xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringObjectFileImpl.cpp (revision 16af97393346ad636298605930a8b503a55eb40a)
1 //===- llvm/CodeGen/TargetLoweringObjectFileImpl.cpp - Object File Info ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file implements classes used to handle lowerings specific to common
10 // object file formats.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TargetLoweringObjectFileImpl.h"
15 #include "llvm/ADT/SmallString.h"
16 #include "llvm/ADT/SmallVector.h"
17 #include "llvm/ADT/StringExtras.h"
18 #include "llvm/ADT/StringRef.h"
19 #include "llvm/ADT/Triple.h"
20 #include "llvm/BinaryFormat/COFF.h"
21 #include "llvm/BinaryFormat/Dwarf.h"
22 #include "llvm/BinaryFormat/ELF.h"
23 #include "llvm/BinaryFormat/MachO.h"
24 #include "llvm/CodeGen/BasicBlockSectionUtils.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineFunction.h"
27 #include "llvm/CodeGen/MachineModuleInfo.h"
28 #include "llvm/CodeGen/MachineModuleInfoImpls.h"
29 #include "llvm/IR/Comdat.h"
30 #include "llvm/IR/Constants.h"
31 #include "llvm/IR/DataLayout.h"
32 #include "llvm/IR/DerivedTypes.h"
33 #include "llvm/IR/DiagnosticInfo.h"
34 #include "llvm/IR/DiagnosticPrinter.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/IR/GlobalAlias.h"
37 #include "llvm/IR/GlobalObject.h"
38 #include "llvm/IR/GlobalValue.h"
39 #include "llvm/IR/GlobalVariable.h"
40 #include "llvm/IR/Mangler.h"
41 #include "llvm/IR/Metadata.h"
42 #include "llvm/IR/Module.h"
43 #include "llvm/IR/PseudoProbe.h"
44 #include "llvm/IR/Type.h"
45 #include "llvm/MC/MCAsmInfo.h"
46 #include "llvm/MC/MCContext.h"
47 #include "llvm/MC/MCExpr.h"
48 #include "llvm/MC/MCSectionCOFF.h"
49 #include "llvm/MC/MCSectionELF.h"
50 #include "llvm/MC/MCSectionMachO.h"
51 #include "llvm/MC/MCSectionWasm.h"
52 #include "llvm/MC/MCSectionXCOFF.h"
53 #include "llvm/MC/MCStreamer.h"
54 #include "llvm/MC/MCSymbol.h"
55 #include "llvm/MC/MCSymbolELF.h"
56 #include "llvm/MC/MCValue.h"
57 #include "llvm/MC/SectionKind.h"
58 #include "llvm/ProfileData/InstrProf.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/CodeGen.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/Format.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include <cassert>
66 #include <string>
67 
68 using namespace llvm;
69 using namespace dwarf;
70 
71 static void GetObjCImageInfo(Module &M, unsigned &Version, unsigned &Flags,
72                              StringRef &Section) {
73   SmallVector<Module::ModuleFlagEntry, 8> ModuleFlags;
74   M.getModuleFlagsMetadata(ModuleFlags);
75 
76   for (const auto &MFE: ModuleFlags) {
77     // Ignore flags with 'Require' behaviour.
78     if (MFE.Behavior == Module::Require)
79       continue;
80 
81     StringRef Key = MFE.Key->getString();
82     if (Key == "Objective-C Image Info Version") {
83       Version = mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
84     } else if (Key == "Objective-C Garbage Collection" ||
85                Key == "Objective-C GC Only" ||
86                Key == "Objective-C Is Simulated" ||
87                Key == "Objective-C Class Properties" ||
88                Key == "Objective-C Image Swift Version") {
89       Flags |= mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue();
90     } else if (Key == "Objective-C Image Info Section") {
91       Section = cast<MDString>(MFE.Val)->getString();
92     }
93     // Backend generates L_OBJC_IMAGE_INFO from Swift ABI version + major + minor +
94     // "Objective-C Garbage Collection".
95     else if (Key == "Swift ABI Version") {
96       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 8;
97     } else if (Key == "Swift Major Version") {
98       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 24;
99     } else if (Key == "Swift Minor Version") {
100       Flags |= (mdconst::extract<ConstantInt>(MFE.Val)->getZExtValue()) << 16;
101     }
102   }
103 }
104 
105 //===----------------------------------------------------------------------===//
106 //                                  ELF
107 //===----------------------------------------------------------------------===//
108 
109 TargetLoweringObjectFileELF::TargetLoweringObjectFileELF()
110     : TargetLoweringObjectFile() {
111   SupportDSOLocalEquivalentLowering = true;
112 }
113 
114 void TargetLoweringObjectFileELF::Initialize(MCContext &Ctx,
115                                              const TargetMachine &TgtM) {
116   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
117 
118   CodeModel::Model CM = TgtM.getCodeModel();
119   InitializeELF(TgtM.Options.UseInitArray);
120 
121   switch (TgtM.getTargetTriple().getArch()) {
122   case Triple::arm:
123   case Triple::armeb:
124   case Triple::thumb:
125   case Triple::thumbeb:
126     if (Ctx.getAsmInfo()->getExceptionHandlingType() == ExceptionHandling::ARM)
127       break;
128     // Fallthrough if not using EHABI
129     LLVM_FALLTHROUGH;
130   case Triple::ppc:
131   case Triple::ppcle:
132   case Triple::x86:
133     PersonalityEncoding = isPositionIndependent()
134                               ? dwarf::DW_EH_PE_indirect |
135                                     dwarf::DW_EH_PE_pcrel |
136                                     dwarf::DW_EH_PE_sdata4
137                               : dwarf::DW_EH_PE_absptr;
138     LSDAEncoding = isPositionIndependent()
139                        ? dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4
140                        : dwarf::DW_EH_PE_absptr;
141     TTypeEncoding = isPositionIndependent()
142                         ? dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
143                               dwarf::DW_EH_PE_sdata4
144                         : dwarf::DW_EH_PE_absptr;
145     break;
146   case Triple::x86_64:
147     if (isPositionIndependent()) {
148       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
149         ((CM == CodeModel::Small || CM == CodeModel::Medium)
150          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
151       LSDAEncoding = dwarf::DW_EH_PE_pcrel |
152         (CM == CodeModel::Small
153          ? dwarf::DW_EH_PE_sdata4 : dwarf::DW_EH_PE_sdata8);
154       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
155         ((CM == CodeModel::Small || CM == CodeModel::Medium)
156          ? dwarf::DW_EH_PE_sdata8 : dwarf::DW_EH_PE_sdata4);
157     } else {
158       PersonalityEncoding =
159         (CM == CodeModel::Small || CM == CodeModel::Medium)
160         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
161       LSDAEncoding = (CM == CodeModel::Small)
162         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
163       TTypeEncoding = (CM == CodeModel::Small)
164         ? dwarf::DW_EH_PE_udata4 : dwarf::DW_EH_PE_absptr;
165     }
166     break;
167   case Triple::hexagon:
168     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
169     LSDAEncoding = dwarf::DW_EH_PE_absptr;
170     TTypeEncoding = dwarf::DW_EH_PE_absptr;
171     if (isPositionIndependent()) {
172       PersonalityEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
173       LSDAEncoding |= dwarf::DW_EH_PE_pcrel;
174       TTypeEncoding |= dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel;
175     }
176     break;
177   case Triple::aarch64:
178   case Triple::aarch64_be:
179   case Triple::aarch64_32:
180     // The small model guarantees static code/data size < 4GB, but not where it
181     // will be in memory. Most of these could end up >2GB away so even a signed
182     // pc-relative 32-bit address is insufficient, theoretically.
183     if (isPositionIndependent()) {
184       // ILP32 uses sdata4 instead of sdata8
185       if (TgtM.getTargetTriple().getEnvironment() == Triple::GNUILP32) {
186         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
187                               dwarf::DW_EH_PE_sdata4;
188         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
189         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
190                         dwarf::DW_EH_PE_sdata4;
191       } else {
192         PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
193                               dwarf::DW_EH_PE_sdata8;
194         LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata8;
195         TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
196                         dwarf::DW_EH_PE_sdata8;
197       }
198     } else {
199       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
200       LSDAEncoding = dwarf::DW_EH_PE_absptr;
201       TTypeEncoding = dwarf::DW_EH_PE_absptr;
202     }
203     break;
204   case Triple::lanai:
205     LSDAEncoding = dwarf::DW_EH_PE_absptr;
206     PersonalityEncoding = dwarf::DW_EH_PE_absptr;
207     TTypeEncoding = dwarf::DW_EH_PE_absptr;
208     break;
209   case Triple::mips:
210   case Triple::mipsel:
211   case Triple::mips64:
212   case Triple::mips64el:
213     // MIPS uses indirect pointer to refer personality functions and types, so
214     // that the eh_frame section can be read-only. DW.ref.personality will be
215     // generated for relocation.
216     PersonalityEncoding = dwarf::DW_EH_PE_indirect;
217     // FIXME: The N64 ABI probably ought to use DW_EH_PE_sdata8 but we can't
218     //        identify N64 from just a triple.
219     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
220                     dwarf::DW_EH_PE_sdata4;
221     // We don't support PC-relative LSDA references in GAS so we use the default
222     // DW_EH_PE_absptr for those.
223 
224     // FreeBSD must be explicit about the data size and using pcrel since it's
225     // assembler/linker won't do the automatic conversion that the Linux tools
226     // do.
227     if (TgtM.getTargetTriple().isOSFreeBSD()) {
228       PersonalityEncoding |= dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
229       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
230     }
231     break;
232   case Triple::ppc64:
233   case Triple::ppc64le:
234     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
235       dwarf::DW_EH_PE_udata8;
236     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_udata8;
237     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
238       dwarf::DW_EH_PE_udata8;
239     break;
240   case Triple::sparcel:
241   case Triple::sparc:
242     if (isPositionIndependent()) {
243       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
244       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
245         dwarf::DW_EH_PE_sdata4;
246       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
247         dwarf::DW_EH_PE_sdata4;
248     } else {
249       LSDAEncoding = dwarf::DW_EH_PE_absptr;
250       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
251       TTypeEncoding = dwarf::DW_EH_PE_absptr;
252     }
253     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
254     break;
255   case Triple::riscv32:
256   case Triple::riscv64:
257     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
258     PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
259                           dwarf::DW_EH_PE_sdata4;
260     TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
261                     dwarf::DW_EH_PE_sdata4;
262     CallSiteEncoding = dwarf::DW_EH_PE_udata4;
263     break;
264   case Triple::sparcv9:
265     LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
266     if (isPositionIndependent()) {
267       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
268         dwarf::DW_EH_PE_sdata4;
269       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
270         dwarf::DW_EH_PE_sdata4;
271     } else {
272       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
273       TTypeEncoding = dwarf::DW_EH_PE_absptr;
274     }
275     break;
276   case Triple::systemz:
277     // All currently-defined code models guarantee that 4-byte PC-relative
278     // values will be in range.
279     if (isPositionIndependent()) {
280       PersonalityEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
281         dwarf::DW_EH_PE_sdata4;
282       LSDAEncoding = dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
283       TTypeEncoding = dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel |
284         dwarf::DW_EH_PE_sdata4;
285     } else {
286       PersonalityEncoding = dwarf::DW_EH_PE_absptr;
287       LSDAEncoding = dwarf::DW_EH_PE_absptr;
288       TTypeEncoding = dwarf::DW_EH_PE_absptr;
289     }
290     break;
291   default:
292     break;
293   }
294 }
295 
296 void TargetLoweringObjectFileELF::emitModuleMetadata(MCStreamer &Streamer,
297                                                      Module &M) const {
298   auto &C = getContext();
299 
300   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
301     auto *S = C.getELFSection(".linker-options", ELF::SHT_LLVM_LINKER_OPTIONS,
302                               ELF::SHF_EXCLUDE);
303 
304     Streamer.SwitchSection(S);
305 
306     for (const auto *Operand : LinkerOptions->operands()) {
307       if (cast<MDNode>(Operand)->getNumOperands() != 2)
308         report_fatal_error("invalid llvm.linker.options");
309       for (const auto &Option : cast<MDNode>(Operand)->operands()) {
310         Streamer.emitBytes(cast<MDString>(Option)->getString());
311         Streamer.emitInt8(0);
312       }
313     }
314   }
315 
316   if (NamedMDNode *DependentLibraries = M.getNamedMetadata("llvm.dependent-libraries")) {
317     auto *S = C.getELFSection(".deplibs", ELF::SHT_LLVM_DEPENDENT_LIBRARIES,
318                               ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
319 
320     Streamer.SwitchSection(S);
321 
322     for (const auto *Operand : DependentLibraries->operands()) {
323       Streamer.emitBytes(
324           cast<MDString>(cast<MDNode>(Operand)->getOperand(0))->getString());
325       Streamer.emitInt8(0);
326     }
327   }
328 
329   if (NamedMDNode *FuncInfo = M.getNamedMetadata(PseudoProbeDescMetadataName)) {
330     // Emit a descriptor for every function including functions that have an
331     // available external linkage. We may not want this for imported functions
332     // that has code in another thinLTO module but we don't have a good way to
333     // tell them apart from inline functions defined in header files. Therefore
334     // we put each descriptor in a separate comdat section and rely on the
335     // linker to deduplicate.
336     for (const auto *Operand : FuncInfo->operands()) {
337       const auto *MD = cast<MDNode>(Operand);
338       auto *GUID = mdconst::dyn_extract<ConstantInt>(MD->getOperand(0));
339       auto *Hash = mdconst::dyn_extract<ConstantInt>(MD->getOperand(1));
340       auto *Name = cast<MDString>(MD->getOperand(2));
341       auto *S = C.getObjectFileInfo()->getPseudoProbeDescSection(
342           TM->getFunctionSections() ? Name->getString() : StringRef());
343 
344       Streamer.SwitchSection(S);
345       Streamer.emitInt64(GUID->getZExtValue());
346       Streamer.emitInt64(Hash->getZExtValue());
347       Streamer.emitULEB128IntValue(Name->getString().size());
348       Streamer.emitBytes(Name->getString());
349     }
350   }
351 
352   unsigned Version = 0;
353   unsigned Flags = 0;
354   StringRef Section;
355 
356   GetObjCImageInfo(M, Version, Flags, Section);
357   if (!Section.empty()) {
358     auto *S = C.getELFSection(Section, ELF::SHT_PROGBITS, ELF::SHF_ALLOC);
359     Streamer.SwitchSection(S);
360     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
361     Streamer.emitInt32(Version);
362     Streamer.emitInt32(Flags);
363     Streamer.AddBlankLine();
364   }
365 
366   emitCGProfileMetadata(Streamer, M);
367 }
368 
369 MCSymbol *TargetLoweringObjectFileELF::getCFIPersonalitySymbol(
370     const GlobalValue *GV, const TargetMachine &TM,
371     MachineModuleInfo *MMI) const {
372   unsigned Encoding = getPersonalityEncoding();
373   if ((Encoding & 0x80) == DW_EH_PE_indirect)
374     return getContext().getOrCreateSymbol(StringRef("DW.ref.") +
375                                           TM.getSymbol(GV)->getName());
376   if ((Encoding & 0x70) == DW_EH_PE_absptr)
377     return TM.getSymbol(GV);
378   report_fatal_error("We do not support this DWARF encoding yet!");
379 }
380 
381 void TargetLoweringObjectFileELF::emitPersonalityValue(
382     MCStreamer &Streamer, const DataLayout &DL, const MCSymbol *Sym) const {
383   SmallString<64> NameData("DW.ref.");
384   NameData += Sym->getName();
385   MCSymbolELF *Label =
386       cast<MCSymbolELF>(getContext().getOrCreateSymbol(NameData));
387   Streamer.emitSymbolAttribute(Label, MCSA_Hidden);
388   Streamer.emitSymbolAttribute(Label, MCSA_Weak);
389   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE | ELF::SHF_GROUP;
390   MCSection *Sec = getContext().getELFNamedSection(".data", Label->getName(),
391                                                    ELF::SHT_PROGBITS, Flags, 0);
392   unsigned Size = DL.getPointerSize();
393   Streamer.SwitchSection(Sec);
394   Streamer.emitValueToAlignment(DL.getPointerABIAlignment(0).value());
395   Streamer.emitSymbolAttribute(Label, MCSA_ELF_TypeObject);
396   const MCExpr *E = MCConstantExpr::create(Size, getContext());
397   Streamer.emitELFSize(Label, E);
398   Streamer.emitLabel(Label);
399 
400   Streamer.emitSymbolValue(Sym, Size);
401 }
402 
403 const MCExpr *TargetLoweringObjectFileELF::getTTypeGlobalReference(
404     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
405     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
406   if (Encoding & DW_EH_PE_indirect) {
407     MachineModuleInfoELF &ELFMMI = MMI->getObjFileInfo<MachineModuleInfoELF>();
408 
409     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, ".DW.stub", TM);
410 
411     // Add information about the stub reference to ELFMMI so that the stub
412     // gets emitted by the asmprinter.
413     MachineModuleInfoImpl::StubValueTy &StubSym = ELFMMI.getGVStubEntry(SSym);
414     if (!StubSym.getPointer()) {
415       MCSymbol *Sym = TM.getSymbol(GV);
416       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
417     }
418 
419     return TargetLoweringObjectFile::
420       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
421                         Encoding & ~DW_EH_PE_indirect, Streamer);
422   }
423 
424   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
425                                                            MMI, Streamer);
426 }
427 
428 static SectionKind getELFKindForNamedSection(StringRef Name, SectionKind K) {
429   // N.B.: The defaults used in here are not the same ones used in MC.
430   // We follow gcc, MC follows gas. For example, given ".section .eh_frame",
431   // both gas and MC will produce a section with no flags. Given
432   // section(".eh_frame") gcc will produce:
433   //
434   //   .section   .eh_frame,"a",@progbits
435 
436   if (Name == getInstrProfSectionName(IPSK_covmap, Triple::ELF,
437                                       /*AddSegmentInfo=*/false) ||
438       Name == getInstrProfSectionName(IPSK_covfun, Triple::ELF,
439                                       /*AddSegmentInfo=*/false) ||
440       Name == ".llvmbc" || Name == ".llvmcmd")
441     return SectionKind::getMetadata();
442 
443   if (Name.empty() || Name[0] != '.') return K;
444 
445   // Default implementation based on some magic section names.
446   if (Name == ".bss" ||
447       Name.startswith(".bss.") ||
448       Name.startswith(".gnu.linkonce.b.") ||
449       Name.startswith(".llvm.linkonce.b.") ||
450       Name == ".sbss" ||
451       Name.startswith(".sbss.") ||
452       Name.startswith(".gnu.linkonce.sb.") ||
453       Name.startswith(".llvm.linkonce.sb."))
454     return SectionKind::getBSS();
455 
456   if (Name == ".tdata" ||
457       Name.startswith(".tdata.") ||
458       Name.startswith(".gnu.linkonce.td.") ||
459       Name.startswith(".llvm.linkonce.td."))
460     return SectionKind::getThreadData();
461 
462   if (Name == ".tbss" ||
463       Name.startswith(".tbss.") ||
464       Name.startswith(".gnu.linkonce.tb.") ||
465       Name.startswith(".llvm.linkonce.tb."))
466     return SectionKind::getThreadBSS();
467 
468   return K;
469 }
470 
471 static unsigned getELFSectionType(StringRef Name, SectionKind K) {
472   // Use SHT_NOTE for section whose name starts with ".note" to allow
473   // emitting ELF notes from C variable declaration.
474   // See https://gcc.gnu.org/bugzilla/show_bug.cgi?id=77609
475   if (Name.startswith(".note"))
476     return ELF::SHT_NOTE;
477 
478   if (Name == ".init_array")
479     return ELF::SHT_INIT_ARRAY;
480 
481   if (Name == ".fini_array")
482     return ELF::SHT_FINI_ARRAY;
483 
484   if (Name == ".preinit_array")
485     return ELF::SHT_PREINIT_ARRAY;
486 
487   if (K.isBSS() || K.isThreadBSS())
488     return ELF::SHT_NOBITS;
489 
490   return ELF::SHT_PROGBITS;
491 }
492 
493 static unsigned getELFSectionFlags(SectionKind K) {
494   unsigned Flags = 0;
495 
496   if (!K.isMetadata())
497     Flags |= ELF::SHF_ALLOC;
498 
499   if (K.isText())
500     Flags |= ELF::SHF_EXECINSTR;
501 
502   if (K.isExecuteOnly())
503     Flags |= ELF::SHF_ARM_PURECODE;
504 
505   if (K.isWriteable())
506     Flags |= ELF::SHF_WRITE;
507 
508   if (K.isThreadLocal())
509     Flags |= ELF::SHF_TLS;
510 
511   if (K.isMergeableCString() || K.isMergeableConst())
512     Flags |= ELF::SHF_MERGE;
513 
514   if (K.isMergeableCString())
515     Flags |= ELF::SHF_STRINGS;
516 
517   return Flags;
518 }
519 
520 static const Comdat *getELFComdat(const GlobalValue *GV) {
521   const Comdat *C = GV->getComdat();
522   if (!C)
523     return nullptr;
524 
525   if (C->getSelectionKind() != Comdat::Any &&
526       C->getSelectionKind() != Comdat::NoDuplicates)
527     report_fatal_error("ELF COMDATs only support SelectionKind::Any and "
528                        "SelectionKind::NoDuplicates, '" + C->getName() +
529                        "' cannot be lowered.");
530 
531   return C;
532 }
533 
534 static const MCSymbolELF *getLinkedToSymbol(const GlobalObject *GO,
535                                             const TargetMachine &TM) {
536   MDNode *MD = GO->getMetadata(LLVMContext::MD_associated);
537   if (!MD)
538     return nullptr;
539 
540   const MDOperand &Op = MD->getOperand(0);
541   if (!Op.get())
542     return nullptr;
543 
544   auto *VM = dyn_cast<ValueAsMetadata>(Op);
545   if (!VM)
546     report_fatal_error("MD_associated operand is not ValueAsMetadata");
547 
548   auto *OtherGV = dyn_cast<GlobalValue>(VM->getValue());
549   return OtherGV ? dyn_cast<MCSymbolELF>(TM.getSymbol(OtherGV)) : nullptr;
550 }
551 
552 static unsigned getEntrySizeForKind(SectionKind Kind) {
553   if (Kind.isMergeable1ByteCString())
554     return 1;
555   else if (Kind.isMergeable2ByteCString())
556     return 2;
557   else if (Kind.isMergeable4ByteCString())
558     return 4;
559   else if (Kind.isMergeableConst4())
560     return 4;
561   else if (Kind.isMergeableConst8())
562     return 8;
563   else if (Kind.isMergeableConst16())
564     return 16;
565   else if (Kind.isMergeableConst32())
566     return 32;
567   else {
568     // We shouldn't have mergeable C strings or mergeable constants that we
569     // didn't handle above.
570     assert(!Kind.isMergeableCString() && "unknown string width");
571     assert(!Kind.isMergeableConst() && "unknown data width");
572     return 0;
573   }
574 }
575 
576 /// Return the section prefix name used by options FunctionsSections and
577 /// DataSections.
578 static StringRef getSectionPrefixForGlobal(SectionKind Kind) {
579   if (Kind.isText())
580     return ".text";
581   if (Kind.isReadOnly())
582     return ".rodata";
583   if (Kind.isBSS())
584     return ".bss";
585   if (Kind.isThreadData())
586     return ".tdata";
587   if (Kind.isThreadBSS())
588     return ".tbss";
589   if (Kind.isData())
590     return ".data";
591   if (Kind.isReadOnlyWithRel())
592     return ".data.rel.ro";
593   llvm_unreachable("Unknown section kind");
594 }
595 
596 static SmallString<128>
597 getELFSectionNameForGlobal(const GlobalObject *GO, SectionKind Kind,
598                            Mangler &Mang, const TargetMachine &TM,
599                            unsigned EntrySize, bool UniqueSectionName) {
600   SmallString<128> Name;
601   if (Kind.isMergeableCString()) {
602     // We also need alignment here.
603     // FIXME: this is getting the alignment of the character, not the
604     // alignment of the global!
605     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
606         cast<GlobalVariable>(GO));
607 
608     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
609     Name = SizeSpec + utostr(Alignment.value());
610   } else if (Kind.isMergeableConst()) {
611     Name = ".rodata.cst";
612     Name += utostr(EntrySize);
613   } else {
614     Name = getSectionPrefixForGlobal(Kind);
615   }
616 
617   bool HasPrefix = false;
618   if (const auto *F = dyn_cast<Function>(GO)) {
619     if (Optional<StringRef> Prefix = F->getSectionPrefix()) {
620       raw_svector_ostream(Name) << '.' << *Prefix;
621       HasPrefix = true;
622     }
623   }
624 
625   if (UniqueSectionName) {
626     Name.push_back('.');
627     TM.getNameWithPrefix(Name, GO, Mang, /*MayAlwaysUsePrivate*/true);
628   } else if (HasPrefix)
629     Name.push_back('.');
630   return Name;
631 }
632 
633 namespace {
634 class LoweringDiagnosticInfo : public DiagnosticInfo {
635   const Twine &Msg;
636 
637 public:
638   LoweringDiagnosticInfo(const Twine &DiagMsg,
639                          DiagnosticSeverity Severity = DS_Error)
640       : DiagnosticInfo(DK_Lowering, Severity), Msg(DiagMsg) {}
641   void print(DiagnosticPrinter &DP) const override { DP << Msg; }
642 };
643 }
644 
645 MCSection *TargetLoweringObjectFileELF::getExplicitSectionGlobal(
646     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
647   StringRef SectionName = GO->getSection();
648 
649   // Check if '#pragma clang section' name is applicable.
650   // Note that pragma directive overrides -ffunction-section, -fdata-section
651   // and so section name is exactly as user specified and not uniqued.
652   const GlobalVariable *GV = dyn_cast<GlobalVariable>(GO);
653   if (GV && GV->hasImplicitSection()) {
654     auto Attrs = GV->getAttributes();
655     if (Attrs.hasAttribute("bss-section") && Kind.isBSS()) {
656       SectionName = Attrs.getAttribute("bss-section").getValueAsString();
657     } else if (Attrs.hasAttribute("rodata-section") && Kind.isReadOnly()) {
658       SectionName = Attrs.getAttribute("rodata-section").getValueAsString();
659     } else if (Attrs.hasAttribute("relro-section") && Kind.isReadOnlyWithRel()) {
660       SectionName = Attrs.getAttribute("relro-section").getValueAsString();
661     } else if (Attrs.hasAttribute("data-section") && Kind.isData()) {
662       SectionName = Attrs.getAttribute("data-section").getValueAsString();
663     }
664   }
665   const Function *F = dyn_cast<Function>(GO);
666   if (F && F->hasFnAttribute("implicit-section-name")) {
667     SectionName = F->getFnAttribute("implicit-section-name").getValueAsString();
668   }
669 
670   // Infer section flags from the section name if we can.
671   Kind = getELFKindForNamedSection(SectionName, Kind);
672 
673   StringRef Group = "";
674   bool IsComdat = false;
675   unsigned Flags = getELFSectionFlags(Kind);
676   if (const Comdat *C = getELFComdat(GO)) {
677     Group = C->getName();
678     IsComdat = C->getSelectionKind() == Comdat::Any;
679     Flags |= ELF::SHF_GROUP;
680   }
681 
682   unsigned EntrySize = getEntrySizeForKind(Kind);
683 
684   // A section can have at most one associated section. Put each global with
685   // MD_associated in a unique section.
686   unsigned UniqueID = MCContext::GenericSectionID;
687   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
688   if (GO->getMetadata(LLVMContext::MD_associated)) {
689     UniqueID = NextUniqueID++;
690     Flags |= ELF::SHF_LINK_ORDER;
691   } else {
692     if (getContext().getAsmInfo()->useIntegratedAssembler() ||
693         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35)) {
694       // Symbols must be placed into sections with compatible entry
695       // sizes. Generate unique sections for symbols that have not
696       // been assigned to compatible sections.
697       if (Flags & ELF::SHF_MERGE) {
698         auto maybeID = getContext().getELFUniqueIDForEntsize(SectionName, Flags,
699                                                              EntrySize);
700         if (maybeID)
701           UniqueID = *maybeID;
702         else {
703           // If the user has specified the same section name as would be created
704           // implicitly for this symbol e.g. .rodata.str1.1, then we don't need
705           // to unique the section as the entry size for this symbol will be
706           // compatible with implicitly created sections.
707           SmallString<128> ImplicitSectionNameStem = getELFSectionNameForGlobal(
708               GO, Kind, getMangler(), TM, EntrySize, false);
709           if (!(getContext().isELFImplicitMergeableSectionNamePrefix(
710                     SectionName) &&
711                 SectionName.startswith(ImplicitSectionNameStem)))
712             UniqueID = NextUniqueID++;
713         }
714       } else {
715         // We need to unique the section if the user has explicity
716         // assigned a non-mergeable symbol to a section name for
717         // a generic mergeable section.
718         if (getContext().isELFGenericMergeableSection(SectionName)) {
719           auto maybeID = getContext().getELFUniqueIDForEntsize(
720               SectionName, Flags, EntrySize);
721           UniqueID = maybeID ? *maybeID : NextUniqueID++;
722         }
723       }
724     } else {
725       // If two symbols with differing sizes end up in the same mergeable
726       // section that section can be assigned an incorrect entry size. To avoid
727       // this we usually put symbols of the same size into distinct mergeable
728       // sections with the same name. Doing so relies on the ",unique ,"
729       // assembly feature. This feature is not avalible until bintuils
730       // version 2.35 (https://sourceware.org/bugzilla/show_bug.cgi?id=25380).
731       Flags &= ~ELF::SHF_MERGE;
732       EntrySize = 0;
733     }
734   }
735 
736   MCSectionELF *Section = getContext().getELFSection(
737       SectionName, getELFSectionType(SectionName, Kind), Flags, EntrySize,
738       Group, IsComdat, UniqueID, LinkedToSym);
739   // Make sure that we did not get some other section with incompatible sh_link.
740   // This should not be possible due to UniqueID code above.
741   assert(Section->getLinkedToSymbol() == LinkedToSym &&
742          "Associated symbol mismatch between sections");
743 
744   if (!(getContext().getAsmInfo()->useIntegratedAssembler() ||
745         getContext().getAsmInfo()->binutilsIsAtLeast(2, 35))) {
746     // If we are using GNU as before 2.35, then this symbol might have
747     // been placed in an incompatible mergeable section. Emit an error if this
748     // is the case to avoid creating broken output.
749     if ((Section->getFlags() & ELF::SHF_MERGE) &&
750         (Section->getEntrySize() != getEntrySizeForKind(Kind)))
751       GO->getContext().diagnose(LoweringDiagnosticInfo(
752           "Symbol '" + GO->getName() + "' from module '" +
753           (GO->getParent() ? GO->getParent()->getSourceFileName() : "unknown") +
754           "' required a section with entry-size=" +
755           Twine(getEntrySizeForKind(Kind)) + " but was placed in section '" +
756           SectionName + "' with entry-size=" + Twine(Section->getEntrySize()) +
757           ": Explicit assignment by pragma or attribute of an incompatible "
758           "symbol to this section?"));
759   }
760 
761   return Section;
762 }
763 
764 static MCSectionELF *selectELFSectionForGlobal(
765     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
766     const TargetMachine &TM, bool EmitUniqueSection, unsigned Flags,
767     unsigned *NextUniqueID, const MCSymbolELF *AssociatedSymbol) {
768 
769   StringRef Group = "";
770   bool IsComdat = false;
771   if (const Comdat *C = getELFComdat(GO)) {
772     Flags |= ELF::SHF_GROUP;
773     Group = C->getName();
774     IsComdat = C->getSelectionKind() == Comdat::Any;
775   }
776 
777   // Get the section entry size based on the kind.
778   unsigned EntrySize = getEntrySizeForKind(Kind);
779 
780   bool UniqueSectionName = false;
781   unsigned UniqueID = MCContext::GenericSectionID;
782   if (EmitUniqueSection) {
783     if (TM.getUniqueSectionNames()) {
784       UniqueSectionName = true;
785     } else {
786       UniqueID = *NextUniqueID;
787       (*NextUniqueID)++;
788     }
789   }
790   SmallString<128> Name = getELFSectionNameForGlobal(
791       GO, Kind, Mang, TM, EntrySize, UniqueSectionName);
792 
793   // Use 0 as the unique ID for execute-only text.
794   if (Kind.isExecuteOnly())
795     UniqueID = 0;
796   return Ctx.getELFSection(Name, getELFSectionType(Name, Kind), Flags,
797                            EntrySize, Group, IsComdat, UniqueID,
798                            AssociatedSymbol);
799 }
800 
801 MCSection *TargetLoweringObjectFileELF::SelectSectionForGlobal(
802     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
803   unsigned Flags = getELFSectionFlags(Kind);
804 
805   // If we have -ffunction-section or -fdata-section then we should emit the
806   // global value to a uniqued section specifically for it.
807   bool EmitUniqueSection = false;
808   if (!(Flags & ELF::SHF_MERGE) && !Kind.isCommon()) {
809     if (Kind.isText())
810       EmitUniqueSection = TM.getFunctionSections();
811     else
812       EmitUniqueSection = TM.getDataSections();
813   }
814   EmitUniqueSection |= GO->hasComdat();
815 
816   const MCSymbolELF *LinkedToSym = getLinkedToSymbol(GO, TM);
817   if (LinkedToSym) {
818     EmitUniqueSection = true;
819     Flags |= ELF::SHF_LINK_ORDER;
820   }
821 
822   MCSectionELF *Section = selectELFSectionForGlobal(
823       getContext(), GO, Kind, getMangler(), TM, EmitUniqueSection, Flags,
824       &NextUniqueID, LinkedToSym);
825   assert(Section->getLinkedToSymbol() == LinkedToSym);
826   return Section;
827 }
828 
829 MCSection *TargetLoweringObjectFileELF::getSectionForJumpTable(
830     const Function &F, const TargetMachine &TM) const {
831   // If the function can be removed, produce a unique section so that
832   // the table doesn't prevent the removal.
833   const Comdat *C = F.getComdat();
834   bool EmitUniqueSection = TM.getFunctionSections() || C;
835   if (!EmitUniqueSection)
836     return ReadOnlySection;
837 
838   return selectELFSectionForGlobal(getContext(), &F, SectionKind::getReadOnly(),
839                                    getMangler(), TM, EmitUniqueSection,
840                                    ELF::SHF_ALLOC, &NextUniqueID,
841                                    /* AssociatedSymbol */ nullptr);
842 }
843 
844 MCSection *TargetLoweringObjectFileELF::getSectionForLSDA(
845     const Function &F, const MCSymbol &FnSym, const TargetMachine &TM) const {
846   // If neither COMDAT nor function sections, use the monolithic LSDA section.
847   // Re-use this path if LSDASection is null as in the Arm EHABI.
848   if (!LSDASection || (!F.hasComdat() && !TM.getFunctionSections()))
849     return LSDASection;
850 
851   const auto *LSDA = cast<MCSectionELF>(LSDASection);
852   unsigned Flags = LSDA->getFlags();
853   const MCSymbolELF *LinkedToSym = nullptr;
854   StringRef Group;
855   bool IsComdat = false;
856   if (const Comdat *C = getELFComdat(&F)) {
857     Flags |= ELF::SHF_GROUP;
858     Group = C->getName();
859     IsComdat = C->getSelectionKind() == Comdat::Any;
860   }
861   // Use SHF_LINK_ORDER to facilitate --gc-sections if we can use GNU ld>=2.36
862   // or LLD, which support mixed SHF_LINK_ORDER & non-SHF_LINK_ORDER.
863   if (TM.getFunctionSections() &&
864       (getContext().getAsmInfo()->useIntegratedAssembler() &&
865        getContext().getAsmInfo()->binutilsIsAtLeast(2, 36))) {
866     Flags |= ELF::SHF_LINK_ORDER;
867     LinkedToSym = cast<MCSymbolELF>(&FnSym);
868   }
869 
870   // Append the function name as the suffix like GCC, assuming
871   // -funique-section-names applies to .gcc_except_table sections.
872   return getContext().getELFSection(
873       (TM.getUniqueSectionNames() ? LSDA->getName() + "." + F.getName()
874                                   : LSDA->getName()),
875       LSDA->getType(), Flags, 0, Group, F.hasComdat(), MCSection::NonUniqueID,
876       LinkedToSym);
877 }
878 
879 bool TargetLoweringObjectFileELF::shouldPutJumpTableInFunctionSection(
880     bool UsesLabelDifference, const Function &F) const {
881   // We can always create relative relocations, so use another section
882   // that can be marked non-executable.
883   return false;
884 }
885 
886 /// Given a mergeable constant with the specified size and relocation
887 /// information, return a section that it should be placed in.
888 MCSection *TargetLoweringObjectFileELF::getSectionForConstant(
889     const DataLayout &DL, SectionKind Kind, const Constant *C,
890     Align &Alignment) const {
891   if (Kind.isMergeableConst4() && MergeableConst4Section)
892     return MergeableConst4Section;
893   if (Kind.isMergeableConst8() && MergeableConst8Section)
894     return MergeableConst8Section;
895   if (Kind.isMergeableConst16() && MergeableConst16Section)
896     return MergeableConst16Section;
897   if (Kind.isMergeableConst32() && MergeableConst32Section)
898     return MergeableConst32Section;
899   if (Kind.isReadOnly())
900     return ReadOnlySection;
901 
902   assert(Kind.isReadOnlyWithRel() && "Unknown section kind");
903   return DataRelROSection;
904 }
905 
906 /// Returns a unique section for the given machine basic block.
907 MCSection *TargetLoweringObjectFileELF::getSectionForMachineBasicBlock(
908     const Function &F, const MachineBasicBlock &MBB,
909     const TargetMachine &TM) const {
910   assert(MBB.isBeginSection() && "Basic block does not start a section!");
911   unsigned UniqueID = MCContext::GenericSectionID;
912 
913   // For cold sections use the .text.split. prefix along with the parent
914   // function name. All cold blocks for the same function go to the same
915   // section. Similarly all exception blocks are grouped by symbol name
916   // under the .text.eh prefix. For regular sections, we either use a unique
917   // name, or a unique ID for the section.
918   SmallString<128> Name;
919   if (MBB.getSectionID() == MBBSectionID::ColdSectionID) {
920     Name += BBSectionsColdTextPrefix;
921     Name += MBB.getParent()->getName();
922   } else if (MBB.getSectionID() == MBBSectionID::ExceptionSectionID) {
923     Name += ".text.eh.";
924     Name += MBB.getParent()->getName();
925   } else {
926     Name += MBB.getParent()->getSection()->getName();
927     if (TM.getUniqueBasicBlockSectionNames()) {
928       Name += ".";
929       Name += MBB.getSymbol()->getName();
930     } else {
931       UniqueID = NextUniqueID++;
932     }
933   }
934 
935   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_EXECINSTR;
936   std::string GroupName;
937   if (F.hasComdat()) {
938     Flags |= ELF::SHF_GROUP;
939     GroupName = F.getComdat()->getName().str();
940   }
941   return getContext().getELFSection(Name, ELF::SHT_PROGBITS, Flags,
942                                     0 /* Entry Size */, GroupName,
943                                     F.hasComdat(), UniqueID, nullptr);
944 }
945 
946 static MCSectionELF *getStaticStructorSection(MCContext &Ctx, bool UseInitArray,
947                                               bool IsCtor, unsigned Priority,
948                                               const MCSymbol *KeySym) {
949   std::string Name;
950   unsigned Type;
951   unsigned Flags = ELF::SHF_ALLOC | ELF::SHF_WRITE;
952   StringRef Comdat = KeySym ? KeySym->getName() : "";
953 
954   if (KeySym)
955     Flags |= ELF::SHF_GROUP;
956 
957   if (UseInitArray) {
958     if (IsCtor) {
959       Type = ELF::SHT_INIT_ARRAY;
960       Name = ".init_array";
961     } else {
962       Type = ELF::SHT_FINI_ARRAY;
963       Name = ".fini_array";
964     }
965     if (Priority != 65535) {
966       Name += '.';
967       Name += utostr(Priority);
968     }
969   } else {
970     // The default scheme is .ctor / .dtor, so we have to invert the priority
971     // numbering.
972     if (IsCtor)
973       Name = ".ctors";
974     else
975       Name = ".dtors";
976     if (Priority != 65535)
977       raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
978     Type = ELF::SHT_PROGBITS;
979   }
980 
981   return Ctx.getELFSection(Name, Type, Flags, 0, Comdat, /*IsComdat=*/true);
982 }
983 
984 MCSection *TargetLoweringObjectFileELF::getStaticCtorSection(
985     unsigned Priority, const MCSymbol *KeySym) const {
986   return getStaticStructorSection(getContext(), UseInitArray, true, Priority,
987                                   KeySym);
988 }
989 
990 MCSection *TargetLoweringObjectFileELF::getStaticDtorSection(
991     unsigned Priority, const MCSymbol *KeySym) const {
992   return getStaticStructorSection(getContext(), UseInitArray, false, Priority,
993                                   KeySym);
994 }
995 
996 const MCExpr *TargetLoweringObjectFileELF::lowerRelativeReference(
997     const GlobalValue *LHS, const GlobalValue *RHS,
998     const TargetMachine &TM) const {
999   // We may only use a PLT-relative relocation to refer to unnamed_addr
1000   // functions.
1001   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
1002     return nullptr;
1003 
1004   // Basic sanity checks.
1005   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1006       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
1007       RHS->isThreadLocal())
1008     return nullptr;
1009 
1010   return MCBinaryExpr::createSub(
1011       MCSymbolRefExpr::create(TM.getSymbol(LHS), PLTRelativeVariantKind,
1012                               getContext()),
1013       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
1014 }
1015 
1016 const MCExpr *TargetLoweringObjectFileELF::lowerDSOLocalEquivalent(
1017     const DSOLocalEquivalent *Equiv, const TargetMachine &TM) const {
1018   assert(supportDSOLocalEquivalentLowering());
1019 
1020   const auto *GV = Equiv->getGlobalValue();
1021 
1022   // A PLT entry is not needed for dso_local globals.
1023   if (GV->isDSOLocal() || GV->isImplicitDSOLocal())
1024     return MCSymbolRefExpr::create(TM.getSymbol(GV), getContext());
1025 
1026   return MCSymbolRefExpr::create(TM.getSymbol(GV), PLTRelativeVariantKind,
1027                                  getContext());
1028 }
1029 
1030 MCSection *TargetLoweringObjectFileELF::getSectionForCommandLines() const {
1031   // Use ".GCC.command.line" since this feature is to support clang's
1032   // -frecord-gcc-switches which in turn attempts to mimic GCC's switch of the
1033   // same name.
1034   return getContext().getELFSection(".GCC.command.line", ELF::SHT_PROGBITS,
1035                                     ELF::SHF_MERGE | ELF::SHF_STRINGS, 1);
1036 }
1037 
1038 void
1039 TargetLoweringObjectFileELF::InitializeELF(bool UseInitArray_) {
1040   UseInitArray = UseInitArray_;
1041   MCContext &Ctx = getContext();
1042   if (!UseInitArray) {
1043     StaticCtorSection = Ctx.getELFSection(".ctors", ELF::SHT_PROGBITS,
1044                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1045 
1046     StaticDtorSection = Ctx.getELFSection(".dtors", ELF::SHT_PROGBITS,
1047                                           ELF::SHF_ALLOC | ELF::SHF_WRITE);
1048     return;
1049   }
1050 
1051   StaticCtorSection = Ctx.getELFSection(".init_array", ELF::SHT_INIT_ARRAY,
1052                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1053   StaticDtorSection = Ctx.getELFSection(".fini_array", ELF::SHT_FINI_ARRAY,
1054                                         ELF::SHF_WRITE | ELF::SHF_ALLOC);
1055 }
1056 
1057 //===----------------------------------------------------------------------===//
1058 //                                 MachO
1059 //===----------------------------------------------------------------------===//
1060 
1061 TargetLoweringObjectFileMachO::TargetLoweringObjectFileMachO()
1062   : TargetLoweringObjectFile() {
1063   SupportIndirectSymViaGOTPCRel = true;
1064 }
1065 
1066 void TargetLoweringObjectFileMachO::Initialize(MCContext &Ctx,
1067                                                const TargetMachine &TM) {
1068   TargetLoweringObjectFile::Initialize(Ctx, TM);
1069   if (TM.getRelocationModel() == Reloc::Static) {
1070     StaticCtorSection = Ctx.getMachOSection("__TEXT", "__constructor", 0,
1071                                             SectionKind::getData());
1072     StaticDtorSection = Ctx.getMachOSection("__TEXT", "__destructor", 0,
1073                                             SectionKind::getData());
1074   } else {
1075     StaticCtorSection = Ctx.getMachOSection("__DATA", "__mod_init_func",
1076                                             MachO::S_MOD_INIT_FUNC_POINTERS,
1077                                             SectionKind::getData());
1078     StaticDtorSection = Ctx.getMachOSection("__DATA", "__mod_term_func",
1079                                             MachO::S_MOD_TERM_FUNC_POINTERS,
1080                                             SectionKind::getData());
1081   }
1082 
1083   PersonalityEncoding =
1084       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1085   LSDAEncoding = dwarf::DW_EH_PE_pcrel;
1086   TTypeEncoding =
1087       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_pcrel | dwarf::DW_EH_PE_sdata4;
1088 }
1089 
1090 void TargetLoweringObjectFileMachO::emitModuleMetadata(MCStreamer &Streamer,
1091                                                        Module &M) const {
1092   // Emit the linker options if present.
1093   if (auto *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1094     for (const auto *Option : LinkerOptions->operands()) {
1095       SmallVector<std::string, 4> StrOptions;
1096       for (const auto &Piece : cast<MDNode>(Option)->operands())
1097         StrOptions.push_back(std::string(cast<MDString>(Piece)->getString()));
1098       Streamer.emitLinkerOptions(StrOptions);
1099     }
1100   }
1101 
1102   unsigned VersionVal = 0;
1103   unsigned ImageInfoFlags = 0;
1104   StringRef SectionVal;
1105 
1106   GetObjCImageInfo(M, VersionVal, ImageInfoFlags, SectionVal);
1107 
1108   // The section is mandatory. If we don't have it, then we don't have GC info.
1109   if (SectionVal.empty())
1110     return;
1111 
1112   StringRef Segment, Section;
1113   unsigned TAA = 0, StubSize = 0;
1114   bool TAAParsed;
1115   std::string ErrorCode =
1116     MCSectionMachO::ParseSectionSpecifier(SectionVal, Segment, Section,
1117                                           TAA, TAAParsed, StubSize);
1118   if (!ErrorCode.empty())
1119     // If invalid, report the error with report_fatal_error.
1120     report_fatal_error("Invalid section specifier '" + Section + "': " +
1121                        ErrorCode + ".");
1122 
1123   // Get the section.
1124   MCSectionMachO *S = getContext().getMachOSection(
1125       Segment, Section, TAA, StubSize, SectionKind::getData());
1126   Streamer.SwitchSection(S);
1127   Streamer.emitLabel(getContext().
1128                      getOrCreateSymbol(StringRef("L_OBJC_IMAGE_INFO")));
1129   Streamer.emitInt32(VersionVal);
1130   Streamer.emitInt32(ImageInfoFlags);
1131   Streamer.AddBlankLine();
1132 }
1133 
1134 static void checkMachOComdat(const GlobalValue *GV) {
1135   const Comdat *C = GV->getComdat();
1136   if (!C)
1137     return;
1138 
1139   report_fatal_error("MachO doesn't support COMDATs, '" + C->getName() +
1140                      "' cannot be lowered.");
1141 }
1142 
1143 MCSection *TargetLoweringObjectFileMachO::getExplicitSectionGlobal(
1144     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1145   // Parse the section specifier and create it if valid.
1146   StringRef Segment, Section;
1147   unsigned TAA = 0, StubSize = 0;
1148   bool TAAParsed;
1149 
1150   checkMachOComdat(GO);
1151 
1152   std::string ErrorCode =
1153     MCSectionMachO::ParseSectionSpecifier(GO->getSection(), Segment, Section,
1154                                           TAA, TAAParsed, StubSize);
1155   if (!ErrorCode.empty()) {
1156     // If invalid, report the error with report_fatal_error.
1157     report_fatal_error("Global variable '" + GO->getName() +
1158                        "' has an invalid section specifier '" +
1159                        GO->getSection() + "': " + ErrorCode + ".");
1160   }
1161 
1162   // Get the section.
1163   MCSectionMachO *S =
1164       getContext().getMachOSection(Segment, Section, TAA, StubSize, Kind);
1165 
1166   // If TAA wasn't set by ParseSectionSpecifier() above,
1167   // use the value returned by getMachOSection() as a default.
1168   if (!TAAParsed)
1169     TAA = S->getTypeAndAttributes();
1170 
1171   // Okay, now that we got the section, verify that the TAA & StubSize agree.
1172   // If the user declared multiple globals with different section flags, we need
1173   // to reject it here.
1174   if (S->getTypeAndAttributes() != TAA || S->getStubSize() != StubSize) {
1175     // If invalid, report the error with report_fatal_error.
1176     report_fatal_error("Global variable '" + GO->getName() +
1177                        "' section type or attributes does not match previous"
1178                        " section specifier");
1179   }
1180 
1181   return S;
1182 }
1183 
1184 MCSection *TargetLoweringObjectFileMachO::SelectSectionForGlobal(
1185     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1186   checkMachOComdat(GO);
1187 
1188   // Handle thread local data.
1189   if (Kind.isThreadBSS()) return TLSBSSSection;
1190   if (Kind.isThreadData()) return TLSDataSection;
1191 
1192   if (Kind.isText())
1193     return GO->isWeakForLinker() ? TextCoalSection : TextSection;
1194 
1195   // If this is weak/linkonce, put this in a coalescable section, either in text
1196   // or data depending on if it is writable.
1197   if (GO->isWeakForLinker()) {
1198     if (Kind.isReadOnly())
1199       return ConstTextCoalSection;
1200     if (Kind.isReadOnlyWithRel())
1201       return ConstDataCoalSection;
1202     return DataCoalSection;
1203   }
1204 
1205   // FIXME: Alignment check should be handled by section classifier.
1206   if (Kind.isMergeable1ByteCString() &&
1207       GO->getParent()->getDataLayout().getPreferredAlign(
1208           cast<GlobalVariable>(GO)) < Align(32))
1209     return CStringSection;
1210 
1211   // Do not put 16-bit arrays in the UString section if they have an
1212   // externally visible label, this runs into issues with certain linker
1213   // versions.
1214   if (Kind.isMergeable2ByteCString() && !GO->hasExternalLinkage() &&
1215       GO->getParent()->getDataLayout().getPreferredAlign(
1216           cast<GlobalVariable>(GO)) < Align(32))
1217     return UStringSection;
1218 
1219   // With MachO only variables whose corresponding symbol starts with 'l' or
1220   // 'L' can be merged, so we only try merging GVs with private linkage.
1221   if (GO->hasPrivateLinkage() && Kind.isMergeableConst()) {
1222     if (Kind.isMergeableConst4())
1223       return FourByteConstantSection;
1224     if (Kind.isMergeableConst8())
1225       return EightByteConstantSection;
1226     if (Kind.isMergeableConst16())
1227       return SixteenByteConstantSection;
1228   }
1229 
1230   // Otherwise, if it is readonly, but not something we can specially optimize,
1231   // just drop it in .const.
1232   if (Kind.isReadOnly())
1233     return ReadOnlySection;
1234 
1235   // If this is marked const, put it into a const section.  But if the dynamic
1236   // linker needs to write to it, put it in the data segment.
1237   if (Kind.isReadOnlyWithRel())
1238     return ConstDataSection;
1239 
1240   // Put zero initialized globals with strong external linkage in the
1241   // DATA, __common section with the .zerofill directive.
1242   if (Kind.isBSSExtern())
1243     return DataCommonSection;
1244 
1245   // Put zero initialized globals with local linkage in __DATA,__bss directive
1246   // with the .zerofill directive (aka .lcomm).
1247   if (Kind.isBSSLocal())
1248     return DataBSSSection;
1249 
1250   // Otherwise, just drop the variable in the normal data section.
1251   return DataSection;
1252 }
1253 
1254 MCSection *TargetLoweringObjectFileMachO::getSectionForConstant(
1255     const DataLayout &DL, SectionKind Kind, const Constant *C,
1256     Align &Alignment) const {
1257   // If this constant requires a relocation, we have to put it in the data
1258   // segment, not in the text segment.
1259   if (Kind.isData() || Kind.isReadOnlyWithRel())
1260     return ConstDataSection;
1261 
1262   if (Kind.isMergeableConst4())
1263     return FourByteConstantSection;
1264   if (Kind.isMergeableConst8())
1265     return EightByteConstantSection;
1266   if (Kind.isMergeableConst16())
1267     return SixteenByteConstantSection;
1268   return ReadOnlySection;  // .const
1269 }
1270 
1271 const MCExpr *TargetLoweringObjectFileMachO::getTTypeGlobalReference(
1272     const GlobalValue *GV, unsigned Encoding, const TargetMachine &TM,
1273     MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1274   // The mach-o version of this method defaults to returning a stub reference.
1275 
1276   if (Encoding & DW_EH_PE_indirect) {
1277     MachineModuleInfoMachO &MachOMMI =
1278       MMI->getObjFileInfo<MachineModuleInfoMachO>();
1279 
1280     MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1281 
1282     // Add information about the stub reference to MachOMMI so that the stub
1283     // gets emitted by the asmprinter.
1284     MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1285     if (!StubSym.getPointer()) {
1286       MCSymbol *Sym = TM.getSymbol(GV);
1287       StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1288     }
1289 
1290     return TargetLoweringObjectFile::
1291       getTTypeReference(MCSymbolRefExpr::create(SSym, getContext()),
1292                         Encoding & ~DW_EH_PE_indirect, Streamer);
1293   }
1294 
1295   return TargetLoweringObjectFile::getTTypeGlobalReference(GV, Encoding, TM,
1296                                                            MMI, Streamer);
1297 }
1298 
1299 MCSymbol *TargetLoweringObjectFileMachO::getCFIPersonalitySymbol(
1300     const GlobalValue *GV, const TargetMachine &TM,
1301     MachineModuleInfo *MMI) const {
1302   // The mach-o version of this method defaults to returning a stub reference.
1303   MachineModuleInfoMachO &MachOMMI =
1304     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1305 
1306   MCSymbol *SSym = getSymbolWithGlobalValueBase(GV, "$non_lazy_ptr", TM);
1307 
1308   // Add information about the stub reference to MachOMMI so that the stub
1309   // gets emitted by the asmprinter.
1310   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(SSym);
1311   if (!StubSym.getPointer()) {
1312     MCSymbol *Sym = TM.getSymbol(GV);
1313     StubSym = MachineModuleInfoImpl::StubValueTy(Sym, !GV->hasLocalLinkage());
1314   }
1315 
1316   return SSym;
1317 }
1318 
1319 const MCExpr *TargetLoweringObjectFileMachO::getIndirectSymViaGOTPCRel(
1320     const GlobalValue *GV, const MCSymbol *Sym, const MCValue &MV,
1321     int64_t Offset, MachineModuleInfo *MMI, MCStreamer &Streamer) const {
1322   // Although MachO 32-bit targets do not explicitly have a GOTPCREL relocation
1323   // as 64-bit do, we replace the GOT equivalent by accessing the final symbol
1324   // through a non_lazy_ptr stub instead. One advantage is that it allows the
1325   // computation of deltas to final external symbols. Example:
1326   //
1327   //    _extgotequiv:
1328   //       .long   _extfoo
1329   //
1330   //    _delta:
1331   //       .long   _extgotequiv-_delta
1332   //
1333   // is transformed to:
1334   //
1335   //    _delta:
1336   //       .long   L_extfoo$non_lazy_ptr-(_delta+0)
1337   //
1338   //       .section        __IMPORT,__pointers,non_lazy_symbol_pointers
1339   //    L_extfoo$non_lazy_ptr:
1340   //       .indirect_symbol        _extfoo
1341   //       .long   0
1342   //
1343   // The indirect symbol table (and sections of non_lazy_symbol_pointers type)
1344   // may point to both local (same translation unit) and global (other
1345   // translation units) symbols. Example:
1346   //
1347   // .section __DATA,__pointers,non_lazy_symbol_pointers
1348   // L1:
1349   //    .indirect_symbol _myGlobal
1350   //    .long 0
1351   // L2:
1352   //    .indirect_symbol _myLocal
1353   //    .long _myLocal
1354   //
1355   // If the symbol is local, instead of the symbol's index, the assembler
1356   // places the constant INDIRECT_SYMBOL_LOCAL into the indirect symbol table.
1357   // Then the linker will notice the constant in the table and will look at the
1358   // content of the symbol.
1359   MachineModuleInfoMachO &MachOMMI =
1360     MMI->getObjFileInfo<MachineModuleInfoMachO>();
1361   MCContext &Ctx = getContext();
1362 
1363   // The offset must consider the original displacement from the base symbol
1364   // since 32-bit targets don't have a GOTPCREL to fold the PC displacement.
1365   Offset = -MV.getConstant();
1366   const MCSymbol *BaseSym = &MV.getSymB()->getSymbol();
1367 
1368   // Access the final symbol via sym$non_lazy_ptr and generate the appropriated
1369   // non_lazy_ptr stubs.
1370   SmallString<128> Name;
1371   StringRef Suffix = "$non_lazy_ptr";
1372   Name += MMI->getModule()->getDataLayout().getPrivateGlobalPrefix();
1373   Name += Sym->getName();
1374   Name += Suffix;
1375   MCSymbol *Stub = Ctx.getOrCreateSymbol(Name);
1376 
1377   MachineModuleInfoImpl::StubValueTy &StubSym = MachOMMI.getGVStubEntry(Stub);
1378 
1379   if (!StubSym.getPointer())
1380     StubSym = MachineModuleInfoImpl::StubValueTy(const_cast<MCSymbol *>(Sym),
1381                                                  !GV->hasLocalLinkage());
1382 
1383   const MCExpr *BSymExpr =
1384     MCSymbolRefExpr::create(BaseSym, MCSymbolRefExpr::VK_None, Ctx);
1385   const MCExpr *LHS =
1386     MCSymbolRefExpr::create(Stub, MCSymbolRefExpr::VK_None, Ctx);
1387 
1388   if (!Offset)
1389     return MCBinaryExpr::createSub(LHS, BSymExpr, Ctx);
1390 
1391   const MCExpr *RHS =
1392     MCBinaryExpr::createAdd(BSymExpr, MCConstantExpr::create(Offset, Ctx), Ctx);
1393   return MCBinaryExpr::createSub(LHS, RHS, Ctx);
1394 }
1395 
1396 static bool canUsePrivateLabel(const MCAsmInfo &AsmInfo,
1397                                const MCSection &Section) {
1398   if (!AsmInfo.isSectionAtomizableBySymbols(Section))
1399     return true;
1400 
1401   // If it is not dead stripped, it is safe to use private labels.
1402   const MCSectionMachO &SMO = cast<MCSectionMachO>(Section);
1403   if (SMO.hasAttribute(MachO::S_ATTR_NO_DEAD_STRIP))
1404     return true;
1405 
1406   return false;
1407 }
1408 
1409 void TargetLoweringObjectFileMachO::getNameWithPrefix(
1410     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1411     const TargetMachine &TM) const {
1412   bool CannotUsePrivateLabel = true;
1413   if (auto *GO = GV->getBaseObject()) {
1414     SectionKind GOKind = TargetLoweringObjectFile::getKindForGlobal(GO, TM);
1415     const MCSection *TheSection = SectionForGlobal(GO, GOKind, TM);
1416     CannotUsePrivateLabel =
1417         !canUsePrivateLabel(*TM.getMCAsmInfo(), *TheSection);
1418   }
1419   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1420 }
1421 
1422 //===----------------------------------------------------------------------===//
1423 //                                  COFF
1424 //===----------------------------------------------------------------------===//
1425 
1426 static unsigned
1427 getCOFFSectionFlags(SectionKind K, const TargetMachine &TM) {
1428   unsigned Flags = 0;
1429   bool isThumb = TM.getTargetTriple().getArch() == Triple::thumb;
1430 
1431   if (K.isMetadata())
1432     Flags |=
1433       COFF::IMAGE_SCN_MEM_DISCARDABLE;
1434   else if (K.isText())
1435     Flags |=
1436       COFF::IMAGE_SCN_MEM_EXECUTE |
1437       COFF::IMAGE_SCN_MEM_READ |
1438       COFF::IMAGE_SCN_CNT_CODE |
1439       (isThumb ? COFF::IMAGE_SCN_MEM_16BIT : (COFF::SectionCharacteristics)0);
1440   else if (K.isBSS())
1441     Flags |=
1442       COFF::IMAGE_SCN_CNT_UNINITIALIZED_DATA |
1443       COFF::IMAGE_SCN_MEM_READ |
1444       COFF::IMAGE_SCN_MEM_WRITE;
1445   else if (K.isThreadLocal())
1446     Flags |=
1447       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1448       COFF::IMAGE_SCN_MEM_READ |
1449       COFF::IMAGE_SCN_MEM_WRITE;
1450   else if (K.isReadOnly() || K.isReadOnlyWithRel())
1451     Flags |=
1452       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1453       COFF::IMAGE_SCN_MEM_READ;
1454   else if (K.isWriteable())
1455     Flags |=
1456       COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1457       COFF::IMAGE_SCN_MEM_READ |
1458       COFF::IMAGE_SCN_MEM_WRITE;
1459 
1460   return Flags;
1461 }
1462 
1463 static const GlobalValue *getComdatGVForCOFF(const GlobalValue *GV) {
1464   const Comdat *C = GV->getComdat();
1465   assert(C && "expected GV to have a Comdat!");
1466 
1467   StringRef ComdatGVName = C->getName();
1468   const GlobalValue *ComdatGV = GV->getParent()->getNamedValue(ComdatGVName);
1469   if (!ComdatGV)
1470     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1471                        "' does not exist.");
1472 
1473   if (ComdatGV->getComdat() != C)
1474     report_fatal_error("Associative COMDAT symbol '" + ComdatGVName +
1475                        "' is not a key for its COMDAT.");
1476 
1477   return ComdatGV;
1478 }
1479 
1480 static int getSelectionForCOFF(const GlobalValue *GV) {
1481   if (const Comdat *C = GV->getComdat()) {
1482     const GlobalValue *ComdatKey = getComdatGVForCOFF(GV);
1483     if (const auto *GA = dyn_cast<GlobalAlias>(ComdatKey))
1484       ComdatKey = GA->getBaseObject();
1485     if (ComdatKey == GV) {
1486       switch (C->getSelectionKind()) {
1487       case Comdat::Any:
1488         return COFF::IMAGE_COMDAT_SELECT_ANY;
1489       case Comdat::ExactMatch:
1490         return COFF::IMAGE_COMDAT_SELECT_EXACT_MATCH;
1491       case Comdat::Largest:
1492         return COFF::IMAGE_COMDAT_SELECT_LARGEST;
1493       case Comdat::NoDuplicates:
1494         return COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1495       case Comdat::SameSize:
1496         return COFF::IMAGE_COMDAT_SELECT_SAME_SIZE;
1497       }
1498     } else {
1499       return COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE;
1500     }
1501   }
1502   return 0;
1503 }
1504 
1505 MCSection *TargetLoweringObjectFileCOFF::getExplicitSectionGlobal(
1506     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1507   int Selection = 0;
1508   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1509   StringRef Name = GO->getSection();
1510   StringRef COMDATSymName = "";
1511   if (GO->hasComdat()) {
1512     Selection = getSelectionForCOFF(GO);
1513     const GlobalValue *ComdatGV;
1514     if (Selection == COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE)
1515       ComdatGV = getComdatGVForCOFF(GO);
1516     else
1517       ComdatGV = GO;
1518 
1519     if (!ComdatGV->hasPrivateLinkage()) {
1520       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1521       COMDATSymName = Sym->getName();
1522       Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1523     } else {
1524       Selection = 0;
1525     }
1526   }
1527 
1528   return getContext().getCOFFSection(Name, Characteristics, Kind, COMDATSymName,
1529                                      Selection);
1530 }
1531 
1532 static StringRef getCOFFSectionNameForUniqueGlobal(SectionKind Kind) {
1533   if (Kind.isText())
1534     return ".text";
1535   if (Kind.isBSS())
1536     return ".bss";
1537   if (Kind.isThreadLocal())
1538     return ".tls$";
1539   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1540     return ".rdata";
1541   return ".data";
1542 }
1543 
1544 MCSection *TargetLoweringObjectFileCOFF::SelectSectionForGlobal(
1545     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1546   // If we have -ffunction-sections then we should emit the global value to a
1547   // uniqued section specifically for it.
1548   bool EmitUniquedSection;
1549   if (Kind.isText())
1550     EmitUniquedSection = TM.getFunctionSections();
1551   else
1552     EmitUniquedSection = TM.getDataSections();
1553 
1554   if ((EmitUniquedSection && !Kind.isCommon()) || GO->hasComdat()) {
1555     SmallString<256> Name = getCOFFSectionNameForUniqueGlobal(Kind);
1556 
1557     unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1558 
1559     Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1560     int Selection = getSelectionForCOFF(GO);
1561     if (!Selection)
1562       Selection = COFF::IMAGE_COMDAT_SELECT_NODUPLICATES;
1563     const GlobalValue *ComdatGV;
1564     if (GO->hasComdat())
1565       ComdatGV = getComdatGVForCOFF(GO);
1566     else
1567       ComdatGV = GO;
1568 
1569     unsigned UniqueID = MCContext::GenericSectionID;
1570     if (EmitUniquedSection)
1571       UniqueID = NextUniqueID++;
1572 
1573     if (!ComdatGV->hasPrivateLinkage()) {
1574       MCSymbol *Sym = TM.getSymbol(ComdatGV);
1575       StringRef COMDATSymName = Sym->getName();
1576 
1577       if (const auto *F = dyn_cast<Function>(GO))
1578         if (Optional<StringRef> Prefix = F->getSectionPrefix())
1579           raw_svector_ostream(Name) << '$' << *Prefix;
1580 
1581       // Append "$symbol" to the section name *before* IR-level mangling is
1582       // applied when targetting mingw. This is what GCC does, and the ld.bfd
1583       // COFF linker will not properly handle comdats otherwise.
1584       if (getTargetTriple().isWindowsGNUEnvironment())
1585         raw_svector_ostream(Name) << '$' << ComdatGV->getName();
1586 
1587       return getContext().getCOFFSection(Name, Characteristics, Kind,
1588                                          COMDATSymName, Selection, UniqueID);
1589     } else {
1590       SmallString<256> TmpData;
1591       getMangler().getNameWithPrefix(TmpData, GO, /*CannotUsePrivateLabel=*/true);
1592       return getContext().getCOFFSection(Name, Characteristics, Kind, TmpData,
1593                                          Selection, UniqueID);
1594     }
1595   }
1596 
1597   if (Kind.isText())
1598     return TextSection;
1599 
1600   if (Kind.isThreadLocal())
1601     return TLSDataSection;
1602 
1603   if (Kind.isReadOnly() || Kind.isReadOnlyWithRel())
1604     return ReadOnlySection;
1605 
1606   // Note: we claim that common symbols are put in BSSSection, but they are
1607   // really emitted with the magic .comm directive, which creates a symbol table
1608   // entry but not a section.
1609   if (Kind.isBSS() || Kind.isCommon())
1610     return BSSSection;
1611 
1612   return DataSection;
1613 }
1614 
1615 void TargetLoweringObjectFileCOFF::getNameWithPrefix(
1616     SmallVectorImpl<char> &OutName, const GlobalValue *GV,
1617     const TargetMachine &TM) const {
1618   bool CannotUsePrivateLabel = false;
1619   if (GV->hasPrivateLinkage() &&
1620       ((isa<Function>(GV) && TM.getFunctionSections()) ||
1621        (isa<GlobalVariable>(GV) && TM.getDataSections())))
1622     CannotUsePrivateLabel = true;
1623 
1624   getMangler().getNameWithPrefix(OutName, GV, CannotUsePrivateLabel);
1625 }
1626 
1627 MCSection *TargetLoweringObjectFileCOFF::getSectionForJumpTable(
1628     const Function &F, const TargetMachine &TM) const {
1629   // If the function can be removed, produce a unique section so that
1630   // the table doesn't prevent the removal.
1631   const Comdat *C = F.getComdat();
1632   bool EmitUniqueSection = TM.getFunctionSections() || C;
1633   if (!EmitUniqueSection)
1634     return ReadOnlySection;
1635 
1636   // FIXME: we should produce a symbol for F instead.
1637   if (F.hasPrivateLinkage())
1638     return ReadOnlySection;
1639 
1640   MCSymbol *Sym = TM.getSymbol(&F);
1641   StringRef COMDATSymName = Sym->getName();
1642 
1643   SectionKind Kind = SectionKind::getReadOnly();
1644   StringRef SecName = getCOFFSectionNameForUniqueGlobal(Kind);
1645   unsigned Characteristics = getCOFFSectionFlags(Kind, TM);
1646   Characteristics |= COFF::IMAGE_SCN_LNK_COMDAT;
1647   unsigned UniqueID = NextUniqueID++;
1648 
1649   return getContext().getCOFFSection(
1650       SecName, Characteristics, Kind, COMDATSymName,
1651       COFF::IMAGE_COMDAT_SELECT_ASSOCIATIVE, UniqueID);
1652 }
1653 
1654 void TargetLoweringObjectFileCOFF::emitModuleMetadata(MCStreamer &Streamer,
1655                                                       Module &M) const {
1656   emitLinkerDirectives(Streamer, M);
1657 
1658   unsigned Version = 0;
1659   unsigned Flags = 0;
1660   StringRef Section;
1661 
1662   GetObjCImageInfo(M, Version, Flags, Section);
1663   if (!Section.empty()) {
1664     auto &C = getContext();
1665     auto *S = C.getCOFFSection(Section,
1666                                COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1667                                    COFF::IMAGE_SCN_MEM_READ,
1668                                SectionKind::getReadOnly());
1669     Streamer.SwitchSection(S);
1670     Streamer.emitLabel(C.getOrCreateSymbol(StringRef("OBJC_IMAGE_INFO")));
1671     Streamer.emitInt32(Version);
1672     Streamer.emitInt32(Flags);
1673     Streamer.AddBlankLine();
1674   }
1675 
1676   emitCGProfileMetadata(Streamer, M);
1677 }
1678 
1679 void TargetLoweringObjectFileCOFF::emitLinkerDirectives(
1680     MCStreamer &Streamer, Module &M) const {
1681   if (NamedMDNode *LinkerOptions = M.getNamedMetadata("llvm.linker.options")) {
1682     // Emit the linker options to the linker .drectve section.  According to the
1683     // spec, this section is a space-separated string containing flags for
1684     // linker.
1685     MCSection *Sec = getDrectveSection();
1686     Streamer.SwitchSection(Sec);
1687     for (const auto *Option : LinkerOptions->operands()) {
1688       for (const auto &Piece : cast<MDNode>(Option)->operands()) {
1689         // Lead with a space for consistency with our dllexport implementation.
1690         std::string Directive(" ");
1691         Directive.append(std::string(cast<MDString>(Piece)->getString()));
1692         Streamer.emitBytes(Directive);
1693       }
1694     }
1695   }
1696 
1697   // Emit /EXPORT: flags for each exported global as necessary.
1698   std::string Flags;
1699   for (const GlobalValue &GV : M.global_values()) {
1700     raw_string_ostream OS(Flags);
1701     emitLinkerFlagsForGlobalCOFF(OS, &GV, getTargetTriple(), getMangler());
1702     OS.flush();
1703     if (!Flags.empty()) {
1704       Streamer.SwitchSection(getDrectveSection());
1705       Streamer.emitBytes(Flags);
1706     }
1707     Flags.clear();
1708   }
1709 
1710   // Emit /INCLUDE: flags for each used global as necessary.
1711   if (const auto *LU = M.getNamedGlobal("llvm.used")) {
1712     assert(LU->hasInitializer() && "expected llvm.used to have an initializer");
1713     assert(isa<ArrayType>(LU->getValueType()) &&
1714            "expected llvm.used to be an array type");
1715     if (const auto *A = cast<ConstantArray>(LU->getInitializer())) {
1716       for (const Value *Op : A->operands()) {
1717         const auto *GV = cast<GlobalValue>(Op->stripPointerCasts());
1718         // Global symbols with internal or private linkage are not visible to
1719         // the linker, and thus would cause an error when the linker tried to
1720         // preserve the symbol due to the `/include:` directive.
1721         if (GV->hasLocalLinkage())
1722           continue;
1723 
1724         raw_string_ostream OS(Flags);
1725         emitLinkerFlagsForUsedCOFF(OS, GV, getTargetTriple(), getMangler());
1726         OS.flush();
1727 
1728         if (!Flags.empty()) {
1729           Streamer.SwitchSection(getDrectveSection());
1730           Streamer.emitBytes(Flags);
1731         }
1732         Flags.clear();
1733       }
1734     }
1735   }
1736 }
1737 
1738 void TargetLoweringObjectFileCOFF::Initialize(MCContext &Ctx,
1739                                               const TargetMachine &TM) {
1740   TargetLoweringObjectFile::Initialize(Ctx, TM);
1741   this->TM = &TM;
1742   const Triple &T = TM.getTargetTriple();
1743   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1744     StaticCtorSection =
1745         Ctx.getCOFFSection(".CRT$XCU", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1746                                            COFF::IMAGE_SCN_MEM_READ,
1747                            SectionKind::getReadOnly());
1748     StaticDtorSection =
1749         Ctx.getCOFFSection(".CRT$XTX", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1750                                            COFF::IMAGE_SCN_MEM_READ,
1751                            SectionKind::getReadOnly());
1752   } else {
1753     StaticCtorSection = Ctx.getCOFFSection(
1754         ".ctors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1755                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1756         SectionKind::getData());
1757     StaticDtorSection = Ctx.getCOFFSection(
1758         ".dtors", COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1759                       COFF::IMAGE_SCN_MEM_READ | COFF::IMAGE_SCN_MEM_WRITE,
1760         SectionKind::getData());
1761   }
1762 }
1763 
1764 static MCSectionCOFF *getCOFFStaticStructorSection(MCContext &Ctx,
1765                                                    const Triple &T, bool IsCtor,
1766                                                    unsigned Priority,
1767                                                    const MCSymbol *KeySym,
1768                                                    MCSectionCOFF *Default) {
1769   if (T.isWindowsMSVCEnvironment() || T.isWindowsItaniumEnvironment()) {
1770     // If the priority is the default, use .CRT$XCU, possibly associative.
1771     if (Priority == 65535)
1772       return Ctx.getAssociativeCOFFSection(Default, KeySym, 0);
1773 
1774     // Otherwise, we need to compute a new section name. Low priorities should
1775     // run earlier. The linker will sort sections ASCII-betically, and we need a
1776     // string that sorts between .CRT$XCA and .CRT$XCU. In the general case, we
1777     // make a name like ".CRT$XCT12345", since that runs before .CRT$XCU. Really
1778     // low priorities need to sort before 'L', since the CRT uses that
1779     // internally, so we use ".CRT$XCA00001" for them.
1780     SmallString<24> Name;
1781     raw_svector_ostream OS(Name);
1782     OS << ".CRT$X" << (IsCtor ? "C" : "T") <<
1783         (Priority < 200 ? 'A' : 'T') << format("%05u", Priority);
1784     MCSectionCOFF *Sec = Ctx.getCOFFSection(
1785         Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA | COFF::IMAGE_SCN_MEM_READ,
1786         SectionKind::getReadOnly());
1787     return Ctx.getAssociativeCOFFSection(Sec, KeySym, 0);
1788   }
1789 
1790   std::string Name = IsCtor ? ".ctors" : ".dtors";
1791   if (Priority != 65535)
1792     raw_string_ostream(Name) << format(".%05u", 65535 - Priority);
1793 
1794   return Ctx.getAssociativeCOFFSection(
1795       Ctx.getCOFFSection(Name, COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1796                                    COFF::IMAGE_SCN_MEM_READ |
1797                                    COFF::IMAGE_SCN_MEM_WRITE,
1798                          SectionKind::getData()),
1799       KeySym, 0);
1800 }
1801 
1802 MCSection *TargetLoweringObjectFileCOFF::getStaticCtorSection(
1803     unsigned Priority, const MCSymbol *KeySym) const {
1804   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), true,
1805                                       Priority, KeySym,
1806                                       cast<MCSectionCOFF>(StaticCtorSection));
1807 }
1808 
1809 MCSection *TargetLoweringObjectFileCOFF::getStaticDtorSection(
1810     unsigned Priority, const MCSymbol *KeySym) const {
1811   return getCOFFStaticStructorSection(getContext(), getTargetTriple(), false,
1812                                       Priority, KeySym,
1813                                       cast<MCSectionCOFF>(StaticDtorSection));
1814 }
1815 
1816 const MCExpr *TargetLoweringObjectFileCOFF::lowerRelativeReference(
1817     const GlobalValue *LHS, const GlobalValue *RHS,
1818     const TargetMachine &TM) const {
1819   const Triple &T = TM.getTargetTriple();
1820   if (T.isOSCygMing())
1821     return nullptr;
1822 
1823   // Our symbols should exist in address space zero, cowardly no-op if
1824   // otherwise.
1825   if (LHS->getType()->getPointerAddressSpace() != 0 ||
1826       RHS->getType()->getPointerAddressSpace() != 0)
1827     return nullptr;
1828 
1829   // Both ptrtoint instructions must wrap global objects:
1830   // - Only global variables are eligible for image relative relocations.
1831   // - The subtrahend refers to the special symbol __ImageBase, a GlobalVariable.
1832   // We expect __ImageBase to be a global variable without a section, externally
1833   // defined.
1834   //
1835   // It should look something like this: @__ImageBase = external constant i8
1836   if (!isa<GlobalObject>(LHS) || !isa<GlobalVariable>(RHS) ||
1837       LHS->isThreadLocal() || RHS->isThreadLocal() ||
1838       RHS->getName() != "__ImageBase" || !RHS->hasExternalLinkage() ||
1839       cast<GlobalVariable>(RHS)->hasInitializer() || RHS->hasSection())
1840     return nullptr;
1841 
1842   return MCSymbolRefExpr::create(TM.getSymbol(LHS),
1843                                  MCSymbolRefExpr::VK_COFF_IMGREL32,
1844                                  getContext());
1845 }
1846 
1847 static std::string APIntToHexString(const APInt &AI) {
1848   unsigned Width = (AI.getBitWidth() / 8) * 2;
1849   std::string HexString = AI.toString(16, /*Signed=*/false);
1850   llvm::transform(HexString, HexString.begin(), tolower);
1851   unsigned Size = HexString.size();
1852   assert(Width >= Size && "hex string is too large!");
1853   HexString.insert(HexString.begin(), Width - Size, '0');
1854 
1855   return HexString;
1856 }
1857 
1858 static std::string scalarConstantToHexString(const Constant *C) {
1859   Type *Ty = C->getType();
1860   if (isa<UndefValue>(C)) {
1861     return APIntToHexString(APInt::getNullValue(Ty->getPrimitiveSizeInBits()));
1862   } else if (const auto *CFP = dyn_cast<ConstantFP>(C)) {
1863     return APIntToHexString(CFP->getValueAPF().bitcastToAPInt());
1864   } else if (const auto *CI = dyn_cast<ConstantInt>(C)) {
1865     return APIntToHexString(CI->getValue());
1866   } else {
1867     unsigned NumElements;
1868     if (auto *VTy = dyn_cast<VectorType>(Ty))
1869       NumElements = cast<FixedVectorType>(VTy)->getNumElements();
1870     else
1871       NumElements = Ty->getArrayNumElements();
1872     std::string HexString;
1873     for (int I = NumElements - 1, E = -1; I != E; --I)
1874       HexString += scalarConstantToHexString(C->getAggregateElement(I));
1875     return HexString;
1876   }
1877 }
1878 
1879 MCSection *TargetLoweringObjectFileCOFF::getSectionForConstant(
1880     const DataLayout &DL, SectionKind Kind, const Constant *C,
1881     Align &Alignment) const {
1882   if (Kind.isMergeableConst() && C &&
1883       getContext().getAsmInfo()->hasCOFFComdatConstants()) {
1884     // This creates comdat sections with the given symbol name, but unless
1885     // AsmPrinter::GetCPISymbol actually makes the symbol global, the symbol
1886     // will be created with a null storage class, which makes GNU binutils
1887     // error out.
1888     const unsigned Characteristics = COFF::IMAGE_SCN_CNT_INITIALIZED_DATA |
1889                                      COFF::IMAGE_SCN_MEM_READ |
1890                                      COFF::IMAGE_SCN_LNK_COMDAT;
1891     std::string COMDATSymName;
1892     if (Kind.isMergeableConst4()) {
1893       if (Alignment <= 4) {
1894         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1895         Alignment = Align(4);
1896       }
1897     } else if (Kind.isMergeableConst8()) {
1898       if (Alignment <= 8) {
1899         COMDATSymName = "__real@" + scalarConstantToHexString(C);
1900         Alignment = Align(8);
1901       }
1902     } else if (Kind.isMergeableConst16()) {
1903       // FIXME: These may not be appropriate for non-x86 architectures.
1904       if (Alignment <= 16) {
1905         COMDATSymName = "__xmm@" + scalarConstantToHexString(C);
1906         Alignment = Align(16);
1907       }
1908     } else if (Kind.isMergeableConst32()) {
1909       if (Alignment <= 32) {
1910         COMDATSymName = "__ymm@" + scalarConstantToHexString(C);
1911         Alignment = Align(32);
1912       }
1913     }
1914 
1915     if (!COMDATSymName.empty())
1916       return getContext().getCOFFSection(".rdata", Characteristics, Kind,
1917                                          COMDATSymName,
1918                                          COFF::IMAGE_COMDAT_SELECT_ANY);
1919   }
1920 
1921   return TargetLoweringObjectFile::getSectionForConstant(DL, Kind, C,
1922                                                          Alignment);
1923 }
1924 
1925 //===----------------------------------------------------------------------===//
1926 //                                  Wasm
1927 //===----------------------------------------------------------------------===//
1928 
1929 static const Comdat *getWasmComdat(const GlobalValue *GV) {
1930   const Comdat *C = GV->getComdat();
1931   if (!C)
1932     return nullptr;
1933 
1934   if (C->getSelectionKind() != Comdat::Any)
1935     report_fatal_error("WebAssembly COMDATs only support "
1936                        "SelectionKind::Any, '" + C->getName() + "' cannot be "
1937                        "lowered.");
1938 
1939   return C;
1940 }
1941 
1942 MCSection *TargetLoweringObjectFileWasm::getExplicitSectionGlobal(
1943     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
1944   // We don't support explict section names for functions in the wasm object
1945   // format.  Each function has to be in its own unique section.
1946   if (isa<Function>(GO)) {
1947     return SelectSectionForGlobal(GO, Kind, TM);
1948   }
1949 
1950   StringRef Name = GO->getSection();
1951 
1952   // Certain data sections we treat as named custom sections rather than
1953   // segments within the data section.
1954   // This could be avoided if all data segements (the wasm sense) were
1955   // represented as their own sections (in the llvm sense).
1956   // TODO(sbc): https://github.com/WebAssembly/tool-conventions/issues/138
1957   if (Name == ".llvmcmd" || Name == ".llvmbc")
1958     Kind = SectionKind::getMetadata();
1959 
1960   StringRef Group = "";
1961   if (const Comdat *C = getWasmComdat(GO)) {
1962     Group = C->getName();
1963   }
1964 
1965   MCSectionWasm* Section =
1966       getContext().getWasmSection(Name, Kind, Group,
1967                                   MCContext::GenericSectionID);
1968 
1969   return Section;
1970 }
1971 
1972 static MCSectionWasm *selectWasmSectionForGlobal(
1973     MCContext &Ctx, const GlobalObject *GO, SectionKind Kind, Mangler &Mang,
1974     const TargetMachine &TM, bool EmitUniqueSection, unsigned *NextUniqueID) {
1975   StringRef Group = "";
1976   if (const Comdat *C = getWasmComdat(GO)) {
1977     Group = C->getName();
1978   }
1979 
1980   bool UniqueSectionNames = TM.getUniqueSectionNames();
1981   SmallString<128> Name = getSectionPrefixForGlobal(Kind);
1982 
1983   if (const auto *F = dyn_cast<Function>(GO)) {
1984     const auto &OptionalPrefix = F->getSectionPrefix();
1985     if (OptionalPrefix)
1986       raw_svector_ostream(Name) << '.' << *OptionalPrefix;
1987   }
1988 
1989   if (EmitUniqueSection && UniqueSectionNames) {
1990     Name.push_back('.');
1991     TM.getNameWithPrefix(Name, GO, Mang, true);
1992   }
1993   unsigned UniqueID = MCContext::GenericSectionID;
1994   if (EmitUniqueSection && !UniqueSectionNames) {
1995     UniqueID = *NextUniqueID;
1996     (*NextUniqueID)++;
1997   }
1998 
1999   return Ctx.getWasmSection(Name, Kind, Group, UniqueID);
2000 }
2001 
2002 MCSection *TargetLoweringObjectFileWasm::SelectSectionForGlobal(
2003     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2004 
2005   if (Kind.isCommon())
2006     report_fatal_error("mergable sections not supported yet on wasm");
2007 
2008   // If we have -ffunction-section or -fdata-section then we should emit the
2009   // global value to a uniqued section specifically for it.
2010   bool EmitUniqueSection = false;
2011   if (Kind.isText())
2012     EmitUniqueSection = TM.getFunctionSections();
2013   else
2014     EmitUniqueSection = TM.getDataSections();
2015   EmitUniqueSection |= GO->hasComdat();
2016 
2017   return selectWasmSectionForGlobal(getContext(), GO, Kind, getMangler(), TM,
2018                                     EmitUniqueSection, &NextUniqueID);
2019 }
2020 
2021 bool TargetLoweringObjectFileWasm::shouldPutJumpTableInFunctionSection(
2022     bool UsesLabelDifference, const Function &F) const {
2023   // We can always create relative relocations, so use another section
2024   // that can be marked non-executable.
2025   return false;
2026 }
2027 
2028 const MCExpr *TargetLoweringObjectFileWasm::lowerRelativeReference(
2029     const GlobalValue *LHS, const GlobalValue *RHS,
2030     const TargetMachine &TM) const {
2031   // We may only use a PLT-relative relocation to refer to unnamed_addr
2032   // functions.
2033   if (!LHS->hasGlobalUnnamedAddr() || !LHS->getValueType()->isFunctionTy())
2034     return nullptr;
2035 
2036   // Basic sanity checks.
2037   if (LHS->getType()->getPointerAddressSpace() != 0 ||
2038       RHS->getType()->getPointerAddressSpace() != 0 || LHS->isThreadLocal() ||
2039       RHS->isThreadLocal())
2040     return nullptr;
2041 
2042   return MCBinaryExpr::createSub(
2043       MCSymbolRefExpr::create(TM.getSymbol(LHS), MCSymbolRefExpr::VK_None,
2044                               getContext()),
2045       MCSymbolRefExpr::create(TM.getSymbol(RHS), getContext()), getContext());
2046 }
2047 
2048 void TargetLoweringObjectFileWasm::InitializeWasm() {
2049   StaticCtorSection =
2050       getContext().getWasmSection(".init_array", SectionKind::getData());
2051 
2052   // We don't use PersonalityEncoding and LSDAEncoding because we don't emit
2053   // .cfi directives. We use TTypeEncoding to encode typeinfo global variables.
2054   TTypeEncoding = dwarf::DW_EH_PE_absptr;
2055 }
2056 
2057 MCSection *TargetLoweringObjectFileWasm::getStaticCtorSection(
2058     unsigned Priority, const MCSymbol *KeySym) const {
2059   return Priority == UINT16_MAX ?
2060          StaticCtorSection :
2061          getContext().getWasmSection(".init_array." + utostr(Priority),
2062                                      SectionKind::getData());
2063 }
2064 
2065 MCSection *TargetLoweringObjectFileWasm::getStaticDtorSection(
2066     unsigned Priority, const MCSymbol *KeySym) const {
2067   llvm_unreachable("@llvm.global_dtors should have been lowered already");
2068   return nullptr;
2069 }
2070 
2071 //===----------------------------------------------------------------------===//
2072 //                                  XCOFF
2073 //===----------------------------------------------------------------------===//
2074 bool TargetLoweringObjectFileXCOFF::ShouldEmitEHBlock(
2075     const MachineFunction *MF) {
2076   if (!MF->getLandingPads().empty())
2077     return true;
2078 
2079   const Function &F = MF->getFunction();
2080   if (!F.hasPersonalityFn() || !F.needsUnwindTableEntry())
2081     return false;
2082 
2083   const Function *Per =
2084       dyn_cast<Function>(F.getPersonalityFn()->stripPointerCasts());
2085   if (isNoOpWithoutInvoke(classifyEHPersonality(Per)))
2086     return false;
2087 
2088   return true;
2089 }
2090 
2091 MCSymbol *
2092 TargetLoweringObjectFileXCOFF::getEHInfoTableSymbol(const MachineFunction *MF) {
2093   return MF->getMMI().getContext().getOrCreateSymbol(
2094       "__ehinfo." + Twine(MF->getFunctionNumber()));
2095 }
2096 
2097 MCSymbol *
2098 TargetLoweringObjectFileXCOFF::getTargetSymbol(const GlobalValue *GV,
2099                                                const TargetMachine &TM) const {
2100   // We always use a qualname symbol for a GV that represents
2101   // a declaration, a function descriptor, or a common symbol.
2102   // If a GV represents a GlobalVariable and -fdata-sections is enabled, we
2103   // also return a qualname so that a label symbol could be avoided.
2104   // It is inherently ambiguous when the GO represents the address of a
2105   // function, as the GO could either represent a function descriptor or a
2106   // function entry point. We choose to always return a function descriptor
2107   // here.
2108   if (const GlobalObject *GO = dyn_cast<GlobalObject>(GV)) {
2109     if (GO->isDeclarationForLinker())
2110       return cast<MCSectionXCOFF>(getSectionForExternalReference(GO, TM))
2111           ->getQualNameSymbol();
2112 
2113     SectionKind GOKind = getKindForGlobal(GO, TM);
2114     if (GOKind.isText())
2115       return cast<MCSectionXCOFF>(
2116                  getSectionForFunctionDescriptor(cast<Function>(GO), TM))
2117           ->getQualNameSymbol();
2118     if ((TM.getDataSections() && !GO->hasSection()) || GOKind.isCommon() ||
2119         GOKind.isBSSLocal())
2120       return cast<MCSectionXCOFF>(SectionForGlobal(GO, GOKind, TM))
2121           ->getQualNameSymbol();
2122   }
2123 
2124   // For all other cases, fall back to getSymbol to return the unqualified name.
2125   return nullptr;
2126 }
2127 
2128 MCSection *TargetLoweringObjectFileXCOFF::getExplicitSectionGlobal(
2129     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2130   if (!GO->hasSection())
2131     report_fatal_error("#pragma clang section is not yet supported");
2132 
2133   StringRef SectionName = GO->getSection();
2134   XCOFF::StorageMappingClass MappingClass;
2135   if (Kind.isText())
2136     MappingClass = XCOFF::XMC_PR;
2137   else if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS())
2138     MappingClass = XCOFF::XMC_RW;
2139   else if (Kind.isReadOnly())
2140     MappingClass = XCOFF::XMC_RO;
2141   else
2142     report_fatal_error("XCOFF other section types not yet implemented.");
2143 
2144   return getContext().getXCOFFSection(SectionName, MappingClass, XCOFF::XTY_SD,
2145                                       Kind, /* MultiSymbolsAllowed*/ true);
2146 }
2147 
2148 MCSection *TargetLoweringObjectFileXCOFF::getSectionForExternalReference(
2149     const GlobalObject *GO, const TargetMachine &TM) const {
2150   assert(GO->isDeclarationForLinker() &&
2151          "Tried to get ER section for a defined global.");
2152 
2153   SmallString<128> Name;
2154   getNameWithPrefix(Name, GO, TM);
2155 
2156   // Externals go into a csect of type ER.
2157   return getContext().getXCOFFSection(
2158       Name, isa<Function>(GO) ? XCOFF::XMC_DS : XCOFF::XMC_UA, XCOFF::XTY_ER,
2159       SectionKind::getMetadata());
2160 }
2161 
2162 MCSection *TargetLoweringObjectFileXCOFF::SelectSectionForGlobal(
2163     const GlobalObject *GO, SectionKind Kind, const TargetMachine &TM) const {
2164   // Common symbols go into a csect with matching name which will get mapped
2165   // into the .bss section.
2166   if (Kind.isBSSLocal() || Kind.isCommon()) {
2167     SmallString<128> Name;
2168     getNameWithPrefix(Name, GO, TM);
2169     return getContext().getXCOFFSection(
2170         Name, Kind.isBSSLocal() ? XCOFF::XMC_BS : XCOFF::XMC_RW, XCOFF::XTY_CM,
2171         Kind);
2172   }
2173 
2174   if (Kind.isMergeableCString()) {
2175     Align Alignment = GO->getParent()->getDataLayout().getPreferredAlign(
2176         cast<GlobalVariable>(GO));
2177 
2178     unsigned EntrySize = getEntrySizeForKind(Kind);
2179     std::string SizeSpec = ".rodata.str" + utostr(EntrySize) + ".";
2180     SmallString<128> Name;
2181     Name = SizeSpec + utostr(Alignment.value());
2182 
2183     if (TM.getDataSections())
2184       getNameWithPrefix(Name, GO, TM);
2185 
2186     return getContext().getXCOFFSection(
2187         Name, XCOFF::XMC_RO, XCOFF::XTY_SD, Kind,
2188         /* MultiSymbolsAllowed*/ !TM.getDataSections());
2189   }
2190 
2191   if (Kind.isText()) {
2192     if (TM.getFunctionSections()) {
2193       return cast<MCSymbolXCOFF>(getFunctionEntryPointSymbol(GO, TM))
2194           ->getRepresentedCsect();
2195     }
2196     return TextSection;
2197   }
2198 
2199   // TODO: We may put Kind.isReadOnlyWithRel() under option control, because
2200   // user may want to have read-only data with relocations placed into a
2201   // read-only section by the compiler.
2202   // For BSS kind, zero initialized data must be emitted to the .data section
2203   // because external linkage control sections that get mapped to the .bss
2204   // section will be linked as tentative defintions, which is only appropriate
2205   // for SectionKind::Common.
2206   if (Kind.isData() || Kind.isReadOnlyWithRel() || Kind.isBSS()) {
2207     if (TM.getDataSections()) {
2208       SmallString<128> Name;
2209       getNameWithPrefix(Name, GO, TM);
2210       return getContext().getXCOFFSection(Name, XCOFF::XMC_RW, XCOFF::XTY_SD,
2211                                           SectionKind::getData());
2212     }
2213     return DataSection;
2214   }
2215 
2216   if (Kind.isReadOnly()) {
2217     if (TM.getDataSections()) {
2218       SmallString<128> Name;
2219       getNameWithPrefix(Name, GO, TM);
2220       return getContext().getXCOFFSection(Name, XCOFF::XMC_RO, XCOFF::XTY_SD,
2221                                           SectionKind::getReadOnly());
2222     }
2223     return ReadOnlySection;
2224   }
2225 
2226   report_fatal_error("XCOFF other section types not yet implemented.");
2227 }
2228 
2229 MCSection *TargetLoweringObjectFileXCOFF::getSectionForJumpTable(
2230     const Function &F, const TargetMachine &TM) const {
2231   assert (!F.getComdat() && "Comdat not supported on XCOFF.");
2232 
2233   if (!TM.getFunctionSections())
2234     return ReadOnlySection;
2235 
2236   // If the function can be removed, produce a unique section so that
2237   // the table doesn't prevent the removal.
2238   SmallString<128> NameStr(".rodata.jmp..");
2239   getNameWithPrefix(NameStr, &F, TM);
2240   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_RO, XCOFF::XTY_SD,
2241                                       SectionKind::getReadOnly());
2242 }
2243 
2244 bool TargetLoweringObjectFileXCOFF::shouldPutJumpTableInFunctionSection(
2245     bool UsesLabelDifference, const Function &F) const {
2246   return false;
2247 }
2248 
2249 /// Given a mergeable constant with the specified size and relocation
2250 /// information, return a section that it should be placed in.
2251 MCSection *TargetLoweringObjectFileXCOFF::getSectionForConstant(
2252     const DataLayout &DL, SectionKind Kind, const Constant *C,
2253     Align &Alignment) const {
2254   //TODO: Enable emiting constant pool to unique sections when we support it.
2255   return ReadOnlySection;
2256 }
2257 
2258 void TargetLoweringObjectFileXCOFF::Initialize(MCContext &Ctx,
2259                                                const TargetMachine &TgtM) {
2260   TargetLoweringObjectFile::Initialize(Ctx, TgtM);
2261   TTypeEncoding =
2262       dwarf::DW_EH_PE_indirect | dwarf::DW_EH_PE_datarel |
2263       (TgtM.getTargetTriple().isArch32Bit() ? dwarf::DW_EH_PE_sdata4
2264                                             : dwarf::DW_EH_PE_sdata8);
2265   PersonalityEncoding = 0;
2266   LSDAEncoding = 0;
2267   CallSiteEncoding = dwarf::DW_EH_PE_udata4;
2268 }
2269 
2270 MCSection *TargetLoweringObjectFileXCOFF::getStaticCtorSection(
2271 	unsigned Priority, const MCSymbol *KeySym) const {
2272   report_fatal_error("no static constructor section on AIX");
2273 }
2274 
2275 MCSection *TargetLoweringObjectFileXCOFF::getStaticDtorSection(
2276 	unsigned Priority, const MCSymbol *KeySym) const {
2277   report_fatal_error("no static destructor section on AIX");
2278 }
2279 
2280 const MCExpr *TargetLoweringObjectFileXCOFF::lowerRelativeReference(
2281     const GlobalValue *LHS, const GlobalValue *RHS,
2282     const TargetMachine &TM) const {
2283   report_fatal_error("XCOFF not yet implemented.");
2284 }
2285 
2286 XCOFF::StorageClass
2287 TargetLoweringObjectFileXCOFF::getStorageClassForGlobal(const GlobalValue *GV) {
2288   assert(!isa<GlobalIFunc>(GV) && "GlobalIFunc is not supported on AIX.");
2289 
2290   switch (GV->getLinkage()) {
2291   case GlobalValue::InternalLinkage:
2292   case GlobalValue::PrivateLinkage:
2293     return XCOFF::C_HIDEXT;
2294   case GlobalValue::ExternalLinkage:
2295   case GlobalValue::CommonLinkage:
2296   case GlobalValue::AvailableExternallyLinkage:
2297     return XCOFF::C_EXT;
2298   case GlobalValue::ExternalWeakLinkage:
2299   case GlobalValue::LinkOnceAnyLinkage:
2300   case GlobalValue::LinkOnceODRLinkage:
2301   case GlobalValue::WeakAnyLinkage:
2302   case GlobalValue::WeakODRLinkage:
2303     return XCOFF::C_WEAKEXT;
2304   case GlobalValue::AppendingLinkage:
2305     report_fatal_error(
2306         "There is no mapping that implements AppendingLinkage for XCOFF.");
2307   }
2308   llvm_unreachable("Unknown linkage type!");
2309 }
2310 
2311 MCSymbol *TargetLoweringObjectFileXCOFF::getFunctionEntryPointSymbol(
2312     const GlobalValue *Func, const TargetMachine &TM) const {
2313   assert(
2314       (isa<Function>(Func) ||
2315        (isa<GlobalAlias>(Func) &&
2316         isa_and_nonnull<Function>(cast<GlobalAlias>(Func)->getBaseObject()))) &&
2317       "Func must be a function or an alias which has a function as base "
2318       "object.");
2319 
2320   SmallString<128> NameStr;
2321   NameStr.push_back('.');
2322   getNameWithPrefix(NameStr, Func, TM);
2323 
2324   // When -function-sections is enabled and explicit section is not specified,
2325   // it's not necessary to emit function entry point label any more. We will use
2326   // function entry point csect instead. And for function delcarations, the
2327   // undefined symbols gets treated as csect with XTY_ER property.
2328   if (((TM.getFunctionSections() && !Func->hasSection()) ||
2329        Func->isDeclaration()) &&
2330       isa<Function>(Func)) {
2331     return getContext()
2332         .getXCOFFSection(NameStr, XCOFF::XMC_PR,
2333                          Func->isDeclaration() ? XCOFF::XTY_ER : XCOFF::XTY_SD,
2334                          SectionKind::getText())
2335         ->getQualNameSymbol();
2336   }
2337 
2338   return getContext().getOrCreateSymbol(NameStr);
2339 }
2340 
2341 MCSection *TargetLoweringObjectFileXCOFF::getSectionForFunctionDescriptor(
2342     const Function *F, const TargetMachine &TM) const {
2343   SmallString<128> NameStr;
2344   getNameWithPrefix(NameStr, F, TM);
2345   return getContext().getXCOFFSection(NameStr, XCOFF::XMC_DS, XCOFF::XTY_SD,
2346                                       SectionKind::getData());
2347 }
2348 
2349 MCSection *TargetLoweringObjectFileXCOFF::getSectionForTOCEntry(
2350     const MCSymbol *Sym, const TargetMachine &TM) const {
2351   // Use TE storage-mapping class when large code model is enabled so that
2352   // the chance of needing -bbigtoc is decreased.
2353   return getContext().getXCOFFSection(
2354       cast<MCSymbolXCOFF>(Sym)->getSymbolTableName(),
2355       TM.getCodeModel() == CodeModel::Large ? XCOFF::XMC_TE : XCOFF::XMC_TC,
2356       XCOFF::XTY_SD, SectionKind::getData());
2357 }
2358