xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 94b5c118b3da99012e00d3e2d7c74784de9fc7ab)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/CodeGenTypes/MachineValueType.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // Use the f128 variants of math functions on x86_64
126   if (TT.getArch() == Triple::ArchType::x86_64 && TT.isGNUEnvironment()) {
127     setLibcallName(RTLIB::REM_F128, "fmodf128");
128     setLibcallName(RTLIB::FMA_F128, "fmaf128");
129     setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
130     setLibcallName(RTLIB::CBRT_F128, "cbrtf128");
131     setLibcallName(RTLIB::LOG_F128, "logf128");
132     setLibcallName(RTLIB::LOG_FINITE_F128, "__logf128_finite");
133     setLibcallName(RTLIB::LOG2_F128, "log2f128");
134     setLibcallName(RTLIB::LOG2_FINITE_F128, "__log2f128_finite");
135     setLibcallName(RTLIB::LOG10_F128, "log10f128");
136     setLibcallName(RTLIB::LOG10_FINITE_F128, "__log10f128_finite");
137     setLibcallName(RTLIB::EXP_F128, "expf128");
138     setLibcallName(RTLIB::EXP_FINITE_F128, "__expf128_finite");
139     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
140     setLibcallName(RTLIB::EXP2_FINITE_F128, "__exp2f128_finite");
141     setLibcallName(RTLIB::EXP10_F128, "exp10f128");
142     setLibcallName(RTLIB::SIN_F128, "sinf128");
143     setLibcallName(RTLIB::COS_F128, "cosf128");
144     setLibcallName(RTLIB::SINCOS_F128, "sincosf128");
145     setLibcallName(RTLIB::POW_F128, "powf128");
146     setLibcallName(RTLIB::POW_FINITE_F128, "__powf128_finite");
147     setLibcallName(RTLIB::CEIL_F128, "ceilf128");
148     setLibcallName(RTLIB::TRUNC_F128, "truncf128");
149     setLibcallName(RTLIB::RINT_F128, "rintf128");
150     setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
151     setLibcallName(RTLIB::ROUND_F128, "roundf128");
152     setLibcallName(RTLIB::ROUNDEVEN_F128, "roundevenf128");
153     setLibcallName(RTLIB::FLOOR_F128, "floorf128");
154     setLibcallName(RTLIB::COPYSIGN_F128, "copysignf128");
155     setLibcallName(RTLIB::FMIN_F128, "fminf128");
156     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
157     setLibcallName(RTLIB::LROUND_F128, "lroundf128");
158     setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
159     setLibcallName(RTLIB::LRINT_F128, "lrintf128");
160     setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
161     setLibcallName(RTLIB::LDEXP_F128, "ldexpf128");
162     setLibcallName(RTLIB::FREXP_F128, "frexpf128");
163   }
164 
165   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
166   if (TT.isPPC()) {
167     setLibcallName(RTLIB::ADD_F128, "__addkf3");
168     setLibcallName(RTLIB::SUB_F128, "__subkf3");
169     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
170     setLibcallName(RTLIB::DIV_F128, "__divkf3");
171     setLibcallName(RTLIB::POWI_F128, "__powikf2");
172     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
173     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
174     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
175     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
176     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
177     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
178     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
179     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
180     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
181     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
182     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
183     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
184     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
185     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
186     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
187     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
188     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
189     setLibcallName(RTLIB::UNE_F128, "__nekf2");
190     setLibcallName(RTLIB::OGE_F128, "__gekf2");
191     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
192     setLibcallName(RTLIB::OLE_F128, "__lekf2");
193     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
194     setLibcallName(RTLIB::UO_F128, "__unordkf2");
195   }
196 
197   // A few names are different on particular architectures or environments.
198   if (TT.isOSDarwin()) {
199     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
200     // of the gnueabi-style __gnu_*_ieee.
201     // FIXME: What about other targets?
202     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
203     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
204 
205     // Some darwins have an optimized __bzero/bzero function.
206     switch (TT.getArch()) {
207     case Triple::x86:
208     case Triple::x86_64:
209       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
210         setLibcallName(RTLIB::BZERO, "__bzero");
211       break;
212     case Triple::aarch64:
213     case Triple::aarch64_32:
214       setLibcallName(RTLIB::BZERO, "bzero");
215       break;
216     default:
217       break;
218     }
219 
220     if (darwinHasSinCos(TT)) {
221       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
222       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
223       if (TT.isWatchABI()) {
224         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
225                               CallingConv::ARM_AAPCS_VFP);
226         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
227                               CallingConv::ARM_AAPCS_VFP);
228       }
229     }
230   } else {
231     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
232     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
233   }
234 
235   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
236       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
237     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
238     setLibcallName(RTLIB::SINCOS_F64, "sincos");
239     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
240     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
241     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
242   }
243 
244   if (TT.isPS()) {
245     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
246     setLibcallName(RTLIB::SINCOS_F64, "sincos");
247   }
248 
249   if (TT.isOSOpenBSD()) {
250     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
251   }
252 
253   if (TT.isOSWindows() && !TT.isOSCygMing()) {
254     setLibcallName(RTLIB::LDEXP_F32, nullptr);
255     setLibcallName(RTLIB::LDEXP_F80, nullptr);
256     setLibcallName(RTLIB::LDEXP_F128, nullptr);
257     setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
258 
259     setLibcallName(RTLIB::FREXP_F32, nullptr);
260     setLibcallName(RTLIB::FREXP_F80, nullptr);
261     setLibcallName(RTLIB::FREXP_F128, nullptr);
262     setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
263   }
264 }
265 
266 /// GetFPLibCall - Helper to return the right libcall for the given floating
267 /// point type, or UNKNOWN_LIBCALL if there is none.
268 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
269                                    RTLIB::Libcall Call_F32,
270                                    RTLIB::Libcall Call_F64,
271                                    RTLIB::Libcall Call_F80,
272                                    RTLIB::Libcall Call_F128,
273                                    RTLIB::Libcall Call_PPCF128) {
274   return
275     VT == MVT::f32 ? Call_F32 :
276     VT == MVT::f64 ? Call_F64 :
277     VT == MVT::f80 ? Call_F80 :
278     VT == MVT::f128 ? Call_F128 :
279     VT == MVT::ppcf128 ? Call_PPCF128 :
280     RTLIB::UNKNOWN_LIBCALL;
281 }
282 
283 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
284 /// UNKNOWN_LIBCALL if there is none.
285 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
286   if (OpVT == MVT::f16) {
287     if (RetVT == MVT::f32)
288       return FPEXT_F16_F32;
289     if (RetVT == MVT::f64)
290       return FPEXT_F16_F64;
291     if (RetVT == MVT::f80)
292       return FPEXT_F16_F80;
293     if (RetVT == MVT::f128)
294       return FPEXT_F16_F128;
295   } else if (OpVT == MVT::f32) {
296     if (RetVT == MVT::f64)
297       return FPEXT_F32_F64;
298     if (RetVT == MVT::f128)
299       return FPEXT_F32_F128;
300     if (RetVT == MVT::ppcf128)
301       return FPEXT_F32_PPCF128;
302   } else if (OpVT == MVT::f64) {
303     if (RetVT == MVT::f128)
304       return FPEXT_F64_F128;
305     else if (RetVT == MVT::ppcf128)
306       return FPEXT_F64_PPCF128;
307   } else if (OpVT == MVT::f80) {
308     if (RetVT == MVT::f128)
309       return FPEXT_F80_F128;
310   } else if (OpVT == MVT::bf16) {
311     if (RetVT == MVT::f32)
312       return FPEXT_BF16_F32;
313   }
314 
315   return UNKNOWN_LIBCALL;
316 }
317 
318 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
319 /// UNKNOWN_LIBCALL if there is none.
320 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
321   if (RetVT == MVT::f16) {
322     if (OpVT == MVT::f32)
323       return FPROUND_F32_F16;
324     if (OpVT == MVT::f64)
325       return FPROUND_F64_F16;
326     if (OpVT == MVT::f80)
327       return FPROUND_F80_F16;
328     if (OpVT == MVT::f128)
329       return FPROUND_F128_F16;
330     if (OpVT == MVT::ppcf128)
331       return FPROUND_PPCF128_F16;
332   } else if (RetVT == MVT::bf16) {
333     if (OpVT == MVT::f32)
334       return FPROUND_F32_BF16;
335     if (OpVT == MVT::f64)
336       return FPROUND_F64_BF16;
337   } else if (RetVT == MVT::f32) {
338     if (OpVT == MVT::f64)
339       return FPROUND_F64_F32;
340     if (OpVT == MVT::f80)
341       return FPROUND_F80_F32;
342     if (OpVT == MVT::f128)
343       return FPROUND_F128_F32;
344     if (OpVT == MVT::ppcf128)
345       return FPROUND_PPCF128_F32;
346   } else if (RetVT == MVT::f64) {
347     if (OpVT == MVT::f80)
348       return FPROUND_F80_F64;
349     if (OpVT == MVT::f128)
350       return FPROUND_F128_F64;
351     if (OpVT == MVT::ppcf128)
352       return FPROUND_PPCF128_F64;
353   } else if (RetVT == MVT::f80) {
354     if (OpVT == MVT::f128)
355       return FPROUND_F128_F80;
356   }
357 
358   return UNKNOWN_LIBCALL;
359 }
360 
361 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
362 /// UNKNOWN_LIBCALL if there is none.
363 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
364   if (OpVT == MVT::f16) {
365     if (RetVT == MVT::i32)
366       return FPTOSINT_F16_I32;
367     if (RetVT == MVT::i64)
368       return FPTOSINT_F16_I64;
369     if (RetVT == MVT::i128)
370       return FPTOSINT_F16_I128;
371   } else if (OpVT == MVT::f32) {
372     if (RetVT == MVT::i32)
373       return FPTOSINT_F32_I32;
374     if (RetVT == MVT::i64)
375       return FPTOSINT_F32_I64;
376     if (RetVT == MVT::i128)
377       return FPTOSINT_F32_I128;
378   } else if (OpVT == MVT::f64) {
379     if (RetVT == MVT::i32)
380       return FPTOSINT_F64_I32;
381     if (RetVT == MVT::i64)
382       return FPTOSINT_F64_I64;
383     if (RetVT == MVT::i128)
384       return FPTOSINT_F64_I128;
385   } else if (OpVT == MVT::f80) {
386     if (RetVT == MVT::i32)
387       return FPTOSINT_F80_I32;
388     if (RetVT == MVT::i64)
389       return FPTOSINT_F80_I64;
390     if (RetVT == MVT::i128)
391       return FPTOSINT_F80_I128;
392   } else if (OpVT == MVT::f128) {
393     if (RetVT == MVT::i32)
394       return FPTOSINT_F128_I32;
395     if (RetVT == MVT::i64)
396       return FPTOSINT_F128_I64;
397     if (RetVT == MVT::i128)
398       return FPTOSINT_F128_I128;
399   } else if (OpVT == MVT::ppcf128) {
400     if (RetVT == MVT::i32)
401       return FPTOSINT_PPCF128_I32;
402     if (RetVT == MVT::i64)
403       return FPTOSINT_PPCF128_I64;
404     if (RetVT == MVT::i128)
405       return FPTOSINT_PPCF128_I128;
406   }
407   return UNKNOWN_LIBCALL;
408 }
409 
410 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
411 /// UNKNOWN_LIBCALL if there is none.
412 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
413   if (OpVT == MVT::f16) {
414     if (RetVT == MVT::i32)
415       return FPTOUINT_F16_I32;
416     if (RetVT == MVT::i64)
417       return FPTOUINT_F16_I64;
418     if (RetVT == MVT::i128)
419       return FPTOUINT_F16_I128;
420   } else if (OpVT == MVT::f32) {
421     if (RetVT == MVT::i32)
422       return FPTOUINT_F32_I32;
423     if (RetVT == MVT::i64)
424       return FPTOUINT_F32_I64;
425     if (RetVT == MVT::i128)
426       return FPTOUINT_F32_I128;
427   } else if (OpVT == MVT::f64) {
428     if (RetVT == MVT::i32)
429       return FPTOUINT_F64_I32;
430     if (RetVT == MVT::i64)
431       return FPTOUINT_F64_I64;
432     if (RetVT == MVT::i128)
433       return FPTOUINT_F64_I128;
434   } else if (OpVT == MVT::f80) {
435     if (RetVT == MVT::i32)
436       return FPTOUINT_F80_I32;
437     if (RetVT == MVT::i64)
438       return FPTOUINT_F80_I64;
439     if (RetVT == MVT::i128)
440       return FPTOUINT_F80_I128;
441   } else if (OpVT == MVT::f128) {
442     if (RetVT == MVT::i32)
443       return FPTOUINT_F128_I32;
444     if (RetVT == MVT::i64)
445       return FPTOUINT_F128_I64;
446     if (RetVT == MVT::i128)
447       return FPTOUINT_F128_I128;
448   } else if (OpVT == MVT::ppcf128) {
449     if (RetVT == MVT::i32)
450       return FPTOUINT_PPCF128_I32;
451     if (RetVT == MVT::i64)
452       return FPTOUINT_PPCF128_I64;
453     if (RetVT == MVT::i128)
454       return FPTOUINT_PPCF128_I128;
455   }
456   return UNKNOWN_LIBCALL;
457 }
458 
459 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
460 /// UNKNOWN_LIBCALL if there is none.
461 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
462   if (OpVT == MVT::i32) {
463     if (RetVT == MVT::f16)
464       return SINTTOFP_I32_F16;
465     if (RetVT == MVT::f32)
466       return SINTTOFP_I32_F32;
467     if (RetVT == MVT::f64)
468       return SINTTOFP_I32_F64;
469     if (RetVT == MVT::f80)
470       return SINTTOFP_I32_F80;
471     if (RetVT == MVT::f128)
472       return SINTTOFP_I32_F128;
473     if (RetVT == MVT::ppcf128)
474       return SINTTOFP_I32_PPCF128;
475   } else if (OpVT == MVT::i64) {
476     if (RetVT == MVT::f16)
477       return SINTTOFP_I64_F16;
478     if (RetVT == MVT::f32)
479       return SINTTOFP_I64_F32;
480     if (RetVT == MVT::f64)
481       return SINTTOFP_I64_F64;
482     if (RetVT == MVT::f80)
483       return SINTTOFP_I64_F80;
484     if (RetVT == MVT::f128)
485       return SINTTOFP_I64_F128;
486     if (RetVT == MVT::ppcf128)
487       return SINTTOFP_I64_PPCF128;
488   } else if (OpVT == MVT::i128) {
489     if (RetVT == MVT::f16)
490       return SINTTOFP_I128_F16;
491     if (RetVT == MVT::f32)
492       return SINTTOFP_I128_F32;
493     if (RetVT == MVT::f64)
494       return SINTTOFP_I128_F64;
495     if (RetVT == MVT::f80)
496       return SINTTOFP_I128_F80;
497     if (RetVT == MVT::f128)
498       return SINTTOFP_I128_F128;
499     if (RetVT == MVT::ppcf128)
500       return SINTTOFP_I128_PPCF128;
501   }
502   return UNKNOWN_LIBCALL;
503 }
504 
505 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
506 /// UNKNOWN_LIBCALL if there is none.
507 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
508   if (OpVT == MVT::i32) {
509     if (RetVT == MVT::f16)
510       return UINTTOFP_I32_F16;
511     if (RetVT == MVT::f32)
512       return UINTTOFP_I32_F32;
513     if (RetVT == MVT::f64)
514       return UINTTOFP_I32_F64;
515     if (RetVT == MVT::f80)
516       return UINTTOFP_I32_F80;
517     if (RetVT == MVT::f128)
518       return UINTTOFP_I32_F128;
519     if (RetVT == MVT::ppcf128)
520       return UINTTOFP_I32_PPCF128;
521   } else if (OpVT == MVT::i64) {
522     if (RetVT == MVT::f16)
523       return UINTTOFP_I64_F16;
524     if (RetVT == MVT::f32)
525       return UINTTOFP_I64_F32;
526     if (RetVT == MVT::f64)
527       return UINTTOFP_I64_F64;
528     if (RetVT == MVT::f80)
529       return UINTTOFP_I64_F80;
530     if (RetVT == MVT::f128)
531       return UINTTOFP_I64_F128;
532     if (RetVT == MVT::ppcf128)
533       return UINTTOFP_I64_PPCF128;
534   } else if (OpVT == MVT::i128) {
535     if (RetVT == MVT::f16)
536       return UINTTOFP_I128_F16;
537     if (RetVT == MVT::f32)
538       return UINTTOFP_I128_F32;
539     if (RetVT == MVT::f64)
540       return UINTTOFP_I128_F64;
541     if (RetVT == MVT::f80)
542       return UINTTOFP_I128_F80;
543     if (RetVT == MVT::f128)
544       return UINTTOFP_I128_F128;
545     if (RetVT == MVT::ppcf128)
546       return UINTTOFP_I128_PPCF128;
547   }
548   return UNKNOWN_LIBCALL;
549 }
550 
551 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
552   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
553                       POWI_PPCF128);
554 }
555 
556 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
557   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
558                       LDEXP_PPCF128);
559 }
560 
561 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
562   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
563                       FREXP_PPCF128);
564 }
565 
566 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
567                                              AtomicOrdering Order,
568                                              uint64_t MemSize) {
569   unsigned ModeN, ModelN;
570   switch (MemSize) {
571   case 1:
572     ModeN = 0;
573     break;
574   case 2:
575     ModeN = 1;
576     break;
577   case 4:
578     ModeN = 2;
579     break;
580   case 8:
581     ModeN = 3;
582     break;
583   case 16:
584     ModeN = 4;
585     break;
586   default:
587     return RTLIB::UNKNOWN_LIBCALL;
588   }
589 
590   switch (Order) {
591   case AtomicOrdering::Monotonic:
592     ModelN = 0;
593     break;
594   case AtomicOrdering::Acquire:
595     ModelN = 1;
596     break;
597   case AtomicOrdering::Release:
598     ModelN = 2;
599     break;
600   case AtomicOrdering::AcquireRelease:
601   case AtomicOrdering::SequentiallyConsistent:
602     ModelN = 3;
603     break;
604   default:
605     return UNKNOWN_LIBCALL;
606   }
607 
608   return LC[ModeN][ModelN];
609 }
610 
611 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
612                                         MVT VT) {
613   if (!VT.isScalarInteger())
614     return UNKNOWN_LIBCALL;
615   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
616 
617 #define LCALLS(A, B)                                                           \
618   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
619 #define LCALL5(A)                                                              \
620   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
621   switch (Opc) {
622   case ISD::ATOMIC_CMP_SWAP: {
623     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
624     return getOutlineAtomicHelper(LC, Order, MemSize);
625   }
626   case ISD::ATOMIC_SWAP: {
627     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
628     return getOutlineAtomicHelper(LC, Order, MemSize);
629   }
630   case ISD::ATOMIC_LOAD_ADD: {
631     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
632     return getOutlineAtomicHelper(LC, Order, MemSize);
633   }
634   case ISD::ATOMIC_LOAD_OR: {
635     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
636     return getOutlineAtomicHelper(LC, Order, MemSize);
637   }
638   case ISD::ATOMIC_LOAD_CLR: {
639     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
640     return getOutlineAtomicHelper(LC, Order, MemSize);
641   }
642   case ISD::ATOMIC_LOAD_XOR: {
643     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
644     return getOutlineAtomicHelper(LC, Order, MemSize);
645   }
646   default:
647     return UNKNOWN_LIBCALL;
648   }
649 #undef LCALLS
650 #undef LCALL5
651 }
652 
653 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
654 #define OP_TO_LIBCALL(Name, Enum)                                              \
655   case Name:                                                                   \
656     switch (VT.SimpleTy) {                                                     \
657     default:                                                                   \
658       return UNKNOWN_LIBCALL;                                                  \
659     case MVT::i8:                                                              \
660       return Enum##_1;                                                         \
661     case MVT::i16:                                                             \
662       return Enum##_2;                                                         \
663     case MVT::i32:                                                             \
664       return Enum##_4;                                                         \
665     case MVT::i64:                                                             \
666       return Enum##_8;                                                         \
667     case MVT::i128:                                                            \
668       return Enum##_16;                                                        \
669     }
670 
671   switch (Opc) {
672     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
673     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
674     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
675     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
676     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
677     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
678     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
679     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
680     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
681     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
682     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
683     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
684   }
685 
686 #undef OP_TO_LIBCALL
687 
688   return UNKNOWN_LIBCALL;
689 }
690 
691 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
692   switch (ElementSize) {
693   case 1:
694     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
695   case 2:
696     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
697   case 4:
698     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
699   case 8:
700     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
701   case 16:
702     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
703   default:
704     return UNKNOWN_LIBCALL;
705   }
706 }
707 
708 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
709   switch (ElementSize) {
710   case 1:
711     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
712   case 2:
713     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
714   case 4:
715     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
716   case 8:
717     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
718   case 16:
719     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
720   default:
721     return UNKNOWN_LIBCALL;
722   }
723 }
724 
725 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
726   switch (ElementSize) {
727   case 1:
728     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
729   case 2:
730     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
731   case 4:
732     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
733   case 8:
734     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
735   case 16:
736     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
737   default:
738     return UNKNOWN_LIBCALL;
739   }
740 }
741 
742 /// InitCmpLibcallCCs - Set default comparison libcall CC.
743 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
744   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
745   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
746   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
747   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
748   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
749   CCs[RTLIB::UNE_F32] = ISD::SETNE;
750   CCs[RTLIB::UNE_F64] = ISD::SETNE;
751   CCs[RTLIB::UNE_F128] = ISD::SETNE;
752   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
753   CCs[RTLIB::OGE_F32] = ISD::SETGE;
754   CCs[RTLIB::OGE_F64] = ISD::SETGE;
755   CCs[RTLIB::OGE_F128] = ISD::SETGE;
756   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
757   CCs[RTLIB::OLT_F32] = ISD::SETLT;
758   CCs[RTLIB::OLT_F64] = ISD::SETLT;
759   CCs[RTLIB::OLT_F128] = ISD::SETLT;
760   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
761   CCs[RTLIB::OLE_F32] = ISD::SETLE;
762   CCs[RTLIB::OLE_F64] = ISD::SETLE;
763   CCs[RTLIB::OLE_F128] = ISD::SETLE;
764   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
765   CCs[RTLIB::OGT_F32] = ISD::SETGT;
766   CCs[RTLIB::OGT_F64] = ISD::SETGT;
767   CCs[RTLIB::OGT_F128] = ISD::SETGT;
768   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
769   CCs[RTLIB::UO_F32] = ISD::SETNE;
770   CCs[RTLIB::UO_F64] = ISD::SETNE;
771   CCs[RTLIB::UO_F128] = ISD::SETNE;
772   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
773 }
774 
775 /// NOTE: The TargetMachine owns TLOF.
776 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
777   initActions();
778 
779   // Perform these initializations only once.
780   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
781       MaxLoadsPerMemcmp = 8;
782   MaxGluedStoresPerMemcpy = 0;
783   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
784       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
785   HasMultipleConditionRegisters = false;
786   HasExtractBitsInsn = false;
787   JumpIsExpensive = JumpIsExpensiveOverride;
788   PredictableSelectIsExpensive = false;
789   EnableExtLdPromotion = false;
790   StackPointerRegisterToSaveRestore = 0;
791   BooleanContents = UndefinedBooleanContent;
792   BooleanFloatContents = UndefinedBooleanContent;
793   BooleanVectorContents = UndefinedBooleanContent;
794   SchedPreferenceInfo = Sched::ILP;
795   GatherAllAliasesMaxDepth = 18;
796   IsStrictFPEnabled = DisableStrictNodeMutation;
797   MaxBytesForAlignment = 0;
798   MaxAtomicSizeInBitsSupported = 0;
799 
800   // Assume that even with libcalls, no target supports wider than 128 bit
801   // division.
802   MaxDivRemBitWidthSupported = 128;
803 
804   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
805 
806   MinCmpXchgSizeInBits = 0;
807   SupportsUnalignedAtomics = false;
808 
809   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
810 
811   InitLibcalls(TM.getTargetTriple());
812   InitCmpLibcallCCs(CmpLibcallCCs);
813 }
814 
815 void TargetLoweringBase::initActions() {
816   // All operations default to being supported.
817   memset(OpActions, 0, sizeof(OpActions));
818   memset(LoadExtActions, 0, sizeof(LoadExtActions));
819   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
820   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
821   memset(CondCodeActions, 0, sizeof(CondCodeActions));
822   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
823   std::fill(std::begin(TargetDAGCombineArray),
824             std::end(TargetDAGCombineArray), 0);
825 
826   // Let extending atomic loads be unsupported by default.
827   for (MVT ValVT : MVT::all_valuetypes())
828     for (MVT MemVT : MVT::all_valuetypes())
829       setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT,
830                              Expand);
831 
832   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
833   // remove this and targets should individually set these types if not legal.
834   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
835                                    force_iteration_on_noniterable_enum)) {
836     for (MVT VT : {MVT::i2, MVT::i4})
837       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
838   }
839   for (MVT AVT : MVT::all_valuetypes()) {
840     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
841       setTruncStoreAction(AVT, VT, Expand);
842       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
843       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
844     }
845   }
846   for (unsigned IM = (unsigned)ISD::PRE_INC;
847        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
848     for (MVT VT : {MVT::i2, MVT::i4}) {
849       setIndexedLoadAction(IM, VT, Expand);
850       setIndexedStoreAction(IM, VT, Expand);
851       setIndexedMaskedLoadAction(IM, VT, Expand);
852       setIndexedMaskedStoreAction(IM, VT, Expand);
853     }
854   }
855 
856   for (MVT VT : MVT::fp_valuetypes()) {
857     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
858     if (IntVT.isValid()) {
859       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
860       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
861     }
862   }
863 
864   // Set default actions for various operations.
865   for (MVT VT : MVT::all_valuetypes()) {
866     // Default all indexed load / store to expand.
867     for (unsigned IM = (unsigned)ISD::PRE_INC;
868          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
869       setIndexedLoadAction(IM, VT, Expand);
870       setIndexedStoreAction(IM, VT, Expand);
871       setIndexedMaskedLoadAction(IM, VT, Expand);
872       setIndexedMaskedStoreAction(IM, VT, Expand);
873     }
874 
875     // Most backends expect to see the node which just returns the value loaded.
876     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
877 
878     // These operations default to expand.
879     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
880                         ISD::FMINNUM,        ISD::FMAXNUM,
881                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
882                         ISD::FMINIMUM,       ISD::FMAXIMUM,
883                         ISD::FMAD,           ISD::SMIN,
884                         ISD::SMAX,           ISD::UMIN,
885                         ISD::UMAX,           ISD::ABS,
886                         ISD::FSHL,           ISD::FSHR,
887                         ISD::SADDSAT,        ISD::UADDSAT,
888                         ISD::SSUBSAT,        ISD::USUBSAT,
889                         ISD::SSHLSAT,        ISD::USHLSAT,
890                         ISD::SMULFIX,        ISD::SMULFIXSAT,
891                         ISD::UMULFIX,        ISD::UMULFIXSAT,
892                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
893                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
894                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
895                         ISD::IS_FPCLASS},
896                        VT, Expand);
897 
898     // Overflow operations default to expand
899     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
900                         ISD::SMULO, ISD::UMULO},
901                        VT, Expand);
902 
903     // Carry-using overflow operations default to expand.
904     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
905                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
906                        VT, Expand);
907 
908     // ADDC/ADDE/SUBC/SUBE default to expand.
909     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
910                        Expand);
911 
912     // Halving adds
913     setOperationAction(
914         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
915         Expand);
916 
917     // Absolute difference
918     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
919 
920     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
921     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
922                        Expand);
923 
924     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
925 
926     // These library functions default to expand.
927     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
928                        Expand);
929 
930     // These operations default to expand for vector types.
931     if (VT.isVector())
932       setOperationAction(
933           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
934            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
935            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT},
936           VT, Expand);
937 
938       // Constrained floating-point operations default to expand.
939 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
940     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
941 #include "llvm/IR/ConstrainedOps.def"
942 
943     // For most targets @llvm.get.dynamic.area.offset just returns 0.
944     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
945 
946     // Vector reduction default to expand.
947     setOperationAction(
948         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
949          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
950          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
951          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
952          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
953          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
954         VT, Expand);
955 
956     // Named vector shuffles default to expand.
957     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
958 
959     // VP operations default to expand.
960 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
961     setOperationAction(ISD::SDOPC, VT, Expand);
962 #include "llvm/IR/VPIntrinsics.def"
963 
964     // FP environment operations default to expand.
965     setOperationAction(ISD::GET_FPENV, VT, Expand);
966     setOperationAction(ISD::SET_FPENV, VT, Expand);
967     setOperationAction(ISD::RESET_FPENV, VT, Expand);
968   }
969 
970   // Most targets ignore the @llvm.prefetch intrinsic.
971   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
972 
973   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
974   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
975 
976   // Most targets also ignore the @llvm.readsteadycounter intrinsic.
977   setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
978 
979   // ConstantFP nodes default to expand.  Targets can either change this to
980   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
981   // to optimize expansions for certain constants.
982   setOperationAction(ISD::ConstantFP,
983                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
984                      Expand);
985 
986   // These library functions default to expand.
987   setOperationAction({ISD::FCBRT, ISD::FLOG, ISD::FLOG2, ISD::FLOG10, ISD::FEXP,
988                       ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR, ISD::FNEARBYINT,
989                       ISD::FCEIL, ISD::FRINT, ISD::FTRUNC, ISD::LROUND,
990                       ISD::LLROUND, ISD::LRINT, ISD::LLRINT, ISD::FROUNDEVEN},
991                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
992 
993   // Default ISD::TRAP to expand (which turns it into abort).
994   setOperationAction(ISD::TRAP, MVT::Other, Expand);
995 
996   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
997   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
998   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
999 
1000   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
1001 
1002   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
1003   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
1004 
1005   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1006     setOperationAction(ISD::GET_FPMODE, VT, Expand);
1007     setOperationAction(ISD::SET_FPMODE, VT, Expand);
1008   }
1009   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1010 }
1011 
1012 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
1013                                                EVT) const {
1014   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1015 }
1016 
1017 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy, const DataLayout &DL,
1018                                          bool LegalTypes) const {
1019   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1020   if (LHSTy.isVector())
1021     return LHSTy;
1022   MVT ShiftVT =
1023       LegalTypes ? getScalarShiftAmountTy(DL, LHSTy) : getPointerTy(DL);
1024   // If any possible shift value won't fit in the prefered type, just use
1025   // something safe. Assume it will be legalized when the shift is expanded.
1026   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1027     ShiftVT = MVT::i32;
1028   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1029          "ShiftVT is still too small!");
1030   return ShiftVT;
1031 }
1032 
1033 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1034   assert(isTypeLegal(VT));
1035   switch (Op) {
1036   default:
1037     return false;
1038   case ISD::SDIV:
1039   case ISD::UDIV:
1040   case ISD::SREM:
1041   case ISD::UREM:
1042     return true;
1043   }
1044 }
1045 
1046 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
1047                                              unsigned DestAS) const {
1048   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1049 }
1050 
1051 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1052   // If the command-line option was specified, ignore this request.
1053   if (!JumpIsExpensiveOverride.getNumOccurrences())
1054     JumpIsExpensive = isExpensive;
1055 }
1056 
1057 TargetLoweringBase::LegalizeKind
1058 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1059   // If this is a simple type, use the ComputeRegisterProp mechanism.
1060   if (VT.isSimple()) {
1061     MVT SVT = VT.getSimpleVT();
1062     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1063     MVT NVT = TransformToType[SVT.SimpleTy];
1064     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1065 
1066     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1067             LA == TypeSoftPromoteHalf ||
1068             (NVT.isVector() ||
1069              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1070            "Promote may not follow Expand or Promote");
1071 
1072     if (LA == TypeSplitVector)
1073       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1074     if (LA == TypeScalarizeVector)
1075       return LegalizeKind(LA, SVT.getVectorElementType());
1076     return LegalizeKind(LA, NVT);
1077   }
1078 
1079   // Handle Extended Scalar Types.
1080   if (!VT.isVector()) {
1081     assert(VT.isInteger() && "Float types must be simple");
1082     unsigned BitSize = VT.getSizeInBits();
1083     // First promote to a power-of-two size, then expand if necessary.
1084     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1085       EVT NVT = VT.getRoundIntegerType(Context);
1086       assert(NVT != VT && "Unable to round integer VT");
1087       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1088       // Avoid multi-step promotion.
1089       if (NextStep.first == TypePromoteInteger)
1090         return NextStep;
1091       // Return rounded integer type.
1092       return LegalizeKind(TypePromoteInteger, NVT);
1093     }
1094 
1095     return LegalizeKind(TypeExpandInteger,
1096                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1097   }
1098 
1099   // Handle vector types.
1100   ElementCount NumElts = VT.getVectorElementCount();
1101   EVT EltVT = VT.getVectorElementType();
1102 
1103   // Vectors with only one element are always scalarized.
1104   if (NumElts.isScalar())
1105     return LegalizeKind(TypeScalarizeVector, EltVT);
1106 
1107   // Try to widen vector elements until the element type is a power of two and
1108   // promote it to a legal type later on, for example:
1109   // <3 x i8> -> <4 x i8> -> <4 x i32>
1110   if (EltVT.isInteger()) {
1111     // Vectors with a number of elements that is not a power of two are always
1112     // widened, for example <3 x i8> -> <4 x i8>.
1113     if (!VT.isPow2VectorType()) {
1114       NumElts = NumElts.coefficientNextPowerOf2();
1115       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1116       return LegalizeKind(TypeWidenVector, NVT);
1117     }
1118 
1119     // Examine the element type.
1120     LegalizeKind LK = getTypeConversion(Context, EltVT);
1121 
1122     // If type is to be expanded, split the vector.
1123     //  <4 x i140> -> <2 x i140>
1124     if (LK.first == TypeExpandInteger) {
1125       if (VT.getVectorElementCount().isScalable())
1126         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1127       return LegalizeKind(TypeSplitVector,
1128                           VT.getHalfNumVectorElementsVT(Context));
1129     }
1130 
1131     // Promote the integer element types until a legal vector type is found
1132     // or until the element integer type is too big. If a legal type was not
1133     // found, fallback to the usual mechanism of widening/splitting the
1134     // vector.
1135     EVT OldEltVT = EltVT;
1136     while (true) {
1137       // Increase the bitwidth of the element to the next pow-of-two
1138       // (which is greater than 8 bits).
1139       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1140                   .getRoundIntegerType(Context);
1141 
1142       // Stop trying when getting a non-simple element type.
1143       // Note that vector elements may be greater than legal vector element
1144       // types. Example: X86 XMM registers hold 64bit element on 32bit
1145       // systems.
1146       if (!EltVT.isSimple())
1147         break;
1148 
1149       // Build a new vector type and check if it is legal.
1150       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1151       // Found a legal promoted vector type.
1152       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1153         return LegalizeKind(TypePromoteInteger,
1154                             EVT::getVectorVT(Context, EltVT, NumElts));
1155     }
1156 
1157     // Reset the type to the unexpanded type if we did not find a legal vector
1158     // type with a promoted vector element type.
1159     EltVT = OldEltVT;
1160   }
1161 
1162   // Try to widen the vector until a legal type is found.
1163   // If there is no wider legal type, split the vector.
1164   while (true) {
1165     // Round up to the next power of 2.
1166     NumElts = NumElts.coefficientNextPowerOf2();
1167 
1168     // If there is no simple vector type with this many elements then there
1169     // cannot be a larger legal vector type.  Note that this assumes that
1170     // there are no skipped intermediate vector types in the simple types.
1171     if (!EltVT.isSimple())
1172       break;
1173     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1174     if (LargerVector == MVT())
1175       break;
1176 
1177     // If this type is legal then widen the vector.
1178     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1179       return LegalizeKind(TypeWidenVector, LargerVector);
1180   }
1181 
1182   // Widen odd vectors to next power of two.
1183   if (!VT.isPow2VectorType()) {
1184     EVT NVT = VT.getPow2VectorType(Context);
1185     return LegalizeKind(TypeWidenVector, NVT);
1186   }
1187 
1188   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1189     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1190 
1191   // Vectors with illegal element types are expanded.
1192   EVT NVT = EVT::getVectorVT(Context, EltVT,
1193                              VT.getVectorElementCount().divideCoefficientBy(2));
1194   return LegalizeKind(TypeSplitVector, NVT);
1195 }
1196 
1197 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1198                                           unsigned &NumIntermediates,
1199                                           MVT &RegisterVT,
1200                                           TargetLoweringBase *TLI) {
1201   // Figure out the right, legal destination reg to copy into.
1202   ElementCount EC = VT.getVectorElementCount();
1203   MVT EltTy = VT.getVectorElementType();
1204 
1205   unsigned NumVectorRegs = 1;
1206 
1207   // Scalable vectors cannot be scalarized, so splitting or widening is
1208   // required.
1209   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1210     llvm_unreachable(
1211         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1212 
1213   // FIXME: We don't support non-power-of-2-sized vectors for now.
1214   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1215   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1216     // Split EC to unit size (scalable property is preserved).
1217     NumVectorRegs = EC.getKnownMinValue();
1218     EC = ElementCount::getFixed(1);
1219   }
1220 
1221   // Divide the input until we get to a supported size. This will
1222   // always end up with an EC that represent a scalar or a scalable
1223   // scalar.
1224   while (EC.getKnownMinValue() > 1 &&
1225          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1226     EC = EC.divideCoefficientBy(2);
1227     NumVectorRegs <<= 1;
1228   }
1229 
1230   NumIntermediates = NumVectorRegs;
1231 
1232   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1233   if (!TLI->isTypeLegal(NewVT))
1234     NewVT = EltTy;
1235   IntermediateVT = NewVT;
1236 
1237   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1238 
1239   // Convert sizes such as i33 to i64.
1240   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1241 
1242   MVT DestVT = TLI->getRegisterType(NewVT);
1243   RegisterVT = DestVT;
1244   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1245     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1246 
1247   // Otherwise, promotion or legal types use the same number of registers as
1248   // the vector decimated to the appropriate level.
1249   return NumVectorRegs;
1250 }
1251 
1252 /// isLegalRC - Return true if the value types that can be represented by the
1253 /// specified register class are all legal.
1254 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1255                                    const TargetRegisterClass &RC) const {
1256   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1257     if (isTypeLegal(*I))
1258       return true;
1259   return false;
1260 }
1261 
1262 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1263 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1264 MachineBasicBlock *
1265 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1266                                    MachineBasicBlock *MBB) const {
1267   MachineInstr *MI = &InitialMI;
1268   MachineFunction &MF = *MI->getMF();
1269   MachineFrameInfo &MFI = MF.getFrameInfo();
1270 
1271   // We're handling multiple types of operands here:
1272   // PATCHPOINT MetaArgs - live-in, read only, direct
1273   // STATEPOINT Deopt Spill - live-through, read only, indirect
1274   // STATEPOINT Deopt Alloca - live-through, read only, direct
1275   // (We're currently conservative and mark the deopt slots read/write in
1276   // practice.)
1277   // STATEPOINT GC Spill - live-through, read/write, indirect
1278   // STATEPOINT GC Alloca - live-through, read/write, direct
1279   // The live-in vs live-through is handled already (the live through ones are
1280   // all stack slots), but we need to handle the different type of stackmap
1281   // operands and memory effects here.
1282 
1283   if (llvm::none_of(MI->operands(),
1284                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1285     return MBB;
1286 
1287   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1288 
1289   // Inherit previous memory operands.
1290   MIB.cloneMemRefs(*MI);
1291 
1292   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1293     MachineOperand &MO = MI->getOperand(i);
1294     if (!MO.isFI()) {
1295       // Index of Def operand this Use it tied to.
1296       // Since Defs are coming before Uses, if Use is tied, then
1297       // index of Def must be smaller that index of that Use.
1298       // Also, Defs preserve their position in new MI.
1299       unsigned TiedTo = i;
1300       if (MO.isReg() && MO.isTied())
1301         TiedTo = MI->findTiedOperandIdx(i);
1302       MIB.add(MO);
1303       if (TiedTo < i)
1304         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1305       continue;
1306     }
1307 
1308     // foldMemoryOperand builds a new MI after replacing a single FI operand
1309     // with the canonical set of five x86 addressing-mode operands.
1310     int FI = MO.getIndex();
1311 
1312     // Add frame index operands recognized by stackmaps.cpp
1313     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1314       // indirect-mem-ref tag, size, #FI, offset.
1315       // Used for spills inserted by StatepointLowering.  This codepath is not
1316       // used for patchpoints/stackmaps at all, for these spilling is done via
1317       // foldMemoryOperand callback only.
1318       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1319       MIB.addImm(StackMaps::IndirectMemRefOp);
1320       MIB.addImm(MFI.getObjectSize(FI));
1321       MIB.add(MO);
1322       MIB.addImm(0);
1323     } else {
1324       // direct-mem-ref tag, #FI, offset.
1325       // Used by patchpoint, and direct alloca arguments to statepoints
1326       MIB.addImm(StackMaps::DirectMemRefOp);
1327       MIB.add(MO);
1328       MIB.addImm(0);
1329     }
1330 
1331     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1332 
1333     // Add a new memory operand for this FI.
1334     assert(MFI.getObjectOffset(FI) != -1);
1335 
1336     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1337     // PATCHPOINT should be updated to do the same. (TODO)
1338     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1339       auto Flags = MachineMemOperand::MOLoad;
1340       MachineMemOperand *MMO = MF.getMachineMemOperand(
1341           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1342           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1343       MIB->addMemOperand(MF, MMO);
1344     }
1345   }
1346   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1347   MI->eraseFromParent();
1348   return MBB;
1349 }
1350 
1351 /// findRepresentativeClass - Return the largest legal super-reg register class
1352 /// of the register class for the specified type and its associated "cost".
1353 // This function is in TargetLowering because it uses RegClassForVT which would
1354 // need to be moved to TargetRegisterInfo and would necessitate moving
1355 // isTypeLegal over as well - a massive change that would just require
1356 // TargetLowering having a TargetRegisterInfo class member that it would use.
1357 std::pair<const TargetRegisterClass *, uint8_t>
1358 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1359                                             MVT VT) const {
1360   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1361   if (!RC)
1362     return std::make_pair(RC, 0);
1363 
1364   // Compute the set of all super-register classes.
1365   BitVector SuperRegRC(TRI->getNumRegClasses());
1366   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1367     SuperRegRC.setBitsInMask(RCI.getMask());
1368 
1369   // Find the first legal register class with the largest spill size.
1370   const TargetRegisterClass *BestRC = RC;
1371   for (unsigned i : SuperRegRC.set_bits()) {
1372     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1373     // We want the largest possible spill size.
1374     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1375       continue;
1376     if (!isLegalRC(*TRI, *SuperRC))
1377       continue;
1378     BestRC = SuperRC;
1379   }
1380   return std::make_pair(BestRC, 1);
1381 }
1382 
1383 /// computeRegisterProperties - Once all of the register classes are added,
1384 /// this allows us to compute derived properties we expose.
1385 void TargetLoweringBase::computeRegisterProperties(
1386     const TargetRegisterInfo *TRI) {
1387   static_assert(MVT::VALUETYPE_SIZE <= MVT::MAX_ALLOWED_VALUETYPE,
1388                 "Too many value types for ValueTypeActions to hold!");
1389 
1390   // Everything defaults to needing one register.
1391   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1392     NumRegistersForVT[i] = 1;
1393     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1394   }
1395   // ...except isVoid, which doesn't need any registers.
1396   NumRegistersForVT[MVT::isVoid] = 0;
1397 
1398   // Find the largest integer register class.
1399   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1400   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1401     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1402 
1403   // Every integer value type larger than this largest register takes twice as
1404   // many registers to represent as the previous ValueType.
1405   for (unsigned ExpandedReg = LargestIntReg + 1;
1406        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1407     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1408     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1409     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1410     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1411                                    TypeExpandInteger);
1412   }
1413 
1414   // Inspect all of the ValueType's smaller than the largest integer
1415   // register to see which ones need promotion.
1416   unsigned LegalIntReg = LargestIntReg;
1417   for (unsigned IntReg = LargestIntReg - 1;
1418        IntReg >= (unsigned)MVT::i1; --IntReg) {
1419     MVT IVT = (MVT::SimpleValueType)IntReg;
1420     if (isTypeLegal(IVT)) {
1421       LegalIntReg = IntReg;
1422     } else {
1423       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1424         (MVT::SimpleValueType)LegalIntReg;
1425       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1426     }
1427   }
1428 
1429   // ppcf128 type is really two f64's.
1430   if (!isTypeLegal(MVT::ppcf128)) {
1431     if (isTypeLegal(MVT::f64)) {
1432       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1433       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1434       TransformToType[MVT::ppcf128] = MVT::f64;
1435       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1436     } else {
1437       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1438       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1439       TransformToType[MVT::ppcf128] = MVT::i128;
1440       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1441     }
1442   }
1443 
1444   // Decide how to handle f128. If the target does not have native f128 support,
1445   // expand it to i128 and we will be generating soft float library calls.
1446   if (!isTypeLegal(MVT::f128)) {
1447     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1448     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1449     TransformToType[MVT::f128] = MVT::i128;
1450     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1451   }
1452 
1453   // Decide how to handle f80. If the target does not have native f80 support,
1454   // expand it to i96 and we will be generating soft float library calls.
1455   if (!isTypeLegal(MVT::f80)) {
1456     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1457     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1458     TransformToType[MVT::f80] = MVT::i32;
1459     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1460   }
1461 
1462   // Decide how to handle f64. If the target does not have native f64 support,
1463   // expand it to i64 and we will be generating soft float library calls.
1464   if (!isTypeLegal(MVT::f64)) {
1465     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1466     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1467     TransformToType[MVT::f64] = MVT::i64;
1468     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1469   }
1470 
1471   // Decide how to handle f32. If the target does not have native f32 support,
1472   // expand it to i32 and we will be generating soft float library calls.
1473   if (!isTypeLegal(MVT::f32)) {
1474     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1475     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1476     TransformToType[MVT::f32] = MVT::i32;
1477     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1478   }
1479 
1480   // Decide how to handle f16. If the target does not have native f16 support,
1481   // promote it to f32, because there are no f16 library calls (except for
1482   // conversions).
1483   if (!isTypeLegal(MVT::f16)) {
1484     // Allow targets to control how we legalize half.
1485     bool SoftPromoteHalfType = softPromoteHalfType();
1486     bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1487 
1488     if (!UseFPRegsForHalfType) {
1489       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1490       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1491     } else {
1492       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1493       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1494     }
1495     TransformToType[MVT::f16] = MVT::f32;
1496     if (SoftPromoteHalfType) {
1497       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1498     } else {
1499       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1500     }
1501   }
1502 
1503   // Decide how to handle bf16. If the target does not have native bf16 support,
1504   // promote it to f32, because there are no bf16 library calls (except for
1505   // converting from f32 to bf16).
1506   if (!isTypeLegal(MVT::bf16)) {
1507     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1508     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1509     TransformToType[MVT::bf16] = MVT::f32;
1510     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1511   }
1512 
1513   // Loop over all of the vector value types to see which need transformations.
1514   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1515        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1516     MVT VT = (MVT::SimpleValueType) i;
1517     if (isTypeLegal(VT))
1518       continue;
1519 
1520     MVT EltVT = VT.getVectorElementType();
1521     ElementCount EC = VT.getVectorElementCount();
1522     bool IsLegalWiderType = false;
1523     bool IsScalable = VT.isScalableVector();
1524     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1525     switch (PreferredAction) {
1526     case TypePromoteInteger: {
1527       MVT::SimpleValueType EndVT = IsScalable ?
1528                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1529                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1530       // Try to promote the elements of integer vectors. If no legal
1531       // promotion was found, fall through to the widen-vector method.
1532       for (unsigned nVT = i + 1;
1533            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1534         MVT SVT = (MVT::SimpleValueType) nVT;
1535         // Promote vectors of integers to vectors with the same number
1536         // of elements, with a wider element type.
1537         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1538             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1539           TransformToType[i] = SVT;
1540           RegisterTypeForVT[i] = SVT;
1541           NumRegistersForVT[i] = 1;
1542           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1543           IsLegalWiderType = true;
1544           break;
1545         }
1546       }
1547       if (IsLegalWiderType)
1548         break;
1549       [[fallthrough]];
1550     }
1551 
1552     case TypeWidenVector:
1553       if (isPowerOf2_32(EC.getKnownMinValue())) {
1554         // Try to widen the vector.
1555         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1556           MVT SVT = (MVT::SimpleValueType) nVT;
1557           if (SVT.getVectorElementType() == EltVT &&
1558               SVT.isScalableVector() == IsScalable &&
1559               SVT.getVectorElementCount().getKnownMinValue() >
1560                   EC.getKnownMinValue() &&
1561               isTypeLegal(SVT)) {
1562             TransformToType[i] = SVT;
1563             RegisterTypeForVT[i] = SVT;
1564             NumRegistersForVT[i] = 1;
1565             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1566             IsLegalWiderType = true;
1567             break;
1568           }
1569         }
1570         if (IsLegalWiderType)
1571           break;
1572       } else {
1573         // Only widen to the next power of 2 to keep consistency with EVT.
1574         MVT NVT = VT.getPow2VectorType();
1575         if (isTypeLegal(NVT)) {
1576           TransformToType[i] = NVT;
1577           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1578           RegisterTypeForVT[i] = NVT;
1579           NumRegistersForVT[i] = 1;
1580           break;
1581         }
1582       }
1583       [[fallthrough]];
1584 
1585     case TypeSplitVector:
1586     case TypeScalarizeVector: {
1587       MVT IntermediateVT;
1588       MVT RegisterVT;
1589       unsigned NumIntermediates;
1590       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1591           NumIntermediates, RegisterVT, this);
1592       NumRegistersForVT[i] = NumRegisters;
1593       assert(NumRegistersForVT[i] == NumRegisters &&
1594              "NumRegistersForVT size cannot represent NumRegisters!");
1595       RegisterTypeForVT[i] = RegisterVT;
1596 
1597       MVT NVT = VT.getPow2VectorType();
1598       if (NVT == VT) {
1599         // Type is already a power of 2.  The default action is to split.
1600         TransformToType[i] = MVT::Other;
1601         if (PreferredAction == TypeScalarizeVector)
1602           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1603         else if (PreferredAction == TypeSplitVector)
1604           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1605         else if (EC.getKnownMinValue() > 1)
1606           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1607         else
1608           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1609                                                  ? TypeScalarizeScalableVector
1610                                                  : TypeScalarizeVector);
1611       } else {
1612         TransformToType[i] = NVT;
1613         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1614       }
1615       break;
1616     }
1617     default:
1618       llvm_unreachable("Unknown vector legalization action!");
1619     }
1620   }
1621 
1622   // Determine the 'representative' register class for each value type.
1623   // An representative register class is the largest (meaning one which is
1624   // not a sub-register class / subreg register class) legal register class for
1625   // a group of value types. For example, on i386, i8, i16, and i32
1626   // representative would be GR32; while on x86_64 it's GR64.
1627   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1628     const TargetRegisterClass* RRC;
1629     uint8_t Cost;
1630     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1631     RepRegClassForVT[i] = RRC;
1632     RepRegClassCostForVT[i] = Cost;
1633   }
1634 }
1635 
1636 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1637                                            EVT VT) const {
1638   assert(!VT.isVector() && "No default SetCC type for vectors!");
1639   return getPointerTy(DL).SimpleTy;
1640 }
1641 
1642 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1643   return MVT::i32; // return the default value
1644 }
1645 
1646 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1647 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1648 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1649 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1650 ///
1651 /// This method returns the number of registers needed, and the VT for each
1652 /// register.  It also returns the VT and quantity of the intermediate values
1653 /// before they are promoted/expanded.
1654 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1655                                                     EVT VT, EVT &IntermediateVT,
1656                                                     unsigned &NumIntermediates,
1657                                                     MVT &RegisterVT) const {
1658   ElementCount EltCnt = VT.getVectorElementCount();
1659 
1660   // If there is a wider vector type with the same element type as this one,
1661   // or a promoted vector type that has the same number of elements which
1662   // are wider, then we should convert to that legal vector type.
1663   // This handles things like <2 x float> -> <4 x float> and
1664   // <4 x i1> -> <4 x i32>.
1665   LegalizeTypeAction TA = getTypeAction(Context, VT);
1666   if (!EltCnt.isScalar() &&
1667       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1668     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1669     if (isTypeLegal(RegisterEVT)) {
1670       IntermediateVT = RegisterEVT;
1671       RegisterVT = RegisterEVT.getSimpleVT();
1672       NumIntermediates = 1;
1673       return 1;
1674     }
1675   }
1676 
1677   // Figure out the right, legal destination reg to copy into.
1678   EVT EltTy = VT.getVectorElementType();
1679 
1680   unsigned NumVectorRegs = 1;
1681 
1682   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1683   // types like done elsewhere in SelectionDAG.
1684   if (EltCnt.isScalable()) {
1685     LegalizeKind LK;
1686     EVT PartVT = VT;
1687     do {
1688       // Iterate until we've found a legal (part) type to hold VT.
1689       LK = getTypeConversion(Context, PartVT);
1690       PartVT = LK.second;
1691     } while (LK.first != TypeLegal);
1692 
1693     if (!PartVT.isVector()) {
1694       report_fatal_error(
1695           "Don't know how to legalize this scalable vector type");
1696     }
1697 
1698     NumIntermediates =
1699         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1700                    PartVT.getVectorElementCount().getKnownMinValue());
1701     IntermediateVT = PartVT;
1702     RegisterVT = getRegisterType(Context, IntermediateVT);
1703     return NumIntermediates;
1704   }
1705 
1706   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1707   // we could break down into LHS/RHS like LegalizeDAG does.
1708   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1709     NumVectorRegs = EltCnt.getKnownMinValue();
1710     EltCnt = ElementCount::getFixed(1);
1711   }
1712 
1713   // Divide the input until we get to a supported size.  This will always
1714   // end with a scalar if the target doesn't support vectors.
1715   while (EltCnt.getKnownMinValue() > 1 &&
1716          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1717     EltCnt = EltCnt.divideCoefficientBy(2);
1718     NumVectorRegs <<= 1;
1719   }
1720 
1721   NumIntermediates = NumVectorRegs;
1722 
1723   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1724   if (!isTypeLegal(NewVT))
1725     NewVT = EltTy;
1726   IntermediateVT = NewVT;
1727 
1728   MVT DestVT = getRegisterType(Context, NewVT);
1729   RegisterVT = DestVT;
1730 
1731   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1732     TypeSize NewVTSize = NewVT.getSizeInBits();
1733     // Convert sizes such as i33 to i64.
1734     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1735       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1736     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1737   }
1738 
1739   // Otherwise, promotion or legal types use the same number of registers as
1740   // the vector decimated to the appropriate level.
1741   return NumVectorRegs;
1742 }
1743 
1744 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1745                                                 uint64_t NumCases,
1746                                                 uint64_t Range,
1747                                                 ProfileSummaryInfo *PSI,
1748                                                 BlockFrequencyInfo *BFI) const {
1749   // FIXME: This function check the maximum table size and density, but the
1750   // minimum size is not checked. It would be nice if the minimum size is
1751   // also combined within this function. Currently, the minimum size check is
1752   // performed in findJumpTable() in SelectionDAGBuiler and
1753   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1754   const bool OptForSize =
1755       SI->getParent()->getParent()->hasOptSize() ||
1756       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1757   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1758   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1759 
1760   // Check whether the number of cases is small enough and
1761   // the range is dense enough for a jump table.
1762   return (OptForSize || Range <= MaxJumpTableSize) &&
1763          (NumCases * 100 >= Range * MinDensity);
1764 }
1765 
1766 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1767                                                         EVT ConditionVT) const {
1768   return getRegisterType(Context, ConditionVT);
1769 }
1770 
1771 /// Get the EVTs and ArgFlags collections that represent the legalized return
1772 /// type of the given function.  This does not require a DAG or a return value,
1773 /// and is suitable for use before any DAGs for the function are constructed.
1774 /// TODO: Move this out of TargetLowering.cpp.
1775 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1776                          AttributeList attr,
1777                          SmallVectorImpl<ISD::OutputArg> &Outs,
1778                          const TargetLowering &TLI, const DataLayout &DL) {
1779   SmallVector<EVT, 4> ValueVTs;
1780   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1781   unsigned NumValues = ValueVTs.size();
1782   if (NumValues == 0) return;
1783 
1784   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1785     EVT VT = ValueVTs[j];
1786     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1787 
1788     if (attr.hasRetAttr(Attribute::SExt))
1789       ExtendKind = ISD::SIGN_EXTEND;
1790     else if (attr.hasRetAttr(Attribute::ZExt))
1791       ExtendKind = ISD::ZERO_EXTEND;
1792 
1793     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1794       VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1795 
1796     unsigned NumParts =
1797         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1798     MVT PartVT =
1799         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1800 
1801     // 'inreg' on function refers to return value
1802     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1803     if (attr.hasRetAttr(Attribute::InReg))
1804       Flags.setInReg();
1805 
1806     // Propagate extension type if any
1807     if (attr.hasRetAttr(Attribute::SExt))
1808       Flags.setSExt();
1809     else if (attr.hasRetAttr(Attribute::ZExt))
1810       Flags.setZExt();
1811 
1812     for (unsigned i = 0; i < NumParts; ++i)
1813       Outs.push_back(ISD::OutputArg(Flags, PartVT, VT, /*isfixed=*/true, 0, 0));
1814   }
1815 }
1816 
1817 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1818 /// function arguments in the caller parameter area.  This is the actual
1819 /// alignment, not its logarithm.
1820 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1821                                                    const DataLayout &DL) const {
1822   return DL.getABITypeAlign(Ty).value();
1823 }
1824 
1825 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1826     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1827     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1828   // Check if the specified alignment is sufficient based on the data layout.
1829   // TODO: While using the data layout works in practice, a better solution
1830   // would be to implement this check directly (make this a virtual function).
1831   // For example, the ABI alignment may change based on software platform while
1832   // this function should only be affected by hardware implementation.
1833   Type *Ty = VT.getTypeForEVT(Context);
1834   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1835     // Assume that an access that meets the ABI-specified alignment is fast.
1836     if (Fast != nullptr)
1837       *Fast = 1;
1838     return true;
1839   }
1840 
1841   // This is a misaligned access.
1842   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1843 }
1844 
1845 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1846     LLVMContext &Context, const DataLayout &DL, EVT VT,
1847     const MachineMemOperand &MMO, unsigned *Fast) const {
1848   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1849                                         MMO.getAlign(), MMO.getFlags(), Fast);
1850 }
1851 
1852 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1853                                             const DataLayout &DL, EVT VT,
1854                                             unsigned AddrSpace, Align Alignment,
1855                                             MachineMemOperand::Flags Flags,
1856                                             unsigned *Fast) const {
1857   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1858                                         Flags, Fast);
1859 }
1860 
1861 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1862                                             const DataLayout &DL, EVT VT,
1863                                             const MachineMemOperand &MMO,
1864                                             unsigned *Fast) const {
1865   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1866                             MMO.getFlags(), Fast);
1867 }
1868 
1869 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1870                                             const DataLayout &DL, LLT Ty,
1871                                             const MachineMemOperand &MMO,
1872                                             unsigned *Fast) const {
1873   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1874   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1875                             MMO.getFlags(), Fast);
1876 }
1877 
1878 //===----------------------------------------------------------------------===//
1879 //  TargetTransformInfo Helpers
1880 //===----------------------------------------------------------------------===//
1881 
1882 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1883   enum InstructionOpcodes {
1884 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1885 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1886 #include "llvm/IR/Instruction.def"
1887   };
1888   switch (static_cast<InstructionOpcodes>(Opcode)) {
1889   case Ret:            return 0;
1890   case Br:             return 0;
1891   case Switch:         return 0;
1892   case IndirectBr:     return 0;
1893   case Invoke:         return 0;
1894   case CallBr:         return 0;
1895   case Resume:         return 0;
1896   case Unreachable:    return 0;
1897   case CleanupRet:     return 0;
1898   case CatchRet:       return 0;
1899   case CatchPad:       return 0;
1900   case CatchSwitch:    return 0;
1901   case CleanupPad:     return 0;
1902   case FNeg:           return ISD::FNEG;
1903   case Add:            return ISD::ADD;
1904   case FAdd:           return ISD::FADD;
1905   case Sub:            return ISD::SUB;
1906   case FSub:           return ISD::FSUB;
1907   case Mul:            return ISD::MUL;
1908   case FMul:           return ISD::FMUL;
1909   case UDiv:           return ISD::UDIV;
1910   case SDiv:           return ISD::SDIV;
1911   case FDiv:           return ISD::FDIV;
1912   case URem:           return ISD::UREM;
1913   case SRem:           return ISD::SREM;
1914   case FRem:           return ISD::FREM;
1915   case Shl:            return ISD::SHL;
1916   case LShr:           return ISD::SRL;
1917   case AShr:           return ISD::SRA;
1918   case And:            return ISD::AND;
1919   case Or:             return ISD::OR;
1920   case Xor:            return ISD::XOR;
1921   case Alloca:         return 0;
1922   case Load:           return ISD::LOAD;
1923   case Store:          return ISD::STORE;
1924   case GetElementPtr:  return 0;
1925   case Fence:          return 0;
1926   case AtomicCmpXchg:  return 0;
1927   case AtomicRMW:      return 0;
1928   case Trunc:          return ISD::TRUNCATE;
1929   case ZExt:           return ISD::ZERO_EXTEND;
1930   case SExt:           return ISD::SIGN_EXTEND;
1931   case FPToUI:         return ISD::FP_TO_UINT;
1932   case FPToSI:         return ISD::FP_TO_SINT;
1933   case UIToFP:         return ISD::UINT_TO_FP;
1934   case SIToFP:         return ISD::SINT_TO_FP;
1935   case FPTrunc:        return ISD::FP_ROUND;
1936   case FPExt:          return ISD::FP_EXTEND;
1937   case PtrToInt:       return ISD::BITCAST;
1938   case IntToPtr:       return ISD::BITCAST;
1939   case BitCast:        return ISD::BITCAST;
1940   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1941   case ICmp:           return ISD::SETCC;
1942   case FCmp:           return ISD::SETCC;
1943   case PHI:            return 0;
1944   case Call:           return 0;
1945   case Select:         return ISD::SELECT;
1946   case UserOp1:        return 0;
1947   case UserOp2:        return 0;
1948   case VAArg:          return 0;
1949   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1950   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1951   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1952   case ExtractValue:   return ISD::MERGE_VALUES;
1953   case InsertValue:    return ISD::MERGE_VALUES;
1954   case LandingPad:     return 0;
1955   case Freeze:         return ISD::FREEZE;
1956   }
1957 
1958   llvm_unreachable("Unknown instruction type encountered!");
1959 }
1960 
1961 Value *
1962 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1963                                                        bool UseTLS) const {
1964   // compiler-rt provides a variable with a magic name.  Targets that do not
1965   // link with compiler-rt may also provide such a variable.
1966   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1967   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1968   auto UnsafeStackPtr =
1969       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1970 
1971   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1972 
1973   if (!UnsafeStackPtr) {
1974     auto TLSModel = UseTLS ?
1975         GlobalValue::InitialExecTLSModel :
1976         GlobalValue::NotThreadLocal;
1977     // The global variable is not defined yet, define it ourselves.
1978     // We use the initial-exec TLS model because we do not support the
1979     // variable living anywhere other than in the main executable.
1980     UnsafeStackPtr = new GlobalVariable(
1981         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1982         UnsafeStackPtrVar, nullptr, TLSModel);
1983   } else {
1984     // The variable exists, check its type and attributes.
1985     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1986       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1987     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1988       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1989                          (UseTLS ? "" : "not ") + "be thread-local");
1990   }
1991   return UnsafeStackPtr;
1992 }
1993 
1994 Value *
1995 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1996   if (!TM.getTargetTriple().isAndroid())
1997     return getDefaultSafeStackPointerLocation(IRB, true);
1998 
1999   // Android provides a libc function to retrieve the address of the current
2000   // thread's unsafe stack pointer.
2001   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2002   auto *PtrTy = PointerType::getUnqual(M->getContext());
2003   FunctionCallee Fn =
2004       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
2005   return IRB.CreateCall(Fn);
2006 }
2007 
2008 //===----------------------------------------------------------------------===//
2009 //  Loop Strength Reduction hooks
2010 //===----------------------------------------------------------------------===//
2011 
2012 /// isLegalAddressingMode - Return true if the addressing mode represented
2013 /// by AM is legal for this target, for a load/store of the specified type.
2014 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
2015                                                const AddrMode &AM, Type *Ty,
2016                                                unsigned AS, Instruction *I) const {
2017   // The default implementation of this implements a conservative RISCy, r+r and
2018   // r+i addr mode.
2019 
2020   // Scalable offsets not supported
2021   if (AM.ScalableOffset)
2022     return false;
2023 
2024   // Allows a sign-extended 16-bit immediate field.
2025   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2026     return false;
2027 
2028   // No global is ever allowed as a base.
2029   if (AM.BaseGV)
2030     return false;
2031 
2032   // Only support r+r,
2033   switch (AM.Scale) {
2034   case 0:  // "r+i" or just "i", depending on HasBaseReg.
2035     break;
2036   case 1:
2037     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2038       return false;
2039     // Otherwise we have r+r or r+i.
2040     break;
2041   case 2:
2042     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2043       return false;
2044     // Allow 2*r as r+r.
2045     break;
2046   default: // Don't allow n * r
2047     return false;
2048   }
2049 
2050   return true;
2051 }
2052 
2053 //===----------------------------------------------------------------------===//
2054 //  Stack Protector
2055 //===----------------------------------------------------------------------===//
2056 
2057 // For OpenBSD return its special guard variable. Otherwise return nullptr,
2058 // so that SelectionDAG handle SSP.
2059 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
2060   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2061     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2062     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
2063     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
2064     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
2065       G->setVisibility(GlobalValue::HiddenVisibility);
2066     return C;
2067   }
2068   return nullptr;
2069 }
2070 
2071 // Currently only support "standard" __stack_chk_guard.
2072 // TODO: add LOAD_STACK_GUARD support.
2073 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2074   if (!M.getNamedValue("__stack_chk_guard")) {
2075     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2076                                   false, GlobalVariable::ExternalLinkage,
2077                                   nullptr, "__stack_chk_guard");
2078 
2079     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2080     if (M.getDirectAccessExternalData() &&
2081         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2082         !(TM.getTargetTriple().isPPC64() &&
2083           TM.getTargetTriple().isOSFreeBSD()) &&
2084         (!TM.getTargetTriple().isOSDarwin() ||
2085          TM.getRelocationModel() == Reloc::Static))
2086       GV->setDSOLocal(true);
2087   }
2088 }
2089 
2090 // Currently only support "standard" __stack_chk_guard.
2091 // TODO: add LOAD_STACK_GUARD support.
2092 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2093   return M.getNamedValue("__stack_chk_guard");
2094 }
2095 
2096 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2097   return nullptr;
2098 }
2099 
2100 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2101   return MinimumJumpTableEntries;
2102 }
2103 
2104 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2105   MinimumJumpTableEntries = Val;
2106 }
2107 
2108 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2109   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2110 }
2111 
2112 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2113   return MaximumJumpTableSize;
2114 }
2115 
2116 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2117   MaximumJumpTableSize = Val;
2118 }
2119 
2120 bool TargetLoweringBase::isJumpTableRelative() const {
2121   return getTargetMachine().isPositionIndependent();
2122 }
2123 
2124 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2125   if (TM.Options.LoopAlignment)
2126     return Align(TM.Options.LoopAlignment);
2127   return PrefLoopAlignment;
2128 }
2129 
2130 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2131     MachineBasicBlock *MBB) const {
2132   return MaxBytesForAlignment;
2133 }
2134 
2135 //===----------------------------------------------------------------------===//
2136 //  Reciprocal Estimates
2137 //===----------------------------------------------------------------------===//
2138 
2139 /// Get the reciprocal estimate attribute string for a function that will
2140 /// override the target defaults.
2141 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2142   const Function &F = MF.getFunction();
2143   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2144 }
2145 
2146 /// Construct a string for the given reciprocal operation of the given type.
2147 /// This string should match the corresponding option to the front-end's
2148 /// "-mrecip" flag assuming those strings have been passed through in an
2149 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2150 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2151   std::string Name = VT.isVector() ? "vec-" : "";
2152 
2153   Name += IsSqrt ? "sqrt" : "div";
2154 
2155   // TODO: Handle other float types?
2156   if (VT.getScalarType() == MVT::f64) {
2157     Name += "d";
2158   } else if (VT.getScalarType() == MVT::f16) {
2159     Name += "h";
2160   } else {
2161     assert(VT.getScalarType() == MVT::f32 &&
2162            "Unexpected FP type for reciprocal estimate");
2163     Name += "f";
2164   }
2165 
2166   return Name;
2167 }
2168 
2169 /// Return the character position and value (a single numeric character) of a
2170 /// customized refinement operation in the input string if it exists. Return
2171 /// false if there is no customized refinement step count.
2172 static bool parseRefinementStep(StringRef In, size_t &Position,
2173                                 uint8_t &Value) {
2174   const char RefStepToken = ':';
2175   Position = In.find(RefStepToken);
2176   if (Position == StringRef::npos)
2177     return false;
2178 
2179   StringRef RefStepString = In.substr(Position + 1);
2180   // Allow exactly one numeric character for the additional refinement
2181   // step parameter.
2182   if (RefStepString.size() == 1) {
2183     char RefStepChar = RefStepString[0];
2184     if (isDigit(RefStepChar)) {
2185       Value = RefStepChar - '0';
2186       return true;
2187     }
2188   }
2189   report_fatal_error("Invalid refinement step for -recip.");
2190 }
2191 
2192 /// For the input attribute string, return one of the ReciprocalEstimate enum
2193 /// status values (enabled, disabled, or not specified) for this operation on
2194 /// the specified data type.
2195 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2196   if (Override.empty())
2197     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2198 
2199   SmallVector<StringRef, 4> OverrideVector;
2200   Override.split(OverrideVector, ',');
2201   unsigned NumArgs = OverrideVector.size();
2202 
2203   // Check if "all", "none", or "default" was specified.
2204   if (NumArgs == 1) {
2205     // Look for an optional setting of the number of refinement steps needed
2206     // for this type of reciprocal operation.
2207     size_t RefPos;
2208     uint8_t RefSteps;
2209     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2210       // Split the string for further processing.
2211       Override = Override.substr(0, RefPos);
2212     }
2213 
2214     // All reciprocal types are enabled.
2215     if (Override == "all")
2216       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2217 
2218     // All reciprocal types are disabled.
2219     if (Override == "none")
2220       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2221 
2222     // Target defaults for enablement are used.
2223     if (Override == "default")
2224       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2225   }
2226 
2227   // The attribute string may omit the size suffix ('f'/'d').
2228   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2229   std::string VTNameNoSize = VTName;
2230   VTNameNoSize.pop_back();
2231   static const char DisabledPrefix = '!';
2232 
2233   for (StringRef RecipType : OverrideVector) {
2234     size_t RefPos;
2235     uint8_t RefSteps;
2236     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2237       RecipType = RecipType.substr(0, RefPos);
2238 
2239     // Ignore the disablement token for string matching.
2240     bool IsDisabled = RecipType[0] == DisabledPrefix;
2241     if (IsDisabled)
2242       RecipType = RecipType.substr(1);
2243 
2244     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2245       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2246                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2247   }
2248 
2249   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2250 }
2251 
2252 /// For the input attribute string, return the customized refinement step count
2253 /// for this operation on the specified data type. If the step count does not
2254 /// exist, return the ReciprocalEstimate enum value for unspecified.
2255 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2256   if (Override.empty())
2257     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2258 
2259   SmallVector<StringRef, 4> OverrideVector;
2260   Override.split(OverrideVector, ',');
2261   unsigned NumArgs = OverrideVector.size();
2262 
2263   // Check if "all", "default", or "none" was specified.
2264   if (NumArgs == 1) {
2265     // Look for an optional setting of the number of refinement steps needed
2266     // for this type of reciprocal operation.
2267     size_t RefPos;
2268     uint8_t RefSteps;
2269     if (!parseRefinementStep(Override, RefPos, RefSteps))
2270       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2271 
2272     // Split the string for further processing.
2273     Override = Override.substr(0, RefPos);
2274     assert(Override != "none" &&
2275            "Disabled reciprocals, but specifed refinement steps?");
2276 
2277     // If this is a general override, return the specified number of steps.
2278     if (Override == "all" || Override == "default")
2279       return RefSteps;
2280   }
2281 
2282   // The attribute string may omit the size suffix ('f'/'d').
2283   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2284   std::string VTNameNoSize = VTName;
2285   VTNameNoSize.pop_back();
2286 
2287   for (StringRef RecipType : OverrideVector) {
2288     size_t RefPos;
2289     uint8_t RefSteps;
2290     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2291       continue;
2292 
2293     RecipType = RecipType.substr(0, RefPos);
2294     if (RecipType.equals(VTName) || RecipType.equals(VTNameNoSize))
2295       return RefSteps;
2296   }
2297 
2298   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2299 }
2300 
2301 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2302                                                     MachineFunction &MF) const {
2303   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2304 }
2305 
2306 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2307                                                    MachineFunction &MF) const {
2308   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2309 }
2310 
2311 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2312                                                MachineFunction &MF) const {
2313   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2314 }
2315 
2316 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2317                                               MachineFunction &MF) const {
2318   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2319 }
2320 
2321 bool TargetLoweringBase::isLoadBitCastBeneficial(
2322     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2323     const MachineMemOperand &MMO) const {
2324   // Single-element vectors are scalarized, so we should generally avoid having
2325   // any memory operations on such types, as they would get scalarized too.
2326   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2327       BitcastVT.getVectorNumElements() == 1)
2328     return false;
2329 
2330   // Don't do if we could do an indexed load on the original type, but not on
2331   // the new one.
2332   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2333     return true;
2334 
2335   MVT LoadMVT = LoadVT.getSimpleVT();
2336 
2337   // Don't bother doing this if it's just going to be promoted again later, as
2338   // doing so might interfere with other combines.
2339   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2340       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2341     return false;
2342 
2343   unsigned Fast = 0;
2344   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2345                             MMO, &Fast) &&
2346          Fast;
2347 }
2348 
2349 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2350   MF.getRegInfo().freezeReservedRegs();
2351 }
2352 
2353 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2354     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2355     const TargetLibraryInfo *LibInfo) const {
2356   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2357   if (LI.isVolatile())
2358     Flags |= MachineMemOperand::MOVolatile;
2359 
2360   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2361     Flags |= MachineMemOperand::MONonTemporal;
2362 
2363   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2364     Flags |= MachineMemOperand::MOInvariant;
2365 
2366   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2367                                          LI.getAlign(), DL, &LI, AC,
2368                                          /*DT=*/nullptr, LibInfo))
2369     Flags |= MachineMemOperand::MODereferenceable;
2370 
2371   Flags |= getTargetMMOFlags(LI);
2372   return Flags;
2373 }
2374 
2375 MachineMemOperand::Flags
2376 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2377                                             const DataLayout &DL) const {
2378   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2379 
2380   if (SI.isVolatile())
2381     Flags |= MachineMemOperand::MOVolatile;
2382 
2383   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2384     Flags |= MachineMemOperand::MONonTemporal;
2385 
2386   // FIXME: Not preserving dereferenceable
2387   Flags |= getTargetMMOFlags(SI);
2388   return Flags;
2389 }
2390 
2391 MachineMemOperand::Flags
2392 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2393                                              const DataLayout &DL) const {
2394   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2395 
2396   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2397     if (RMW->isVolatile())
2398       Flags |= MachineMemOperand::MOVolatile;
2399   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2400     if (CmpX->isVolatile())
2401       Flags |= MachineMemOperand::MOVolatile;
2402   } else
2403     llvm_unreachable("not an atomic instruction");
2404 
2405   // FIXME: Not preserving dereferenceable
2406   Flags |= getTargetMMOFlags(AI);
2407   return Flags;
2408 }
2409 
2410 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2411                                                   Instruction *Inst,
2412                                                   AtomicOrdering Ord) const {
2413   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2414     return Builder.CreateFence(Ord);
2415   else
2416     return nullptr;
2417 }
2418 
2419 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2420                                                    Instruction *Inst,
2421                                                    AtomicOrdering Ord) const {
2422   if (isAcquireOrStronger(Ord))
2423     return Builder.CreateFence(Ord);
2424   else
2425     return nullptr;
2426 }
2427 
2428 //===----------------------------------------------------------------------===//
2429 //  GlobalISel Hooks
2430 //===----------------------------------------------------------------------===//
2431 
2432 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2433                                         const TargetTransformInfo *TTI) const {
2434   auto &MF = *MI.getMF();
2435   auto &MRI = MF.getRegInfo();
2436   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2437   // this helper function computes the maximum number of uses we should consider
2438   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2439   // break even in terms of code size when the original MI has 2 users vs
2440   // choosing to potentially spill. Any more than 2 users we we have a net code
2441   // size increase. This doesn't take into account register pressure though.
2442   auto maxUses = [](unsigned RematCost) {
2443     // A cost of 1 means remats are basically free.
2444     if (RematCost == 1)
2445       return std::numeric_limits<unsigned>::max();
2446     if (RematCost == 2)
2447       return 2U;
2448 
2449     // Remat is too expensive, only sink if there's one user.
2450     if (RematCost > 2)
2451       return 1U;
2452     llvm_unreachable("Unexpected remat cost");
2453   };
2454 
2455   switch (MI.getOpcode()) {
2456   default:
2457     return false;
2458   // Constants-like instructions should be close to their users.
2459   // We don't want long live-ranges for them.
2460   case TargetOpcode::G_CONSTANT:
2461   case TargetOpcode::G_FCONSTANT:
2462   case TargetOpcode::G_FRAME_INDEX:
2463   case TargetOpcode::G_INTTOPTR:
2464     return true;
2465   case TargetOpcode::G_GLOBAL_VALUE: {
2466     unsigned RematCost = TTI->getGISelRematGlobalCost();
2467     Register Reg = MI.getOperand(0).getReg();
2468     unsigned MaxUses = maxUses(RematCost);
2469     if (MaxUses == UINT_MAX)
2470       return true; // Remats are "free" so always localize.
2471     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2472   }
2473   }
2474 }
2475