamePrefix(
735                     SectionName) &&
736                 SectionName.startswith(ImplicitSectionNameStem)))
737             UniqueID = NextUniqueID++;
738         }
739       } else {
740         // We need to unique the section if the user has explicity
741         // assigned a non-mergeable symbol to a section name for
742         // a generic mergeable section.
743         if (getContext().isELFGenericMergeableSection(SectionName)) {
744           auto maybeID = getContext().getELFUniqueIDForEntsize(
745               SectionName, Flags, EntrySize);
746           UniqueID = maybeID ? *maybeID : NextUniqueID++;
747         }
748       }
749     } else {
750       // If two symbols with differing sizes end up in the same mergeable
751       // section that section can be assigned an incorrect entry size. To avoid
752       // this we usually put symbols of the same size into distinct mergeable
753       // sections with the same name. Doing so relies on the ",unique ,"
754       // assembly feature. This feature is not avalible until bintuils
755       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
756       Flags &= ~ELF::SHF_MERGE;
757       EntrySize = 0;
758     }
759   }
760 
761   MCSectionELF *Section = getContext().getELFSection(
762       SectionName, getELFSectionType(SectionName, Kind), Flags,
763       EntrySize, Group, UniqueID, LinkedToSym);
764   // Make sure that we did not get some other section with incompatible sh_link.
765   // This should not be possible due to UniqueID code above.
766   assert(Section->getLinkedToSymbol() == LinkedToSym &&
767          "Associated symbol mismatch between sections");
768 
769   if (!getContext().getAsmInfo()->useIntegratedAssembler()) {
770     // If we are not using the integrated assembler then this symbol might have
771     // been placed in an incompatible mergeable section. Emit an error if this
772     // is the case to avoid creating broken output.
773     if ((Section->getFlags() & ELF::SHF_MERGE) &&
774         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
775       GO->getContext().diagnose(LoweringDiagnosticInfo(
776           "Symbol '" + GO->getName() + "' from module '" +
777           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
778           "' required a section with entry-size=" +
779           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
780           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
781           ": Explicit assignment by pragma or attribute of an incompatible "
782           "symbol to this section?"));
783   }
784 
785   return Section;
786 }
787 
788 static MCSectionELF *selectELFSectionForGlobal(
789     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
790     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
791     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
792 
793   StringRef Group = "";
794   if (const Comdat *C = getELFComdat(GO)) {
795     Flags |= ELF::SHF_GROUP;
796     Group = C->getName();
797   }
798 
799   // Get the section entry size based on the kind.
800   unsigned EntrySize = getEntrySizeForKind(Kind);
801 
802   bool UniqueSectionName = false;
803   unsigned UniqueID = MCContext::GenericSectionID;
804   if (EmitUniqueSection) {
805     if (TM.getUniqueSectionNames()) {
806       UniqueSectionName = true;
807     } else {
808       UniqueID = *NextUniqueID;
809       (*NextUniqueID)++;
810     }
811   }
812   SmallString<128> Name = getELFSectionNameForGlobal(
813       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
814 
815   // Use 0 as the unique ID for execute-only text.
816   if (Kind.isExecuteOnly())
817     UniqueID = 0;
818   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
819                            EntrySize, Group, UniqueID, AssociatedSymbol);
820 }
821 
822 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
823     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
824   unsigned Flags = getELFSectionFlags(Kind);
825 
826   // If we have -ffunction-section or -fdata-section then we should emit the
827   // global value to a uniqued section specifically for it.
828   bool EmitUniqueSection = false;
829   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
830     if (Kind.isText())
831       EmitUniqueSection = TM.getFunctionSections();
832     else
833       EmitUniqueSection = TM.getDataSections();
834   }
835   EmitUniqueSection |= GO->hasComdat();
836 
837   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
838   if (LinkedToSym) {
839     EmitUniqueSection = true;
840     Flags |= ELF::SHF_LINK_ORDER;
841   }
842 
843   MCSectionELF *Section = selectELFSectionForGlobal(
844       getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags,
845       &NextUniqueID, LinkedToSym);
846   assert(Section->getLinkedToSymbol() == LinkedToSym);
847   return Section;
848 }
849 
850 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
851     const Function &F, const TargetMachine &TM) const {
852   // If the function can be removed, produce a unique section so that
853   // the table doesn't prevent the removal.
854   const Comdat *C = F.getComdat();
855   bool EmitUniqueSection = TM.getFunctionSections() || C;
856   if (!EmitUniqueSection)
857     return ReadOnlySection;
858 
859   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
860                                    getMangler(), TM, EmitUniqueSection,
861                                    ELF::SHF_ALLOC, &NextUniqueID,
862                                    /* AssociatedSymbol */ nullptr);
863 }
864 
865 MCSection *
866 TargetLoweringObjectFileELF::getSectionForLSDA(const Function &F,
867                                                const TargetMachine &TM) const {
868   // If neither COMDAT nor function sections, use the monolithic LSDA section.
869   // Re-use this path if LSDASection is null as in the Arm EHABI.
870   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
871     return LSDASection;
872 
873   const auto *LSDA = cast<MCSectionELF>(LSDASection);
874   unsigned Flags = LSDA->getFlags();
875   StringRef Group;
876   if (F.hasComdat()) {
877     Group = F.getComdat()->getName();
878     Flags |= ELF::SHF_GROUP;
879   }
880 
881   // Append the function name as the suffix like GCC, assuming
882   // -funique-section-names applies to .gcc_except_table sections.
883   if (TM.getUniqueSectionNames())
884     return getContext().getELFSection(LSDA->getName() + "." + F.getName(),
885                                       LSDA->getType(), Flags, 0, Group,
886                                       MCSection::NonUniqueID, nullptr);
887 
888   // Allocate a unique ID if function sections && (integrated assembler or GNU
889   // as>=2.35). Note we could use SHF_LINK_ORDER to facilitate --gc-sections but
890   // that would require that we know the linker is a modern LLD (12.0 or later).
891   // GNU ld as of 2.35 does not support mixed SHF_LINK_ORDER &
892   // non-SHF_LINK_ORDER components in an output section
893   // https://sourceware.org/bugzilla/show_bug.cgi?id=26256
894   unsigned ID = TM.getFunctionSections() &&
895                         getContext().getAsmInfo()->useIntegratedAssembler()
896                     ? NextUniqueID++
897                     : MCSection::NonUniqueID;
898   return getContext().getELFSection(LSDA->getName(), LSDA->getType(), Flags, 0,
899                                     Group, ID, nullptr);
900 }
901 
902 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
903     bool UsesLabelDifference, const Function &F) const {
904   // We can always create relative relocations, so use another section
905   // that can be marked non-executable.
906   return false;
907 }
908 
909 /// Given a mergeable constant with the specified size and relocation
910 /// information, return a section that it should be placed in.
911 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
912     const DataLayout &DL, SectionKind Kind, const Constant *C,
913     Align &Alignment) const {
914   if (Kind.isMergeableConst4() && MergeableConst4Section)
915     return MergeableConst4Section;
916   if (Kind.isMergeableConst8() && MergeableConst8Section)
917     return MergeableConst8Section;
918   if (Kind.isMergeableConst16() && MergeableConst16Section)
919     return MergeableConst16Section;
920   if (Kind.isMergeableConst32() && MergeableConst32Section)
921     return MergeableConst32Section;
922   if (Kind.isReadOnly())
923     return ReadOnlySection;
924 
925   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
926   return DataRelROSection;
927 }
928 
929 /// Returns a unique section for the given machine basic block.
930 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
931     const Function &F, const MachineBasicBlock &MBB,
932     const TargetMachine &TM) const {
933   assert(MBB.isBeginSection() && "Basic block does not start a section!");
934   unsigned UniqueID = MCContext::GenericSectionID;
935 
936   // For cold sections use the .text.split. prefix along with the parent
937   // function name. All cold blocks for the same function go to the same
938   // section. Similarly all exception blocks are grouped by symbol name
939   // under the .text.eh prefix. For regular sections, we either use a unique
940   // name, or a unique ID for the section.
941   SmallString<128> Name;
942   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
943     Name += BBSectionsColdTextPrefix;
944     Name += MBB.getParent()->getName();
945   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
946     Name += ".text.eh.";
947     Name += MBB.getParent()->getName();
948   } else {
949     Name += MBB.getParent()->getSection()->getName();
950     if (TM.getUniqueBasicBlockSectionNames()) {
951       Name += ".";
952       Name += MBB.getSymbol()->getName();
953     } else {
954       UniqueID = NextUniqueID++;
955     }
956   }
957 
958   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
959   std::string GroupName = "";
960   if (F.hasComdat()) {
961     Flags |= ELF::SHF_GROUP;
962     GroupName = F.getComdat()->getName().str();
963   }
964   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
965                                     0 /* Entry Size */, GroupName, UniqueID,
966                                     nullptr);
967 }
968 
969 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
970                                               bool IsCtor, unsigned Priority,
971                                               const MCSymbol *KeySym) {
972   std::string Name;
973   unsigned Type;
974   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
975   StringRef COMDAT = KeySym ? KeySym->getName() : "";
976 
977   if (KeySym)
978     Flags |= ELF::SHF_GROUP;
979 
980   if (UseInitArray) {
981     if (IsCtor) {
982       Type = ELF::SHT_INIT_ARRAY;
983       Name = ".init_array";
984     } else {
985       Type = ELF::SHT_FINI_ARRAY;
986       Name = ".fini_array";
987     }
988     if (Priority != 65535) {
989       Name += '.';
990       Name += utostr(Priority);
991     }
992   } else {
993     // The default scheme is .ctor / .dtor, so we have to invert the priority
994     // numbering.
995     if (IsCtor)
996       Name = ".ctors";
997     else
998       Name = ".dtors";
999     if (Priority != 65535)
1000       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1001     Type = ELF::SHT_PROGBITS;
1002   }
1003 
1004   return Ctx.getELFSection(Name, Type, Flags, 0, COMDAT);
1005 }
1006 
1007 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1008     unsigned Priority, const MCSymbol *KeySym) const {
1009   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1010                                   KeySym);
1011 }
1012 
1013 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1014     unsigned Priority, const MCSymbol *KeySym) const {
1015   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1016                                   KeySym);
1017 }
1018 
1019 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1020     const GlobalValue *LHS, const GlobalValue *RHS,
1021     const TargetMachine &TM) const {
1022   // We may only use a PLT-relative relocation to refer to unnamed_addr
1023   // functions.
1024   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1025     return nullptr;
1026 
1027   // Basic sanity checks.
1028   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1029       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1030       RHS->isThreadLocal())
1031     return nullptr;
1032 
1033   return MCBinaryExpr::createSub(
1034       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1035                               getContext()),
1036       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1037 }
1038 
1039 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1040     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1041   assert(supportDSOLocalEquivalentLowering());
1042 
1043   const auto *GV = Equiv->getGlobalValue();
1044 
1045   // A PLT entry is not needed for dso_local globals.
1046   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1047     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1048 
1049   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1050                                  getContext());
1051 }
1052 
1053 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1054   // Use ".GCC.command.line" since this feature is to support clang's
1055   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1056   // same name.
1057   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1058                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1, "");
1059 }
1060 
1061 void
1062 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1063   UseInitArray = UseInitArray_;
1064   MCContext &Ctx = getContext();
1065   if (!UseInitArray) {
1066     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1067                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1068 
1069     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1070                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1071     return;
1072   }
1073 
1074   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1075                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1076   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1077                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1078 }
1079 
1080 //===----------------------------------------------------------------------===//
1081 //                                 MachO
1082 //===----------------------------------------------------------------------===//
1083 
1084 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1085   : TargetLoweringObjectFile() {
1086   SupportIndirectSymViaGOTPCRel = true;
1087 }
1088 
1089 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1090                                                const TargetMachine &TM) {
1091   TargetLoweringObjectFile::Initialize(Ctx, TM);
1092   if (TM.getRelocationModel() == Reloc::Static) {
1093     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1094                                             SectionKind::getData());
1095     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1096                                             SectionKind::getData());
1097   } else {
1098     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1099                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1100                                             SectionKind::getData());
1101     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1102                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1103                                             SectionKind::getData());
1104   }
1105 
1106   PersonalityEncoding =
1107       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1108   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1109   TTypeEncoding =
1110       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1111 }
1112 
1113 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1114                                                        Module &M) const {
1115   // Emit the linker options if present.
1116   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1117     for (const auto *Option : LinkerOptions->operands()) {
1118       SmallVector<std::string, 4> StrOptions;
1119       for (const auto &Piece : cast<MDNode>(Option)->operands())
1120         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1121       Streamer.emitLinkerOptions(StrOptions);
1122     }
1123   }
1124 
1125   unsigned VersionVal = 0;
1126   unsigned ImageInfoFlags = 0;
1127   StringRef SectionVal;
1128 
1129   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1130 
1131   // The section is mandatory. If we don't have it, then we don't have GC info.
1132   if (SectionVal.empty())
1133     return;
1134 
1135   StringRef Segment, Section;
1136   unsigned TAA = 0, StubSize = 0;
1137   bool TAAParsed;
1138   std::string ErrorCode =
1139     MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section,
1140                                           TAA, TAAParsed, StubSize);
1141   if (!ErrorCode.empty())
1142     // If invalid, report the error with report_fatal_error.
1143     report_fatal_error("Invalid section specifier '" + Section + "': " +
1144                        ErrorCode + ".");
1145 
1146   // Get the section.
1147   MCSectionMachO *S = getContext().getMachOSection(
1148       Segment, Section, TAA, StubSize, SectionKind::getData());
1149   Streamer.SwitchSection(S);
1150   Streamer.emitLabel(getContext().
1151                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1152   Streamer.emitInt32(VersionVal);
1153   Streamer.emitInt32(ImageInfoFlags);
1154   Streamer.AddBlankLine();
1155 }
1156 
1157 static void checkMachOComdat(const GlobalValue *GV) {
1158   const Comdat *C = GV->getComdat();
1159   if (!C)
1160     return;
1161 
1162   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1163                      "' cannot be lowered.");
1164 }
1165 
1166 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1167     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1168   // Parse the section specifier and create it if valid.
1169   StringRef Segment, Section;
1170   unsigned TAA = 0, StubSize = 0;
1171   bool TAAParsed;
1172 
1173   checkMachOComdat(GO);
1174 
1175   std::string ErrorCode =
1176     MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
1177                                           TAA, TAAParsed, StubSize);
1178   if (!ErrorCode.empty()) {
1179     // If invalid, report the error with report_fatal_error.
1180     report_fatal_error("Global variable '" + GO->getName() +
1181                        "' has an invalid section specifier '" +
1182                        GO->getSection() + "': " + ErrorCode + ".");
1183   }
1184 
1185   // Get the section.
1186   MCSectionMachO *S =
1187       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1188 
1189   // If TAA wasn't set by ParseSectionSpecifier() above,
1190   // use the value returned by getMachOSection() as a default.
1191   if (!TAAParsed)
1192     TAA = S->getTypeAndAttributes();
1193 
1194   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1195   // If the user declared multiple globals with different section flags, we need
1196   // to reject it here.
1197   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1198     // If invalid, report the error with report_fatal_error.
1199     report_fatal_error("Global variable '" + GO->getName() +
1200                        "' section type or attributes does not match previous"
1201                        " section specifier");
1202   }
1203 
1204   return S;
1205 }
1206 
1207 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1208     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1209   checkMachOComdat(GO);
1210 
1211   // Handle thread local data.
1212   if (Kind.isThreadBSS()) return TLSBSSSection;
1213   if (Kind.isThreadData()) return TLSDataSection;
1214 
1215   if (Kind.isText())
1216     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1217 
1218   // If this is weak/linkonce, put this in a coalescable section, either in text
1219   // or data depending on if it is writable.
1220   if (GO->isWeakForLinker()) {
1221     if (Kind.isReadOnly())
1222       return ConstTextCoalSection;
1223     if (Kind.isReadOnlyWithRel())
1224       return ConstDataCoalSection;
1225     return DataCoalSection;
1226   }
1227 
1228   // FIXME: Alignment check should be handled by section classifier.
1229   if (Kind.isMergeable1ByteCString() &&
1230       GO->getParent()->getDataLayout().getPreferredAlign(
1231           cast<GlobalVariable>(GO)) < Align(32))
1232     return CStringSection;
1233 
1234   // Do not put 16-bit arrays in the UString section if they have an
1235   // externally visible label, this runs into issues with certain linker
1236   // versions.
1237   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1238       GO->getParent()->getDataLayout().getPreferredAlign(
1239           cast<GlobalVariable>(GO)) < Align(32))
1240     return UStringSection;
1241 
1242   // With MachO only variables whose corresponding symbol starts with 'l' or
1243   // 'L' can be merged, so we only try merging GVs with private linkage.
1244   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1245     if (Kind.isMergeableConst4())
1246       return FourByteConstantSection;
1247     if (Kind.isMergeableConst8())
1248       return EightByteConstantSection;
1249     if (Kind.isMergeableConst16())
1250       return SixteenByteConstantSection;
1251   }
1252 
1253   // Otherwise, if it is readonly, but not something we can specially optimize,
1254   // just drop it in .const.
1255   if (Kind.isReadOnly())
1256     return ReadOnlySection;
1257 
1258   // If this is marked const, put it into a const section.  But if the dynamic
1259   // linker needs to write to it, put it in the data segment.
1260   if (Kind.isReadOnlyWithRel())
1261     return ConstDataSection;
1262 
1263   // Put zero initialized globals with strong external linkage in the
1264   // DATA, __common section with the .zerofill directive.
1265   if (Kind.isBSSExtern())
1266     return DataCommonSection;
1267 
1268   // Put zero initialized globals with local linkage in __DATA,__bss directive
1269   // with the .zerofill directive (aka .lcomm).
1270   if (Kind.isBSSLocal())
1271     return DataBSSSection;
1272 
1273   // Otherwise, just drop the variable in the normal data section.
1274   return DataSection;
1275 }
1276 
1277 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1278     const DataLayout &DL, SectionKind Kind, const Constant *C,
1279     Align &Alignment) const {
1280   // If this constant requires a relocation, we have to put it in the data
1281   // segment, not in the text segment.
1282   if (Kind.isData() || Kind.isReadOnlyWithRel())
1283     return ConstDataSection;
1284 
1285   if (Kind.isMergeableConst4())
1286     return FourByteConstantSection;
1287   if (Kind.isMergeableConst8())
1288     return EightByteConstantSection;
1289   if (Kind.isMergeableConst16())
1290     return SixteenByteConstantSection;
1291   return ReadOnlySection;  // .const
1292 }
1293 
1294 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1295     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1296     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1297   // The mach-o version of this method defaults to returning a stub reference.
1298 
1299   if (Encoding & DW_EH_PE_indirect) {
1300     MachineModuleInfoMachO &MachOMMI =
1301       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1302 
1303     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1304 
1305     // Add information about the stub reference to MachOMMI so that the stub
1306     // gets emitted by the asmprinter.
1307     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1308     if (!StubSym.getPointer()) {
1309       MCSymbol *Sym = TM.getSymbol(GV);
1310       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1311     }
1312 
1313     return TargetLoweringObjectFile::
1314       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1315                         Encoding & ~DW_EH_PE_indirect, Streamer);
1316   }
1317 
1318   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1319                                                            MMI, Streamer);
1320 }
1321 
1322 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1323     const GlobalValue *GV, const TargetMachine &TM,
1324     MachineModuleInfo *MMI) const {
1325   // The mach-o version of this method defaults to returning a stub reference.
1326   MachineModuleInfoMachO &MachOMMI =
1327     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1328 
1329   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1330 
1331   // Add information about the stub reference to MachOMMI so that the stub
1332   // gets emitted by the asmprinter.
1333   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1334   if (!StubSym.getPointer()) {
1335     MCSymbol *Sym = TM.getSymbol(GV);
1336     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1337   }
1338 
1339   return SSym;
1340 }
1341 
1342 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1343     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1344     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1345   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1346   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1347   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1348   // computation of deltas to final external symbols. Example:
1349   //
1350   //    _extgotequiv:
1351   //       .long   _extfoo
1352   //
1353   //    _delta:
1354   //       .long   _extgotequiv-_delta
1355   //
1356   // is transformed to:
1357   //
1358   //    _delta:
1359   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1360   //
1361   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1362   //    L_extfoo$non_lazy_ptr:
1363   //       .indirect_symbol        _extfoo
1364   //       .long   0
1365   //
1366   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1367   // may point to both local (same translation unit) and global (other
1368   // translation units) symbols. Example:
1369   //
1370   // .section __DATA,__pointers,non_lazy_symbol_pointers
1371   // L1:
1372   //    .indirect_symbol _myGlobal
1373   //    .long 0
1374   // L2:
1375   //    .indirect_symbol _myLocal
1376   //    .long _myLocal
1377   //
1378   // If the symbol is local, instead of the symbol's index, the assembler
1379   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1380   // Then the linker will notice the constant in the table and will look at the
1381   // content of the symbol.
1382   MachineModuleInfoMachO &MachOMMI =
1383     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1384   MCContext &Ctx = getContext();
1385 
1386   // The offset must consider the original displacement from the base symbol
1387   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1388   Offset = -MV.getConstant();
1389   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1390 
1391   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1392   // non_lazy_ptr stubs.
1393   SmallString<128> Name;
1394   StringRef Suffix = "$non_lazy_ptr";
1395   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1396   Name += Sym->getName();
1397   Name += Suffix;
1398   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1399 
1400   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1401 
1402   if (!StubSym.getPointer())
1403     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1404                                                  !GV->hasLocalLinkage());
1405 
1406   const MCExpr *BSymExpr =
1407     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1408   const MCExpr *LHS =
1409     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1410 
1411   if (!Offset)
1412     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1413 
1414   const MCExpr *RHS =
1415     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1416   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1417 }
1418 
1419 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1420                                const MCSection &Section) {
1421   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1422     return true;
1423 
1424   // If it is not dead stripped, it is safe to use private labels.
1425   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1426   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1427     return true;
1428 
1429   return false;
1430 }
1431 
1432 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1433     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1434     const TargetMachine &TM) const {
1435   bool CannotUsePrivateLabel = true;
1436   if (auto *GO = GV->getBaseObject()) {
1437     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1438     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1439     CannotUsePrivateLabel =
1440         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1441   }
1442   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1443 }
1444 
1445 //===----------------------------------------------------------------------===//
1446 //                                  COFF
1447 //===----------------------------------------------------------------------===//
1448 
1449 static unsigned
1450 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1451   unsigned Flags = 0;
1452   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1453 
1454   if (K.isMetadata())
1455     Flags |=
1456       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1457   else if (K.isText())
1458     Flags |=
1459       COFF::IMAGE_SCN_MEM_EXECUTE |
1460       COFF::IMAGE_SCN_MEM_READ |
1461       COFF::IMAGE_SCN_CNT_CODE |
1462       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1463   else if (K.isBSS())
1464     Flags |=
1465       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1466       COFF::IMAGE_SCN_MEM_READ |
1467       COFF::IMAGE_SCN_MEM_WRITE;
1468   else if (K.isThreadLocal())
1469     Flags |=
1470       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1471       COFF::IMAGE_SCN_MEM_READ |
1472       COFF::IMAGE_SCN_MEM_WRITE;
1473   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1474     Flags |=
1475       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1476       COFF::IMAGE_SCN_MEM_READ;
1477   else if (K.isWriteable())
1478     Flags |=
1479       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1480       COFF::IMAGE_SCN_MEM_READ |
1481       COFF::IMAGE_SCN_MEM_WRITE;
1482 
1483   return Flags;
1484 }
1485 
1486 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1487   const Comdat *C = GV->getComdat();
1488   assert(C && "expected GV to have a Comdat!");
1489 
1490   StringRef ComdatGVName = C->getName();
1491   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1492   if (!ComdatGV)
1493     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1494                        "' does not exist.");
1495 
1496   if (ComdatGV->getComdat() != C)
1497     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1498                        "' is not a key for its COMDAT.");
1499 
1500   return ComdatGV;
1501 }
1502 
1503 static int getSelectionForCOFF(const GlobalValue *GV) {
1504   if (const Comdat *C = GV->getComdat()) {
1505     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1506     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1507       ComdatKey = GA->getBaseObject();
1508     if (ComdatKey == GV) {
1509       switch (C->getSelectionKind()) {
1510       case Comdat::Any:
1511         return COFF::IMAGE_COMDAT_SELECT_ANY;
1512       case Comdat::ExactMatch:
1513         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1514       case Comdat::Largest:
1515         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1516       case Comdat::NoDuplicates:
1517         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1518       case Comdat::SameSize:
1519         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1520       }
1521     } else {
1522       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1523     }
1524   }
1525   return 0;
1526 }
1527 
1528 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1529     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1530   int Selection = 0;
1531   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1532   StringRef Name = GO->getSection();
1533   StringRef COMDATSymName = "";
1534   if (GO->hasComdat()) {
1535     Selection = getSelectionForCOFF(GO);
1536     const GlobalValue *ComdatGV;
1537     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1538       ComdatGV = getComdatGVForCOFF(GO);
1539     else
1540       ComdatGV = GO;
1541 
1542     if (!ComdatGV->hasPrivateLinkage()) {
1543       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1544       COMDATSymName = Sym->getName();
1545       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1546     } else {
1547       Selection = 0;
1548     }
1549   }
1550 
1551   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1552                                      Selection);
1553 }
1554 
1555 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1556   if (Kind.isText())
1557     return ".text";
1558   if (Kind.isBSS())
1559     return ".bss";
1560   if (Kind.isThreadLocal())
1561     return ".tls$";
1562   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1563     return ".rdata";
1564   return ".data";
1565 }
1566 
1567 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1568     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1569   // If we have -ffunction-sections then we should emit the global value to a
1570   // uniqued section specifically for it.
1571   bool EmitUniquedSection;
1572   if (Kind.isText())
1573     EmitUniquedSection = TM.getFunctionSections();
1574   else
1575     EmitUniquedSection = TM.getDataSections();
1576 
1577   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1578     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1579 
1580     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1581 
1582     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1583     int Selection = getSelectionForCOFF(GO);
1584     if (!Selection)
1585       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1586     const GlobalValue *ComdatGV;
1587     if (GO->hasComdat())
1588       ComdatGV = getComdatGVForCOFF(GO);
1589     else
1590       ComdatGV = GO;
1591 
1592     unsigned UniqueID = MCContext::GenericSectionID;
1593     if (EmitUniquedSection)
1594       UniqueID = NextUniqueID++;
1595 
1596     if (!ComdatGV->hasPrivateLinkage()) {
1597       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1598       StringRef COMDATSymName = Sym->getName();
1599 
1600       if (const auto *F = dyn_cast<Function>(GO))
1601         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1602           raw_svector_ostream(Name) << '$' << *Prefix;
1603 
1604       // Append "$symbol" to the section name *before* IR-level mangling is
1605       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1606       // COFF linker will not properly handle comdats otherwise.
1607       if (getTargetTriple().isWindowsGNUEnvironment())
1608         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1609 
1610       return getContext().getCOFFSection(Name, Characteristics, Kind,
1611                                          COMDATSymName, Selection, UniqueID);
1612     } else {
1613       SmallString<256> TmpData;
1614       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1615       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1616                                          Selection, UniqueID);
1617     }
1618   }
1619 
1620   if (Kind.isText())
1621     return TextSection;
1622 
1623   if (Kind.isThreadLocal())
1624     return TLSDataSection;
1625 
1626   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1627     return ReadOnlySection;
1628 
1629   // Note: we claim that common symbols are put in BSSSection, but they are
1630   // really emitted with the magic .comm directive, which creates a symbol table
1631   // entry but not a section.
1632   if (Kind.isBSS() || Kind.isCommon())
1633     return BSSSection;
1634 
1635   return DataSection;
1636 }
1637 
1638 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1639     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1640     const TargetMachine &TM) const {
1641   bool CannotUsePrivateLabel = false;
1642   if (GV->hasPrivateLinkage() &&
1643       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1644        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1645     CannotUsePrivateLabel = true;
1646 
1647   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1648 }
1649 
1650 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1651     const Function &F, const TargetMachine &TM) const {
1652   // If the function can be removed, produce a unique section so that
1653   // the table doesn't prevent the removal.
1654   const Comdat *C = F.getComdat();
1655   bool EmitUniqueSection = TM.getFunctionSections() || C;
1656   if (!EmitUniqueSection)
1657     return ReadOnlySection;
1658 
1659   // FIXME: we should produce a symbol for F instead.
1660   if (F.hasPrivateLinkage())
1661     return ReadOnlySection;
1662 
1663   MCSymbol *Sym = TM.getSymbol(&F);
1664   StringRef COMDATSymName = Sym->getName();
1665 
1666   SectionKind Kind = SectionKind::getReadOnly();
1667   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1668   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1669   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1670   unsigned UniqueID = NextUniqueID++;
1671 
1672   return getContext().getCOFFSection(
1673       SecName, Characteristics, Kind, COMDATSymName,
1674       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1675 }
1676 
1677 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1678                                                       Module &M) const {
1679   emitLinkerDirectives(Streamer, M);
1680 
1681   unsigned Version = 0;
1682   unsigned Flags = 0;
1683   StringRef Section;
1684 
1685   GetObjCImageInfo(M, Version, Flags, Section);
1686   if (!Section.empty()) {
1687     auto &C = getContext();
1688     auto *S = C.getCOFFSection(Section,
1689                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1690                                    COFF::IMAGE_SCN_MEM_READ,
1691                                SectionKind::getReadOnly());
1692     Streamer.SwitchSection(S);
1693     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1694     Streamer.emitInt32(Version);
1695     Streamer.emitInt32(Flags);
1696     Streamer.AddBlankLine();
1697   }
1698 
1699   auto &C = getContext();
1700   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
1701   M.getModuleFlagsMetadata(ModuleFlags);
1702 
1703   MDNode *CFGProfile = nullptr;
1704 
1705   for (const auto &MFE : ModuleFlags) {
1706     StringRef Key = MFE.Key->getString();
1707     if (Key == "CG Profile") {
1708       CFGProfile = cast<MDNode>(MFE.Val);
1709       break;
1710     }
1711   }
1712 
1713   if (!CFGProfile)
1714     return;
1715 
1716   auto GetSym = [this](const MDOperand &MDO) -> MCSymbol * {
1717     if (!MDO)
1718       return nullptr;
1719     auto V = cast<ValueAsMetadata>(MDO);
1720     const Function *F = cast<Function>(V->getValue());
1721     if (F->hasDLLImportStorageClass())
1722       return nullptr;
1723     return TM->getSymbol(F);
1724   };
1725 
1726   for (const auto &Edge : CFGProfile->operands()) {
1727     MDNode *E = cast<MDNode>(Edge);
1728     const MCSymbol *From = GetSym(E->getOperand(0));
1729     const MCSymbol *To = GetSym(E->getOperand(1));
1730     // Skip null functions. This can happen if functions are dead stripped after
1731     // the CGProfile pass has been run.
1732     if (!From || !To)
1733       continue;
1734     uint64_t Count = cast<ConstantAsMetadata>(E->getOperand(2))
1735                          ->getValue()
1736                          ->getUniqueInteger()
1737                          .getZExtValue();
1738     Streamer.emitCGProfileEntry(
1739         MCSymbolRefExpr::create(From, MCSymbolRefExpr::VK_None, C),
1740         MCSymbolRefExpr::create(To, MCSymbolRefExpr::VK_None, C), Count);
1741   }
1742 }
1743 
1744 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1745     MCStreamer &Streamer, Module &M) const {
1746   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1747     // Emit the linker options to the linker .drectve section.  According to the
1748     // spec, this section is a space-separated string containing flags for
1749     // linker.
1750     MCSection *Sec = getDrectveSection();
1751     Streamer.SwitchSection(Sec);
1752     for (const auto *Option : LinkerOptions->operands()) {
1753       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1754         // Lead with a space for consistency with our dllexport implementation.
1755         std::string Directive(" ");
1756         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1757         Streamer.emitBytes(Directive);
1758       }
1759     }
1760   }
1761 
1762   // Emit /EXPORT: flags for each exported global as necessary.
1763   std::string Flags;
1764   for (const GlobalValue &GV : M.global_values()) {
1765     raw_string_ostream OS(Flags);
1766     emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler());
1767     OS.flush();
1768     if (!Flags.empty()) {
1769       Streamer.SwitchSection(getDrectveSection());
1770       Streamer.emitBytes(Flags);
1771     }
1772     Flags.clear();
1773   }
1774 
1775   // Emit /INCLUDE: flags for each used global as necessary.
1776   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1777     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1778     assert(isa<ArrayType>(LU->getValueType()) &&
1779            "expected llvm.used to be an array type");
1780     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1781       for (const Value *Op : A->operands()) {
1782         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1783         // Global symbols with internal or private linkage are not visible to
1784         // the linker, and thus would cause an error when the linker tried to
1785         // preserve the symbol due to the `/include:` directive.
1786         if (GV->hasLocalLinkage())
1787           continue;
1788 
1789         raw_string_ostream OS(Flags);
1790         emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1791         OS.flush();
1792 
1793         if (!Flags.empty()) {
1794           Streamer.SwitchSection(getDrectveSection());
1795           Streamer.emitBytes(Flags);
1796         }
1797         Flags.clear();
1798       }
1799     }
1800   }
1801 }
1802 
1803 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1804                                               const TargetMachine &TM) {
1805   TargetLoweringObjectFile::Initialize(Ctx, TM);
1806   this->TM = &TM;
1807   const Triple &T = TM.getTargetTriple();
1808   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1809     StaticCtorSection =
1810         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1811                                            COFF::IMAGE_SCN_MEM_READ,
1812                            SectionKind::getReadOnly());
1813     StaticDtorSection =
1814         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1815                                            COFF::IMAGE_SCN_MEM_READ,
1816                            SectionKind::getReadOnly());
1817   } else {
1818     StaticCtorSection = Ctx.getCOFFSection(
1819         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1820                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1821         SectionKind::getData());
1822     StaticDtorSection = Ctx.getCOFFSection(
1823         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1824                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1825         SectionKind::getData());
1826   }
1827 }
1828 
1829 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1830                                                    const Triple &T, bool IsCtor,
1831                                                    unsigned Priority,
1832                                                    const MCSymbol *KeySym,
1833                                                    MCSectionCOFF *Default) {
1834   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1835     // If the priority is the default, use .CRT$XCU, possibly associative.
1836     if (Priority == 65535)
1837       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1838 
1839     // Otherwise, we need to compute a new section name. Low priorities should
1840     // run earlier. The linker will sort sections ASCII-betically, and we need a
1841     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1842     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1843     // low priorities need to sort before 'L', since the CRT uses that
1844     // internally, so we use ".CRT$XCA00001" for them.
1845     SmallString<24> Name;
1846     raw_svector_ostream OS(Name);
1847     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1848         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1849     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1850         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1851         SectionKind::getReadOnly());
1852     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1853   }
1854 
1855   std::string Name = IsCtor ? ".ctors" : ".dtors";
1856   if (Priority != 65535)
1857     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1858 
1859   return Ctx.getAssociativeCOFFSection(
1860       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1861                                    COFF::IMAGE_SCN_MEM_READ |
1862                                    COFF::IMAGE_SCN_MEM_WRITE,
1863                          SectionKind::getData()),
1864       KeySym, 0);
1865 }
1866 
1867 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1868     unsigned Priority, const MCSymbol *KeySym) const {
1869   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1870                                       Priority, KeySym,
1871                                       cast<MCSectionCOFF>(StaticCtorSection));
1872 }
1873 
1874 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1875     unsigned Priority, const MCSymbol *KeySym) const {
1876   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1877                                       Priority, KeySym,
1878                                       cast<MCSectionCOFF>(StaticDtorSection));
1879 }
1880 
1881 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1882     const GlobalValue *LHS, const GlobalValue *RHS,
1883     const TargetMachine &TM) const {
1884   const Triple &T = TM.getTargetTriple();
1885   if (T.isOSCygMing())
1886     return nullptr;
1887 
1888   // Our symbols should exist in address space zero, cowardly no-op if
1889   // otherwise.
1890   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1891       RHS->getType()->getPointerAddressSpace() != 0)
1892     return nullptr;
1893 
1894   // Both ptrtoint instructions must wrap global objects:
1895   // - Only global variables are eligible for image relative relocations.
1896   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1897   // We expect __ImageBase to be a global variable without a section, externally
1898   // defined.
1899   //
1900   // It should look something like this: @__ImageBase = external constant i8
1901   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1902       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1903       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1904       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1905     return nullptr;
1906 
1907   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1908                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1909                                  getContext());
1910 }
1911 
1912 static std::string APIntToHexString(const APInt &AI) {
1913   unsigned Width = (AI.getBitWidth() / 8) * 2;
1914   std::string HexString = AI.toString(16, /*Signed=*/false);
1915   llvm::transform(HexString, HexString.begin(), tolower);
1916   unsigned Size = HexString.size();
1917   assert(Width >= Size && "hex string is too large!");
1918   HexString.insert(HexString.begin(), Width - Size, '0');
1919 
1920   return HexString;
1921 }
1922 
1923 static std::string scalarConstantToHexString(const Constant *C) {
1924   Type *Ty = C->getType();
1925   if (isa<UndefValue>(C)) {
1926     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1927   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1928     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1929   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1930     return APIntToHexString(CI->getValue());
1931   } else {
1932     unsigned NumElements;
1933     if (auto *VTy = dyn_cast<VectorType>(Ty))
1934       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1935     else
1936       NumElements = Ty->getArrayNumElements();
1937     std::string HexString;
1938     for (int I = NumElements - 1, E = -1; I != E; --I)
1939       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1940     return HexString;
1941   }
1942 }
1943 
1944 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1945     const DataLayout &DL, SectionKind Kind, const Constant *C,
1946     Align &Alignment) const {
1947   if (Kind.isMergeableConst() && C &&
1948       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1949     // This creates comdat sections with the given symbol name, but unless
1950     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1951     // will be created with a null storage class, which makes GNU binutils
1952     // error out.
1953     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1954                                      COFF::IMAGE_SCN_MEM_READ |
1955                                      COFF::IMAGE_SCN_LNK_COMDAT;
1956     std::string COMDATSymName;
1957     if (Kind.isMergeableConst4()) {
1958       if (Alignment <= 4) {
1959         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1960         Alignment = Align(4);
1961       }
1962     } else if (Kind.isMergeableConst8()) {
1963       if (Alignment <= 8) {
1964         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1965         Alignment = Align(8);
1966       }
1967     } else if (Kind.isMergeableConst16()) {
1968       // FIXME: These may not be appropriate for non-x86 architectures.
1969       if (Alignment <= 16) {
1970         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1971         Alignment = Align(16);
1972       }
1973     } else if (Kind.isMergeableConst32()) {
1974       if (Alignment <= 32) {
1975         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1976         Alignment = Align(32);
1977       }
1978     }
1979 
1980     if (!COMDATSymName.empty())
1981       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1982                                          COMDATSymName,
1983                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1984   }
1985 
1986   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1987                                                          Alignment);
1988 }
1989 
1990 //===----------------------------------------------------------------------===//
1991 //                                  Wasm
1992 //===----------------------------------------------------------------------===//
1993 
1994 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1995   const Comdat *C = GV->getComdat();
1996   if (!C)
1997     return nullptr;
1998 
1999   if (C->getSelectionKind() != Comdat::Any)
2000     report_fatal_error("WebAssembly COMDATs only support "
2001                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
2002                        "lowered.");
2003 
2004   return C;
2005 }
2006 
2007 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
2008     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2009   // We don't support explict section names for functions in the wasm object
2010   // format.  Each function has to be in its own unique section.
2011   if (isa<Function>(GO)) {
2012     return SelectSectionForGlobal(GO, Kind, TM);
2013   }
2014 
2015   StringRef Name = GO->getSection();
2016 
2017   // Certain data sections we treat as named custom sections rather than
2018   // segments within the data section.
2019   // This could be avoided if all data segements (the wasm sense) were
2020   // represented as their own sections (in the llvm sense).
2021   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
2022   if (Name == ".llvmcmd" || Name == ".llvmbc")
2023     Kind = SectionKind::getMetadata();
2024 
2025   StringRef Group = "";
2026   if (const Comdat *C = getWasmComdat(GO)) {
2027     Group = C->getName();
2028   }
2029 
2030   MCSectionWasm* Section =
2031       getContext().getWasmSection(Name, Kind, Group,
2032                                   MCContext::GenericSectionID);
2033 
2034   return Section;
2035 }
2036 
2037 static MCSectionWasm *selectWasmSectionForGlobal(
2038     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
2039     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
2040   StringRef Group = "";
2041   if (const Comdat *C = getWasmComdat(GO)) {
2042     Group = C->getName();
2043   }
2044 
2045   bool UniqueSectionNames = TM.getUniqueSectionNames();
2046   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
2047 
2048   if (const auto *F = dyn_cast<Function>(GO)) {
2049     const auto &OptionalPrefix = F->getSectionPrefix();
2050     if (OptionalPrefix)
2051       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2052   }
2053 
2054   if (EmitUniqueSection && UniqueSectionNames) {
2055     Name.push_back('.');
2056     TM.getNameWithPrefix(Name, GO, Mang, true);
2057   }
2058   unsigned UniqueID = MCContext::GenericSectionID;
2059   if (EmitUniqueSection && !UniqueSectionNames) {
2060     UniqueID = *NextUniqueID;
2061     (*NextUniqueID)++;
2062   }
2063 
2064   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
2065 }
2066 
2067 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2068     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2069 
2070   if (Kind.isCommon())
2071     report_fatal_error("mergable sections not supported yet on wasm");
2072 
2073   // If we have -ffunction-section or -fdata-section then we should emit the
2074   // global value to a uniqued section specifically for it.
2075   bool EmitUniqueSection = false;
2076   if (Kind.isText())
2077     EmitUniqueSection = TM.getFunctionSections();
2078   else
2079     EmitUniqueSection = TM.getDataSections();
2080   EmitUniqueSection |= GO->hasComdat();
2081 
2082   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2083                                     EmitUniqueSection, &NextUniqueID);
2084 }
2085 
2086 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2087     bool UsesLabelDifference, const Function &F) const {
2088   // We can always create relative relocations, so use another section
2089   // that can be marked non-executable.
2090   return false;
2091 }
2092 
2093 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2094     const GlobalValue *LHS, const GlobalValue *RHS,
2095     const TargetMachine &TM) const {
2096   // We may only use a PLT-relative relocation to refer to unnamed_addr
2097   // functions.
2098   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2099     return nullptr;
2100 
2101   // Basic sanity checks.
2102   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2103       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2104       RHS->isThreadLocal())
2105     return nullptr;
2106 
2107   return MCBinaryExpr::createSub(
2108       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2109                               getContext()),
2110       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2111 }
2112 
2113 void TargetLoweringObjectFileWasm::InitializeWasm() {
2114   StaticCtorSection =
2115       getContext().getWasmSection(".init_array", SectionKind::getData());
2116 
2117   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2118   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2119   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2120 }
2121 
2122 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2123     unsigned Priority, const MCSymbol *KeySym) const {
2124   return Priority == UINT16_MAX ?
2125          StaticCtorSection :
2126          getContext().getWasmSection(".init_array." + utostr(Priority),
2127                                      SectionKind::getData());
2128 }
2129 
2130 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2131     unsigned Priority, const MCSymbol *KeySym) const {
2132   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2133   return nullptr;
2134 }
2135 
2136 //===----------------------------------------------------------------------===//
2137 //                                  XCOFF
2138 //===----------------------------------------------------------------------===//
2139 MCSymbol *
2140 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2141                                                const TargetMachine &TM) const {
2142   // We always use a qualname symbol for a GV that represents
2143   // a declaration, a function descriptor, or a common symbol.
2144   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2145   // also return a qualname so that a label symbol could be avoided.
2146   // It is inherently ambiguous when the GO represents the address of a
2147   // function, as the GO could either represent a function descriptor or a
2148   // function entry point. We choose to always return a function descriptor
2149   // here.
2150   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2151     if (GO->isDeclarationForLinker())
2152       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2153           ->getQualNameSymbol();
2154 
2155     SectionKind GOKind = getKindForGlobal(GO, TM);
2156     if (GOKind.isText())
2157       return cast<MCSectionXCOFF>(
2158                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2159           ->getQualNameSymbol();
2160     if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() ||
2161         GOKind.isBSSLocal())
2162       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2163           ->getQualNameSymbol();
2164   }
2165 
2166   // For all other cases, fall back to getSymbol to return the unqualified name.
2167   return nullptr;
2168 }
2169 
2170 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2171     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2172   if (!GO->hasSection())
2173     report_fatal_error("#pragma clang section is not yet supported");
2174 
2175   StringRef SectionName = GO->getSection();
2176   XCOFF::StorageMappingClass MappingClass;
2177   if (Kind.isText())
2178     MappingClass = XCOFF::XMC_PR;
2179   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2180     MappingClass = XCOFF::XMC_RW;
2181   else if (Kind.isReadOnly())
2182     MappingClass = XCOFF::XMC_RO;
2183   else
2184     report_fatal_error("XCOFF other section types not yet implemented.");
2185 
2186   return getContext().getXCOFFSection(SectionName, MappingClass, XCOFF::XTY_SD,
2187                                       Kind, /* MultiSymbolsAllowed*/ true);
2188 }
2189 
2190 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2191     const GlobalObject *GO, const TargetMachine &TM) const {
2192   assert(GO->isDeclarationForLinker() &&
2193          "Tried to get ER section for a defined global.");
2194 
2195   SmallString<128> Name;
2196   getNameWithPrefix(Name, GO, TM);
2197 
2198   // Externals go into a csect of type ER.
2199   return getContext().getXCOFFSection(
2200       Name, isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA, XCOFF::XTY_ER,
2201       SectionKind::getMetadata());
2202 }
2203 
2204 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2205     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2206   // Common symbols go into a csect with matching name which will get mapped
2207   // into the .bss section.
2208   if (Kind.isBSSLocal() || Kind.isCommon()) {
2209     SmallString<128> Name;
2210     getNameWithPrefix(Name, GO, TM);
2211     return getContext().getXCOFFSection(
2212         Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM,
2213         Kind);
2214   }
2215 
2216   if (Kind.isMergeableCString()) {
2217     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2218         cast<GlobalVariable>(GO));
2219 
2220     unsigned EntrySize = getEntrySizeForKind(Kind);
2221     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2222     SmallString<128> Name;
2223     Name = SizeSpec + utostr(Alignment.value());
2224 
2225     if (TM.getDataSections())
2226       getNameWithPrefix(Name, GO, TM);
2227 
2228     return getContext().getXCOFFSection(
2229         Name, XCOFF::XMC_RO, XCOFF::XTY_SD, Kind,
2230         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2231   }
2232 
2233   if (Kind.isText()) {
2234     if (TM.getFunctionSections()) {
2235       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2236           ->getRepresentedCsect();
2237     }
2238     return TextSection;
2239   }
2240 
2241   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2242   // user may want to have read-only data with relocations placed into a
2243   // read-only section by the compiler.
2244   // For BSS kind, zero initialized data must be emitted to the .data section
2245   // because external linkage control sections that get mapped to the .bss
2246   // section will be linked as tentative defintions, which is only appropriate
2247   // for SectionKind::Common.
2248   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2249     if (TM.getDataSections()) {
2250       SmallString<128> Name;
2251       getNameWithPrefix(Name, GO, TM);
2252       return getContext().getXCOFFSection(Name, XCOFF::XMC_RW, XCOFF::XTY_SD,
2253                                           SectionKind::getData());
2254     }
2255     return DataSection;
2256   }
2257 
2258   if (Kind.isReadOnly()) {
2259     if (TM.getDataSections()) {
2260       SmallString<128> Name;
2261       getNameWithPrefix(Name, GO, TM);
2262       return getContext().getXCOFFSection(Name, XCOFF::XMC_RO, XCOFF::XTY_SD,
2263                                           SectionKind::getReadOnly());
2264     }
2265     return ReadOnlySection;
2266   }
2267 
2268   report_fatal_error("XCOFF other section types not yet implemented.");
2269 }
2270 
2271 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2272     const Function &F, const TargetMachine &TM) const {
2273   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2274 
2275   if (!TM.getFunctionSections())
2276     return ReadOnlySection;
2277 
2278   // If the function can be removed, produce a unique section so that
2279   // the table doesn't prevent the removal.
2280   SmallString<128> NameStr(".rodata.jmp..");
2281   getNameWithPrefix(NameStr, &F, TM);
2282   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_RO, XCOFF::XTY_SD,
2283                                       SectionKind::getReadOnly());
2284 }
2285 
2286 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2287     bool UsesLabelDifference, const Function &F) const {
2288   return false;
2289 }
2290 
2291 /// Given a mergeable constant with the specified size and relocation
2292 /// information, return a section that it should be placed in.
2293 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2294     const DataLayout &DL, SectionKind Kind, const Constant *C,
2295     Align &Alignment) const {
2296   //TODO: Enable emiting constant pool to unique sections when we support it.
2297   return ReadOnlySection;
2298 }
2299 
2300 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2301                                                const TargetMachine &TgtM) {
2302   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2303   TTypeEncoding =
2304       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2305       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2306                                             : dwarf::DW_EH_PE_sdata8);
2307   PersonalityEncoding = 0;
2308   LSDAEncoding = 0;
2309   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2310 }
2311 
2312 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2313 	unsigned Priority, const MCSymbol *KeySym) const {
2314   report_fatal_error("no static constructor section on AIX");
2315 }
2316 
2317 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2318 	unsigned Priority, const MCSymbol *KeySym) const {
2319   report_fatal_error("no static destructor section on AIX");
2320 }
2321 
2322 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2323     const GlobalValue *LHS, const GlobalValue *RHS,
2324     const TargetMachine &TM) const {
2325   report_fatal_error("XCOFF not yet implemented.");
2326 }
2327 
2328 XCOFF::StorageClass
2329 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2330   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2331 
2332   switch (GV->getLinkage()) {
2333   case GlobalValue::InternalLinkage:
2334   case GlobalValue::PrivateLinkage:
2335     return XCOFF::C_HIDEXT;
2336   case GlobalValue::ExternalLinkage:
2337   case GlobalValue::CommonLinkage:
2338   case GlobalValue::AvailableExternallyLinkage:
2339     return XCOFF::C_EXT;
2340   case GlobalValue::ExternalWeakLinkage:
2341   case GlobalValue::LinkOnceAnyLinkage:
2342   case GlobalValue::LinkOnceODRLinkage:
2343   case GlobalValue::WeakAnyLinkage:
2344   case GlobalValue::WeakODRLinkage:
2345     return XCOFF::C_WEAKEXT;
2346   case GlobalValue::AppendingLinkage:
2347     report_fatal_error(
2348         "There is no mapping that implements AppendingLinkage for XCOFF.");
2349   }
2350   llvm_unreachable("Unknown linkage type!");
2351 }
2352 
2353 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2354     const GlobalValue *Func, const TargetMachine &TM) const {
2355   assert(
2356       (isa<Function>(Func) ||
2357        (isa<GlobalAlias>(Func) &&
2358         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2359       "Func must be a function or an alias which has a function as base "
2360       "object.");
2361 
2362   SmallString<128> NameStr;
2363   NameStr.push_back('.');
2364   getNameWithPrefix(NameStr, Func, TM);
2365 
2366   // When -function-sections is enabled and explicit section is not specified,
2367   // it's not necessary to emit function entry point label any more. We will use
2368   // function entry point csect instead. And for function delcarations, the
2369   // undefined symbols gets treated as csect with XTY_ER property.
2370   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2371        Func->isDeclaration()) &&
2372       isa<Function>(Func)) {
2373     return getContext()
2374         .getXCOFFSection(NameStr, XCOFF::XMC_PR,
2375                          Func->isDeclaration() ? XCOFF::XTY_ER : XCOFF::XTY_SD,
2376                          SectionKind::getText())
2377         ->getQualNameSymbol();
2378   }
2379 
2380   return getContext().getOrCreateSymbol(NameStr);
2381 }
2382 
2383 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2384     const Function *F, const TargetMachine &TM) const {
2385   SmallString<128> NameStr;
2386   getNameWithPrefix(NameStr, F, TM);
2387   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_DS, XCOFF::XTY_SD,
2388                                       SectionKind::getData());
2389 }
2390 
2391 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2392     const MCSymbol *Sym, const TargetMachine &TM) const {
2393   // Use TE storage-mapping class when large code model is enabled so that
2394   // the chance of needing -bbigtoc is decreased.
2395   return getContext().getXCOFFSection(
2396       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(),
2397       TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2398       XCOFF::XTY_SD, SectionKind::getData());
2399 }
2400