xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision db67a66e8e02b565b135544e5c9b0bb0cf2f2437)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/CodeGenTypes/MachineValueType.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 /// GetFPLibCall - Helper to return the right libcall for the given floating
102 /// point type, or UNKNOWN_LIBCALL if there is none.
103 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
104                                    RTLIB::Libcall Call_F32,
105                                    RTLIB::Libcall Call_F64,
106                                    RTLIB::Libcall Call_F80,
107                                    RTLIB::Libcall Call_F128,
108                                    RTLIB::Libcall Call_PPCF128) {
109   return
110     VT == MVT::f32 ? Call_F32 :
111     VT == MVT::f64 ? Call_F64 :
112     VT == MVT::f80 ? Call_F80 :
113     VT == MVT::f128 ? Call_F128 :
114     VT == MVT::ppcf128 ? Call_PPCF128 :
115     RTLIB::UNKNOWN_LIBCALL;
116 }
117 
118 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
119 /// UNKNOWN_LIBCALL if there is none.
120 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
121   if (OpVT == MVT::f16) {
122     if (RetVT == MVT::f32)
123       return FPEXT_F16_F32;
124     if (RetVT == MVT::f64)
125       return FPEXT_F16_F64;
126     if (RetVT == MVT::f80)
127       return FPEXT_F16_F80;
128     if (RetVT == MVT::f128)
129       return FPEXT_F16_F128;
130   } else if (OpVT == MVT::f32) {
131     if (RetVT == MVT::f64)
132       return FPEXT_F32_F64;
133     if (RetVT == MVT::f128)
134       return FPEXT_F32_F128;
135     if (RetVT == MVT::ppcf128)
136       return FPEXT_F32_PPCF128;
137   } else if (OpVT == MVT::f64) {
138     if (RetVT == MVT::f128)
139       return FPEXT_F64_F128;
140     else if (RetVT == MVT::ppcf128)
141       return FPEXT_F64_PPCF128;
142   } else if (OpVT == MVT::f80) {
143     if (RetVT == MVT::f128)
144       return FPEXT_F80_F128;
145   } else if (OpVT == MVT::bf16) {
146     if (RetVT == MVT::f32)
147       return FPEXT_BF16_F32;
148   }
149 
150   return UNKNOWN_LIBCALL;
151 }
152 
153 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
154 /// UNKNOWN_LIBCALL if there is none.
155 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
156   if (RetVT == MVT::f16) {
157     if (OpVT == MVT::f32)
158       return FPROUND_F32_F16;
159     if (OpVT == MVT::f64)
160       return FPROUND_F64_F16;
161     if (OpVT == MVT::f80)
162       return FPROUND_F80_F16;
163     if (OpVT == MVT::f128)
164       return FPROUND_F128_F16;
165     if (OpVT == MVT::ppcf128)
166       return FPROUND_PPCF128_F16;
167   } else if (RetVT == MVT::bf16) {
168     if (OpVT == MVT::f32)
169       return FPROUND_F32_BF16;
170     if (OpVT == MVT::f64)
171       return FPROUND_F64_BF16;
172   } else if (RetVT == MVT::f32) {
173     if (OpVT == MVT::f64)
174       return FPROUND_F64_F32;
175     if (OpVT == MVT::f80)
176       return FPROUND_F80_F32;
177     if (OpVT == MVT::f128)
178       return FPROUND_F128_F32;
179     if (OpVT == MVT::ppcf128)
180       return FPROUND_PPCF128_F32;
181   } else if (RetVT == MVT::f64) {
182     if (OpVT == MVT::f80)
183       return FPROUND_F80_F64;
184     if (OpVT == MVT::f128)
185       return FPROUND_F128_F64;
186     if (OpVT == MVT::ppcf128)
187       return FPROUND_PPCF128_F64;
188   } else if (RetVT == MVT::f80) {
189     if (OpVT == MVT::f128)
190       return FPROUND_F128_F80;
191   }
192 
193   return UNKNOWN_LIBCALL;
194 }
195 
196 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
197 /// UNKNOWN_LIBCALL if there is none.
198 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
199   if (OpVT == MVT::f16) {
200     if (RetVT == MVT::i32)
201       return FPTOSINT_F16_I32;
202     if (RetVT == MVT::i64)
203       return FPTOSINT_F16_I64;
204     if (RetVT == MVT::i128)
205       return FPTOSINT_F16_I128;
206   } else if (OpVT == MVT::f32) {
207     if (RetVT == MVT::i32)
208       return FPTOSINT_F32_I32;
209     if (RetVT == MVT::i64)
210       return FPTOSINT_F32_I64;
211     if (RetVT == MVT::i128)
212       return FPTOSINT_F32_I128;
213   } else if (OpVT == MVT::f64) {
214     if (RetVT == MVT::i32)
215       return FPTOSINT_F64_I32;
216     if (RetVT == MVT::i64)
217       return FPTOSINT_F64_I64;
218     if (RetVT == MVT::i128)
219       return FPTOSINT_F64_I128;
220   } else if (OpVT == MVT::f80) {
221     if (RetVT == MVT::i32)
222       return FPTOSINT_F80_I32;
223     if (RetVT == MVT::i64)
224       return FPTOSINT_F80_I64;
225     if (RetVT == MVT::i128)
226       return FPTOSINT_F80_I128;
227   } else if (OpVT == MVT::f128) {
228     if (RetVT == MVT::i32)
229       return FPTOSINT_F128_I32;
230     if (RetVT == MVT::i64)
231       return FPTOSINT_F128_I64;
232     if (RetVT == MVT::i128)
233       return FPTOSINT_F128_I128;
234   } else if (OpVT == MVT::ppcf128) {
235     if (RetVT == MVT::i32)
236       return FPTOSINT_PPCF128_I32;
237     if (RetVT == MVT::i64)
238       return FPTOSINT_PPCF128_I64;
239     if (RetVT == MVT::i128)
240       return FPTOSINT_PPCF128_I128;
241   }
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
248   if (OpVT == MVT::f16) {
249     if (RetVT == MVT::i32)
250       return FPTOUINT_F16_I32;
251     if (RetVT == MVT::i64)
252       return FPTOUINT_F16_I64;
253     if (RetVT == MVT::i128)
254       return FPTOUINT_F16_I128;
255   } else if (OpVT == MVT::f32) {
256     if (RetVT == MVT::i32)
257       return FPTOUINT_F32_I32;
258     if (RetVT == MVT::i64)
259       return FPTOUINT_F32_I64;
260     if (RetVT == MVT::i128)
261       return FPTOUINT_F32_I128;
262   } else if (OpVT == MVT::f64) {
263     if (RetVT == MVT::i32)
264       return FPTOUINT_F64_I32;
265     if (RetVT == MVT::i64)
266       return FPTOUINT_F64_I64;
267     if (RetVT == MVT::i128)
268       return FPTOUINT_F64_I128;
269   } else if (OpVT == MVT::f80) {
270     if (RetVT == MVT::i32)
271       return FPTOUINT_F80_I32;
272     if (RetVT == MVT::i64)
273       return FPTOUINT_F80_I64;
274     if (RetVT == MVT::i128)
275       return FPTOUINT_F80_I128;
276   } else if (OpVT == MVT::f128) {
277     if (RetVT == MVT::i32)
278       return FPTOUINT_F128_I32;
279     if (RetVT == MVT::i64)
280       return FPTOUINT_F128_I64;
281     if (RetVT == MVT::i128)
282       return FPTOUINT_F128_I128;
283   } else if (OpVT == MVT::ppcf128) {
284     if (RetVT == MVT::i32)
285       return FPTOUINT_PPCF128_I32;
286     if (RetVT == MVT::i64)
287       return FPTOUINT_PPCF128_I64;
288     if (RetVT == MVT::i128)
289       return FPTOUINT_PPCF128_I128;
290   }
291   return UNKNOWN_LIBCALL;
292 }
293 
294 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
295 /// UNKNOWN_LIBCALL if there is none.
296 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
297   if (OpVT == MVT::i32) {
298     if (RetVT == MVT::f16)
299       return SINTTOFP_I32_F16;
300     if (RetVT == MVT::f32)
301       return SINTTOFP_I32_F32;
302     if (RetVT == MVT::f64)
303       return SINTTOFP_I32_F64;
304     if (RetVT == MVT::f80)
305       return SINTTOFP_I32_F80;
306     if (RetVT == MVT::f128)
307       return SINTTOFP_I32_F128;
308     if (RetVT == MVT::ppcf128)
309       return SINTTOFP_I32_PPCF128;
310   } else if (OpVT == MVT::i64) {
311     if (RetVT == MVT::f16)
312       return SINTTOFP_I64_F16;
313     if (RetVT == MVT::f32)
314       return SINTTOFP_I64_F32;
315     if (RetVT == MVT::f64)
316       return SINTTOFP_I64_F64;
317     if (RetVT == MVT::f80)
318       return SINTTOFP_I64_F80;
319     if (RetVT == MVT::f128)
320       return SINTTOFP_I64_F128;
321     if (RetVT == MVT::ppcf128)
322       return SINTTOFP_I64_PPCF128;
323   } else if (OpVT == MVT::i128) {
324     if (RetVT == MVT::f16)
325       return SINTTOFP_I128_F16;
326     if (RetVT == MVT::f32)
327       return SINTTOFP_I128_F32;
328     if (RetVT == MVT::f64)
329       return SINTTOFP_I128_F64;
330     if (RetVT == MVT::f80)
331       return SINTTOFP_I128_F80;
332     if (RetVT == MVT::f128)
333       return SINTTOFP_I128_F128;
334     if (RetVT == MVT::ppcf128)
335       return SINTTOFP_I128_PPCF128;
336   }
337   return UNKNOWN_LIBCALL;
338 }
339 
340 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
341 /// UNKNOWN_LIBCALL if there is none.
342 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
343   if (OpVT == MVT::i32) {
344     if (RetVT == MVT::f16)
345       return UINTTOFP_I32_F16;
346     if (RetVT == MVT::f32)
347       return UINTTOFP_I32_F32;
348     if (RetVT == MVT::f64)
349       return UINTTOFP_I32_F64;
350     if (RetVT == MVT::f80)
351       return UINTTOFP_I32_F80;
352     if (RetVT == MVT::f128)
353       return UINTTOFP_I32_F128;
354     if (RetVT == MVT::ppcf128)
355       return UINTTOFP_I32_PPCF128;
356   } else if (OpVT == MVT::i64) {
357     if (RetVT == MVT::f16)
358       return UINTTOFP_I64_F16;
359     if (RetVT == MVT::f32)
360       return UINTTOFP_I64_F32;
361     if (RetVT == MVT::f64)
362       return UINTTOFP_I64_F64;
363     if (RetVT == MVT::f80)
364       return UINTTOFP_I64_F80;
365     if (RetVT == MVT::f128)
366       return UINTTOFP_I64_F128;
367     if (RetVT == MVT::ppcf128)
368       return UINTTOFP_I64_PPCF128;
369   } else if (OpVT == MVT::i128) {
370     if (RetVT == MVT::f16)
371       return UINTTOFP_I128_F16;
372     if (RetVT == MVT::f32)
373       return UINTTOFP_I128_F32;
374     if (RetVT == MVT::f64)
375       return UINTTOFP_I128_F64;
376     if (RetVT == MVT::f80)
377       return UINTTOFP_I128_F80;
378     if (RetVT == MVT::f128)
379       return UINTTOFP_I128_F128;
380     if (RetVT == MVT::ppcf128)
381       return UINTTOFP_I128_PPCF128;
382   }
383   return UNKNOWN_LIBCALL;
384 }
385 
386 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
387   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
388                       POWI_PPCF128);
389 }
390 
391 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
392   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
393                       LDEXP_PPCF128);
394 }
395 
396 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
397   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
398                       FREXP_PPCF128);
399 }
400 
401 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
402                                              AtomicOrdering Order,
403                                              uint64_t MemSize) {
404   unsigned ModeN, ModelN;
405   switch (MemSize) {
406   case 1:
407     ModeN = 0;
408     break;
409   case 2:
410     ModeN = 1;
411     break;
412   case 4:
413     ModeN = 2;
414     break;
415   case 8:
416     ModeN = 3;
417     break;
418   case 16:
419     ModeN = 4;
420     break;
421   default:
422     return RTLIB::UNKNOWN_LIBCALL;
423   }
424 
425   switch (Order) {
426   case AtomicOrdering::Monotonic:
427     ModelN = 0;
428     break;
429   case AtomicOrdering::Acquire:
430     ModelN = 1;
431     break;
432   case AtomicOrdering::Release:
433     ModelN = 2;
434     break;
435   case AtomicOrdering::AcquireRelease:
436   case AtomicOrdering::SequentiallyConsistent:
437     ModelN = 3;
438     break;
439   default:
440     return UNKNOWN_LIBCALL;
441   }
442 
443   return LC[ModeN][ModelN];
444 }
445 
446 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
447                                         MVT VT) {
448   if (!VT.isScalarInteger())
449     return UNKNOWN_LIBCALL;
450   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
451 
452 #define LCALLS(A, B)                                                           \
453   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
454 #define LCALL5(A)                                                              \
455   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
456   switch (Opc) {
457   case ISD::ATOMIC_CMP_SWAP: {
458     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
459     return getOutlineAtomicHelper(LC, Order, MemSize);
460   }
461   case ISD::ATOMIC_SWAP: {
462     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
463     return getOutlineAtomicHelper(LC, Order, MemSize);
464   }
465   case ISD::ATOMIC_LOAD_ADD: {
466     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
467     return getOutlineAtomicHelper(LC, Order, MemSize);
468   }
469   case ISD::ATOMIC_LOAD_OR: {
470     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
471     return getOutlineAtomicHelper(LC, Order, MemSize);
472   }
473   case ISD::ATOMIC_LOAD_CLR: {
474     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
475     return getOutlineAtomicHelper(LC, Order, MemSize);
476   }
477   case ISD::ATOMIC_LOAD_XOR: {
478     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
479     return getOutlineAtomicHelper(LC, Order, MemSize);
480   }
481   default:
482     return UNKNOWN_LIBCALL;
483   }
484 #undef LCALLS
485 #undef LCALL5
486 }
487 
488 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
489 #define OP_TO_LIBCALL(Name, Enum)                                              \
490   case Name:                                                                   \
491     switch (VT.SimpleTy) {                                                     \
492     default:                                                                   \
493       return UNKNOWN_LIBCALL;                                                  \
494     case MVT::i8:                                                              \
495       return Enum##_1;                                                         \
496     case MVT::i16:                                                             \
497       return Enum##_2;                                                         \
498     case MVT::i32:                                                             \
499       return Enum##_4;                                                         \
500     case MVT::i64:                                                             \
501       return Enum##_8;                                                         \
502     case MVT::i128:                                                            \
503       return Enum##_16;                                                        \
504     }
505 
506   switch (Opc) {
507     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
508     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
509     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
510     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
511     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
512     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
513     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
514     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
515     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
516     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
517     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
518     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
519   }
520 
521 #undef OP_TO_LIBCALL
522 
523   return UNKNOWN_LIBCALL;
524 }
525 
526 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
527   switch (ElementSize) {
528   case 1:
529     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
530   case 2:
531     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
532   case 4:
533     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
534   case 8:
535     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
536   case 16:
537     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
538   default:
539     return UNKNOWN_LIBCALL;
540   }
541 }
542 
543 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
544   switch (ElementSize) {
545   case 1:
546     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
547   case 2:
548     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
549   case 4:
550     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
551   case 8:
552     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
553   case 16:
554     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
555   default:
556     return UNKNOWN_LIBCALL;
557   }
558 }
559 
560 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
561   switch (ElementSize) {
562   case 1:
563     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
564   case 2:
565     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
566   case 4:
567     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
568   case 8:
569     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
570   case 16:
571     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
572   default:
573     return UNKNOWN_LIBCALL;
574   }
575 }
576 
577 void RTLIB::initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs) {
578   std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL,
579             ISD::SETCC_INVALID);
580   CmpLibcallCCs[RTLIB::OEQ_F32] = ISD::SETEQ;
581   CmpLibcallCCs[RTLIB::OEQ_F64] = ISD::SETEQ;
582   CmpLibcallCCs[RTLIB::OEQ_F128] = ISD::SETEQ;
583   CmpLibcallCCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
584   CmpLibcallCCs[RTLIB::UNE_F32] = ISD::SETNE;
585   CmpLibcallCCs[RTLIB::UNE_F64] = ISD::SETNE;
586   CmpLibcallCCs[RTLIB::UNE_F128] = ISD::SETNE;
587   CmpLibcallCCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
588   CmpLibcallCCs[RTLIB::OGE_F32] = ISD::SETGE;
589   CmpLibcallCCs[RTLIB::OGE_F64] = ISD::SETGE;
590   CmpLibcallCCs[RTLIB::OGE_F128] = ISD::SETGE;
591   CmpLibcallCCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
592   CmpLibcallCCs[RTLIB::OLT_F32] = ISD::SETLT;
593   CmpLibcallCCs[RTLIB::OLT_F64] = ISD::SETLT;
594   CmpLibcallCCs[RTLIB::OLT_F128] = ISD::SETLT;
595   CmpLibcallCCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
596   CmpLibcallCCs[RTLIB::OLE_F32] = ISD::SETLE;
597   CmpLibcallCCs[RTLIB::OLE_F64] = ISD::SETLE;
598   CmpLibcallCCs[RTLIB::OLE_F128] = ISD::SETLE;
599   CmpLibcallCCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
600   CmpLibcallCCs[RTLIB::OGT_F32] = ISD::SETGT;
601   CmpLibcallCCs[RTLIB::OGT_F64] = ISD::SETGT;
602   CmpLibcallCCs[RTLIB::OGT_F128] = ISD::SETGT;
603   CmpLibcallCCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
604   CmpLibcallCCs[RTLIB::UO_F32] = ISD::SETNE;
605   CmpLibcallCCs[RTLIB::UO_F64] = ISD::SETNE;
606   CmpLibcallCCs[RTLIB::UO_F128] = ISD::SETNE;
607   CmpLibcallCCs[RTLIB::UO_PPCF128] = ISD::SETNE;
608 }
609 
610 /// NOTE: The TargetMachine owns TLOF.
611 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm)
612     : TM(tm), Libcalls(TM.getTargetTriple()) {
613   initActions();
614 
615   // Perform these initializations only once.
616   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
617       MaxLoadsPerMemcmp = 8;
618   MaxGluedStoresPerMemcpy = 0;
619   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
620       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
621   HasMultipleConditionRegisters = false;
622   HasExtractBitsInsn = false;
623   JumpIsExpensive = JumpIsExpensiveOverride;
624   PredictableSelectIsExpensive = false;
625   EnableExtLdPromotion = false;
626   StackPointerRegisterToSaveRestore = 0;
627   BooleanContents = UndefinedBooleanContent;
628   BooleanFloatContents = UndefinedBooleanContent;
629   BooleanVectorContents = UndefinedBooleanContent;
630   SchedPreferenceInfo = Sched::ILP;
631   GatherAllAliasesMaxDepth = 18;
632   IsStrictFPEnabled = DisableStrictNodeMutation;
633   MaxBytesForAlignment = 0;
634   MaxAtomicSizeInBitsSupported = 0;
635 
636   // Assume that even with libcalls, no target supports wider than 128 bit
637   // division.
638   MaxDivRemBitWidthSupported = 128;
639 
640   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
641 
642   MinCmpXchgSizeInBits = 0;
643   SupportsUnalignedAtomics = false;
644 
645   RTLIB::initCmpLibcallCCs(CmpLibcallCCs);
646 }
647 
648 void TargetLoweringBase::initActions() {
649   // All operations default to being supported.
650   memset(OpActions, 0, sizeof(OpActions));
651   memset(LoadExtActions, 0, sizeof(LoadExtActions));
652   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
653   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
654   memset(CondCodeActions, 0, sizeof(CondCodeActions));
655   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
656   std::fill(std::begin(TargetDAGCombineArray),
657             std::end(TargetDAGCombineArray), 0);
658 
659   // Let extending atomic loads be unsupported by default.
660   for (MVT ValVT : MVT::all_valuetypes())
661     for (MVT MemVT : MVT::all_valuetypes())
662       setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT,
663                              Expand);
664 
665   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
666   // remove this and targets should individually set these types if not legal.
667   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
668                                    force_iteration_on_noniterable_enum)) {
669     for (MVT VT : {MVT::i2, MVT::i4})
670       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
671   }
672   for (MVT AVT : MVT::all_valuetypes()) {
673     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
674       setTruncStoreAction(AVT, VT, Expand);
675       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
676       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
677     }
678   }
679   for (unsigned IM = (unsigned)ISD::PRE_INC;
680        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
681     for (MVT VT : {MVT::i2, MVT::i4}) {
682       setIndexedLoadAction(IM, VT, Expand);
683       setIndexedStoreAction(IM, VT, Expand);
684       setIndexedMaskedLoadAction(IM, VT, Expand);
685       setIndexedMaskedStoreAction(IM, VT, Expand);
686     }
687   }
688 
689   for (MVT VT : MVT::fp_valuetypes()) {
690     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
691     if (IntVT.isValid()) {
692       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
693       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
694     }
695   }
696 
697   // Set default actions for various operations.
698   for (MVT VT : MVT::all_valuetypes()) {
699     // Default all indexed load / store to expand.
700     for (unsigned IM = (unsigned)ISD::PRE_INC;
701          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
702       setIndexedLoadAction(IM, VT, Expand);
703       setIndexedStoreAction(IM, VT, Expand);
704       setIndexedMaskedLoadAction(IM, VT, Expand);
705       setIndexedMaskedStoreAction(IM, VT, Expand);
706     }
707 
708     // Most backends expect to see the node which just returns the value loaded.
709     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
710 
711     // These operations default to expand.
712     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
713                         ISD::FMINNUM,        ISD::FMAXNUM,
714                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
715                         ISD::FMINIMUM,       ISD::FMAXIMUM,
716                         ISD::FMINIMUMNUM,    ISD::FMAXIMUMNUM,
717                         ISD::FMAD,           ISD::SMIN,
718                         ISD::SMAX,           ISD::UMIN,
719                         ISD::UMAX,           ISD::ABS,
720                         ISD::FSHL,           ISD::FSHR,
721                         ISD::SADDSAT,        ISD::UADDSAT,
722                         ISD::SSUBSAT,        ISD::USUBSAT,
723                         ISD::SSHLSAT,        ISD::USHLSAT,
724                         ISD::SMULFIX,        ISD::SMULFIXSAT,
725                         ISD::UMULFIX,        ISD::UMULFIXSAT,
726                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
727                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
728                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
729                         ISD::IS_FPCLASS},
730                        VT, Expand);
731 
732     // Overflow operations default to expand
733     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
734                         ISD::SMULO, ISD::UMULO},
735                        VT, Expand);
736 
737     // Carry-using overflow operations default to expand.
738     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
739                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
740                        VT, Expand);
741 
742     // ADDC/ADDE/SUBC/SUBE default to expand.
743     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
744                        Expand);
745 
746     // [US]CMP default to expand
747     setOperationAction({ISD::UCMP, ISD::SCMP}, VT, Expand);
748 
749     // Halving adds
750     setOperationAction(
751         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
752         Expand);
753 
754     // Absolute difference
755     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
756 
757     // Saturated trunc
758     setOperationAction(ISD::TRUNCATE_SSAT_S, VT, Expand);
759     setOperationAction(ISD::TRUNCATE_SSAT_U, VT, Expand);
760     setOperationAction(ISD::TRUNCATE_USAT_U, VT, Expand);
761 
762     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
763     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
764                        Expand);
765 
766     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
767 
768     // These library functions default to expand.
769     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
770                        Expand);
771 
772     // These operations default to expand for vector types.
773     if (VT.isVector())
774       setOperationAction(
775           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
776            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
777            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT, ISD::LROUND,
778            ISD::LLROUND, ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN,
779            ISD::FCOSH, ISD::FSINH, ISD::FTANH},
780           VT, Expand);
781 
782       // Constrained floating-point operations default to expand.
783 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
784     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
785 #include "llvm/IR/ConstrainedOps.def"
786 
787     // For most targets @llvm.get.dynamic.area.offset just returns 0.
788     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
789 
790     // Vector reduction default to expand.
791     setOperationAction(
792         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
793          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
794          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
795          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
796          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
797          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
798         VT, Expand);
799 
800     // Named vector shuffles default to expand.
801     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
802 
803     // Only some target support this vector operation. Most need to expand it.
804     setOperationAction(ISD::VECTOR_COMPRESS, VT, Expand);
805 
806     // VP operations default to expand.
807 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
808     setOperationAction(ISD::SDOPC, VT, Expand);
809 #include "llvm/IR/VPIntrinsics.def"
810 
811     // FP environment operations default to expand.
812     setOperationAction(ISD::GET_FPENV, VT, Expand);
813     setOperationAction(ISD::SET_FPENV, VT, Expand);
814     setOperationAction(ISD::RESET_FPENV, VT, Expand);
815   }
816 
817   // Most targets ignore the @llvm.prefetch intrinsic.
818   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
819 
820   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
821   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
822 
823   // Most targets also ignore the @llvm.readsteadycounter intrinsic.
824   setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
825 
826   // ConstantFP nodes default to expand.  Targets can either change this to
827   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
828   // to optimize expansions for certain constants.
829   setOperationAction(ISD::ConstantFP,
830                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
831                      Expand);
832 
833   // These library functions default to expand.
834   setOperationAction({ISD::FCBRT,      ISD::FLOG,  ISD::FLOG2,  ISD::FLOG10,
835                       ISD::FEXP,       ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR,
836                       ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT,  ISD::FTRUNC,
837                       ISD::FROUNDEVEN, ISD::FTAN,  ISD::FACOS,  ISD::FASIN,
838                       ISD::FATAN,      ISD::FCOSH, ISD::FSINH,  ISD::FTANH},
839                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
840 
841   // FIXME: Query RuntimeLibCalls to make the decision.
842   setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
843                      {MVT::f32, MVT::f64, MVT::f128}, LibCall);
844 
845   setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
846                       ISD::FSINH, ISD::FTANH},
847                      MVT::f16, Promote);
848   // Default ISD::TRAP to expand (which turns it into abort).
849   setOperationAction(ISD::TRAP, MVT::Other, Expand);
850 
851   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
852   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
853   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
854 
855   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
856 
857   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
858   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
859 
860   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
861     setOperationAction(ISD::GET_FPMODE, VT, Expand);
862     setOperationAction(ISD::SET_FPMODE, VT, Expand);
863   }
864   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
865 
866   // This one by default will call __clear_cache unless the target
867   // wants something different.
868   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, LibCall);
869 }
870 
871 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
872                                                EVT) const {
873   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
874 }
875 
876 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
877                                          const DataLayout &DL) const {
878   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
879   if (LHSTy.isVector())
880     return LHSTy;
881   MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
882   // If any possible shift value won't fit in the prefered type, just use
883   // something safe. Assume it will be legalized when the shift is expanded.
884   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
885     ShiftVT = MVT::i32;
886   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
887          "ShiftVT is still too small!");
888   return ShiftVT;
889 }
890 
891 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
892   assert(isTypeLegal(VT));
893   switch (Op) {
894   default:
895     return false;
896   case ISD::SDIV:
897   case ISD::UDIV:
898   case ISD::SREM:
899   case ISD::UREM:
900     return true;
901   }
902 }
903 
904 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
905                                              unsigned DestAS) const {
906   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
907 }
908 
909 unsigned TargetLoweringBase::getBitWidthForCttzElements(
910     Type *RetTy, ElementCount EC, bool ZeroIsPoison,
911     const ConstantRange *VScaleRange) const {
912   // Find the smallest "sensible" element type to use for the expansion.
913   ConstantRange CR(APInt(64, EC.getKnownMinValue()));
914   if (EC.isScalable())
915     CR = CR.umul_sat(*VScaleRange);
916 
917   if (ZeroIsPoison)
918     CR = CR.subtract(APInt(64, 1));
919 
920   unsigned EltWidth = RetTy->getScalarSizeInBits();
921   EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
922   EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
923 
924   return EltWidth;
925 }
926 
927 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
928   // If the command-line option was specified, ignore this request.
929   if (!JumpIsExpensiveOverride.getNumOccurrences())
930     JumpIsExpensive = isExpensive;
931 }
932 
933 TargetLoweringBase::LegalizeKind
934 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
935   // If this is a simple type, use the ComputeRegisterProp mechanism.
936   if (VT.isSimple()) {
937     MVT SVT = VT.getSimpleVT();
938     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
939     MVT NVT = TransformToType[SVT.SimpleTy];
940     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
941 
942     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
943             LA == TypeSoftPromoteHalf ||
944             (NVT.isVector() ||
945              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
946            "Promote may not follow Expand or Promote");
947 
948     if (LA == TypeSplitVector)
949       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
950     if (LA == TypeScalarizeVector)
951       return LegalizeKind(LA, SVT.getVectorElementType());
952     return LegalizeKind(LA, NVT);
953   }
954 
955   // Handle Extended Scalar Types.
956   if (!VT.isVector()) {
957     assert(VT.isInteger() && "Float types must be simple");
958     unsigned BitSize = VT.getSizeInBits();
959     // First promote to a power-of-two size, then expand if necessary.
960     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
961       EVT NVT = VT.getRoundIntegerType(Context);
962       assert(NVT != VT && "Unable to round integer VT");
963       LegalizeKind NextStep = getTypeConversion(Context, NVT);
964       // Avoid multi-step promotion.
965       if (NextStep.first == TypePromoteInteger)
966         return NextStep;
967       // Return rounded integer type.
968       return LegalizeKind(TypePromoteInteger, NVT);
969     }
970 
971     return LegalizeKind(TypeExpandInteger,
972                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
973   }
974 
975   // Handle vector types.
976   ElementCount NumElts = VT.getVectorElementCount();
977   EVT EltVT = VT.getVectorElementType();
978 
979   // Vectors with only one element are always scalarized.
980   if (NumElts.isScalar())
981     return LegalizeKind(TypeScalarizeVector, EltVT);
982 
983   // Try to widen vector elements until the element type is a power of two and
984   // promote it to a legal type later on, for example:
985   // <3 x i8> -> <4 x i8> -> <4 x i32>
986   if (EltVT.isInteger()) {
987     // Vectors with a number of elements that is not a power of two are always
988     // widened, for example <3 x i8> -> <4 x i8>.
989     if (!VT.isPow2VectorType()) {
990       NumElts = NumElts.coefficientNextPowerOf2();
991       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
992       return LegalizeKind(TypeWidenVector, NVT);
993     }
994 
995     // Examine the element type.
996     LegalizeKind LK = getTypeConversion(Context, EltVT);
997 
998     // If type is to be expanded, split the vector.
999     //  <4 x i140> -> <2 x i140>
1000     if (LK.first == TypeExpandInteger) {
1001       if (VT.getVectorElementCount().isScalable())
1002         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1003       return LegalizeKind(TypeSplitVector,
1004                           VT.getHalfNumVectorElementsVT(Context));
1005     }
1006 
1007     // Promote the integer element types until a legal vector type is found
1008     // or until the element integer type is too big. If a legal type was not
1009     // found, fallback to the usual mechanism of widening/splitting the
1010     // vector.
1011     EVT OldEltVT = EltVT;
1012     while (true) {
1013       // Increase the bitwidth of the element to the next pow-of-two
1014       // (which is greater than 8 bits).
1015       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1016                   .getRoundIntegerType(Context);
1017 
1018       // Stop trying when getting a non-simple element type.
1019       // Note that vector elements may be greater than legal vector element
1020       // types. Example: X86 XMM registers hold 64bit element on 32bit
1021       // systems.
1022       if (!EltVT.isSimple())
1023         break;
1024 
1025       // Build a new vector type and check if it is legal.
1026       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1027       // Found a legal promoted vector type.
1028       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1029         return LegalizeKind(TypePromoteInteger,
1030                             EVT::getVectorVT(Context, EltVT, NumElts));
1031     }
1032 
1033     // Reset the type to the unexpanded type if we did not find a legal vector
1034     // type with a promoted vector element type.
1035     EltVT = OldEltVT;
1036   }
1037 
1038   // Try to widen the vector until a legal type is found.
1039   // If there is no wider legal type, split the vector.
1040   while (true) {
1041     // Round up to the next power of 2.
1042     NumElts = NumElts.coefficientNextPowerOf2();
1043 
1044     // If there is no simple vector type with this many elements then there
1045     // cannot be a larger legal vector type.  Note that this assumes that
1046     // there are no skipped intermediate vector types in the simple types.
1047     if (!EltVT.isSimple())
1048       break;
1049     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1050     if (LargerVector == MVT())
1051       break;
1052 
1053     // If this type is legal then widen the vector.
1054     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1055       return LegalizeKind(TypeWidenVector, LargerVector);
1056   }
1057 
1058   // Widen odd vectors to next power of two.
1059   if (!VT.isPow2VectorType()) {
1060     EVT NVT = VT.getPow2VectorType(Context);
1061     return LegalizeKind(TypeWidenVector, NVT);
1062   }
1063 
1064   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1065     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1066 
1067   // Vectors with illegal element types are expanded.
1068   EVT NVT = EVT::getVectorVT(Context, EltVT,
1069                              VT.getVectorElementCount().divideCoefficientBy(2));
1070   return LegalizeKind(TypeSplitVector, NVT);
1071 }
1072 
1073 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1074                                           unsigned &NumIntermediates,
1075                                           MVT &RegisterVT,
1076                                           TargetLoweringBase *TLI) {
1077   // Figure out the right, legal destination reg to copy into.
1078   ElementCount EC = VT.getVectorElementCount();
1079   MVT EltTy = VT.getVectorElementType();
1080 
1081   unsigned NumVectorRegs = 1;
1082 
1083   // Scalable vectors cannot be scalarized, so splitting or widening is
1084   // required.
1085   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1086     llvm_unreachable(
1087         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1088 
1089   // FIXME: We don't support non-power-of-2-sized vectors for now.
1090   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1091   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1092     // Split EC to unit size (scalable property is preserved).
1093     NumVectorRegs = EC.getKnownMinValue();
1094     EC = ElementCount::getFixed(1);
1095   }
1096 
1097   // Divide the input until we get to a supported size. This will
1098   // always end up with an EC that represent a scalar or a scalable
1099   // scalar.
1100   while (EC.getKnownMinValue() > 1 &&
1101          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1102     EC = EC.divideCoefficientBy(2);
1103     NumVectorRegs <<= 1;
1104   }
1105 
1106   NumIntermediates = NumVectorRegs;
1107 
1108   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1109   if (!TLI->isTypeLegal(NewVT))
1110     NewVT = EltTy;
1111   IntermediateVT = NewVT;
1112 
1113   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1114 
1115   // Convert sizes such as i33 to i64.
1116   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1117 
1118   MVT DestVT = TLI->getRegisterType(NewVT);
1119   RegisterVT = DestVT;
1120   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1121     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1122 
1123   // Otherwise, promotion or legal types use the same number of registers as
1124   // the vector decimated to the appropriate level.
1125   return NumVectorRegs;
1126 }
1127 
1128 /// isLegalRC - Return true if the value types that can be represented by the
1129 /// specified register class are all legal.
1130 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1131                                    const TargetRegisterClass &RC) const {
1132   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1133     if (isTypeLegal(*I))
1134       return true;
1135   return false;
1136 }
1137 
1138 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1139 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1140 MachineBasicBlock *
1141 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1142                                    MachineBasicBlock *MBB) const {
1143   MachineInstr *MI = &InitialMI;
1144   MachineFunction &MF = *MI->getMF();
1145   MachineFrameInfo &MFI = MF.getFrameInfo();
1146 
1147   // We're handling multiple types of operands here:
1148   // PATCHPOINT MetaArgs - live-in, read only, direct
1149   // STATEPOINT Deopt Spill - live-through, read only, indirect
1150   // STATEPOINT Deopt Alloca - live-through, read only, direct
1151   // (We're currently conservative and mark the deopt slots read/write in
1152   // practice.)
1153   // STATEPOINT GC Spill - live-through, read/write, indirect
1154   // STATEPOINT GC Alloca - live-through, read/write, direct
1155   // The live-in vs live-through is handled already (the live through ones are
1156   // all stack slots), but we need to handle the different type of stackmap
1157   // operands and memory effects here.
1158 
1159   if (llvm::none_of(MI->operands(),
1160                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1161     return MBB;
1162 
1163   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1164 
1165   // Inherit previous memory operands.
1166   MIB.cloneMemRefs(*MI);
1167 
1168   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1169     MachineOperand &MO = MI->getOperand(i);
1170     if (!MO.isFI()) {
1171       // Index of Def operand this Use it tied to.
1172       // Since Defs are coming before Uses, if Use is tied, then
1173       // index of Def must be smaller that index of that Use.
1174       // Also, Defs preserve their position in new MI.
1175       unsigned TiedTo = i;
1176       if (MO.isReg() && MO.isTied())
1177         TiedTo = MI->findTiedOperandIdx(i);
1178       MIB.add(MO);
1179       if (TiedTo < i)
1180         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1181       continue;
1182     }
1183 
1184     // foldMemoryOperand builds a new MI after replacing a single FI operand
1185     // with the canonical set of five x86 addressing-mode operands.
1186     int FI = MO.getIndex();
1187 
1188     // Add frame index operands recognized by stackmaps.cpp
1189     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1190       // indirect-mem-ref tag, size, #FI, offset.
1191       // Used for spills inserted by StatepointLowering.  This codepath is not
1192       // used for patchpoints/stackmaps at all, for these spilling is done via
1193       // foldMemoryOperand callback only.
1194       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1195       MIB.addImm(StackMaps::IndirectMemRefOp);
1196       MIB.addImm(MFI.getObjectSize(FI));
1197       MIB.add(MO);
1198       MIB.addImm(0);
1199     } else {
1200       // direct-mem-ref tag, #FI, offset.
1201       // Used by patchpoint, and direct alloca arguments to statepoints
1202       MIB.addImm(StackMaps::DirectMemRefOp);
1203       MIB.add(MO);
1204       MIB.addImm(0);
1205     }
1206 
1207     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1208 
1209     // Add a new memory operand for this FI.
1210     assert(MFI.getObjectOffset(FI) != -1);
1211 
1212     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1213     // PATCHPOINT should be updated to do the same. (TODO)
1214     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1215       auto Flags = MachineMemOperand::MOLoad;
1216       MachineMemOperand *MMO = MF.getMachineMemOperand(
1217           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1218           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1219       MIB->addMemOperand(MF, MMO);
1220     }
1221   }
1222   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1223   MI->eraseFromParent();
1224   return MBB;
1225 }
1226 
1227 /// findRepresentativeClass - Return the largest legal super-reg register class
1228 /// of the register class for the specified type and its associated "cost".
1229 // This function is in TargetLowering because it uses RegClassForVT which would
1230 // need to be moved to TargetRegisterInfo and would necessitate moving
1231 // isTypeLegal over as well - a massive change that would just require
1232 // TargetLowering having a TargetRegisterInfo class member that it would use.
1233 std::pair<const TargetRegisterClass *, uint8_t>
1234 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1235                                             MVT VT) const {
1236   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1237   if (!RC)
1238     return std::make_pair(RC, 0);
1239 
1240   // Compute the set of all super-register classes.
1241   BitVector SuperRegRC(TRI->getNumRegClasses());
1242   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1243     SuperRegRC.setBitsInMask(RCI.getMask());
1244 
1245   // Find the first legal register class with the largest spill size.
1246   const TargetRegisterClass *BestRC = RC;
1247   for (unsigned i : SuperRegRC.set_bits()) {
1248     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1249     // We want the largest possible spill size.
1250     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1251       continue;
1252     if (!isLegalRC(*TRI, *SuperRC))
1253       continue;
1254     BestRC = SuperRC;
1255   }
1256   return std::make_pair(BestRC, 1);
1257 }
1258 
1259 /// computeRegisterProperties - Once all of the register classes are added,
1260 /// this allows us to compute derived properties we expose.
1261 void TargetLoweringBase::computeRegisterProperties(
1262     const TargetRegisterInfo *TRI) {
1263   // Everything defaults to needing one register.
1264   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1265     NumRegistersForVT[i] = 1;
1266     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1267   }
1268   // ...except isVoid, which doesn't need any registers.
1269   NumRegistersForVT[MVT::isVoid] = 0;
1270 
1271   // Find the largest integer register class.
1272   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1273   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1274     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1275 
1276   // Every integer value type larger than this largest register takes twice as
1277   // many registers to represent as the previous ValueType.
1278   for (unsigned ExpandedReg = LargestIntReg + 1;
1279        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1280     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1281     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1282     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1283     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1284                                    TypeExpandInteger);
1285   }
1286 
1287   // Inspect all of the ValueType's smaller than the largest integer
1288   // register to see which ones need promotion.
1289   unsigned LegalIntReg = LargestIntReg;
1290   for (unsigned IntReg = LargestIntReg - 1;
1291        IntReg >= (unsigned)MVT::i1; --IntReg) {
1292     MVT IVT = (MVT::SimpleValueType)IntReg;
1293     if (isTypeLegal(IVT)) {
1294       LegalIntReg = IntReg;
1295     } else {
1296       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1297         (MVT::SimpleValueType)LegalIntReg;
1298       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1299     }
1300   }
1301 
1302   // ppcf128 type is really two f64's.
1303   if (!isTypeLegal(MVT::ppcf128)) {
1304     if (isTypeLegal(MVT::f64)) {
1305       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1306       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1307       TransformToType[MVT::ppcf128] = MVT::f64;
1308       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1309     } else {
1310       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1311       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1312       TransformToType[MVT::ppcf128] = MVT::i128;
1313       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1314     }
1315   }
1316 
1317   // Decide how to handle f128. If the target does not have native f128 support,
1318   // expand it to i128 and we will be generating soft float library calls.
1319   if (!isTypeLegal(MVT::f128)) {
1320     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1321     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1322     TransformToType[MVT::f128] = MVT::i128;
1323     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1324   }
1325 
1326   // Decide how to handle f80. If the target does not have native f80 support,
1327   // expand it to i96 and we will be generating soft float library calls.
1328   if (!isTypeLegal(MVT::f80)) {
1329     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1330     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1331     TransformToType[MVT::f80] = MVT::i32;
1332     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1333   }
1334 
1335   // Decide how to handle f64. If the target does not have native f64 support,
1336   // expand it to i64 and we will be generating soft float library calls.
1337   if (!isTypeLegal(MVT::f64)) {
1338     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1339     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1340     TransformToType[MVT::f64] = MVT::i64;
1341     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1342   }
1343 
1344   // Decide how to handle f32. If the target does not have native f32 support,
1345   // expand it to i32 and we will be generating soft float library calls.
1346   if (!isTypeLegal(MVT::f32)) {
1347     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1348     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1349     TransformToType[MVT::f32] = MVT::i32;
1350     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1351   }
1352 
1353   // Decide how to handle f16. If the target does not have native f16 support,
1354   // promote it to f32, because there are no f16 library calls (except for
1355   // conversions).
1356   if (!isTypeLegal(MVT::f16)) {
1357     // Allow targets to control how we legalize half.
1358     bool SoftPromoteHalfType = softPromoteHalfType();
1359     bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1360 
1361     if (!UseFPRegsForHalfType) {
1362       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1363       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1364     } else {
1365       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1366       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1367     }
1368     TransformToType[MVT::f16] = MVT::f32;
1369     if (SoftPromoteHalfType) {
1370       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1371     } else {
1372       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1373     }
1374   }
1375 
1376   // Decide how to handle bf16. If the target does not have native bf16 support,
1377   // promote it to f32, because there are no bf16 library calls (except for
1378   // converting from f32 to bf16).
1379   if (!isTypeLegal(MVT::bf16)) {
1380     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1381     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1382     TransformToType[MVT::bf16] = MVT::f32;
1383     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1384   }
1385 
1386   // Loop over all of the vector value types to see which need transformations.
1387   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1388        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1389     MVT VT = (MVT::SimpleValueType) i;
1390     if (isTypeLegal(VT))
1391       continue;
1392 
1393     MVT EltVT = VT.getVectorElementType();
1394     ElementCount EC = VT.getVectorElementCount();
1395     bool IsLegalWiderType = false;
1396     bool IsScalable = VT.isScalableVector();
1397     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1398     switch (PreferredAction) {
1399     case TypePromoteInteger: {
1400       MVT::SimpleValueType EndVT = IsScalable ?
1401                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1402                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1403       // Try to promote the elements of integer vectors. If no legal
1404       // promotion was found, fall through to the widen-vector method.
1405       for (unsigned nVT = i + 1;
1406            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1407         MVT SVT = (MVT::SimpleValueType) nVT;
1408         // Promote vectors of integers to vectors with the same number
1409         // of elements, with a wider element type.
1410         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1411             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1412           TransformToType[i] = SVT;
1413           RegisterTypeForVT[i] = SVT;
1414           NumRegistersForVT[i] = 1;
1415           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1416           IsLegalWiderType = true;
1417           break;
1418         }
1419       }
1420       if (IsLegalWiderType)
1421         break;
1422       [[fallthrough]];
1423     }
1424 
1425     case TypeWidenVector:
1426       if (isPowerOf2_32(EC.getKnownMinValue())) {
1427         // Try to widen the vector.
1428         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1429           MVT SVT = (MVT::SimpleValueType) nVT;
1430           if (SVT.getVectorElementType() == EltVT &&
1431               SVT.isScalableVector() == IsScalable &&
1432               SVT.getVectorElementCount().getKnownMinValue() >
1433                   EC.getKnownMinValue() &&
1434               isTypeLegal(SVT)) {
1435             TransformToType[i] = SVT;
1436             RegisterTypeForVT[i] = SVT;
1437             NumRegistersForVT[i] = 1;
1438             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1439             IsLegalWiderType = true;
1440             break;
1441           }
1442         }
1443         if (IsLegalWiderType)
1444           break;
1445       } else {
1446         // Only widen to the next power of 2 to keep consistency with EVT.
1447         MVT NVT = VT.getPow2VectorType();
1448         if (isTypeLegal(NVT)) {
1449           TransformToType[i] = NVT;
1450           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1451           RegisterTypeForVT[i] = NVT;
1452           NumRegistersForVT[i] = 1;
1453           break;
1454         }
1455       }
1456       [[fallthrough]];
1457 
1458     case TypeSplitVector:
1459     case TypeScalarizeVector: {
1460       MVT IntermediateVT;
1461       MVT RegisterVT;
1462       unsigned NumIntermediates;
1463       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1464           NumIntermediates, RegisterVT, this);
1465       NumRegistersForVT[i] = NumRegisters;
1466       assert(NumRegistersForVT[i] == NumRegisters &&
1467              "NumRegistersForVT size cannot represent NumRegisters!");
1468       RegisterTypeForVT[i] = RegisterVT;
1469 
1470       MVT NVT = VT.getPow2VectorType();
1471       if (NVT == VT) {
1472         // Type is already a power of 2.  The default action is to split.
1473         TransformToType[i] = MVT::Other;
1474         if (PreferredAction == TypeScalarizeVector)
1475           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1476         else if (PreferredAction == TypeSplitVector)
1477           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1478         else if (EC.getKnownMinValue() > 1)
1479           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1480         else
1481           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1482                                                  ? TypeScalarizeScalableVector
1483                                                  : TypeScalarizeVector);
1484       } else {
1485         TransformToType[i] = NVT;
1486         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1487       }
1488       break;
1489     }
1490     default:
1491       llvm_unreachable("Unknown vector legalization action!");
1492     }
1493   }
1494 
1495   // Determine the 'representative' register class for each value type.
1496   // An representative register class is the largest (meaning one which is
1497   // not a sub-register class / subreg register class) legal register class for
1498   // a group of value types. For example, on i386, i8, i16, and i32
1499   // representative would be GR32; while on x86_64 it's GR64.
1500   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1501     const TargetRegisterClass* RRC;
1502     uint8_t Cost;
1503     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1504     RepRegClassForVT[i] = RRC;
1505     RepRegClassCostForVT[i] = Cost;
1506   }
1507 }
1508 
1509 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1510                                            EVT VT) const {
1511   assert(!VT.isVector() && "No default SetCC type for vectors!");
1512   return getPointerTy(DL).SimpleTy;
1513 }
1514 
1515 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1516   return MVT::i32; // return the default value
1517 }
1518 
1519 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1520 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1521 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1522 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1523 ///
1524 /// This method returns the number of registers needed, and the VT for each
1525 /// register.  It also returns the VT and quantity of the intermediate values
1526 /// before they are promoted/expanded.
1527 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1528                                                     EVT VT, EVT &IntermediateVT,
1529                                                     unsigned &NumIntermediates,
1530                                                     MVT &RegisterVT) const {
1531   ElementCount EltCnt = VT.getVectorElementCount();
1532 
1533   // If there is a wider vector type with the same element type as this one,
1534   // or a promoted vector type that has the same number of elements which
1535   // are wider, then we should convert to that legal vector type.
1536   // This handles things like <2 x float> -> <4 x float> and
1537   // <4 x i1> -> <4 x i32>.
1538   LegalizeTypeAction TA = getTypeAction(Context, VT);
1539   if (!EltCnt.isScalar() &&
1540       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1541     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1542     if (isTypeLegal(RegisterEVT)) {
1543       IntermediateVT = RegisterEVT;
1544       RegisterVT = RegisterEVT.getSimpleVT();
1545       NumIntermediates = 1;
1546       return 1;
1547     }
1548   }
1549 
1550   // Figure out the right, legal destination reg to copy into.
1551   EVT EltTy = VT.getVectorElementType();
1552 
1553   unsigned NumVectorRegs = 1;
1554 
1555   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1556   // types like done elsewhere in SelectionDAG.
1557   if (EltCnt.isScalable()) {
1558     LegalizeKind LK;
1559     EVT PartVT = VT;
1560     do {
1561       // Iterate until we've found a legal (part) type to hold VT.
1562       LK = getTypeConversion(Context, PartVT);
1563       PartVT = LK.second;
1564     } while (LK.first != TypeLegal);
1565 
1566     if (!PartVT.isVector()) {
1567       report_fatal_error(
1568           "Don't know how to legalize this scalable vector type");
1569     }
1570 
1571     NumIntermediates =
1572         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1573                    PartVT.getVectorElementCount().getKnownMinValue());
1574     IntermediateVT = PartVT;
1575     RegisterVT = getRegisterType(Context, IntermediateVT);
1576     return NumIntermediates;
1577   }
1578 
1579   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1580   // we could break down into LHS/RHS like LegalizeDAG does.
1581   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1582     NumVectorRegs = EltCnt.getKnownMinValue();
1583     EltCnt = ElementCount::getFixed(1);
1584   }
1585 
1586   // Divide the input until we get to a supported size.  This will always
1587   // end with a scalar if the target doesn't support vectors.
1588   while (EltCnt.getKnownMinValue() > 1 &&
1589          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1590     EltCnt = EltCnt.divideCoefficientBy(2);
1591     NumVectorRegs <<= 1;
1592   }
1593 
1594   NumIntermediates = NumVectorRegs;
1595 
1596   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1597   if (!isTypeLegal(NewVT))
1598     NewVT = EltTy;
1599   IntermediateVT = NewVT;
1600 
1601   MVT DestVT = getRegisterType(Context, NewVT);
1602   RegisterVT = DestVT;
1603 
1604   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1605     TypeSize NewVTSize = NewVT.getSizeInBits();
1606     // Convert sizes such as i33 to i64.
1607     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1608       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1609     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1610   }
1611 
1612   // Otherwise, promotion or legal types use the same number of registers as
1613   // the vector decimated to the appropriate level.
1614   return NumVectorRegs;
1615 }
1616 
1617 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1618                                                 uint64_t NumCases,
1619                                                 uint64_t Range,
1620                                                 ProfileSummaryInfo *PSI,
1621                                                 BlockFrequencyInfo *BFI) const {
1622   // FIXME: This function check the maximum table size and density, but the
1623   // minimum size is not checked. It would be nice if the minimum size is
1624   // also combined within this function. Currently, the minimum size check is
1625   // performed in findJumpTable() in SelectionDAGBuiler and
1626   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1627   const bool OptForSize =
1628       SI->getParent()->getParent()->hasOptSize() ||
1629       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1630   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1631   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1632 
1633   // Check whether the number of cases is small enough and
1634   // the range is dense enough for a jump table.
1635   return (OptForSize || Range <= MaxJumpTableSize) &&
1636          (NumCases * 100 >= Range * MinDensity);
1637 }
1638 
1639 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1640                                                         EVT ConditionVT) const {
1641   return getRegisterType(Context, ConditionVT);
1642 }
1643 
1644 /// Get the EVTs and ArgFlags collections that represent the legalized return
1645 /// type of the given function.  This does not require a DAG or a return value,
1646 /// and is suitable for use before any DAGs for the function are constructed.
1647 /// TODO: Move this out of TargetLowering.cpp.
1648 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1649                          AttributeList attr,
1650                          SmallVectorImpl<ISD::OutputArg> &Outs,
1651                          const TargetLowering &TLI, const DataLayout &DL) {
1652   SmallVector<EVT, 4> ValueVTs;
1653   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1654   unsigned NumValues = ValueVTs.size();
1655   if (NumValues == 0) return;
1656 
1657   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1658     EVT VT = ValueVTs[j];
1659     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1660 
1661     if (attr.hasRetAttr(Attribute::SExt))
1662       ExtendKind = ISD::SIGN_EXTEND;
1663     else if (attr.hasRetAttr(Attribute::ZExt))
1664       ExtendKind = ISD::ZERO_EXTEND;
1665 
1666     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1667       VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1668 
1669     unsigned NumParts =
1670         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1671     MVT PartVT =
1672         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1673 
1674     // 'inreg' on function refers to return value
1675     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1676     if (attr.hasRetAttr(Attribute::InReg))
1677       Flags.setInReg();
1678 
1679     // Propagate extension type if any
1680     if (attr.hasRetAttr(Attribute::SExt))
1681       Flags.setSExt();
1682     else if (attr.hasRetAttr(Attribute::ZExt))
1683       Flags.setZExt();
1684 
1685     for (unsigned i = 0; i < NumParts; ++i)
1686       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1687   }
1688 }
1689 
1690 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1691 /// function arguments in the caller parameter area.  This is the actual
1692 /// alignment, not its logarithm.
1693 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1694                                                    const DataLayout &DL) const {
1695   return DL.getABITypeAlign(Ty).value();
1696 }
1697 
1698 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1699     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1700     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1701   // Check if the specified alignment is sufficient based on the data layout.
1702   // TODO: While using the data layout works in practice, a better solution
1703   // would be to implement this check directly (make this a virtual function).
1704   // For example, the ABI alignment may change based on software platform while
1705   // this function should only be affected by hardware implementation.
1706   Type *Ty = VT.getTypeForEVT(Context);
1707   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1708     // Assume that an access that meets the ABI-specified alignment is fast.
1709     if (Fast != nullptr)
1710       *Fast = 1;
1711     return true;
1712   }
1713 
1714   // This is a misaligned access.
1715   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1716 }
1717 
1718 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1719     LLVMContext &Context, const DataLayout &DL, EVT VT,
1720     const MachineMemOperand &MMO, unsigned *Fast) const {
1721   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1722                                         MMO.getAlign(), MMO.getFlags(), Fast);
1723 }
1724 
1725 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1726                                             const DataLayout &DL, EVT VT,
1727                                             unsigned AddrSpace, Align Alignment,
1728                                             MachineMemOperand::Flags Flags,
1729                                             unsigned *Fast) const {
1730   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1731                                         Flags, Fast);
1732 }
1733 
1734 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1735                                             const DataLayout &DL, EVT VT,
1736                                             const MachineMemOperand &MMO,
1737                                             unsigned *Fast) const {
1738   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1739                             MMO.getFlags(), Fast);
1740 }
1741 
1742 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1743                                             const DataLayout &DL, LLT Ty,
1744                                             const MachineMemOperand &MMO,
1745                                             unsigned *Fast) const {
1746   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1747   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1748                             MMO.getFlags(), Fast);
1749 }
1750 
1751 //===----------------------------------------------------------------------===//
1752 //  TargetTransformInfo Helpers
1753 //===----------------------------------------------------------------------===//
1754 
1755 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1756   enum InstructionOpcodes {
1757 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1758 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1759 #include "llvm/IR/Instruction.def"
1760   };
1761   switch (static_cast<InstructionOpcodes>(Opcode)) {
1762   case Ret:            return 0;
1763   case Br:             return 0;
1764   case Switch:         return 0;
1765   case IndirectBr:     return 0;
1766   case Invoke:         return 0;
1767   case CallBr:         return 0;
1768   case Resume:         return 0;
1769   case Unreachable:    return 0;
1770   case CleanupRet:     return 0;
1771   case CatchRet:       return 0;
1772   case CatchPad:       return 0;
1773   case CatchSwitch:    return 0;
1774   case CleanupPad:     return 0;
1775   case FNeg:           return ISD::FNEG;
1776   case Add:            return ISD::ADD;
1777   case FAdd:           return ISD::FADD;
1778   case Sub:            return ISD::SUB;
1779   case FSub:           return ISD::FSUB;
1780   case Mul:            return ISD::MUL;
1781   case FMul:           return ISD::FMUL;
1782   case UDiv:           return ISD::UDIV;
1783   case SDiv:           return ISD::SDIV;
1784   case FDiv:           return ISD::FDIV;
1785   case URem:           return ISD::UREM;
1786   case SRem:           return ISD::SREM;
1787   case FRem:           return ISD::FREM;
1788   case Shl:            return ISD::SHL;
1789   case LShr:           return ISD::SRL;
1790   case AShr:           return ISD::SRA;
1791   case And:            return ISD::AND;
1792   case Or:             return ISD::OR;
1793   case Xor:            return ISD::XOR;
1794   case Alloca:         return 0;
1795   case Load:           return ISD::LOAD;
1796   case Store:          return ISD::STORE;
1797   case GetElementPtr:  return 0;
1798   case Fence:          return 0;
1799   case AtomicCmpXchg:  return 0;
1800   case AtomicRMW:      return 0;
1801   case Trunc:          return ISD::TRUNCATE;
1802   case ZExt:           return ISD::ZERO_EXTEND;
1803   case SExt:           return ISD::SIGN_EXTEND;
1804   case FPToUI:         return ISD::FP_TO_UINT;
1805   case FPToSI:         return ISD::FP_TO_SINT;
1806   case UIToFP:         return ISD::UINT_TO_FP;
1807   case SIToFP:         return ISD::SINT_TO_FP;
1808   case FPTrunc:        return ISD::FP_ROUND;
1809   case FPExt:          return ISD::FP_EXTEND;
1810   case PtrToInt:       return ISD::BITCAST;
1811   case IntToPtr:       return ISD::BITCAST;
1812   case BitCast:        return ISD::BITCAST;
1813   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1814   case ICmp:           return ISD::SETCC;
1815   case FCmp:           return ISD::SETCC;
1816   case PHI:            return 0;
1817   case Call:           return 0;
1818   case Select:         return ISD::SELECT;
1819   case UserOp1:        return 0;
1820   case UserOp2:        return 0;
1821   case VAArg:          return 0;
1822   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1823   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1824   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1825   case ExtractValue:   return ISD::MERGE_VALUES;
1826   case InsertValue:    return ISD::MERGE_VALUES;
1827   case LandingPad:     return 0;
1828   case Freeze:         return ISD::FREEZE;
1829   }
1830 
1831   llvm_unreachable("Unknown instruction type encountered!");
1832 }
1833 
1834 Value *
1835 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1836                                                        bool UseTLS) const {
1837   // compiler-rt provides a variable with a magic name.  Targets that do not
1838   // link with compiler-rt may also provide such a variable.
1839   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1840   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1841   auto UnsafeStackPtr =
1842       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1843 
1844   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1845 
1846   if (!UnsafeStackPtr) {
1847     auto TLSModel = UseTLS ?
1848         GlobalValue::InitialExecTLSModel :
1849         GlobalValue::NotThreadLocal;
1850     // The global variable is not defined yet, define it ourselves.
1851     // We use the initial-exec TLS model because we do not support the
1852     // variable living anywhere other than in the main executable.
1853     UnsafeStackPtr = new GlobalVariable(
1854         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1855         UnsafeStackPtrVar, nullptr, TLSModel);
1856   } else {
1857     // The variable exists, check its type and attributes.
1858     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1859       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1860     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1861       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1862                          (UseTLS ? "" : "not ") + "be thread-local");
1863   }
1864   return UnsafeStackPtr;
1865 }
1866 
1867 Value *
1868 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1869   if (!TM.getTargetTriple().isAndroid())
1870     return getDefaultSafeStackPointerLocation(IRB, true);
1871 
1872   // Android provides a libc function to retrieve the address of the current
1873   // thread's unsafe stack pointer.
1874   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1875   auto *PtrTy = PointerType::getUnqual(M->getContext());
1876   FunctionCallee Fn =
1877       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1878   return IRB.CreateCall(Fn);
1879 }
1880 
1881 //===----------------------------------------------------------------------===//
1882 //  Loop Strength Reduction hooks
1883 //===----------------------------------------------------------------------===//
1884 
1885 /// isLegalAddressingMode - Return true if the addressing mode represented
1886 /// by AM is legal for this target, for a load/store of the specified type.
1887 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1888                                                const AddrMode &AM, Type *Ty,
1889                                                unsigned AS, Instruction *I) const {
1890   // The default implementation of this implements a conservative RISCy, r+r and
1891   // r+i addr mode.
1892 
1893   // Scalable offsets not supported
1894   if (AM.ScalableOffset)
1895     return false;
1896 
1897   // Allows a sign-extended 16-bit immediate field.
1898   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1899     return false;
1900 
1901   // No global is ever allowed as a base.
1902   if (AM.BaseGV)
1903     return false;
1904 
1905   // Only support r+r,
1906   switch (AM.Scale) {
1907   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1908     break;
1909   case 1:
1910     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1911       return false;
1912     // Otherwise we have r+r or r+i.
1913     break;
1914   case 2:
1915     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1916       return false;
1917     // Allow 2*r as r+r.
1918     break;
1919   default: // Don't allow n * r
1920     return false;
1921   }
1922 
1923   return true;
1924 }
1925 
1926 //===----------------------------------------------------------------------===//
1927 //  Stack Protector
1928 //===----------------------------------------------------------------------===//
1929 
1930 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1931 // so that SelectionDAG handle SSP.
1932 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1933   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1934     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1935     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
1936     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1937     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1938       G->setVisibility(GlobalValue::HiddenVisibility);
1939     return C;
1940   }
1941   return nullptr;
1942 }
1943 
1944 // Currently only support "standard" __stack_chk_guard.
1945 // TODO: add LOAD_STACK_GUARD support.
1946 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1947   if (!M.getNamedValue("__stack_chk_guard")) {
1948     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
1949                                   false, GlobalVariable::ExternalLinkage,
1950                                   nullptr, "__stack_chk_guard");
1951 
1952     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1953     if (M.getDirectAccessExternalData() &&
1954         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1955         !(TM.getTargetTriple().isPPC64() &&
1956           TM.getTargetTriple().isOSFreeBSD()) &&
1957         (!TM.getTargetTriple().isOSDarwin() ||
1958          TM.getRelocationModel() == Reloc::Static))
1959       GV->setDSOLocal(true);
1960   }
1961 }
1962 
1963 // Currently only support "standard" __stack_chk_guard.
1964 // TODO: add LOAD_STACK_GUARD support.
1965 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1966   return M.getNamedValue("__stack_chk_guard");
1967 }
1968 
1969 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1970   return nullptr;
1971 }
1972 
1973 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1974   return MinimumJumpTableEntries;
1975 }
1976 
1977 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1978   MinimumJumpTableEntries = Val;
1979 }
1980 
1981 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1982   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1983 }
1984 
1985 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1986   return MaximumJumpTableSize;
1987 }
1988 
1989 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1990   MaximumJumpTableSize = Val;
1991 }
1992 
1993 bool TargetLoweringBase::isJumpTableRelative() const {
1994   return getTargetMachine().isPositionIndependent();
1995 }
1996 
1997 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
1998   if (TM.Options.LoopAlignment)
1999     return Align(TM.Options.LoopAlignment);
2000   return PrefLoopAlignment;
2001 }
2002 
2003 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2004     MachineBasicBlock *MBB) const {
2005   return MaxBytesForAlignment;
2006 }
2007 
2008 //===----------------------------------------------------------------------===//
2009 //  Reciprocal Estimates
2010 //===----------------------------------------------------------------------===//
2011 
2012 /// Get the reciprocal estimate attribute string for a function that will
2013 /// override the target defaults.
2014 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2015   const Function &F = MF.getFunction();
2016   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2017 }
2018 
2019 /// Construct a string for the given reciprocal operation of the given type.
2020 /// This string should match the corresponding option to the front-end's
2021 /// "-mrecip" flag assuming those strings have been passed through in an
2022 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2023 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2024   std::string Name = VT.isVector() ? "vec-" : "";
2025 
2026   Name += IsSqrt ? "sqrt" : "div";
2027 
2028   // TODO: Handle other float types?
2029   if (VT.getScalarType() == MVT::f64) {
2030     Name += "d";
2031   } else if (VT.getScalarType() == MVT::f16) {
2032     Name += "h";
2033   } else {
2034     assert(VT.getScalarType() == MVT::f32 &&
2035            "Unexpected FP type for reciprocal estimate");
2036     Name += "f";
2037   }
2038 
2039   return Name;
2040 }
2041 
2042 /// Return the character position and value (a single numeric character) of a
2043 /// customized refinement operation in the input string if it exists. Return
2044 /// false if there is no customized refinement step count.
2045 static bool parseRefinementStep(StringRef In, size_t &Position,
2046                                 uint8_t &Value) {
2047   const char RefStepToken = ':';
2048   Position = In.find(RefStepToken);
2049   if (Position == StringRef::npos)
2050     return false;
2051 
2052   StringRef RefStepString = In.substr(Position + 1);
2053   // Allow exactly one numeric character for the additional refinement
2054   // step parameter.
2055   if (RefStepString.size() == 1) {
2056     char RefStepChar = RefStepString[0];
2057     if (isDigit(RefStepChar)) {
2058       Value = RefStepChar - '0';
2059       return true;
2060     }
2061   }
2062   report_fatal_error("Invalid refinement step for -recip.");
2063 }
2064 
2065 /// For the input attribute string, return one of the ReciprocalEstimate enum
2066 /// status values (enabled, disabled, or not specified) for this operation on
2067 /// the specified data type.
2068 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2069   if (Override.empty())
2070     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2071 
2072   SmallVector<StringRef, 4> OverrideVector;
2073   Override.split(OverrideVector, ',');
2074   unsigned NumArgs = OverrideVector.size();
2075 
2076   // Check if "all", "none", or "default" was specified.
2077   if (NumArgs == 1) {
2078     // Look for an optional setting of the number of refinement steps needed
2079     // for this type of reciprocal operation.
2080     size_t RefPos;
2081     uint8_t RefSteps;
2082     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2083       // Split the string for further processing.
2084       Override = Override.substr(0, RefPos);
2085     }
2086 
2087     // All reciprocal types are enabled.
2088     if (Override == "all")
2089       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2090 
2091     // All reciprocal types are disabled.
2092     if (Override == "none")
2093       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2094 
2095     // Target defaults for enablement are used.
2096     if (Override == "default")
2097       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2098   }
2099 
2100   // The attribute string may omit the size suffix ('f'/'d').
2101   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2102   std::string VTNameNoSize = VTName;
2103   VTNameNoSize.pop_back();
2104   static const char DisabledPrefix = '!';
2105 
2106   for (StringRef RecipType : OverrideVector) {
2107     size_t RefPos;
2108     uint8_t RefSteps;
2109     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2110       RecipType = RecipType.substr(0, RefPos);
2111 
2112     // Ignore the disablement token for string matching.
2113     bool IsDisabled = RecipType[0] == DisabledPrefix;
2114     if (IsDisabled)
2115       RecipType = RecipType.substr(1);
2116 
2117     if (RecipType == VTName || RecipType == VTNameNoSize)
2118       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2119                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2120   }
2121 
2122   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2123 }
2124 
2125 /// For the input attribute string, return the customized refinement step count
2126 /// for this operation on the specified data type. If the step count does not
2127 /// exist, return the ReciprocalEstimate enum value for unspecified.
2128 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2129   if (Override.empty())
2130     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2131 
2132   SmallVector<StringRef, 4> OverrideVector;
2133   Override.split(OverrideVector, ',');
2134   unsigned NumArgs = OverrideVector.size();
2135 
2136   // Check if "all", "default", or "none" was specified.
2137   if (NumArgs == 1) {
2138     // Look for an optional setting of the number of refinement steps needed
2139     // for this type of reciprocal operation.
2140     size_t RefPos;
2141     uint8_t RefSteps;
2142     if (!parseRefinementStep(Override, RefPos, RefSteps))
2143       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2144 
2145     // Split the string for further processing.
2146     Override = Override.substr(0, RefPos);
2147     assert(Override != "none" &&
2148            "Disabled reciprocals, but specifed refinement steps?");
2149 
2150     // If this is a general override, return the specified number of steps.
2151     if (Override == "all" || Override == "default")
2152       return RefSteps;
2153   }
2154 
2155   // The attribute string may omit the size suffix ('f'/'d').
2156   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2157   std::string VTNameNoSize = VTName;
2158   VTNameNoSize.pop_back();
2159 
2160   for (StringRef RecipType : OverrideVector) {
2161     size_t RefPos;
2162     uint8_t RefSteps;
2163     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2164       continue;
2165 
2166     RecipType = RecipType.substr(0, RefPos);
2167     if (RecipType == VTName || RecipType == VTNameNoSize)
2168       return RefSteps;
2169   }
2170 
2171   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2172 }
2173 
2174 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2175                                                     MachineFunction &MF) const {
2176   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2177 }
2178 
2179 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2180                                                    MachineFunction &MF) const {
2181   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2182 }
2183 
2184 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2185                                                MachineFunction &MF) const {
2186   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2187 }
2188 
2189 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2190                                               MachineFunction &MF) const {
2191   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2192 }
2193 
2194 bool TargetLoweringBase::isLoadBitCastBeneficial(
2195     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2196     const MachineMemOperand &MMO) const {
2197   // Single-element vectors are scalarized, so we should generally avoid having
2198   // any memory operations on such types, as they would get scalarized too.
2199   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2200       BitcastVT.getVectorNumElements() == 1)
2201     return false;
2202 
2203   // Don't do if we could do an indexed load on the original type, but not on
2204   // the new one.
2205   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2206     return true;
2207 
2208   MVT LoadMVT = LoadVT.getSimpleVT();
2209 
2210   // Don't bother doing this if it's just going to be promoted again later, as
2211   // doing so might interfere with other combines.
2212   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2213       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2214     return false;
2215 
2216   unsigned Fast = 0;
2217   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2218                             MMO, &Fast) &&
2219          Fast;
2220 }
2221 
2222 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2223   MF.getRegInfo().freezeReservedRegs();
2224 }
2225 
2226 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2227     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2228     const TargetLibraryInfo *LibInfo) const {
2229   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2230   if (LI.isVolatile())
2231     Flags |= MachineMemOperand::MOVolatile;
2232 
2233   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2234     Flags |= MachineMemOperand::MONonTemporal;
2235 
2236   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2237     Flags |= MachineMemOperand::MOInvariant;
2238 
2239   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2240                                          LI.getAlign(), DL, &LI, AC,
2241                                          /*DT=*/nullptr, LibInfo))
2242     Flags |= MachineMemOperand::MODereferenceable;
2243 
2244   Flags |= getTargetMMOFlags(LI);
2245   return Flags;
2246 }
2247 
2248 MachineMemOperand::Flags
2249 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2250                                             const DataLayout &DL) const {
2251   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2252 
2253   if (SI.isVolatile())
2254     Flags |= MachineMemOperand::MOVolatile;
2255 
2256   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2257     Flags |= MachineMemOperand::MONonTemporal;
2258 
2259   // FIXME: Not preserving dereferenceable
2260   Flags |= getTargetMMOFlags(SI);
2261   return Flags;
2262 }
2263 
2264 MachineMemOperand::Flags
2265 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2266                                              const DataLayout &DL) const {
2267   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2268 
2269   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2270     if (RMW->isVolatile())
2271       Flags |= MachineMemOperand::MOVolatile;
2272   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2273     if (CmpX->isVolatile())
2274       Flags |= MachineMemOperand::MOVolatile;
2275   } else
2276     llvm_unreachable("not an atomic instruction");
2277 
2278   // FIXME: Not preserving dereferenceable
2279   Flags |= getTargetMMOFlags(AI);
2280   return Flags;
2281 }
2282 
2283 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2284                                                   Instruction *Inst,
2285                                                   AtomicOrdering Ord) const {
2286   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2287     return Builder.CreateFence(Ord);
2288   else
2289     return nullptr;
2290 }
2291 
2292 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2293                                                    Instruction *Inst,
2294                                                    AtomicOrdering Ord) const {
2295   if (isAcquireOrStronger(Ord))
2296     return Builder.CreateFence(Ord);
2297   else
2298     return nullptr;
2299 }
2300 
2301 //===----------------------------------------------------------------------===//
2302 //  GlobalISel Hooks
2303 //===----------------------------------------------------------------------===//
2304 
2305 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2306                                         const TargetTransformInfo *TTI) const {
2307   auto &MF = *MI.getMF();
2308   auto &MRI = MF.getRegInfo();
2309   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2310   // this helper function computes the maximum number of uses we should consider
2311   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2312   // break even in terms of code size when the original MI has 2 users vs
2313   // choosing to potentially spill. Any more than 2 users we we have a net code
2314   // size increase. This doesn't take into account register pressure though.
2315   auto maxUses = [](unsigned RematCost) {
2316     // A cost of 1 means remats are basically free.
2317     if (RematCost == 1)
2318       return std::numeric_limits<unsigned>::max();
2319     if (RematCost == 2)
2320       return 2U;
2321 
2322     // Remat is too expensive, only sink if there's one user.
2323     if (RematCost > 2)
2324       return 1U;
2325     llvm_unreachable("Unexpected remat cost");
2326   };
2327 
2328   switch (MI.getOpcode()) {
2329   default:
2330     return false;
2331   // Constants-like instructions should be close to their users.
2332   // We don't want long live-ranges for them.
2333   case TargetOpcode::G_CONSTANT:
2334   case TargetOpcode::G_FCONSTANT:
2335   case TargetOpcode::G_FRAME_INDEX:
2336   case TargetOpcode::G_INTTOPTR:
2337     return true;
2338   case TargetOpcode::G_GLOBAL_VALUE: {
2339     unsigned RematCost = TTI->getGISelRematGlobalCost();
2340     Register Reg = MI.getOperand(0).getReg();
2341     unsigned MaxUses = maxUses(RematCost);
2342     if (MaxUses == UINT_MAX)
2343       return true; // Remats are "free" so always localize.
2344     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2345   }
2346   }
2347 }
2348