xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision 47c5576d7d586624c38f76bd3168e05f6ef1f838)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117 
118   CodeModel::Model CM = TgtM.getCodeModel();
119   InitializeELF(TgtM.Options.UseInitArray);
120 
121   switch (TgtM.getTargetTriple().getArch()) {
122   case Triple::arm:
123   case Triple::armeb:
124   case Triple::thumb:
125   case Triple::thumbeb:
126     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
127       break;
128     // Fallthrough if not using EHABI
129     LLVM_FALLTHROUGH;
130   case Triple::ppc:
131   case Triple::ppcle:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       // ILP32 uses sdata4 instead of sdata8
185       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
186         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
187                               dwarf::DW_EH_PE_sdata4;
188         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
189         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                         dwarf::DW_EH_PE_sdata4;
191       } else {
192         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
193                               dwarf::DW_EH_PE_sdata8;
194         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
195         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
196                         dwarf::DW_EH_PE_sdata8;
197       }
198     } else {
199       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
200       LSDAEncoding = dwarf::DW_EH_PE_absptr;
201       TTypeEncoding = dwarf::DW_EH_PE_absptr;
202     }
203     break;
204   case Triple::lanai:
205     LSDAEncoding = dwarf::DW_EH_PE_absptr;
206     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
207     TTypeEncoding = dwarf::DW_EH_PE_absptr;
208     break;
209   case Triple::mips:
210   case Triple::mipsel:
211   case Triple::mips64:
212   case Triple::mips64el:
213     // MIPS uses indirect pointer to refer personality functions and types, so
214     // that the eh_frame section can be read-only. DW.ref.personality will be
215     // generated for relocation.
216     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
217     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
218     //        identify N64 from just a triple.
219     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
220                     dwarf::DW_EH_PE_sdata4;
221     // We don't support PC-relative LSDA references in GAS so we use the default
222     // DW_EH_PE_absptr for those.
223 
224     // FreeBSD must be explicit about the data size and using pcrel since it's
225     // assembler/linker won't do the automatic conversion that the Linux tools
226     // do.
227     if (TgtM.getTargetTriple().isOSFreeBSD()) {
228       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
229       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
230     }
231     break;
232   case Triple::ppc64:
233   case Triple::ppc64le:
234     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
235       dwarf::DW_EH_PE_udata8;
236     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
237     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238       dwarf::DW_EH_PE_udata8;
239     break;
240   case Triple::sparcel:
241   case Triple::sparc:
242     if (isPositionIndependent()) {
243       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
244       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
245         dwarf::DW_EH_PE_sdata4;
246       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248     } else {
249       LSDAEncoding = dwarf::DW_EH_PE_absptr;
250       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
251       TTypeEncoding = dwarf::DW_EH_PE_absptr;
252     }
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::riscv32:
256   case Triple::riscv64:
257     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
258     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259                           dwarf::DW_EH_PE_sdata4;
260     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                     dwarf::DW_EH_PE_sdata4;
262     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
263     break;
264   case Triple::sparcv9:
265     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
266     if (isPositionIndependent()) {
267       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
268         dwarf::DW_EH_PE_sdata4;
269       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271     } else {
272       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
273       TTypeEncoding = dwarf::DW_EH_PE_absptr;
274     }
275     break;
276   case Triple::systemz:
277     // All currently-defined code models guarantee that 4-byte PC-relative
278     // values will be in range.
279     if (isPositionIndependent()) {
280       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
281         dwarf::DW_EH_PE_sdata4;
282       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
283       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
284         dwarf::DW_EH_PE_sdata4;
285     } else {
286       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
287       LSDAEncoding = dwarf::DW_EH_PE_absptr;
288       TTypeEncoding = dwarf::DW_EH_PE_absptr;
289     }
290     break;
291   default:
292     break;
293   }
294 }
295 
296 void TargetLoweringObjectFileELF::getModuleMetadata(Module &M) {
297   SmallVector<GlobalValue *, 4> Vec;
298   collectUsedGlobalVariables(M, Vec, false);
299   for (GlobalValue *GV : Vec)
300     if (auto *GO = dyn_cast<GlobalObject>(GV))
301       Used.insert(GO);
302 }
303 
304 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
305                                                      Module &M) const {
306   auto &C = getContext();
307 
308   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
309     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
310                               ELF::SHF_EXCLUDE);
311 
312     Streamer.SwitchSection(S);
313 
314     for (const auto *Operand : LinkerOptions->operands()) {
315       if (cast<MDNode>(Operand)->getNumOperands() != 2)
316         report_fatal_error("invalid llvm.linker.options");
317       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
318         Streamer.emitBytes(cast<MDString>(Option)->getString());
319         Streamer.emitInt8(0);
320       }
321     }
322   }
323 
324   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
325     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
326                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
327 
328     Streamer.SwitchSection(S);
329 
330     for (const auto *Operand : DependentLibraries->operands()) {
331       Streamer.emitBytes(
332           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
333       Streamer.emitInt8(0);
334     }
335   }
336 
337   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
338     // Emit a descriptor for every function including functions that have an
339     // available external linkage. We may not want this for imported functions
340     // that has code in another thinLTO module but we don't have a good way to
341     // tell them apart from inline functions defined in header files. Therefore
342     // we put each descriptor in a separate comdat section and rely on the
343     // linker to deduplicate.
344     for (const auto *Operand : FuncInfo->operands()) {
345       const auto *MD = cast<MDNode>(Operand);
346       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
347       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
348       auto *Name = cast<MDString>(MD->getOperand(2));
349       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
350           TM->getFunctionSections() ? Name->getString() : StringRef());
351 
352       Streamer.SwitchSection(S);
353       Streamer.emitInt64(GUID->getZExtValue());
354       Streamer.emitInt64(Hash->getZExtValue());
355       Streamer.emitULEB128IntValue(Name->getString().size());
356       Streamer.emitBytes(Name->getString());
357     }
358   }
359 
360   unsigned Version = 0;
361   unsigned Flags = 0;
362   StringRef Section;
363 
364   GetObjCImageInfo(M, Version, Flags, Section);
365   if (!Section.empty()) {
366     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
367     Streamer.SwitchSection(S);
368     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
369     Streamer.emitInt32(Version);
370     Streamer.emitInt32(Flags);
371     Streamer.AddBlankLine();
372   }
373 
374   emitCGProfileMetadata(Streamer, M);
375 }
376 
377 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
378     const GlobalValue *GV, const TargetMachine &TM,
379     MachineModuleInfo *MMI) const {
380   unsigned Encoding = getPersonalityEncoding();
381   if ((Encoding & 0x80) == DW_EH_PE_indirect)
382     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
383                                           TM.getSymbol(GV)->getName());
384   if ((Encoding & 0x70) == DW_EH_PE_absptr)
385     return TM.getSymbol(GV);
386   report_fatal_error("We do not support this DWARF encoding yet!");
387 }
388 
389 void TargetLoweringObjectFileELF::emitPersonalityValue(
390     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
391   SmallString<64> NameData("DW.ref.");
392   NameData += Sym->getName();
393   MCSymbolELF *Label =
394       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
395   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
396   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
397   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
398   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
399                                                    ELF::SHT_PROGBITS, Flags, 0);
400   unsigned Size = DL.getPointerSize();
401   Streamer.SwitchSection(Sec);
402   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
403   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
404   const MCExpr *E = MCConstantExpr::create(Size, getContext());
405   Streamer.emitELFSize(Label, E);
406   Streamer.emitLabel(Label);
407 
408   Streamer.emitSymbolValue(Sym, Size);
409 }
410 
411 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
412     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
413     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
414   if (Encoding & DW_EH_PE_indirect) {
415     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
416 
417     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
418 
419     // Add information about the stub reference to ELFMMI so that the stub
420     // gets emitted by the asmprinter.
421     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
422     if (!StubSym.getPointer()) {
423       MCSymbol *Sym = TM.getSymbol(GV);
424       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
425     }
426 
427     return TargetLoweringObjectFile::
428       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
429                         Encoding & ~DW_EH_PE_indirect, Streamer);
430   }
431 
432   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
433                                                            MMI, Streamer);
434 }
435 
436 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
437   // N.B.: The defaults used in here are not the same ones used in MC.
438   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
439   // both gas and MC will produce a section with no flags. Given
440   // section(".eh_frame") gcc will produce:
441   //
442   //   .section   .eh_frame,"a",@progbits
443 
444   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
445                                       /*AddSegmentInfo=*/false) ||
446       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
447                                       /*AddSegmentInfo=*/false) ||
448       Name == ".llvmbc" || Name == ".llvmcmd")
449     return SectionKind::getMetadata();
450 
451   if (Name.empty() || Name[0] != '.') return K;
452 
453   // Default implementation based on some magic section names.
454   if (Name == ".bss" ||
455       Name.startswith(".bss.") ||
456       Name.startswith(".gnu.linkonce.b.") ||
457       Name.startswith(".llvm.linkonce.b.") ||
458       Name == ".sbss" ||
459       Name.startswith(".sbss.") ||
460       Name.startswith(".gnu.linkonce.sb.") ||
461       Name.startswith(".llvm.linkonce.sb."))
462     return SectionKind::getBSS();
463 
464   if (Name == ".tdata" ||
465       Name.startswith(".tdata.") ||
466       Name.startswith(".gnu.linkonce.td.") ||
467       Name.startswith(".llvm.linkonce.td."))
468     return SectionKind::getThreadData();
469 
470   if (Name == ".tbss" ||
471       Name.startswith(".tbss.") ||
472       Name.startswith(".gnu.linkonce.tb.") ||
473       Name.startswith(".llvm.linkonce.tb."))
474     return SectionKind::getThreadBSS();
475 
476   return K;
477 }
478 
479 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
480   // Use SHT_NOTE for section whose name starts with ".note" to allow
481   // emitting ELF notes from C variable declaration.
482   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
483   if (Name.startswith(".note"))
484     return ELF::SHT_NOTE;
485 
486   if (Name == ".init_array")
487     return ELF::SHT_INIT_ARRAY;
488 
489   if (Name == ".fini_array")
490     return ELF::SHT_FINI_ARRAY;
491 
492   if (Name == ".preinit_array")
493     return ELF::SHT_PREINIT_ARRAY;
494 
495   if (K.isBSS() || K.isThreadBSS())
496     return ELF::SHT_NOBITS;
497 
498   return ELF::SHT_PROGBITS;
499 }
500 
501 static unsigned getELFSectionFlags(SectionKind K) {
502   unsigned Flags = 0;
503 
504   if (!K.isMetadata())
505     Flags |= ELF::SHF_ALLOC;
506 
507   if (K.isText())
508     Flags |= ELF::SHF_EXECINSTR;
509 
510   if (K.isExecuteOnly())
511     Flags |= ELF::SHF_ARM_PURECODE;
512 
513   if (K.isWriteable())
514     Flags |= ELF::SHF_WRITE;
515 
516   if (K.isThreadLocal())
517     Flags |= ELF::SHF_TLS;
518 
519   if (K.isMergeableCString() || K.isMergeableConst())
520     Flags |= ELF::SHF_MERGE;
521 
522   if (K.isMergeableCString())
523     Flags |= ELF::SHF_STRINGS;
524 
525   return Flags;
526 }
527 
528 static const Comdat *getELFComdat(const GlobalValue *GV) {
529   const Comdat *C = GV->getComdat();
530   if (!C)
531     return nullptr;
532 
533   if (C->getSelectionKind() != Comdat::Any &&
534       C->getSelectionKind() != Comdat::NoDuplicates)
535     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
536                        "SelectionKind::NoDuplicates, '" + C->getName() +
537                        "' cannot be lowered.");
538 
539   return C;
540 }
541 
542 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
543                                             const TargetMachine &TM) {
544   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
545   if (!MD)
546     return nullptr;
547 
548   const MDOperand &Op = MD->getOperand(0);
549   if (!Op.get())
550     return nullptr;
551 
552   auto *VM = dyn_cast<ValueAsMetadata>(Op);
553   if (!VM)
554     report_fatal_error("MD_associated operand is not ValueAsMetadata");
555 
556   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
557   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
558 }
559 
560 static unsigned getEntrySizeForKind(SectionKind Kind) {
561   if (Kind.isMergeable1ByteCString())
562     return 1;
563   else if (Kind.isMergeable2ByteCString())
564     return 2;
565   else if (Kind.isMergeable4ByteCString())
566     return 4;
567   else if (Kind.isMergeableConst4())
568     return 4;
569   else if (Kind.isMergeableConst8())
570     return 8;
571   else if (Kind.isMergeableConst16())
572     return 16;
573   else if (Kind.isMergeableConst32())
574     return 32;
575   else {
576     // We shouldn't have mergeable C strings or mergeable constants that we
577     // didn't handle above.
578     assert(!Kind.isMergeableCString() && "unknown string width");
579     assert(!Kind.isMergeableConst() && "unknown data width");
580     return 0;
581   }
582 }
583 
584 /// Return the section prefix name used by options FunctionsSections and
585 /// DataSections.
586 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
587   if (Kind.isText())
588     return ".text";
589   if (Kind.isReadOnly())
590     return ".rodata";
591   if (Kind.isBSS())
592     return ".bss";
593   if (Kind.isThreadData())
594     return ".tdata";
595   if (Kind.isThreadBSS())
596     return ".tbss";
597   if (Kind.isData())
598     return ".data";
599   if (Kind.isReadOnlyWithRel())
600     return ".data.rel.ro";
601   llvm_unreachable("Unknown section kind");
602 }
603 
604 static SmallString<128>
605 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
606                            Mangler &Mang, const TargetMachine &TM,
607                            unsigned EntrySize, bool UniqueSectionName) {
608   SmallString<128> Name;
609   if (Kind.isMergeableCString()) {
610     // We also need alignment here.
611     // FIXME: this is getting the alignment of the character, not the
612     // alignment of the global!
613     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
614         cast<GlobalVariable>(GO));
615 
616     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
617     Name = SizeSpec + utostr(Alignment.value());
618   } else if (Kind.isMergeableConst()) {
619     Name = ".rodata.cst";
620     Name += utostr(EntrySize);
621   } else {
622     Name = getSectionPrefixForGlobal(Kind);
623   }
624 
625   bool HasPrefix = false;
626   if (const auto *F = dyn_cast<Function>(GO)) {
627     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
628       raw_svector_ostream(Name) << '.' << *Prefix;
629       HasPrefix = true;
630     }
631   }
632 
633   if (UniqueSectionName) {
634     Name.push_back('.');
635     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
636   } else if (HasPrefix)
637     // For distinguishing between .text.${text-section-prefix}. (with trailing
638     // dot) and .text.${function-name}
639     Name.push_back('.');
640   return Name;
641 }
642 
643 namespace {
644 class LoweringDiagnosticInfo : public DiagnosticInfo {
645   const Twine &Msg;
646 
647 public:
648   LoweringDiagnosticInfo(const Twine &DiagMsg,
649                          DiagnosticSeverity Severity = DS_Error)
650       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
651   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
652 };
653 }
654 
655 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
656     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
657   StringRef SectionName = GO->getSection();
658 
659   // Check if '#pragma clang section' name is applicable.
660   // Note that pragma directive overrides -ffunction-section, -fdata-section
661   // and so section name is exactly as user specified and not uniqued.
662   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
663   if (GV && GV->hasImplicitSection()) {
664     auto Attrs = GV->getAttributes();
665     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
666       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
667     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
668       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
669     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
670       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
671     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
672       SectionName = Attrs.getAttribute("data-section").getValueAsString();
673     }
674   }
675   const Function *F = dyn_cast<Function>(GO);
676   if (F && F->hasFnAttribute("implicit-section-name")) {
677     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
678   }
679 
680   // Infer section flags from the section name if we can.
681   Kind = getELFKindForNamedSection(SectionName, Kind);
682 
683   StringRef Group = "";
684   bool IsComdat = false;
685   unsigned Flags = getELFSectionFlags(Kind);
686   if (const Comdat *C = getELFComdat(GO)) {
687     Group = C->getName();
688     IsComdat = C->getSelectionKind() == Comdat::Any;
689     Flags |= ELF::SHF_GROUP;
690   }
691 
692   unsigned EntrySize = getEntrySizeForKind(Kind);
693 
694   // A section can have at most one associated section. Put each global with
695   // MD_associated in a unique section.
696   unsigned UniqueID = MCContext::GenericSectionID;
697   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
698   const bool Associated = GO->getMetadata(LLVMContext::MD_associated);
699   const bool Retain = Used.count(GO);
700   if (Associated || Retain) {
701     UniqueID = NextUniqueID++;
702     if (Associated)
703       Flags |= ELF::SHF_LINK_ORDER;
704     if (Retain && (getContext().getAsmInfo()->useIntegratedAssembler() ||
705                    getContext().getAsmInfo()->binutilsIsAtLeast(2, 36)))
706       Flags |= ELF::SHF_GNU_RETAIN;
707   } else {
708     if (getContext().getAsmInfo()->useIntegratedAssembler() ||
709         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) {
710       // Symbols must be placed into sections with compatible entry
711       // sizes. Generate unique sections for symbols that have not
712       // been assigned to compatible sections.
713       if (Flags & ELF::SHF_MERGE) {
714         auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags,
715                                                              EntrySize);
716         if (maybeID)
717           UniqueID = *maybeID;
718         else {
719           // If the user has specified the same section name as would be created
720           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
721           // to unique the section as the entry size for this symbol will be
722           // compatible with implicitly created sections.
723           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
724               GO, Kind, getMangler(), TM, EntrySize, false);
725           if (!(getContext().isELFImplicitMergeableSectionNamePrefix(
726                     SectionName) &&
727                 SectionName.startswith(ImplicitSectionNameStem)))
728             UniqueID = NextUniqueID++;
729         }
730       } else {
731         // We need to unique the section if the user has explicity
732         // assigned a non-mergeable symbol to a section name for
733         // a generic mergeable section.
734         if (getContext().isELFGenericMergeableSection(SectionName)) {
735           auto maybeID = getContext().getELFUniqueIDForEntsize(
736               SectionName, Flags, EntrySize);
737           UniqueID = maybeID ? *maybeID : NextUniqueID++;
738         }
739       }
740     } else {
741       // If two symbols with differing sizes end up in the same mergeable
742       // section that section can be assigned an incorrect entry size. To avoid
743       // this we usually put symbols of the same size into distinct mergeable
744       // sections with the same name. Doing so relies on the ",unique ,"
745       // assembly feature. This feature is not avalible until bintuils
746       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
747       Flags &= ~ELF::SHF_MERGE;
748       EntrySize = 0;
749     }
750   }
751 
752   MCSectionELF *Section = getContext().getELFSection(
753       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
754       Group, IsComdat, UniqueID, LinkedToSym);
755   // Make sure that we did not get some other section with incompatible sh_link.
756   // This should not be possible due to UniqueID code above.
757   assert(Section->getLinkedToSymbol() == LinkedToSym &&
758          "Associated symbol mismatch between sections");
759 
760   if (!(getContext().getAsmInfo()->useIntegratedAssembler() ||
761         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) {
762     // If we are using GNU as before 2.35, then this symbol might have
763     // been placed in an incompatible mergeable section. Emit an error if this
764     // is the case to avoid creating broken output.
765     if ((Section->getFlags() & ELF::SHF_MERGE) &&
766         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
767       GO->getContext().diagnose(LoweringDiagnosticInfo(
768           "Symbol '" + GO->getName() + "' from module '" +
769           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
770           "' required a section with entry-size=" +
771           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
772           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
773           ": Explicit assignment by pragma or attribute of an incompatible "
774           "symbol to this section?"));
775   }
776 
777   return Section;
778 }
779 
780 static MCSectionELF *selectELFSectionForGlobal(
781     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
782     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
783     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
784 
785   StringRef Group = "";
786   bool IsComdat = false;
787   if (const Comdat *C = getELFComdat(GO)) {
788     Flags |= ELF::SHF_GROUP;
789     Group = C->getName();
790     IsComdat = C->getSelectionKind() == Comdat::Any;
791   }
792 
793   // Get the section entry size based on the kind.
794   unsigned EntrySize = getEntrySizeForKind(Kind);
795 
796   bool UniqueSectionName = false;
797   unsigned UniqueID = MCContext::GenericSectionID;
798   if (EmitUniqueSection) {
799     if (TM.getUniqueSectionNames()) {
800       UniqueSectionName = true;
801     } else {
802       UniqueID = *NextUniqueID;
803       (*NextUniqueID)++;
804     }
805   }
806   SmallString<128> Name = getELFSectionNameForGlobal(
807       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
808 
809   // Use 0 as the unique ID for execute-only text.
810   if (Kind.isExecuteOnly())
811     UniqueID = 0;
812   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
813                            EntrySize, Group, IsComdat, UniqueID,
814                            AssociatedSymbol);
815 }
816 
817 static MCSection *selectELFSectionForGlobal(
818     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
819     const TargetMachine &TM, bool Retain, bool EmitUniqueSection,
820     unsigned Flags, unsigned *NextUniqueID) {
821   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
822   if (LinkedToSym) {
823     EmitUniqueSection = true;
824     Flags |= ELF::SHF_LINK_ORDER;
825   }
826   if (Retain && (Ctx.getAsmInfo()->useIntegratedAssembler() ||
827                  Ctx.getAsmInfo()->binutilsIsAtLeast(2, 36))) {
828     EmitUniqueSection = true;
829     Flags |= ELF::SHF_GNU_RETAIN;
830   }
831 
832   MCSectionELF *Section = selectELFSectionForGlobal(
833       Ctx, GO, Kind, Mang, TM, EmitUniqueSection, Flags,
834       NextUniqueID, LinkedToSym);
835   assert(Section->getLinkedToSymbol() == LinkedToSym);
836   return Section;
837 }
838 
839 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
840     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
841   unsigned Flags = getELFSectionFlags(Kind);
842 
843   // If we have -ffunction-section or -fdata-section then we should emit the
844   // global value to a uniqued section specifically for it.
845   bool EmitUniqueSection = false;
846   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
847     if (Kind.isText())
848       EmitUniqueSection = TM.getFunctionSections();
849     else
850       EmitUniqueSection = TM.getDataSections();
851   }
852   EmitUniqueSection |= GO->hasComdat();
853   return selectELFSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
854                                    Used.count(GO), EmitUniqueSection, Flags,
855                                    &NextUniqueID);
856 }
857 
858 MCSection *TargetLoweringObjectFileELF::getUniqueSectionForFunction(
859     const Function &F, const TargetMachine &TM) const {
860   SectionKind Kind = SectionKind::getText();
861   unsigned Flags = getELFSectionFlags(Kind);
862   return selectELFSectionForGlobal(
863       getContext(), &F, Kind, getMangler(), TM, Used.count(&F),
864       /*EmitUniqueSection=*/true, Flags, &NextUniqueID);
865 }
866 
867 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
868     const Function &F, const TargetMachine &TM) const {
869   // If the function can be removed, produce a unique section so that
870   // the table doesn't prevent the removal.
871   const Comdat *C = F.getComdat();
872   bool EmitUniqueSection = TM.getFunctionSections() || C;
873   if (!EmitUniqueSection)
874     return ReadOnlySection;
875 
876   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
877                                    getMangler(), TM, EmitUniqueSection,
878                                    ELF::SHF_ALLOC, &NextUniqueID,
879                                    /* AssociatedSymbol */ nullptr);
880 }
881 
882 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
883     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
884   // If neither COMDAT nor function sections, use the monolithic LSDA section.
885   // Re-use this path if LSDASection is null as in the Arm EHABI.
886   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
887     return LSDASection;
888 
889   const auto *LSDA = cast<MCSectionELF>(LSDASection);
890   unsigned Flags = LSDA->getFlags();
891   const MCSymbolELF *LinkedToSym = nullptr;
892   StringRef Group;
893   if (const Comdat *C = getELFComdat(&F)) {
894     Flags |= ELF::SHF_GROUP;
895     Group = C->getName();
896   }
897   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
898   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
899   if (TM.getFunctionSections() &&
900       (getContext().getAsmInfo()->useIntegratedAssembler() &&
901        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
902     Flags |= ELF::SHF_LINK_ORDER;
903     LinkedToSym = cast<MCSymbolELF>(&FnSym);
904   }
905 
906   // Append the function name as the suffix like GCC, assuming
907   // -funique-section-names applies to .gcc_except_table sections.
908   return getContext().getELFSection(
909       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
910                                   : LSDA->getName()),
911       LSDA->getType(), Flags, 0, Group, F.hasComdat(), MCSection::NonUniqueID,
912       LinkedToSym);
913 }
914 
915 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
916     bool UsesLabelDifference, const Function &F) const {
917   // We can always create relative relocations, so use another section
918   // that can be marked non-executable.
919   return false;
920 }
921 
922 /// Given a mergeable constant with the specified size and relocation
923 /// information, return a section that it should be placed in.
924 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
925     const DataLayout &DL, SectionKind Kind, const Constant *C,
926     Align &Alignment) const {
927   if (Kind.isMergeableConst4() && MergeableConst4Section)
928     return MergeableConst4Section;
929   if (Kind.isMergeableConst8() && MergeableConst8Section)
930     return MergeableConst8Section;
931   if (Kind.isMergeableConst16() && MergeableConst16Section)
932     return MergeableConst16Section;
933   if (Kind.isMergeableConst32() && MergeableConst32Section)
934     return MergeableConst32Section;
935   if (Kind.isReadOnly())
936     return ReadOnlySection;
937 
938   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
939   return DataRelROSection;
940 }
941 
942 /// Returns a unique section for the given machine basic block.
943 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
944     const Function &F, const MachineBasicBlock &MBB,
945     const TargetMachine &TM) const {
946   assert(MBB.isBeginSection() && "Basic block does not start a section!");
947   unsigned UniqueID = MCContext::GenericSectionID;
948 
949   // For cold sections use the .text.split. prefix along with the parent
950   // function name. All cold blocks for the same function go to the same
951   // section. Similarly all exception blocks are grouped by symbol name
952   // under the .text.eh prefix. For regular sections, we either use a unique
953   // name, or a unique ID for the section.
954   SmallString<128> Name;
955   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
956     Name += BBSectionsColdTextPrefix;
957     Name += MBB.getParent()->getName();
958   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
959     Name += ".text.eh.";
960     Name += MBB.getParent()->getName();
961   } else {
962     Name += MBB.getParent()->getSection()->getName();
963     if (TM.getUniqueBasicBlockSectionNames()) {
964       if (!Name.endswith("."))
965         Name += ".";
966       Name += MBB.getSymbol()->getName();
967     } else {
968       UniqueID = NextUniqueID++;
969     }
970   }
971 
972   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
973   std::string GroupName;
974   if (F.hasComdat()) {
975     Flags |= ELF::SHF_GROUP;
976     GroupName = F.getComdat()->getName().str();
977   }
978   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
979                                     0 /* Entry Size */, GroupName,
980                                     F.hasComdat(), UniqueID, nullptr);
981 }
982 
983 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
984                                               bool IsCtor, unsigned Priority,
985                                               const MCSymbol *KeySym) {
986   std::string Name;
987   unsigned Type;
988   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
989   StringRef Comdat = KeySym ? KeySym->getName() : "";
990 
991   if (KeySym)
992     Flags |= ELF::SHF_GROUP;
993 
994   if (UseInitArray) {
995     if (IsCtor) {
996       Type = ELF::SHT_INIT_ARRAY;
997       Name = ".init_array";
998     } else {
999       Type = ELF::SHT_FINI_ARRAY;
1000       Name = ".fini_array";
1001     }
1002     if (Priority != 65535) {
1003       Name += '.';
1004       Name += utostr(Priority);
1005     }
1006   } else {
1007     // The default scheme is .ctor / .dtor, so we have to invert the priority
1008     // numbering.
1009     if (IsCtor)
1010       Name = ".ctors";
1011     else
1012       Name = ".dtors";
1013     if (Priority != 65535)
1014       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1015     Type = ELF::SHT_PROGBITS;
1016   }
1017 
1018   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
1019 }
1020 
1021 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
1022     unsigned Priority, const MCSymbol *KeySym) const {
1023   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
1024                                   KeySym);
1025 }
1026 
1027 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
1028     unsigned Priority, const MCSymbol *KeySym) const {
1029   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
1030                                   KeySym);
1031 }
1032 
1033 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
1034     const GlobalValue *LHS, const GlobalValue *RHS,
1035     const TargetMachine &TM) const {
1036   // We may only use a PLT-relative relocation to refer to unnamed_addr
1037   // functions.
1038   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1039     return nullptr;
1040 
1041   // Basic sanity checks.
1042   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1043       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1044       RHS->isThreadLocal())
1045     return nullptr;
1046 
1047   return MCBinaryExpr::createSub(
1048       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1049                               getContext()),
1050       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1051 }
1052 
1053 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1054     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1055   assert(supportDSOLocalEquivalentLowering());
1056 
1057   const auto *GV = Equiv->getGlobalValue();
1058 
1059   // A PLT entry is not needed for dso_local globals.
1060   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1061     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1062 
1063   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1064                                  getContext());
1065 }
1066 
1067 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1068   // Use ".GCC.command.line" since this feature is to support clang's
1069   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1070   // same name.
1071   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1072                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1073 }
1074 
1075 void
1076 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1077   UseInitArray = UseInitArray_;
1078   MCContext &Ctx = getContext();
1079   if (!UseInitArray) {
1080     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1081                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1082 
1083     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1084                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1085     return;
1086   }
1087 
1088   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1089                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1090   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1091                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1092 }
1093 
1094 //===----------------------------------------------------------------------===//
1095 //                                 MachO
1096 //===----------------------------------------------------------------------===//
1097 
1098 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1099   : TargetLoweringObjectFile() {
1100   SupportIndirectSymViaGOTPCRel = true;
1101 }
1102 
1103 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1104                                                const TargetMachine &TM) {
1105   TargetLoweringObjectFile::Initialize(Ctx, TM);
1106   if (TM.getRelocationModel() == Reloc::Static) {
1107     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1108                                             SectionKind::getData());
1109     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1110                                             SectionKind::getData());
1111   } else {
1112     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1113                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1114                                             SectionKind::getData());
1115     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1116                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1117                                             SectionKind::getData());
1118   }
1119 
1120   PersonalityEncoding =
1121       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1122   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1123   TTypeEncoding =
1124       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1125 }
1126 
1127 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1128                                                        Module &M) const {
1129   // Emit the linker options if present.
1130   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1131     for (const auto *Option : LinkerOptions->operands()) {
1132       SmallVector<std::string, 4> StrOptions;
1133       for (const auto &Piece : cast<MDNode>(Option)->operands())
1134         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1135       Streamer.emitLinkerOptions(StrOptions);
1136     }
1137   }
1138 
1139   unsigned VersionVal = 0;
1140   unsigned ImageInfoFlags = 0;
1141   StringRef SectionVal;
1142 
1143   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1144 
1145   // The section is mandatory. If we don't have it, then we don't have GC info.
1146   if (SectionVal.empty())
1147     return;
1148 
1149   StringRef Segment, Section;
1150   unsigned TAA = 0, StubSize = 0;
1151   bool TAAParsed;
1152   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1153           SectionVal, Segment, Section, TAA, TAAParsed, StubSize)) {
1154     // If invalid, report the error with report_fatal_error.
1155     report_fatal_error("Invalid section specifier '" + Section +
1156                        "': " + toString(std::move(E)) + ".");
1157   }
1158 
1159   // Get the section.
1160   MCSectionMachO *S = getContext().getMachOSection(
1161       Segment, Section, TAA, StubSize, SectionKind::getData());
1162   Streamer.SwitchSection(S);
1163   Streamer.emitLabel(getContext().
1164                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1165   Streamer.emitInt32(VersionVal);
1166   Streamer.emitInt32(ImageInfoFlags);
1167   Streamer.AddBlankLine();
1168 }
1169 
1170 static void checkMachOComdat(const GlobalValue *GV) {
1171   const Comdat *C = GV->getComdat();
1172   if (!C)
1173     return;
1174 
1175   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1176                      "' cannot be lowered.");
1177 }
1178 
1179 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1180     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1181 
1182   StringRef SectionName = GO->getSection();
1183 
1184   const Function *F = dyn_cast<Function>(GO);
1185   if (F && F->hasFnAttribute("implicit-section-name")) {
1186     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
1187   }
1188 
1189   // Parse the section specifier and create it if valid.
1190   StringRef Segment, Section;
1191   unsigned TAA = 0, StubSize = 0;
1192   bool TAAParsed;
1193 
1194   checkMachOComdat(GO);
1195 
1196   if (Error E = MCSectionMachO::ParseSectionSpecifier(
1197           SectionName, Segment, Section, TAA, TAAParsed, StubSize)) {
1198     // If invalid, report the error with report_fatal_error.
1199     report_fatal_error("Global variable '" + GO->getName() +
1200                        "' has an invalid section specifier '" +
1201                        GO->getSection() + "': " + toString(std::move(E)) + ".");
1202   }
1203 
1204   // Get the section.
1205   MCSectionMachO *S =
1206       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1207 
1208   // If TAA wasn't set by ParseSectionSpecifier() above,
1209   // use the value returned by getMachOSection() as a default.
1210   if (!TAAParsed)
1211     TAA = S->getTypeAndAttributes();
1212 
1213   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1214   // If the user declared multiple globals with different section flags, we need
1215   // to reject it here.
1216   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1217     // If invalid, report the error with report_fatal_error.
1218     report_fatal_error("Global variable '" + GO->getName() +
1219                        "' section type or attributes does not match previous"
1220                        " section specifier");
1221   }
1222 
1223   return S;
1224 }
1225 
1226 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1227     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1228   checkMachOComdat(GO);
1229 
1230   // Handle thread local data.
1231   if (Kind.isThreadBSS()) return TLSBSSSection;
1232   if (Kind.isThreadData()) return TLSDataSection;
1233 
1234   if (Kind.isText())
1235     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1236 
1237   // If this is weak/linkonce, put this in a coalescable section, either in text
1238   // or data depending on if it is writable.
1239   if (GO->isWeakForLinker()) {
1240     if (Kind.isReadOnly())
1241       return ConstTextCoalSection;
1242     if (Kind.isReadOnlyWithRel())
1243       return ConstDataCoalSection;
1244     return DataCoalSection;
1245   }
1246 
1247   // FIXME: Alignment check should be handled by section classifier.
1248   if (Kind.isMergeable1ByteCString() &&
1249       GO->getParent()->getDataLayout().getPreferredAlign(
1250           cast<GlobalVariable>(GO)) < Align(32))
1251     return CStringSection;
1252 
1253   // Do not put 16-bit arrays in the UString section if they have an
1254   // externally visible label, this runs into issues with certain linker
1255   // versions.
1256   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1257       GO->getParent()->getDataLayout().getPreferredAlign(
1258           cast<GlobalVariable>(GO)) < Align(32))
1259     return UStringSection;
1260 
1261   // With MachO only variables whose corresponding symbol starts with 'l' or
1262   // 'L' can be merged, so we only try merging GVs with private linkage.
1263   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1264     if (Kind.isMergeableConst4())
1265       return FourByteConstantSection;
1266     if (Kind.isMergeableConst8())
1267       return EightByteConstantSection;
1268     if (Kind.isMergeableConst16())
1269       return SixteenByteConstantSection;
1270   }
1271 
1272   // Otherwise, if it is readonly, but not something we can specially optimize,
1273   // just drop it in .const.
1274   if (Kind.isReadOnly())
1275     return ReadOnlySection;
1276 
1277   // If this is marked const, put it into a const section.  But if the dynamic
1278   // linker needs to write to it, put it in the data segment.
1279   if (Kind.isReadOnlyWithRel())
1280     return ConstDataSection;
1281 
1282   // Put zero initialized globals with strong external linkage in the
1283   // DATA, __common section with the .zerofill directive.
1284   if (Kind.isBSSExtern())
1285     return DataCommonSection;
1286 
1287   // Put zero initialized globals with local linkage in __DATA,__bss directive
1288   // with the .zerofill directive (aka .lcomm).
1289   if (Kind.isBSSLocal())
1290     return DataBSSSection;
1291 
1292   // Otherwise, just drop the variable in the normal data section.
1293   return DataSection;
1294 }
1295 
1296 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1297     const DataLayout &DL, SectionKind Kind, const Constant *C,
1298     Align &Alignment) const {
1299   // If this constant requires a relocation, we have to put it in the data
1300   // segment, not in the text segment.
1301   if (Kind.isData() || Kind.isReadOnlyWithRel())
1302     return ConstDataSection;
1303 
1304   if (Kind.isMergeableConst4())
1305     return FourByteConstantSection;
1306   if (Kind.isMergeableConst8())
1307     return EightByteConstantSection;
1308   if (Kind.isMergeableConst16())
1309     return SixteenByteConstantSection;
1310   return ReadOnlySection;  // .const
1311 }
1312 
1313 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1314     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1315     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1316   // The mach-o version of this method defaults to returning a stub reference.
1317 
1318   if (Encoding & DW_EH_PE_indirect) {
1319     MachineModuleInfoMachO &MachOMMI =
1320       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1321 
1322     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1323 
1324     // Add information about the stub reference to MachOMMI so that the stub
1325     // gets emitted by the asmprinter.
1326     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1327     if (!StubSym.getPointer()) {
1328       MCSymbol *Sym = TM.getSymbol(GV);
1329       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1330     }
1331 
1332     return TargetLoweringObjectFile::
1333       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1334                         Encoding & ~DW_EH_PE_indirect, Streamer);
1335   }
1336 
1337   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1338                                                            MMI, Streamer);
1339 }
1340 
1341 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1342     const GlobalValue *GV, const TargetMachine &TM,
1343     MachineModuleInfo *MMI) const {
1344   // The mach-o version of this method defaults to returning a stub reference.
1345   MachineModuleInfoMachO &MachOMMI =
1346     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1347 
1348   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1349 
1350   // Add information about the stub reference to MachOMMI so that the stub
1351   // gets emitted by the asmprinter.
1352   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1353   if (!StubSym.getPointer()) {
1354     MCSymbol *Sym = TM.getSymbol(GV);
1355     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1356   }
1357 
1358   return SSym;
1359 }
1360 
1361 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1362     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1363     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1364   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1365   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1366   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1367   // computation of deltas to final external symbols. Example:
1368   //
1369   //    _extgotequiv:
1370   //       .long   _extfoo
1371   //
1372   //    _delta:
1373   //       .long   _extgotequiv-_delta
1374   //
1375   // is transformed to:
1376   //
1377   //    _delta:
1378   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1379   //
1380   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1381   //    L_extfoo$non_lazy_ptr:
1382   //       .indirect_symbol        _extfoo
1383   //       .long   0
1384   //
1385   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1386   // may point to both local (same translation unit) and global (other
1387   // translation units) symbols. Example:
1388   //
1389   // .section __DATA,__pointers,non_lazy_symbol_pointers
1390   // L1:
1391   //    .indirect_symbol _myGlobal
1392   //    .long 0
1393   // L2:
1394   //    .indirect_symbol _myLocal
1395   //    .long _myLocal
1396   //
1397   // If the symbol is local, instead of the symbol's index, the assembler
1398   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1399   // Then the linker will notice the constant in the table and will look at the
1400   // content of the symbol.
1401   MachineModuleInfoMachO &MachOMMI =
1402     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1403   MCContext &Ctx = getContext();
1404 
1405   // The offset must consider the original displacement from the base symbol
1406   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1407   Offset = -MV.getConstant();
1408   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1409 
1410   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1411   // non_lazy_ptr stubs.
1412   SmallString<128> Name;
1413   StringRef Suffix = "$non_lazy_ptr";
1414   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1415   Name += Sym->getName();
1416   Name += Suffix;
1417   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1418 
1419   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1420 
1421   if (!StubSym.getPointer())
1422     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1423                                                  !GV->hasLocalLinkage());
1424 
1425   const MCExpr *BSymExpr =
1426     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1427   const MCExpr *LHS =
1428     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1429 
1430   if (!Offset)
1431     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1432 
1433   const MCExpr *RHS =
1434     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1435   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1436 }
1437 
1438 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1439                                const MCSection &Section) {
1440   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1441     return true;
1442 
1443   // If it is not dead stripped, it is safe to use private labels.
1444   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1445   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1446     return true;
1447 
1448   return false;
1449 }
1450 
1451 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1452     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1453     const TargetMachine &TM) const {
1454   bool CannotUsePrivateLabel = true;
1455   if (auto *GO = GV->getBaseObject()) {
1456     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1457     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1458     CannotUsePrivateLabel =
1459         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1460   }
1461   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1462 }
1463 
1464 //===----------------------------------------------------------------------===//
1465 //                                  COFF
1466 //===----------------------------------------------------------------------===//
1467 
1468 static unsigned
1469 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1470   unsigned Flags = 0;
1471   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1472 
1473   if (K.isMetadata())
1474     Flags |=
1475       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1476   else if (K.isText())
1477     Flags |=
1478       COFF::IMAGE_SCN_MEM_EXECUTE |
1479       COFF::IMAGE_SCN_MEM_READ |
1480       COFF::IMAGE_SCN_CNT_CODE |
1481       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1482   else if (K.isBSS())
1483     Flags |=
1484       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1485       COFF::IMAGE_SCN_MEM_READ |
1486       COFF::IMAGE_SCN_MEM_WRITE;
1487   else if (K.isThreadLocal())
1488     Flags |=
1489       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1490       COFF::IMAGE_SCN_MEM_READ |
1491       COFF::IMAGE_SCN_MEM_WRITE;
1492   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1493     Flags |=
1494       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1495       COFF::IMAGE_SCN_MEM_READ;
1496   else if (K.isWriteable())
1497     Flags |=
1498       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1499       COFF::IMAGE_SCN_MEM_READ |
1500       COFF::IMAGE_SCN_MEM_WRITE;
1501 
1502   return Flags;
1503 }
1504 
1505 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1506   const Comdat *C = GV->getComdat();
1507   assert(C && "expected GV to have a Comdat!");
1508 
1509   StringRef ComdatGVName = C->getName();
1510   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1511   if (!ComdatGV)
1512     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1513                        "' does not exist.");
1514 
1515   if (ComdatGV->getComdat() != C)
1516     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1517                        "' is not a key for its COMDAT.");
1518 
1519   return ComdatGV;
1520 }
1521 
1522 static int getSelectionForCOFF(const GlobalValue *GV) {
1523   if (const Comdat *C = GV->getComdat()) {
1524     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1525     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1526       ComdatKey = GA->getBaseObject();
1527     if (ComdatKey == GV) {
1528       switch (C->getSelectionKind()) {
1529       case Comdat::Any:
1530         return COFF::IMAGE_COMDAT_SELECT_ANY;
1531       case Comdat::ExactMatch:
1532         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1533       case Comdat::Largest:
1534         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1535       case Comdat::NoDuplicates:
1536         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1537       case Comdat::SameSize:
1538         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1539       }
1540     } else {
1541       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1542     }
1543   }
1544   return 0;
1545 }
1546 
1547 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1548     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1549   int Selection = 0;
1550   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1551   StringRef Name = GO->getSection();
1552   StringRef COMDATSymName = "";
1553   if (GO->hasComdat()) {
1554     Selection = getSelectionForCOFF(GO);
1555     const GlobalValue *ComdatGV;
1556     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1557       ComdatGV = getComdatGVForCOFF(GO);
1558     else
1559       ComdatGV = GO;
1560 
1561     if (!ComdatGV->hasPrivateLinkage()) {
1562       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1563       COMDATSymName = Sym->getName();
1564       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1565     } else {
1566       Selection = 0;
1567     }
1568   }
1569 
1570   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1571                                      Selection);
1572 }
1573 
1574 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1575   if (Kind.isText())
1576     return ".text";
1577   if (Kind.isBSS())
1578     return ".bss";
1579   if (Kind.isThreadLocal())
1580     return ".tls$";
1581   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1582     return ".rdata";
1583   return ".data";
1584 }
1585 
1586 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1587     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1588   // If we have -ffunction-sections then we should emit the global value to a
1589   // uniqued section specifically for it.
1590   bool EmitUniquedSection;
1591   if (Kind.isText())
1592     EmitUniquedSection = TM.getFunctionSections();
1593   else
1594     EmitUniquedSection = TM.getDataSections();
1595 
1596   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1597     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1598 
1599     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1600 
1601     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1602     int Selection = getSelectionForCOFF(GO);
1603     if (!Selection)
1604       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1605     const GlobalValue *ComdatGV;
1606     if (GO->hasComdat())
1607       ComdatGV = getComdatGVForCOFF(GO);
1608     else
1609       ComdatGV = GO;
1610 
1611     unsigned UniqueID = MCContext::GenericSectionID;
1612     if (EmitUniquedSection)
1613       UniqueID = NextUniqueID++;
1614 
1615     if (!ComdatGV->hasPrivateLinkage()) {
1616       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1617       StringRef COMDATSymName = Sym->getName();
1618 
1619       if (const auto *F = dyn_cast<Function>(GO))
1620         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1621           raw_svector_ostream(Name) << '$' << *Prefix;
1622 
1623       // Append "$symbol" to the section name *before* IR-level mangling is
1624       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1625       // COFF linker will not properly handle comdats otherwise.
1626       if (getTargetTriple().isWindowsGNUEnvironment())
1627         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1628 
1629       return getContext().getCOFFSection(Name, Characteristics, Kind,
1630                                          COMDATSymName, Selection, UniqueID);
1631     } else {
1632       SmallString<256> TmpData;
1633       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1634       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1635                                          Selection, UniqueID);
1636     }
1637   }
1638 
1639   if (Kind.isText())
1640     return TextSection;
1641 
1642   if (Kind.isThreadLocal())
1643     return TLSDataSection;
1644 
1645   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1646     return ReadOnlySection;
1647 
1648   // Note: we claim that common symbols are put in BSSSection, but they are
1649   // really emitted with the magic .comm directive, which creates a symbol table
1650   // entry but not a section.
1651   if (Kind.isBSS() || Kind.isCommon())
1652     return BSSSection;
1653 
1654   return DataSection;
1655 }
1656 
1657 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1658     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1659     const TargetMachine &TM) const {
1660   bool CannotUsePrivateLabel = false;
1661   if (GV->hasPrivateLinkage() &&
1662       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1663        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1664     CannotUsePrivateLabel = true;
1665 
1666   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1667 }
1668 
1669 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1670     const Function &F, const TargetMachine &TM) const {
1671   // If the function can be removed, produce a unique section so that
1672   // the table doesn't prevent the removal.
1673   const Comdat *C = F.getComdat();
1674   bool EmitUniqueSection = TM.getFunctionSections() || C;
1675   if (!EmitUniqueSection)
1676     return ReadOnlySection;
1677 
1678   // FIXME: we should produce a symbol for F instead.
1679   if (F.hasPrivateLinkage())
1680     return ReadOnlySection;
1681 
1682   MCSymbol *Sym = TM.getSymbol(&F);
1683   StringRef COMDATSymName = Sym->getName();
1684 
1685   SectionKind Kind = SectionKind::getReadOnly();
1686   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1687   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1688   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1689   unsigned UniqueID = NextUniqueID++;
1690 
1691   return getContext().getCOFFSection(
1692       SecName, Characteristics, Kind, COMDATSymName,
1693       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1694 }
1695 
1696 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1697                                                       Module &M) const {
1698   emitLinkerDirectives(Streamer, M);
1699 
1700   unsigned Version = 0;
1701   unsigned Flags = 0;
1702   StringRef Section;
1703 
1704   GetObjCImageInfo(M, Version, Flags, Section);
1705   if (!Section.empty()) {
1706     auto &C = getContext();
1707     auto *S = C.getCOFFSection(Section,
1708                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1709                                    COFF::IMAGE_SCN_MEM_READ,
1710                                SectionKind::getReadOnly());
1711     Streamer.SwitchSection(S);
1712     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1713     Streamer.emitInt32(Version);
1714     Streamer.emitInt32(Flags);
1715     Streamer.AddBlankLine();
1716   }
1717 
1718   emitCGProfileMetadata(Streamer, M);
1719 }
1720 
1721 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1722     MCStreamer &Streamer, Module &M) const {
1723   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1724     // Emit the linker options to the linker .drectve section.  According to the
1725     // spec, this section is a space-separated string containing flags for
1726     // linker.
1727     MCSection *Sec = getDrectveSection();
1728     Streamer.SwitchSection(Sec);
1729     for (const auto *Option : LinkerOptions->operands()) {
1730       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1731         // Lead with a space for consistency with our dllexport implementation.
1732         std::string Directive(" ");
1733         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1734         Streamer.emitBytes(Directive);
1735       }
1736     }
1737   }
1738 
1739   // Emit /EXPORT: flags for each exported global as necessary.
1740   std::string Flags;
1741   for (const GlobalValue &GV : M.global_values()) {
1742     raw_string_ostream OS(Flags);
1743     emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler());
1744     OS.flush();
1745     if (!Flags.empty()) {
1746       Streamer.SwitchSection(getDrectveSection());
1747       Streamer.emitBytes(Flags);
1748     }
1749     Flags.clear();
1750   }
1751 
1752   // Emit /INCLUDE: flags for each used global as necessary.
1753   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1754     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1755     assert(isa<ArrayType>(LU->getValueType()) &&
1756            "expected llvm.used to be an array type");
1757     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1758       for (const Value *Op : A->operands()) {
1759         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1760         // Global symbols with internal or private linkage are not visible to
1761         // the linker, and thus would cause an error when the linker tried to
1762         // preserve the symbol due to the `/include:` directive.
1763         if (GV->hasLocalLinkage())
1764           continue;
1765 
1766         raw_string_ostream OS(Flags);
1767         emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1768         OS.flush();
1769 
1770         if (!Flags.empty()) {
1771           Streamer.SwitchSection(getDrectveSection());
1772           Streamer.emitBytes(Flags);
1773         }
1774         Flags.clear();
1775       }
1776     }
1777   }
1778 }
1779 
1780 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1781                                               const TargetMachine &TM) {
1782   TargetLoweringObjectFile::Initialize(Ctx, TM);
1783   this->TM = &TM;
1784   const Triple &T = TM.getTargetTriple();
1785   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1786     StaticCtorSection =
1787         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1788                                            COFF::IMAGE_SCN_MEM_READ,
1789                            SectionKind::getReadOnly());
1790     StaticDtorSection =
1791         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1792                                            COFF::IMAGE_SCN_MEM_READ,
1793                            SectionKind::getReadOnly());
1794   } else {
1795     StaticCtorSection = Ctx.getCOFFSection(
1796         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1797                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1798         SectionKind::getData());
1799     StaticDtorSection = Ctx.getCOFFSection(
1800         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1801                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1802         SectionKind::getData());
1803   }
1804 }
1805 
1806 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1807                                                    const Triple &T, bool IsCtor,
1808                                                    unsigned Priority,
1809                                                    const MCSymbol *KeySym,
1810                                                    MCSectionCOFF *Default) {
1811   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1812     // If the priority is the default, use .CRT$XCU, possibly associative.
1813     if (Priority == 65535)
1814       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1815 
1816     // Otherwise, we need to compute a new section name. Low priorities should
1817     // run earlier. The linker will sort sections ASCII-betically, and we need a
1818     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1819     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1820     // low priorities need to sort before 'L', since the CRT uses that
1821     // internally, so we use ".CRT$XCA00001" for them.
1822     SmallString<24> Name;
1823     raw_svector_ostream OS(Name);
1824     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1825         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1826     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1827         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1828         SectionKind::getReadOnly());
1829     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1830   }
1831 
1832   std::string Name = IsCtor ? ".ctors" : ".dtors";
1833   if (Priority != 65535)
1834     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1835 
1836   return Ctx.getAssociativeCOFFSection(
1837       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1838                                    COFF::IMAGE_SCN_MEM_READ |
1839                                    COFF::IMAGE_SCN_MEM_WRITE,
1840                          SectionKind::getData()),
1841       KeySym, 0);
1842 }
1843 
1844 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1845     unsigned Priority, const MCSymbol *KeySym) const {
1846   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1847                                       Priority, KeySym,
1848                                       cast<MCSectionCOFF>(StaticCtorSection));
1849 }
1850 
1851 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1852     unsigned Priority, const MCSymbol *KeySym) const {
1853   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1854                                       Priority, KeySym,
1855                                       cast<MCSectionCOFF>(StaticDtorSection));
1856 }
1857 
1858 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1859     const GlobalValue *LHS, const GlobalValue *RHS,
1860     const TargetMachine &TM) const {
1861   const Triple &T = TM.getTargetTriple();
1862   if (T.isOSCygMing())
1863     return nullptr;
1864 
1865   // Our symbols should exist in address space zero, cowardly no-op if
1866   // otherwise.
1867   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1868       RHS->getType()->getPointerAddressSpace() != 0)
1869     return nullptr;
1870 
1871   // Both ptrtoint instructions must wrap global objects:
1872   // - Only global variables are eligible for image relative relocations.
1873   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1874   // We expect __ImageBase to be a global variable without a section, externally
1875   // defined.
1876   //
1877   // It should look something like this: @__ImageBase = external constant i8
1878   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1879       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1880       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1881       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1882     return nullptr;
1883 
1884   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1885                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1886                                  getContext());
1887 }
1888 
1889 static std::string APIntToHexString(const APInt &AI) {
1890   unsigned Width = (AI.getBitWidth() / 8) * 2;
1891   std::string HexString = AI.toString(16, /*Signed=*/false);
1892   llvm::transform(HexString, HexString.begin(), tolower);
1893   unsigned Size = HexString.size();
1894   assert(Width >= Size && "hex string is too large!");
1895   HexString.insert(HexString.begin(), Width - Size, '0');
1896 
1897   return HexString;
1898 }
1899 
1900 static std::string scalarConstantToHexString(const Constant *C) {
1901   Type *Ty = C->getType();
1902   if (isa<UndefValue>(C)) {
1903     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1904   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1905     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1906   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1907     return APIntToHexString(CI->getValue());
1908   } else {
1909     unsigned NumElements;
1910     if (auto *VTy = dyn_cast<VectorType>(Ty))
1911       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1912     else
1913       NumElements = Ty->getArrayNumElements();
1914     std::string HexString;
1915     for (int I = NumElements - 1, E = -1; I != E; --I)
1916       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1917     return HexString;
1918   }
1919 }
1920 
1921 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1922     const DataLayout &DL, SectionKind Kind, const Constant *C,
1923     Align &Alignment) const {
1924   if (Kind.isMergeableConst() && C &&
1925       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1926     // This creates comdat sections with the given symbol name, but unless
1927     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1928     // will be created with a null storage class, which makes GNU binutils
1929     // error out.
1930     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1931                                      COFF::IMAGE_SCN_MEM_READ |
1932                                      COFF::IMAGE_SCN_LNK_COMDAT;
1933     std::string COMDATSymName;
1934     if (Kind.isMergeableConst4()) {
1935       if (Alignment <= 4) {
1936         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1937         Alignment = Align(4);
1938       }
1939     } else if (Kind.isMergeableConst8()) {
1940       if (Alignment <= 8) {
1941         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1942         Alignment = Align(8);
1943       }
1944     } else if (Kind.isMergeableConst16()) {
1945       // FIXME: These may not be appropriate for non-x86 architectures.
1946       if (Alignment <= 16) {
1947         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1948         Alignment = Align(16);
1949       }
1950     } else if (Kind.isMergeableConst32()) {
1951       if (Alignment <= 32) {
1952         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1953         Alignment = Align(32);
1954       }
1955     }
1956 
1957     if (!COMDATSymName.empty())
1958       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1959                                          COMDATSymName,
1960                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1961   }
1962 
1963   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1964                                                          Alignment);
1965 }
1966 
1967 //===----------------------------------------------------------------------===//
1968 //                                  Wasm
1969 //===----------------------------------------------------------------------===//
1970 
1971 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1972   const Comdat *C = GV->getComdat();
1973   if (!C)
1974     return nullptr;
1975 
1976   if (C->getSelectionKind() != Comdat::Any)
1977     report_fatal_error("WebAssembly COMDATs only support "
1978                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
1979                        "lowered.");
1980 
1981   return C;
1982 }
1983 
1984 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
1985     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1986   // We don't support explict section names for functions in the wasm object
1987   // format.  Each function has to be in its own unique section.
1988   if (isa<Function>(GO)) {
1989     return SelectSectionForGlobal(GO, Kind, TM);
1990   }
1991 
1992   StringRef Name = GO->getSection();
1993 
1994   // Certain data sections we treat as named custom sections rather than
1995   // segments within the data section.
1996   // This could be avoided if all data segements (the wasm sense) were
1997   // represented as their own sections (in the llvm sense).
1998   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
1999   if (Name == ".llvmcmd" || Name == ".llvmbc")
2000     Kind = SectionKind::getMetadata();
2001 
2002   StringRef Group = "";
2003   if (const Comdat *C = getWasmComdat(GO)) {
2004     Group = C->getName();
2005   }
2006 
2007   MCSectionWasm* Section =
2008       getContext().getWasmSection(Name, Kind, Group,
2009                                   MCContext::GenericSectionID);
2010 
2011   return Section;
2012 }
2013 
2014 static MCSectionWasm *selectWasmSectionForGlobal(
2015     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
2016     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
2017   StringRef Group = "";
2018   if (const Comdat *C = getWasmComdat(GO)) {
2019     Group = C->getName();
2020   }
2021 
2022   bool UniqueSectionNames = TM.getUniqueSectionNames();
2023   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
2024 
2025   if (const auto *F = dyn_cast<Function>(GO)) {
2026     const auto &OptionalPrefix = F->getSectionPrefix();
2027     if (OptionalPrefix)
2028       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
2029   }
2030 
2031   if (EmitUniqueSection && UniqueSectionNames) {
2032     Name.push_back('.');
2033     TM.getNameWithPrefix(Name, GO, Mang, true);
2034   }
2035   unsigned UniqueID = MCContext::GenericSectionID;
2036   if (EmitUniqueSection && !UniqueSectionNames) {
2037     UniqueID = *NextUniqueID;
2038     (*NextUniqueID)++;
2039   }
2040 
2041   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
2042 }
2043 
2044 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2045     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2046 
2047   if (Kind.isCommon())
2048     report_fatal_error("mergable sections not supported yet on wasm");
2049 
2050   // If we have -ffunction-section or -fdata-section then we should emit the
2051   // global value to a uniqued section specifically for it.
2052   bool EmitUniqueSection = false;
2053   if (Kind.isText())
2054     EmitUniqueSection = TM.getFunctionSections();
2055   else
2056     EmitUniqueSection = TM.getDataSections();
2057   EmitUniqueSection |= GO->hasComdat();
2058 
2059   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2060                                     EmitUniqueSection, &NextUniqueID);
2061 }
2062 
2063 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2064     bool UsesLabelDifference, const Function &F) const {
2065   // We can always create relative relocations, so use another section
2066   // that can be marked non-executable.
2067   return false;
2068 }
2069 
2070 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2071     const GlobalValue *LHS, const GlobalValue *RHS,
2072     const TargetMachine &TM) const {
2073   // We may only use a PLT-relative relocation to refer to unnamed_addr
2074   // functions.
2075   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2076     return nullptr;
2077 
2078   // Basic sanity checks.
2079   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2080       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2081       RHS->isThreadLocal())
2082     return nullptr;
2083 
2084   return MCBinaryExpr::createSub(
2085       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2086                               getContext()),
2087       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2088 }
2089 
2090 void TargetLoweringObjectFileWasm::InitializeWasm() {
2091   StaticCtorSection =
2092       getContext().getWasmSection(".init_array", SectionKind::getData());
2093 
2094   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2095   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2096   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2097 }
2098 
2099 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2100     unsigned Priority, const MCSymbol *KeySym) const {
2101   return Priority == UINT16_MAX ?
2102          StaticCtorSection :
2103          getContext().getWasmSection(".init_array." + utostr(Priority),
2104                                      SectionKind::getData());
2105 }
2106 
2107 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2108     unsigned Priority, const MCSymbol *KeySym) const {
2109   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2110   return nullptr;
2111 }
2112 
2113 //===----------------------------------------------------------------------===//
2114 //                                  XCOFF
2115 //===----------------------------------------------------------------------===//
2116 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2117     const MachineFunction *MF) {
2118   if (!MF->getLandingPads().empty())
2119     return true;
2120 
2121   const Function &F = MF->getFunction();
2122   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2123     return false;
2124 
2125   const Function *Per =
2126       dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2127   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2128     return false;
2129 
2130   return true;
2131 }
2132 
2133 MCSymbol *
2134 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2135   return MF->getMMI().getContext().getOrCreateSymbol(
2136       "__ehinfo." + Twine(MF->getFunctionNumber()));
2137 }
2138 
2139 MCSymbol *
2140 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2141                                                const TargetMachine &TM) const {
2142   // We always use a qualname symbol for a GV that represents
2143   // a declaration, a function descriptor, or a common symbol.
2144   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2145   // also return a qualname so that a label symbol could be avoided.
2146   // It is inherently ambiguous when the GO represents the address of a
2147   // function, as the GO could either represent a function descriptor or a
2148   // function entry point. We choose to always return a function descriptor
2149   // here.
2150   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2151     if (GO->isDeclarationForLinker())
2152       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2153           ->getQualNameSymbol();
2154 
2155     SectionKind GOKind = getKindForGlobal(GO, TM);
2156     if (GOKind.isText())
2157       return cast<MCSectionXCOFF>(
2158                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2159           ->getQualNameSymbol();
2160     if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() ||
2161         GOKind.isBSSLocal())
2162       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2163           ->getQualNameSymbol();
2164   }
2165 
2166   // For all other cases, fall back to getSymbol to return the unqualified name.
2167   return nullptr;
2168 }
2169 
2170 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2171     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2172   if (!GO->hasSection())
2173     report_fatal_error("#pragma clang section is not yet supported");
2174 
2175   StringRef SectionName = GO->getSection();
2176   XCOFF::StorageMappingClass MappingClass;
2177   if (Kind.isText())
2178     MappingClass = XCOFF::XMC_PR;
2179   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2180     MappingClass = XCOFF::XMC_RW;
2181   else if (Kind.isReadOnly())
2182     MappingClass = XCOFF::XMC_RO;
2183   else
2184     report_fatal_error("XCOFF other section types not yet implemented.");
2185 
2186   return getContext().getXCOFFSection(
2187       SectionName, Kind, XCOFF::CsectProperties(MappingClass, XCOFF::XTY_SD),
2188       /* MultiSymbolsAllowed*/ true);
2189 }
2190 
2191 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2192     const GlobalObject *GO, const TargetMachine &TM) const {
2193   assert(GO->isDeclarationForLinker() &&
2194          "Tried to get ER section for a defined global.");
2195 
2196   SmallString<128> Name;
2197   getNameWithPrefix(Name, GO, TM);
2198 
2199   // Externals go into a csect of type ER.
2200   return getContext().getXCOFFSection(
2201       Name, SectionKind::getMetadata(),
2202       XCOFF::CsectProperties(isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA,
2203                              XCOFF::XTY_ER));
2204 }
2205 
2206 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2207     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2208   // Common symbols go into a csect with matching name which will get mapped
2209   // into the .bss section.
2210   if (Kind.isBSSLocal() || Kind.isCommon()) {
2211     SmallString<128> Name;
2212     getNameWithPrefix(Name, GO, TM);
2213     return getContext().getXCOFFSection(
2214         Name, Kind,
2215         XCOFF::CsectProperties(
2216             Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM));
2217   }
2218 
2219   if (Kind.isMergeableCString()) {
2220     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2221         cast<GlobalVariable>(GO));
2222 
2223     unsigned EntrySize = getEntrySizeForKind(Kind);
2224     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2225     SmallString<128> Name;
2226     Name = SizeSpec + utostr(Alignment.value());
2227 
2228     if (TM.getDataSections())
2229       getNameWithPrefix(Name, GO, TM);
2230 
2231     return getContext().getXCOFFSection(
2232         Name, Kind, XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD),
2233         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2234   }
2235 
2236   if (Kind.isText()) {
2237     if (TM.getFunctionSections()) {
2238       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2239           ->getRepresentedCsect();
2240     }
2241     return TextSection;
2242   }
2243 
2244   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2245   // user may want to have read-only data with relocations placed into a
2246   // read-only section by the compiler.
2247   // For BSS kind, zero initialized data must be emitted to the .data section
2248   // because external linkage control sections that get mapped to the .bss
2249   // section will be linked as tentative defintions, which is only appropriate
2250   // for SectionKind::Common.
2251   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2252     if (TM.getDataSections()) {
2253       SmallString<128> Name;
2254       getNameWithPrefix(Name, GO, TM);
2255       return getContext().getXCOFFSection(
2256           Name, SectionKind::getData(),
2257           XCOFF::CsectProperties(XCOFF::XMC_RW, XCOFF::XTY_SD));
2258     }
2259     return DataSection;
2260   }
2261 
2262   if (Kind.isReadOnly()) {
2263     if (TM.getDataSections()) {
2264       SmallString<128> Name;
2265       getNameWithPrefix(Name, GO, TM);
2266       return getContext().getXCOFFSection(
2267           Name, SectionKind::getReadOnly(),
2268           XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2269     }
2270     return ReadOnlySection;
2271   }
2272 
2273   report_fatal_error("XCOFF other section types not yet implemented.");
2274 }
2275 
2276 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2277     const Function &F, const TargetMachine &TM) const {
2278   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2279 
2280   if (!TM.getFunctionSections())
2281     return ReadOnlySection;
2282 
2283   // If the function can be removed, produce a unique section so that
2284   // the table doesn't prevent the removal.
2285   SmallString<128> NameStr(".rodata.jmp..");
2286   getNameWithPrefix(NameStr, &F, TM);
2287   return getContext().getXCOFFSection(
2288       NameStr, SectionKind::getReadOnly(),
2289       XCOFF::CsectProperties(XCOFF::XMC_RO, XCOFF::XTY_SD));
2290 }
2291 
2292 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2293     bool UsesLabelDifference, const Function &F) const {
2294   return false;
2295 }
2296 
2297 /// Given a mergeable constant with the specified size and relocation
2298 /// information, return a section that it should be placed in.
2299 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2300     const DataLayout &DL, SectionKind Kind, const Constant *C,
2301     Align &Alignment) const {
2302   //TODO: Enable emiting constant pool to unique sections when we support it.
2303   return ReadOnlySection;
2304 }
2305 
2306 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2307                                                const TargetMachine &TgtM) {
2308   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2309   TTypeEncoding =
2310       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2311       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2312                                             : dwarf::DW_EH_PE_sdata8);
2313   PersonalityEncoding = 0;
2314   LSDAEncoding = 0;
2315   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2316 }
2317 
2318 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2319 	unsigned Priority, const MCSymbol *KeySym) const {
2320   report_fatal_error("no static constructor section on AIX");
2321 }
2322 
2323 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2324 	unsigned Priority, const MCSymbol *KeySym) const {
2325   report_fatal_error("no static destructor section on AIX");
2326 }
2327 
2328 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2329     const GlobalValue *LHS, const GlobalValue *RHS,
2330     const TargetMachine &TM) const {
2331   report_fatal_error("XCOFF not yet implemented.");
2332 }
2333 
2334 XCOFF::StorageClass
2335 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2336   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2337 
2338   switch (GV->getLinkage()) {
2339   case GlobalValue::InternalLinkage:
2340   case GlobalValue::PrivateLinkage:
2341     return XCOFF::C_HIDEXT;
2342   case GlobalValue::ExternalLinkage:
2343   case GlobalValue::CommonLinkage:
2344   case GlobalValue::AvailableExternallyLinkage:
2345     return XCOFF::C_EXT;
2346   case GlobalValue::ExternalWeakLinkage:
2347   case GlobalValue::LinkOnceAnyLinkage:
2348   case GlobalValue::LinkOnceODRLinkage:
2349   case GlobalValue::WeakAnyLinkage:
2350   case GlobalValue::WeakODRLinkage:
2351     return XCOFF::C_WEAKEXT;
2352   case GlobalValue::AppendingLinkage:
2353     report_fatal_error(
2354         "There is no mapping that implements AppendingLinkage for XCOFF.");
2355   }
2356   llvm_unreachable("Unknown linkage type!");
2357 }
2358 
2359 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2360     const GlobalValue *Func, const TargetMachine &TM) const {
2361   assert(
2362       (isa<Function>(Func) ||
2363        (isa<GlobalAlias>(Func) &&
2364         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2365       "Func must be a function or an alias which has a function as base "
2366       "object.");
2367 
2368   SmallString<128> NameStr;
2369   NameStr.push_back('.');
2370   getNameWithPrefix(NameStr, Func, TM);
2371 
2372   // When -function-sections is enabled and explicit section is not specified,
2373   // it's not necessary to emit function entry point label any more. We will use
2374   // function entry point csect instead. And for function delcarations, the
2375   // undefined symbols gets treated as csect with XTY_ER property.
2376   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2377        Func->isDeclaration()) &&
2378       isa<Function>(Func)) {
2379     return getContext()
2380         .getXCOFFSection(
2381             NameStr, SectionKind::getText(),
2382             XCOFF::CsectProperties(XCOFF::XMC_PR, Func->isDeclaration()
2383                                                       ? XCOFF::XTY_ER
2384                                                       : XCOFF::XTY_SD))
2385         ->getQualNameSymbol();
2386   }
2387 
2388   return getContext().getOrCreateSymbol(NameStr);
2389 }
2390 
2391 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2392     const Function *F, const TargetMachine &TM) const {
2393   SmallString<128> NameStr;
2394   getNameWithPrefix(NameStr, F, TM);
2395   return getContext().getXCOFFSection(
2396       NameStr, SectionKind::getData(),
2397       XCOFF::CsectProperties(XCOFF::XMC_DS, XCOFF::XTY_SD));
2398 }
2399 
2400 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2401     const MCSymbol *Sym, const TargetMachine &TM) const {
2402   // Use TE storage-mapping class when large code model is enabled so that
2403   // the chance of needing -bbigtoc is decreased.
2404   return getContext().getXCOFFSection(
2405       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(), SectionKind::getData(),
2406       XCOFF::CsectProperties(
2407           TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2408           XCOFF::XTY_SD));
2409 }
2410