xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 1ccd8756f1284e497fe921b955b8e06c8ccfbcdc)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcalls.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/CodeGenTypes/MachineValueType.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 static bool darwinHasSinCos(const Triple &TT) {
102   assert(TT.isOSDarwin() && "should be called with darwin triple");
103   // Don't bother with 32 bit x86.
104   if (TT.getArch() == Triple::x86)
105     return false;
106   // Macos < 10.9 has no sincos_stret.
107   if (TT.isMacOSX())
108     return !TT.isMacOSXVersionLT(10, 9) && TT.isArch64Bit();
109   // iOS < 7.0 has no sincos_stret.
110   if (TT.isiOS())
111     return !TT.isOSVersionLT(7, 0);
112   // Any other darwin such as WatchOS/TvOS is new enough.
113   return true;
114 }
115 
116 void TargetLoweringBase::InitLibcalls(const Triple &TT) {
117 #define HANDLE_LIBCALL(code, name) \
118   setLibcallName(RTLIB::code, name);
119 #include "llvm/IR/RuntimeLibcalls.def"
120 #undef HANDLE_LIBCALL
121   // Initialize calling conventions to their default.
122   for (int LC = 0; LC < RTLIB::UNKNOWN_LIBCALL; ++LC)
123     setLibcallCallingConv((RTLIB::Libcall)LC, CallingConv::C);
124 
125   // Use the f128 variants of math functions on x86_64
126   if (TT.getArch() == Triple::ArchType::x86_64 && TT.isGNUEnvironment()) {
127     setLibcallName(RTLIB::REM_F128, "fmodf128");
128     setLibcallName(RTLIB::FMA_F128, "fmaf128");
129     setLibcallName(RTLIB::SQRT_F128, "sqrtf128");
130     setLibcallName(RTLIB::CBRT_F128, "cbrtf128");
131     setLibcallName(RTLIB::LOG_F128, "logf128");
132     setLibcallName(RTLIB::LOG_FINITE_F128, "__logf128_finite");
133     setLibcallName(RTLIB::LOG2_F128, "log2f128");
134     setLibcallName(RTLIB::LOG2_FINITE_F128, "__log2f128_finite");
135     setLibcallName(RTLIB::LOG10_F128, "log10f128");
136     setLibcallName(RTLIB::LOG10_FINITE_F128, "__log10f128_finite");
137     setLibcallName(RTLIB::EXP_F128, "expf128");
138     setLibcallName(RTLIB::EXP_FINITE_F128, "__expf128_finite");
139     setLibcallName(RTLIB::EXP2_F128, "exp2f128");
140     setLibcallName(RTLIB::EXP2_FINITE_F128, "__exp2f128_finite");
141     setLibcallName(RTLIB::EXP10_F128, "exp10f128");
142     setLibcallName(RTLIB::SIN_F128, "sinf128");
143     setLibcallName(RTLIB::COS_F128, "cosf128");
144     setLibcallName(RTLIB::TAN_F128, "tanf128");
145     setLibcallName(RTLIB::SINCOS_F128, "sincosf128");
146     setLibcallName(RTLIB::ASIN_F128, "asinf128");
147     setLibcallName(RTLIB::ACOS_F128, "acosf128");
148     setLibcallName(RTLIB::ATAN_F128, "atanf128");
149     setLibcallName(RTLIB::SINH_F128, "sinhf128");
150     setLibcallName(RTLIB::COSH_F128, "coshf128");
151     setLibcallName(RTLIB::TANH_F128, "tanhf128");
152     setLibcallName(RTLIB::POW_F128, "powf128");
153     setLibcallName(RTLIB::POW_FINITE_F128, "__powf128_finite");
154     setLibcallName(RTLIB::CEIL_F128, "ceilf128");
155     setLibcallName(RTLIB::TRUNC_F128, "truncf128");
156     setLibcallName(RTLIB::RINT_F128, "rintf128");
157     setLibcallName(RTLIB::NEARBYINT_F128, "nearbyintf128");
158     setLibcallName(RTLIB::ROUND_F128, "roundf128");
159     setLibcallName(RTLIB::ROUNDEVEN_F128, "roundevenf128");
160     setLibcallName(RTLIB::FLOOR_F128, "floorf128");
161     setLibcallName(RTLIB::COPYSIGN_F128, "copysignf128");
162     setLibcallName(RTLIB::FMIN_F128, "fminf128");
163     setLibcallName(RTLIB::FMAX_F128, "fmaxf128");
164     setLibcallName(RTLIB::LROUND_F128, "lroundf128");
165     setLibcallName(RTLIB::LLROUND_F128, "llroundf128");
166     setLibcallName(RTLIB::LRINT_F128, "lrintf128");
167     setLibcallName(RTLIB::LLRINT_F128, "llrintf128");
168     setLibcallName(RTLIB::LDEXP_F128, "ldexpf128");
169     setLibcallName(RTLIB::FREXP_F128, "frexpf128");
170   }
171 
172   // For IEEE quad-precision libcall names, PPC uses "kf" instead of "tf".
173   if (TT.isPPC()) {
174     setLibcallName(RTLIB::ADD_F128, "__addkf3");
175     setLibcallName(RTLIB::SUB_F128, "__subkf3");
176     setLibcallName(RTLIB::MUL_F128, "__mulkf3");
177     setLibcallName(RTLIB::DIV_F128, "__divkf3");
178     setLibcallName(RTLIB::POWI_F128, "__powikf2");
179     setLibcallName(RTLIB::FPEXT_F32_F128, "__extendsfkf2");
180     setLibcallName(RTLIB::FPEXT_F64_F128, "__extenddfkf2");
181     setLibcallName(RTLIB::FPROUND_F128_F32, "__trunckfsf2");
182     setLibcallName(RTLIB::FPROUND_F128_F64, "__trunckfdf2");
183     setLibcallName(RTLIB::FPTOSINT_F128_I32, "__fixkfsi");
184     setLibcallName(RTLIB::FPTOSINT_F128_I64, "__fixkfdi");
185     setLibcallName(RTLIB::FPTOSINT_F128_I128, "__fixkfti");
186     setLibcallName(RTLIB::FPTOUINT_F128_I32, "__fixunskfsi");
187     setLibcallName(RTLIB::FPTOUINT_F128_I64, "__fixunskfdi");
188     setLibcallName(RTLIB::FPTOUINT_F128_I128, "__fixunskfti");
189     setLibcallName(RTLIB::SINTTOFP_I32_F128, "__floatsikf");
190     setLibcallName(RTLIB::SINTTOFP_I64_F128, "__floatdikf");
191     setLibcallName(RTLIB::SINTTOFP_I128_F128, "__floattikf");
192     setLibcallName(RTLIB::UINTTOFP_I32_F128, "__floatunsikf");
193     setLibcallName(RTLIB::UINTTOFP_I64_F128, "__floatundikf");
194     setLibcallName(RTLIB::UINTTOFP_I128_F128, "__floatuntikf");
195     setLibcallName(RTLIB::OEQ_F128, "__eqkf2");
196     setLibcallName(RTLIB::UNE_F128, "__nekf2");
197     setLibcallName(RTLIB::OGE_F128, "__gekf2");
198     setLibcallName(RTLIB::OLT_F128, "__ltkf2");
199     setLibcallName(RTLIB::OLE_F128, "__lekf2");
200     setLibcallName(RTLIB::OGT_F128, "__gtkf2");
201     setLibcallName(RTLIB::UO_F128, "__unordkf2");
202   }
203 
204   // A few names are different on particular architectures or environments.
205   if (TT.isOSDarwin()) {
206     // For f16/f32 conversions, Darwin uses the standard naming scheme, instead
207     // of the gnueabi-style __gnu_*_ieee.
208     // FIXME: What about other targets?
209     setLibcallName(RTLIB::FPEXT_F16_F32, "__extendhfsf2");
210     setLibcallName(RTLIB::FPROUND_F32_F16, "__truncsfhf2");
211 
212     // Some darwins have an optimized __bzero/bzero function.
213     switch (TT.getArch()) {
214     case Triple::x86:
215     case Triple::x86_64:
216       if (TT.isMacOSX() && !TT.isMacOSXVersionLT(10, 6))
217         setLibcallName(RTLIB::BZERO, "__bzero");
218       break;
219     case Triple::aarch64:
220     case Triple::aarch64_32:
221       setLibcallName(RTLIB::BZERO, "bzero");
222       break;
223     default:
224       break;
225     }
226 
227     if (darwinHasSinCos(TT)) {
228       setLibcallName(RTLIB::SINCOS_STRET_F32, "__sincosf_stret");
229       setLibcallName(RTLIB::SINCOS_STRET_F64, "__sincos_stret");
230       if (TT.isWatchABI()) {
231         setLibcallCallingConv(RTLIB::SINCOS_STRET_F32,
232                               CallingConv::ARM_AAPCS_VFP);
233         setLibcallCallingConv(RTLIB::SINCOS_STRET_F64,
234                               CallingConv::ARM_AAPCS_VFP);
235       }
236     }
237 
238     switch (TT.getOS()) {
239     case Triple::MacOSX:
240       if (TT.isMacOSXVersionLT(10, 9)) {
241         setLibcallName(RTLIB::EXP10_F32, nullptr);
242         setLibcallName(RTLIB::EXP10_F64, nullptr);
243       } else {
244         setLibcallName(RTLIB::EXP10_F32, "__exp10f");
245         setLibcallName(RTLIB::EXP10_F64, "__exp10");
246       }
247       break;
248     case Triple::IOS:
249       if (TT.isOSVersionLT(7, 0)) {
250         setLibcallName(RTLIB::EXP10_F32, nullptr);
251         setLibcallName(RTLIB::EXP10_F64, nullptr);
252         break;
253       }
254       [[fallthrough]];
255     case Triple::TvOS:
256     case Triple::WatchOS:
257     case Triple::XROS:
258       setLibcallName(RTLIB::EXP10_F32, "__exp10f");
259       setLibcallName(RTLIB::EXP10_F64, "__exp10");
260       break;
261     default:
262       break;
263     }
264   } else {
265     setLibcallName(RTLIB::FPEXT_F16_F32, "__gnu_h2f_ieee");
266     setLibcallName(RTLIB::FPROUND_F32_F16, "__gnu_f2h_ieee");
267   }
268 
269   if (TT.isGNUEnvironment() || TT.isOSFuchsia() ||
270       (TT.isAndroid() && !TT.isAndroidVersionLT(9))) {
271     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
272     setLibcallName(RTLIB::SINCOS_F64, "sincos");
273     setLibcallName(RTLIB::SINCOS_F80, "sincosl");
274     setLibcallName(RTLIB::SINCOS_F128, "sincosl");
275     setLibcallName(RTLIB::SINCOS_PPCF128, "sincosl");
276   }
277 
278   if (TT.isPS()) {
279     setLibcallName(RTLIB::SINCOS_F32, "sincosf");
280     setLibcallName(RTLIB::SINCOS_F64, "sincos");
281   }
282 
283   if (TT.isOSOpenBSD()) {
284     setLibcallName(RTLIB::STACKPROTECTOR_CHECK_FAIL, nullptr);
285   }
286 
287   if (TT.isOSWindows() && !TT.isOSCygMing()) {
288     setLibcallName(RTLIB::LDEXP_F32, nullptr);
289     setLibcallName(RTLIB::LDEXP_F80, nullptr);
290     setLibcallName(RTLIB::LDEXP_F128, nullptr);
291     setLibcallName(RTLIB::LDEXP_PPCF128, nullptr);
292 
293     setLibcallName(RTLIB::FREXP_F32, nullptr);
294     setLibcallName(RTLIB::FREXP_F80, nullptr);
295     setLibcallName(RTLIB::FREXP_F128, nullptr);
296     setLibcallName(RTLIB::FREXP_PPCF128, nullptr);
297   }
298 
299   if (TT.isAArch64()) {
300     if (TT.isOSMSVCRT()) {
301       // MSVCRT doesn't have powi; fall back to pow
302       setLibcallName(RTLIB::POWI_F32, nullptr);
303       setLibcallName(RTLIB::POWI_F64, nullptr);
304     }
305   }
306 
307   // Disable most libcalls on AMDGPU.
308   if (TT.isAMDGPU()) {
309     for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I) {
310       if (I < RTLIB::ATOMIC_LOAD || I > RTLIB::ATOMIC_FETCH_NAND_16)
311         setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
312     }
313   }
314 
315   // Disable most libcalls on NVPTX.
316   if (TT.isNVPTX()) {
317     for (int I = 0; I < RTLIB::UNKNOWN_LIBCALL; ++I)
318       if (I < RTLIB::ATOMIC_LOAD || I > RTLIB::ATOMIC_FETCH_NAND_16)
319         setLibcallName(static_cast<RTLIB::Libcall>(I), nullptr);
320   }
321 
322   if (TT.isARM() || TT.isThumb()) {
323     // These libcalls are not available in 32-bit.
324     setLibcallName(RTLIB::SHL_I128, nullptr);
325     setLibcallName(RTLIB::SRL_I128, nullptr);
326     setLibcallName(RTLIB::SRA_I128, nullptr);
327     setLibcallName(RTLIB::MUL_I128, nullptr);
328     setLibcallName(RTLIB::MULO_I64, nullptr);
329     setLibcallName(RTLIB::MULO_I128, nullptr);
330 
331     if (TT.isOSMSVCRT()) {
332       // MSVCRT doesn't have powi; fall back to pow
333       setLibcallName(RTLIB::POWI_F32, nullptr);
334       setLibcallName(RTLIB::POWI_F64, nullptr);
335     }
336   }
337 
338   if (TT.getArch() == Triple::ArchType::avr) {
339     // Division rtlib functions (not supported), use divmod functions instead
340     setLibcallName(RTLIB::SDIV_I8, nullptr);
341     setLibcallName(RTLIB::SDIV_I16, nullptr);
342     setLibcallName(RTLIB::SDIV_I32, nullptr);
343     setLibcallName(RTLIB::UDIV_I8, nullptr);
344     setLibcallName(RTLIB::UDIV_I16, nullptr);
345     setLibcallName(RTLIB::UDIV_I32, nullptr);
346 
347     // Modulus rtlib functions (not supported), use divmod functions instead
348     setLibcallName(RTLIB::SREM_I8, nullptr);
349     setLibcallName(RTLIB::SREM_I16, nullptr);
350     setLibcallName(RTLIB::SREM_I32, nullptr);
351     setLibcallName(RTLIB::UREM_I8, nullptr);
352     setLibcallName(RTLIB::UREM_I16, nullptr);
353     setLibcallName(RTLIB::UREM_I32, nullptr);
354   }
355 
356   if (TT.getArch() == Triple::ArchType::hexagon) {
357     // These cause problems when the shift amount is non-constant.
358     setLibcallName(RTLIB::SHL_I128, nullptr);
359     setLibcallName(RTLIB::SRL_I128, nullptr);
360     setLibcallName(RTLIB::SRA_I128, nullptr);
361   }
362 
363   if (TT.isLoongArch()) {
364     if (!TT.isLoongArch64()) {
365       // Set libcalls.
366       setLibcallName(RTLIB::MUL_I128, nullptr);
367       // The MULO libcall is not part of libgcc, only compiler-rt.
368       setLibcallName(RTLIB::MULO_I64, nullptr);
369     }
370     // The MULO libcall is not part of libgcc, only compiler-rt.
371     setLibcallName(RTLIB::MULO_I128, nullptr);
372   }
373 
374   if (TT.isMIPS32()) {
375     // These libcalls are not available in 32-bit.
376     setLibcallName(RTLIB::SHL_I128, nullptr);
377     setLibcallName(RTLIB::SRL_I128, nullptr);
378     setLibcallName(RTLIB::SRA_I128, nullptr);
379     setLibcallName(RTLIB::MUL_I128, nullptr);
380     setLibcallName(RTLIB::MULO_I64, nullptr);
381     setLibcallName(RTLIB::MULO_I128, nullptr);
382   }
383 
384   if (TT.isPPC()) {
385     if (!TT.isPPC64()) {
386       // These libcalls are not available in 32-bit.
387       setLibcallName(RTLIB::SHL_I128, nullptr);
388       setLibcallName(RTLIB::SRL_I128, nullptr);
389       setLibcallName(RTLIB::SRA_I128, nullptr);
390       setLibcallName(RTLIB::MUL_I128, nullptr);
391       setLibcallName(RTLIB::MULO_I64, nullptr);
392     }
393     setLibcallName(RTLIB::MULO_I128, nullptr);
394   }
395 
396   if (TT.isRISCV32()) {
397     // These libcalls are not available in 32-bit.
398     setLibcallName(RTLIB::SHL_I128, nullptr);
399     setLibcallName(RTLIB::SRL_I128, nullptr);
400     setLibcallName(RTLIB::SRA_I128, nullptr);
401     setLibcallName(RTLIB::MUL_I128, nullptr);
402     setLibcallName(RTLIB::MULO_I64, nullptr);
403   }
404 
405   if (TT.isSPARC()) {
406     if (!TT.isSPARC64()) {
407       // These libcalls are not available in 32-bit.
408       setLibcallName(RTLIB::MULO_I64, nullptr);
409       setLibcallName(RTLIB::MUL_I128, nullptr);
410       setLibcallName(RTLIB::SHL_I128, nullptr);
411       setLibcallName(RTLIB::SRL_I128, nullptr);
412       setLibcallName(RTLIB::SRA_I128, nullptr);
413     }
414     setLibcallName(RTLIB::MULO_I128, nullptr);
415   }
416 
417   if (TT.isSystemZ()) {
418     setLibcallName(RTLIB::SRL_I128, nullptr);
419     setLibcallName(RTLIB::SHL_I128, nullptr);
420     setLibcallName(RTLIB::SRA_I128, nullptr);
421   }
422 
423   if (TT.isX86()) {
424     if (TT.getArch() == Triple::ArchType::x86) {
425       // These libcalls are not available in 32-bit.
426       setLibcallName(RTLIB::SHL_I128, nullptr);
427       setLibcallName(RTLIB::SRL_I128, nullptr);
428       setLibcallName(RTLIB::SRA_I128, nullptr);
429       setLibcallName(RTLIB::MUL_I128, nullptr);
430       // The MULO libcall is not part of libgcc, only compiler-rt.
431       setLibcallName(RTLIB::MULO_I64, nullptr);
432     }
433 
434     // The MULO libcall is not part of libgcc, only compiler-rt.
435     setLibcallName(RTLIB::MULO_I128, nullptr);
436 
437     if (TT.isOSMSVCRT()) {
438       // MSVCRT doesn't have powi; fall back to pow
439       setLibcallName(RTLIB::POWI_F32, nullptr);
440       setLibcallName(RTLIB::POWI_F64, nullptr);
441     }
442   }
443 }
444 
445 /// GetFPLibCall - Helper to return the right libcall for the given floating
446 /// point type, or UNKNOWN_LIBCALL if there is none.
447 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
448                                    RTLIB::Libcall Call_F32,
449                                    RTLIB::Libcall Call_F64,
450                                    RTLIB::Libcall Call_F80,
451                                    RTLIB::Libcall Call_F128,
452                                    RTLIB::Libcall Call_PPCF128) {
453   return
454     VT == MVT::f32 ? Call_F32 :
455     VT == MVT::f64 ? Call_F64 :
456     VT == MVT::f80 ? Call_F80 :
457     VT == MVT::f128 ? Call_F128 :
458     VT == MVT::ppcf128 ? Call_PPCF128 :
459     RTLIB::UNKNOWN_LIBCALL;
460 }
461 
462 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
463 /// UNKNOWN_LIBCALL if there is none.
464 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
465   if (OpVT == MVT::f16) {
466     if (RetVT == MVT::f32)
467       return FPEXT_F16_F32;
468     if (RetVT == MVT::f64)
469       return FPEXT_F16_F64;
470     if (RetVT == MVT::f80)
471       return FPEXT_F16_F80;
472     if (RetVT == MVT::f128)
473       return FPEXT_F16_F128;
474   } else if (OpVT == MVT::f32) {
475     if (RetVT == MVT::f64)
476       return FPEXT_F32_F64;
477     if (RetVT == MVT::f128)
478       return FPEXT_F32_F128;
479     if (RetVT == MVT::ppcf128)
480       return FPEXT_F32_PPCF128;
481   } else if (OpVT == MVT::f64) {
482     if (RetVT == MVT::f128)
483       return FPEXT_F64_F128;
484     else if (RetVT == MVT::ppcf128)
485       return FPEXT_F64_PPCF128;
486   } else if (OpVT == MVT::f80) {
487     if (RetVT == MVT::f128)
488       return FPEXT_F80_F128;
489   } else if (OpVT == MVT::bf16) {
490     if (RetVT == MVT::f32)
491       return FPEXT_BF16_F32;
492   }
493 
494   return UNKNOWN_LIBCALL;
495 }
496 
497 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
498 /// UNKNOWN_LIBCALL if there is none.
499 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
500   if (RetVT == MVT::f16) {
501     if (OpVT == MVT::f32)
502       return FPROUND_F32_F16;
503     if (OpVT == MVT::f64)
504       return FPROUND_F64_F16;
505     if (OpVT == MVT::f80)
506       return FPROUND_F80_F16;
507     if (OpVT == MVT::f128)
508       return FPROUND_F128_F16;
509     if (OpVT == MVT::ppcf128)
510       return FPROUND_PPCF128_F16;
511   } else if (RetVT == MVT::bf16) {
512     if (OpVT == MVT::f32)
513       return FPROUND_F32_BF16;
514     if (OpVT == MVT::f64)
515       return FPROUND_F64_BF16;
516   } else if (RetVT == MVT::f32) {
517     if (OpVT == MVT::f64)
518       return FPROUND_F64_F32;
519     if (OpVT == MVT::f80)
520       return FPROUND_F80_F32;
521     if (OpVT == MVT::f128)
522       return FPROUND_F128_F32;
523     if (OpVT == MVT::ppcf128)
524       return FPROUND_PPCF128_F32;
525   } else if (RetVT == MVT::f64) {
526     if (OpVT == MVT::f80)
527       return FPROUND_F80_F64;
528     if (OpVT == MVT::f128)
529       return FPROUND_F128_F64;
530     if (OpVT == MVT::ppcf128)
531       return FPROUND_PPCF128_F64;
532   } else if (RetVT == MVT::f80) {
533     if (OpVT == MVT::f128)
534       return FPROUND_F128_F80;
535   }
536 
537   return UNKNOWN_LIBCALL;
538 }
539 
540 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
541 /// UNKNOWN_LIBCALL if there is none.
542 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
543   if (OpVT == MVT::f16) {
544     if (RetVT == MVT::i32)
545       return FPTOSINT_F16_I32;
546     if (RetVT == MVT::i64)
547       return FPTOSINT_F16_I64;
548     if (RetVT == MVT::i128)
549       return FPTOSINT_F16_I128;
550   } else if (OpVT == MVT::f32) {
551     if (RetVT == MVT::i32)
552       return FPTOSINT_F32_I32;
553     if (RetVT == MVT::i64)
554       return FPTOSINT_F32_I64;
555     if (RetVT == MVT::i128)
556       return FPTOSINT_F32_I128;
557   } else if (OpVT == MVT::f64) {
558     if (RetVT == MVT::i32)
559       return FPTOSINT_F64_I32;
560     if (RetVT == MVT::i64)
561       return FPTOSINT_F64_I64;
562     if (RetVT == MVT::i128)
563       return FPTOSINT_F64_I128;
564   } else if (OpVT == MVT::f80) {
565     if (RetVT == MVT::i32)
566       return FPTOSINT_F80_I32;
567     if (RetVT == MVT::i64)
568       return FPTOSINT_F80_I64;
569     if (RetVT == MVT::i128)
570       return FPTOSINT_F80_I128;
571   } else if (OpVT == MVT::f128) {
572     if (RetVT == MVT::i32)
573       return FPTOSINT_F128_I32;
574     if (RetVT == MVT::i64)
575       return FPTOSINT_F128_I64;
576     if (RetVT == MVT::i128)
577       return FPTOSINT_F128_I128;
578   } else if (OpVT == MVT::ppcf128) {
579     if (RetVT == MVT::i32)
580       return FPTOSINT_PPCF128_I32;
581     if (RetVT == MVT::i64)
582       return FPTOSINT_PPCF128_I64;
583     if (RetVT == MVT::i128)
584       return FPTOSINT_PPCF128_I128;
585   }
586   return UNKNOWN_LIBCALL;
587 }
588 
589 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
590 /// UNKNOWN_LIBCALL if there is none.
591 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
592   if (OpVT == MVT::f16) {
593     if (RetVT == MVT::i32)
594       return FPTOUINT_F16_I32;
595     if (RetVT == MVT::i64)
596       return FPTOUINT_F16_I64;
597     if (RetVT == MVT::i128)
598       return FPTOUINT_F16_I128;
599   } else if (OpVT == MVT::f32) {
600     if (RetVT == MVT::i32)
601       return FPTOUINT_F32_I32;
602     if (RetVT == MVT::i64)
603       return FPTOUINT_F32_I64;
604     if (RetVT == MVT::i128)
605       return FPTOUINT_F32_I128;
606   } else if (OpVT == MVT::f64) {
607     if (RetVT == MVT::i32)
608       return FPTOUINT_F64_I32;
609     if (RetVT == MVT::i64)
610       return FPTOUINT_F64_I64;
611     if (RetVT == MVT::i128)
612       return FPTOUINT_F64_I128;
613   } else if (OpVT == MVT::f80) {
614     if (RetVT == MVT::i32)
615       return FPTOUINT_F80_I32;
616     if (RetVT == MVT::i64)
617       return FPTOUINT_F80_I64;
618     if (RetVT == MVT::i128)
619       return FPTOUINT_F80_I128;
620   } else if (OpVT == MVT::f128) {
621     if (RetVT == MVT::i32)
622       return FPTOUINT_F128_I32;
623     if (RetVT == MVT::i64)
624       return FPTOUINT_F128_I64;
625     if (RetVT == MVT::i128)
626       return FPTOUINT_F128_I128;
627   } else if (OpVT == MVT::ppcf128) {
628     if (RetVT == MVT::i32)
629       return FPTOUINT_PPCF128_I32;
630     if (RetVT == MVT::i64)
631       return FPTOUINT_PPCF128_I64;
632     if (RetVT == MVT::i128)
633       return FPTOUINT_PPCF128_I128;
634   }
635   return UNKNOWN_LIBCALL;
636 }
637 
638 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
639 /// UNKNOWN_LIBCALL if there is none.
640 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
641   if (OpVT == MVT::i32) {
642     if (RetVT == MVT::f16)
643       return SINTTOFP_I32_F16;
644     if (RetVT == MVT::f32)
645       return SINTTOFP_I32_F32;
646     if (RetVT == MVT::f64)
647       return SINTTOFP_I32_F64;
648     if (RetVT == MVT::f80)
649       return SINTTOFP_I32_F80;
650     if (RetVT == MVT::f128)
651       return SINTTOFP_I32_F128;
652     if (RetVT == MVT::ppcf128)
653       return SINTTOFP_I32_PPCF128;
654   } else if (OpVT == MVT::i64) {
655     if (RetVT == MVT::f16)
656       return SINTTOFP_I64_F16;
657     if (RetVT == MVT::f32)
658       return SINTTOFP_I64_F32;
659     if (RetVT == MVT::f64)
660       return SINTTOFP_I64_F64;
661     if (RetVT == MVT::f80)
662       return SINTTOFP_I64_F80;
663     if (RetVT == MVT::f128)
664       return SINTTOFP_I64_F128;
665     if (RetVT == MVT::ppcf128)
666       return SINTTOFP_I64_PPCF128;
667   } else if (OpVT == MVT::i128) {
668     if (RetVT == MVT::f16)
669       return SINTTOFP_I128_F16;
670     if (RetVT == MVT::f32)
671       return SINTTOFP_I128_F32;
672     if (RetVT == MVT::f64)
673       return SINTTOFP_I128_F64;
674     if (RetVT == MVT::f80)
675       return SINTTOFP_I128_F80;
676     if (RetVT == MVT::f128)
677       return SINTTOFP_I128_F128;
678     if (RetVT == MVT::ppcf128)
679       return SINTTOFP_I128_PPCF128;
680   }
681   return UNKNOWN_LIBCALL;
682 }
683 
684 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
685 /// UNKNOWN_LIBCALL if there is none.
686 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
687   if (OpVT == MVT::i32) {
688     if (RetVT == MVT::f16)
689       return UINTTOFP_I32_F16;
690     if (RetVT == MVT::f32)
691       return UINTTOFP_I32_F32;
692     if (RetVT == MVT::f64)
693       return UINTTOFP_I32_F64;
694     if (RetVT == MVT::f80)
695       return UINTTOFP_I32_F80;
696     if (RetVT == MVT::f128)
697       return UINTTOFP_I32_F128;
698     if (RetVT == MVT::ppcf128)
699       return UINTTOFP_I32_PPCF128;
700   } else if (OpVT == MVT::i64) {
701     if (RetVT == MVT::f16)
702       return UINTTOFP_I64_F16;
703     if (RetVT == MVT::f32)
704       return UINTTOFP_I64_F32;
705     if (RetVT == MVT::f64)
706       return UINTTOFP_I64_F64;
707     if (RetVT == MVT::f80)
708       return UINTTOFP_I64_F80;
709     if (RetVT == MVT::f128)
710       return UINTTOFP_I64_F128;
711     if (RetVT == MVT::ppcf128)
712       return UINTTOFP_I64_PPCF128;
713   } else if (OpVT == MVT::i128) {
714     if (RetVT == MVT::f16)
715       return UINTTOFP_I128_F16;
716     if (RetVT == MVT::f32)
717       return UINTTOFP_I128_F32;
718     if (RetVT == MVT::f64)
719       return UINTTOFP_I128_F64;
720     if (RetVT == MVT::f80)
721       return UINTTOFP_I128_F80;
722     if (RetVT == MVT::f128)
723       return UINTTOFP_I128_F128;
724     if (RetVT == MVT::ppcf128)
725       return UINTTOFP_I128_PPCF128;
726   }
727   return UNKNOWN_LIBCALL;
728 }
729 
730 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
731   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
732                       POWI_PPCF128);
733 }
734 
735 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
736   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
737                       LDEXP_PPCF128);
738 }
739 
740 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
741   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
742                       FREXP_PPCF128);
743 }
744 
745 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
746                                              AtomicOrdering Order,
747                                              uint64_t MemSize) {
748   unsigned ModeN, ModelN;
749   switch (MemSize) {
750   case 1:
751     ModeN = 0;
752     break;
753   case 2:
754     ModeN = 1;
755     break;
756   case 4:
757     ModeN = 2;
758     break;
759   case 8:
760     ModeN = 3;
761     break;
762   case 16:
763     ModeN = 4;
764     break;
765   default:
766     return RTLIB::UNKNOWN_LIBCALL;
767   }
768 
769   switch (Order) {
770   case AtomicOrdering::Monotonic:
771     ModelN = 0;
772     break;
773   case AtomicOrdering::Acquire:
774     ModelN = 1;
775     break;
776   case AtomicOrdering::Release:
777     ModelN = 2;
778     break;
779   case AtomicOrdering::AcquireRelease:
780   case AtomicOrdering::SequentiallyConsistent:
781     ModelN = 3;
782     break;
783   default:
784     return UNKNOWN_LIBCALL;
785   }
786 
787   return LC[ModeN][ModelN];
788 }
789 
790 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
791                                         MVT VT) {
792   if (!VT.isScalarInteger())
793     return UNKNOWN_LIBCALL;
794   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
795 
796 #define LCALLS(A, B)                                                           \
797   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
798 #define LCALL5(A)                                                              \
799   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
800   switch (Opc) {
801   case ISD::ATOMIC_CMP_SWAP: {
802     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
803     return getOutlineAtomicHelper(LC, Order, MemSize);
804   }
805   case ISD::ATOMIC_SWAP: {
806     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
807     return getOutlineAtomicHelper(LC, Order, MemSize);
808   }
809   case ISD::ATOMIC_LOAD_ADD: {
810     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
811     return getOutlineAtomicHelper(LC, Order, MemSize);
812   }
813   case ISD::ATOMIC_LOAD_OR: {
814     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
815     return getOutlineAtomicHelper(LC, Order, MemSize);
816   }
817   case ISD::ATOMIC_LOAD_CLR: {
818     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
819     return getOutlineAtomicHelper(LC, Order, MemSize);
820   }
821   case ISD::ATOMIC_LOAD_XOR: {
822     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
823     return getOutlineAtomicHelper(LC, Order, MemSize);
824   }
825   default:
826     return UNKNOWN_LIBCALL;
827   }
828 #undef LCALLS
829 #undef LCALL5
830 }
831 
832 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
833 #define OP_TO_LIBCALL(Name, Enum)                                              \
834   case Name:                                                                   \
835     switch (VT.SimpleTy) {                                                     \
836     default:                                                                   \
837       return UNKNOWN_LIBCALL;                                                  \
838     case MVT::i8:                                                              \
839       return Enum##_1;                                                         \
840     case MVT::i16:                                                             \
841       return Enum##_2;                                                         \
842     case MVT::i32:                                                             \
843       return Enum##_4;                                                         \
844     case MVT::i64:                                                             \
845       return Enum##_8;                                                         \
846     case MVT::i128:                                                            \
847       return Enum##_16;                                                        \
848     }
849 
850   switch (Opc) {
851     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
852     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
853     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
854     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
855     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
856     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
857     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
858     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
859     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
860     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
861     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
862     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
863   }
864 
865 #undef OP_TO_LIBCALL
866 
867   return UNKNOWN_LIBCALL;
868 }
869 
870 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
871   switch (ElementSize) {
872   case 1:
873     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
874   case 2:
875     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
876   case 4:
877     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
878   case 8:
879     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
880   case 16:
881     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
882   default:
883     return UNKNOWN_LIBCALL;
884   }
885 }
886 
887 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
888   switch (ElementSize) {
889   case 1:
890     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
891   case 2:
892     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
893   case 4:
894     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
895   case 8:
896     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
897   case 16:
898     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
899   default:
900     return UNKNOWN_LIBCALL;
901   }
902 }
903 
904 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
905   switch (ElementSize) {
906   case 1:
907     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
908   case 2:
909     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
910   case 4:
911     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
912   case 8:
913     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
914   case 16:
915     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
916   default:
917     return UNKNOWN_LIBCALL;
918   }
919 }
920 
921 /// InitCmpLibcallCCs - Set default comparison libcall CC.
922 static void InitCmpLibcallCCs(ISD::CondCode *CCs) {
923   std::fill(CCs, CCs + RTLIB::UNKNOWN_LIBCALL, ISD::SETCC_INVALID);
924   CCs[RTLIB::OEQ_F32] = ISD::SETEQ;
925   CCs[RTLIB::OEQ_F64] = ISD::SETEQ;
926   CCs[RTLIB::OEQ_F128] = ISD::SETEQ;
927   CCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
928   CCs[RTLIB::UNE_F32] = ISD::SETNE;
929   CCs[RTLIB::UNE_F64] = ISD::SETNE;
930   CCs[RTLIB::UNE_F128] = ISD::SETNE;
931   CCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
932   CCs[RTLIB::OGE_F32] = ISD::SETGE;
933   CCs[RTLIB::OGE_F64] = ISD::SETGE;
934   CCs[RTLIB::OGE_F128] = ISD::SETGE;
935   CCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
936   CCs[RTLIB::OLT_F32] = ISD::SETLT;
937   CCs[RTLIB::OLT_F64] = ISD::SETLT;
938   CCs[RTLIB::OLT_F128] = ISD::SETLT;
939   CCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
940   CCs[RTLIB::OLE_F32] = ISD::SETLE;
941   CCs[RTLIB::OLE_F64] = ISD::SETLE;
942   CCs[RTLIB::OLE_F128] = ISD::SETLE;
943   CCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
944   CCs[RTLIB::OGT_F32] = ISD::SETGT;
945   CCs[RTLIB::OGT_F64] = ISD::SETGT;
946   CCs[RTLIB::OGT_F128] = ISD::SETGT;
947   CCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
948   CCs[RTLIB::UO_F32] = ISD::SETNE;
949   CCs[RTLIB::UO_F64] = ISD::SETNE;
950   CCs[RTLIB::UO_F128] = ISD::SETNE;
951   CCs[RTLIB::UO_PPCF128] = ISD::SETNE;
952 }
953 
954 /// NOTE: The TargetMachine owns TLOF.
955 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm) : TM(tm) {
956   initActions();
957 
958   // Perform these initializations only once.
959   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
960       MaxLoadsPerMemcmp = 8;
961   MaxGluedStoresPerMemcpy = 0;
962   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
963       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
964   HasMultipleConditionRegisters = false;
965   HasExtractBitsInsn = false;
966   JumpIsExpensive = JumpIsExpensiveOverride;
967   PredictableSelectIsExpensive = false;
968   EnableExtLdPromotion = false;
969   StackPointerRegisterToSaveRestore = 0;
970   BooleanContents = UndefinedBooleanContent;
971   BooleanFloatContents = UndefinedBooleanContent;
972   BooleanVectorContents = UndefinedBooleanContent;
973   SchedPreferenceInfo = Sched::ILP;
974   GatherAllAliasesMaxDepth = 18;
975   IsStrictFPEnabled = DisableStrictNodeMutation;
976   MaxBytesForAlignment = 0;
977   MaxAtomicSizeInBitsSupported = 0;
978 
979   // Assume that even with libcalls, no target supports wider than 128 bit
980   // division.
981   MaxDivRemBitWidthSupported = 128;
982 
983   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
984 
985   MinCmpXchgSizeInBits = 0;
986   SupportsUnalignedAtomics = false;
987 
988   std::fill(std::begin(LibcallRoutineNames), std::end(LibcallRoutineNames), nullptr);
989 
990   InitLibcalls(TM.getTargetTriple());
991   InitCmpLibcallCCs(CmpLibcallCCs);
992 }
993 
994 void TargetLoweringBase::initActions() {
995   // All operations default to being supported.
996   memset(OpActions, 0, sizeof(OpActions));
997   memset(LoadExtActions, 0, sizeof(LoadExtActions));
998   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
999   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
1000   memset(CondCodeActions, 0, sizeof(CondCodeActions));
1001   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
1002   std::fill(std::begin(TargetDAGCombineArray),
1003             std::end(TargetDAGCombineArray), 0);
1004 
1005   // Let extending atomic loads be unsupported by default.
1006   for (MVT ValVT : MVT::all_valuetypes())
1007     for (MVT MemVT : MVT::all_valuetypes())
1008       setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT,
1009                              Expand);
1010 
1011   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
1012   // remove this and targets should individually set these types if not legal.
1013   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
1014                                    force_iteration_on_noniterable_enum)) {
1015     for (MVT VT : {MVT::i2, MVT::i4})
1016       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
1017   }
1018   for (MVT AVT : MVT::all_valuetypes()) {
1019     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
1020       setTruncStoreAction(AVT, VT, Expand);
1021       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
1022       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
1023     }
1024   }
1025   for (unsigned IM = (unsigned)ISD::PRE_INC;
1026        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1027     for (MVT VT : {MVT::i2, MVT::i4}) {
1028       setIndexedLoadAction(IM, VT, Expand);
1029       setIndexedStoreAction(IM, VT, Expand);
1030       setIndexedMaskedLoadAction(IM, VT, Expand);
1031       setIndexedMaskedStoreAction(IM, VT, Expand);
1032     }
1033   }
1034 
1035   for (MVT VT : MVT::fp_valuetypes()) {
1036     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
1037     if (IntVT.isValid()) {
1038       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
1039       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
1040     }
1041   }
1042 
1043   // Set default actions for various operations.
1044   for (MVT VT : MVT::all_valuetypes()) {
1045     // Default all indexed load / store to expand.
1046     for (unsigned IM = (unsigned)ISD::PRE_INC;
1047          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
1048       setIndexedLoadAction(IM, VT, Expand);
1049       setIndexedStoreAction(IM, VT, Expand);
1050       setIndexedMaskedLoadAction(IM, VT, Expand);
1051       setIndexedMaskedStoreAction(IM, VT, Expand);
1052     }
1053 
1054     // Most backends expect to see the node which just returns the value loaded.
1055     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
1056 
1057     // These operations default to expand.
1058     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
1059                         ISD::FMINNUM,        ISD::FMAXNUM,
1060                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
1061                         ISD::FMINIMUM,       ISD::FMAXIMUM,
1062                         ISD::FMAD,           ISD::SMIN,
1063                         ISD::SMAX,           ISD::UMIN,
1064                         ISD::UMAX,           ISD::ABS,
1065                         ISD::FSHL,           ISD::FSHR,
1066                         ISD::SADDSAT,        ISD::UADDSAT,
1067                         ISD::SSUBSAT,        ISD::USUBSAT,
1068                         ISD::SSHLSAT,        ISD::USHLSAT,
1069                         ISD::SMULFIX,        ISD::SMULFIXSAT,
1070                         ISD::UMULFIX,        ISD::UMULFIXSAT,
1071                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
1072                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
1073                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
1074                         ISD::IS_FPCLASS},
1075                        VT, Expand);
1076 
1077     // Overflow operations default to expand
1078     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
1079                         ISD::SMULO, ISD::UMULO},
1080                        VT, Expand);
1081 
1082     // Carry-using overflow operations default to expand.
1083     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
1084                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
1085                        VT, Expand);
1086 
1087     // ADDC/ADDE/SUBC/SUBE default to expand.
1088     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
1089                        Expand);
1090 
1091     // [US]CMP default to expand
1092     setOperationAction({ISD::UCMP, ISD::SCMP}, VT, Expand);
1093 
1094     // Halving adds
1095     setOperationAction(
1096         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
1097         Expand);
1098 
1099     // Absolute difference
1100     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
1101 
1102     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
1103     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
1104                        Expand);
1105 
1106     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
1107 
1108     // These library functions default to expand.
1109     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
1110                        Expand);
1111 
1112     // These operations default to expand for vector types.
1113     if (VT.isVector())
1114       setOperationAction(
1115           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
1116            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
1117            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT, ISD::FTAN, ISD::FACOS,
1118            ISD::FASIN, ISD::FATAN, ISD::FCOSH, ISD::FSINH, ISD::FTANH},
1119           VT, Expand);
1120 
1121       // Constrained floating-point operations default to expand.
1122 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
1123     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
1124 #include "llvm/IR/ConstrainedOps.def"
1125 
1126     // For most targets @llvm.get.dynamic.area.offset just returns 0.
1127     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
1128 
1129     // Vector reduction default to expand.
1130     setOperationAction(
1131         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
1132          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
1133          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
1134          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
1135          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
1136          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
1137         VT, Expand);
1138 
1139     // Named vector shuffles default to expand.
1140     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
1141 
1142     // VP operations default to expand.
1143 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
1144     setOperationAction(ISD::SDOPC, VT, Expand);
1145 #include "llvm/IR/VPIntrinsics.def"
1146 
1147     // FP environment operations default to expand.
1148     setOperationAction(ISD::GET_FPENV, VT, Expand);
1149     setOperationAction(ISD::SET_FPENV, VT, Expand);
1150     setOperationAction(ISD::RESET_FPENV, VT, Expand);
1151   }
1152 
1153   // Most targets ignore the @llvm.prefetch intrinsic.
1154   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
1155 
1156   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
1157   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
1158 
1159   // Most targets also ignore the @llvm.readsteadycounter intrinsic.
1160   setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
1161 
1162   // ConstantFP nodes default to expand.  Targets can either change this to
1163   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
1164   // to optimize expansions for certain constants.
1165   setOperationAction(ISD::ConstantFP,
1166                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
1167                      Expand);
1168 
1169   // These library functions default to expand.
1170   setOperationAction({ISD::FCBRT,      ISD::FLOG,    ISD::FLOG2,  ISD::FLOG10,
1171                       ISD::FEXP,       ISD::FEXP2,   ISD::FEXP10, ISD::FFLOOR,
1172                       ISD::FNEARBYINT, ISD::FCEIL,   ISD::FRINT,  ISD::FTRUNC,
1173                       ISD::LROUND,     ISD::LLROUND, ISD::LRINT,  ISD::LLRINT,
1174                       ISD::FROUNDEVEN, ISD::FTAN,    ISD::FACOS,  ISD::FASIN,
1175                       ISD::FATAN,      ISD::FCOSH,   ISD::FSINH,  ISD::FTANH},
1176                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
1177 
1178   setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
1179                       ISD::FSINH, ISD::FTANH},
1180                      MVT::f16, Promote);
1181   // Default ISD::TRAP to expand (which turns it into abort).
1182   setOperationAction(ISD::TRAP, MVT::Other, Expand);
1183 
1184   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
1185   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
1186   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
1187 
1188   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
1189 
1190   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
1191   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
1192 
1193   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
1194     setOperationAction(ISD::GET_FPMODE, VT, Expand);
1195     setOperationAction(ISD::SET_FPMODE, VT, Expand);
1196   }
1197   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
1198 
1199   // This one by default will call __clear_cache unless the target
1200   // wants something different.
1201   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, LibCall);
1202 }
1203 
1204 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
1205                                                EVT) const {
1206   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
1207 }
1208 
1209 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
1210                                          const DataLayout &DL) const {
1211   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
1212   if (LHSTy.isVector())
1213     return LHSTy;
1214   MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
1215   // If any possible shift value won't fit in the prefered type, just use
1216   // something safe. Assume it will be legalized when the shift is expanded.
1217   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
1218     ShiftVT = MVT::i32;
1219   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
1220          "ShiftVT is still too small!");
1221   return ShiftVT;
1222 }
1223 
1224 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
1225   assert(isTypeLegal(VT));
1226   switch (Op) {
1227   default:
1228     return false;
1229   case ISD::SDIV:
1230   case ISD::UDIV:
1231   case ISD::SREM:
1232   case ISD::UREM:
1233     return true;
1234   }
1235 }
1236 
1237 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
1238                                              unsigned DestAS) const {
1239   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
1240 }
1241 
1242 unsigned TargetLoweringBase::getBitWidthForCttzElements(
1243     Type *RetTy, ElementCount EC, bool ZeroIsPoison,
1244     const ConstantRange *VScaleRange) const {
1245   // Find the smallest "sensible" element type to use for the expansion.
1246   ConstantRange CR(APInt(64, EC.getKnownMinValue()));
1247   if (EC.isScalable())
1248     CR = CR.umul_sat(*VScaleRange);
1249 
1250   if (ZeroIsPoison)
1251     CR = CR.subtract(APInt(64, 1));
1252 
1253   unsigned EltWidth = RetTy->getScalarSizeInBits();
1254   EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
1255   EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
1256 
1257   return EltWidth;
1258 }
1259 
1260 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
1261   // If the command-line option was specified, ignore this request.
1262   if (!JumpIsExpensiveOverride.getNumOccurrences())
1263     JumpIsExpensive = isExpensive;
1264 }
1265 
1266 TargetLoweringBase::LegalizeKind
1267 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
1268   // If this is a simple type, use the ComputeRegisterProp mechanism.
1269   if (VT.isSimple()) {
1270     MVT SVT = VT.getSimpleVT();
1271     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
1272     MVT NVT = TransformToType[SVT.SimpleTy];
1273     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
1274 
1275     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
1276             LA == TypeSoftPromoteHalf ||
1277             (NVT.isVector() ||
1278              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
1279            "Promote may not follow Expand or Promote");
1280 
1281     if (LA == TypeSplitVector)
1282       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
1283     if (LA == TypeScalarizeVector)
1284       return LegalizeKind(LA, SVT.getVectorElementType());
1285     return LegalizeKind(LA, NVT);
1286   }
1287 
1288   // Handle Extended Scalar Types.
1289   if (!VT.isVector()) {
1290     assert(VT.isInteger() && "Float types must be simple");
1291     unsigned BitSize = VT.getSizeInBits();
1292     // First promote to a power-of-two size, then expand if necessary.
1293     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
1294       EVT NVT = VT.getRoundIntegerType(Context);
1295       assert(NVT != VT && "Unable to round integer VT");
1296       LegalizeKind NextStep = getTypeConversion(Context, NVT);
1297       // Avoid multi-step promotion.
1298       if (NextStep.first == TypePromoteInteger)
1299         return NextStep;
1300       // Return rounded integer type.
1301       return LegalizeKind(TypePromoteInteger, NVT);
1302     }
1303 
1304     return LegalizeKind(TypeExpandInteger,
1305                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
1306   }
1307 
1308   // Handle vector types.
1309   ElementCount NumElts = VT.getVectorElementCount();
1310   EVT EltVT = VT.getVectorElementType();
1311 
1312   // Vectors with only one element are always scalarized.
1313   if (NumElts.isScalar())
1314     return LegalizeKind(TypeScalarizeVector, EltVT);
1315 
1316   // Try to widen vector elements until the element type is a power of two and
1317   // promote it to a legal type later on, for example:
1318   // <3 x i8> -> <4 x i8> -> <4 x i32>
1319   if (EltVT.isInteger()) {
1320     // Vectors with a number of elements that is not a power of two are always
1321     // widened, for example <3 x i8> -> <4 x i8>.
1322     if (!VT.isPow2VectorType()) {
1323       NumElts = NumElts.coefficientNextPowerOf2();
1324       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
1325       return LegalizeKind(TypeWidenVector, NVT);
1326     }
1327 
1328     // Examine the element type.
1329     LegalizeKind LK = getTypeConversion(Context, EltVT);
1330 
1331     // If type is to be expanded, split the vector.
1332     //  <4 x i140> -> <2 x i140>
1333     if (LK.first == TypeExpandInteger) {
1334       if (VT.getVectorElementCount().isScalable())
1335         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1336       return LegalizeKind(TypeSplitVector,
1337                           VT.getHalfNumVectorElementsVT(Context));
1338     }
1339 
1340     // Promote the integer element types until a legal vector type is found
1341     // or until the element integer type is too big. If a legal type was not
1342     // found, fallback to the usual mechanism of widening/splitting the
1343     // vector.
1344     EVT OldEltVT = EltVT;
1345     while (true) {
1346       // Increase the bitwidth of the element to the next pow-of-two
1347       // (which is greater than 8 bits).
1348       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1349                   .getRoundIntegerType(Context);
1350 
1351       // Stop trying when getting a non-simple element type.
1352       // Note that vector elements may be greater than legal vector element
1353       // types. Example: X86 XMM registers hold 64bit element on 32bit
1354       // systems.
1355       if (!EltVT.isSimple())
1356         break;
1357 
1358       // Build a new vector type and check if it is legal.
1359       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1360       // Found a legal promoted vector type.
1361       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1362         return LegalizeKind(TypePromoteInteger,
1363                             EVT::getVectorVT(Context, EltVT, NumElts));
1364     }
1365 
1366     // Reset the type to the unexpanded type if we did not find a legal vector
1367     // type with a promoted vector element type.
1368     EltVT = OldEltVT;
1369   }
1370 
1371   // Try to widen the vector until a legal type is found.
1372   // If there is no wider legal type, split the vector.
1373   while (true) {
1374     // Round up to the next power of 2.
1375     NumElts = NumElts.coefficientNextPowerOf2();
1376 
1377     // If there is no simple vector type with this many elements then there
1378     // cannot be a larger legal vector type.  Note that this assumes that
1379     // there are no skipped intermediate vector types in the simple types.
1380     if (!EltVT.isSimple())
1381       break;
1382     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1383     if (LargerVector == MVT())
1384       break;
1385 
1386     // If this type is legal then widen the vector.
1387     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1388       return LegalizeKind(TypeWidenVector, LargerVector);
1389   }
1390 
1391   // Widen odd vectors to next power of two.
1392   if (!VT.isPow2VectorType()) {
1393     EVT NVT = VT.getPow2VectorType(Context);
1394     return LegalizeKind(TypeWidenVector, NVT);
1395   }
1396 
1397   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1398     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1399 
1400   // Vectors with illegal element types are expanded.
1401   EVT NVT = EVT::getVectorVT(Context, EltVT,
1402                              VT.getVectorElementCount().divideCoefficientBy(2));
1403   return LegalizeKind(TypeSplitVector, NVT);
1404 }
1405 
1406 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1407                                           unsigned &NumIntermediates,
1408                                           MVT &RegisterVT,
1409                                           TargetLoweringBase *TLI) {
1410   // Figure out the right, legal destination reg to copy into.
1411   ElementCount EC = VT.getVectorElementCount();
1412   MVT EltTy = VT.getVectorElementType();
1413 
1414   unsigned NumVectorRegs = 1;
1415 
1416   // Scalable vectors cannot be scalarized, so splitting or widening is
1417   // required.
1418   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1419     llvm_unreachable(
1420         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1421 
1422   // FIXME: We don't support non-power-of-2-sized vectors for now.
1423   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1424   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1425     // Split EC to unit size (scalable property is preserved).
1426     NumVectorRegs = EC.getKnownMinValue();
1427     EC = ElementCount::getFixed(1);
1428   }
1429 
1430   // Divide the input until we get to a supported size. This will
1431   // always end up with an EC that represent a scalar or a scalable
1432   // scalar.
1433   while (EC.getKnownMinValue() > 1 &&
1434          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1435     EC = EC.divideCoefficientBy(2);
1436     NumVectorRegs <<= 1;
1437   }
1438 
1439   NumIntermediates = NumVectorRegs;
1440 
1441   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1442   if (!TLI->isTypeLegal(NewVT))
1443     NewVT = EltTy;
1444   IntermediateVT = NewVT;
1445 
1446   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1447 
1448   // Convert sizes such as i33 to i64.
1449   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1450 
1451   MVT DestVT = TLI->getRegisterType(NewVT);
1452   RegisterVT = DestVT;
1453   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1454     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1455 
1456   // Otherwise, promotion or legal types use the same number of registers as
1457   // the vector decimated to the appropriate level.
1458   return NumVectorRegs;
1459 }
1460 
1461 /// isLegalRC - Return true if the value types that can be represented by the
1462 /// specified register class are all legal.
1463 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1464                                    const TargetRegisterClass &RC) const {
1465   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1466     if (isTypeLegal(*I))
1467       return true;
1468   return false;
1469 }
1470 
1471 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1472 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1473 MachineBasicBlock *
1474 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1475                                    MachineBasicBlock *MBB) const {
1476   MachineInstr *MI = &InitialMI;
1477   MachineFunction &MF = *MI->getMF();
1478   MachineFrameInfo &MFI = MF.getFrameInfo();
1479 
1480   // We're handling multiple types of operands here:
1481   // PATCHPOINT MetaArgs - live-in, read only, direct
1482   // STATEPOINT Deopt Spill - live-through, read only, indirect
1483   // STATEPOINT Deopt Alloca - live-through, read only, direct
1484   // (We're currently conservative and mark the deopt slots read/write in
1485   // practice.)
1486   // STATEPOINT GC Spill - live-through, read/write, indirect
1487   // STATEPOINT GC Alloca - live-through, read/write, direct
1488   // The live-in vs live-through is handled already (the live through ones are
1489   // all stack slots), but we need to handle the different type of stackmap
1490   // operands and memory effects here.
1491 
1492   if (llvm::none_of(MI->operands(),
1493                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1494     return MBB;
1495 
1496   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1497 
1498   // Inherit previous memory operands.
1499   MIB.cloneMemRefs(*MI);
1500 
1501   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1502     MachineOperand &MO = MI->getOperand(i);
1503     if (!MO.isFI()) {
1504       // Index of Def operand this Use it tied to.
1505       // Since Defs are coming before Uses, if Use is tied, then
1506       // index of Def must be smaller that index of that Use.
1507       // Also, Defs preserve their position in new MI.
1508       unsigned TiedTo = i;
1509       if (MO.isReg() && MO.isTied())
1510         TiedTo = MI->findTiedOperandIdx(i);
1511       MIB.add(MO);
1512       if (TiedTo < i)
1513         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1514       continue;
1515     }
1516 
1517     // foldMemoryOperand builds a new MI after replacing a single FI operand
1518     // with the canonical set of five x86 addressing-mode operands.
1519     int FI = MO.getIndex();
1520 
1521     // Add frame index operands recognized by stackmaps.cpp
1522     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1523       // indirect-mem-ref tag, size, #FI, offset.
1524       // Used for spills inserted by StatepointLowering.  This codepath is not
1525       // used for patchpoints/stackmaps at all, for these spilling is done via
1526       // foldMemoryOperand callback only.
1527       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1528       MIB.addImm(StackMaps::IndirectMemRefOp);
1529       MIB.addImm(MFI.getObjectSize(FI));
1530       MIB.add(MO);
1531       MIB.addImm(0);
1532     } else {
1533       // direct-mem-ref tag, #FI, offset.
1534       // Used by patchpoint, and direct alloca arguments to statepoints
1535       MIB.addImm(StackMaps::DirectMemRefOp);
1536       MIB.add(MO);
1537       MIB.addImm(0);
1538     }
1539 
1540     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1541 
1542     // Add a new memory operand for this FI.
1543     assert(MFI.getObjectOffset(FI) != -1);
1544 
1545     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1546     // PATCHPOINT should be updated to do the same. (TODO)
1547     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1548       auto Flags = MachineMemOperand::MOLoad;
1549       MachineMemOperand *MMO = MF.getMachineMemOperand(
1550           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1551           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1552       MIB->addMemOperand(MF, MMO);
1553     }
1554   }
1555   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1556   MI->eraseFromParent();
1557   return MBB;
1558 }
1559 
1560 /// findRepresentativeClass - Return the largest legal super-reg register class
1561 /// of the register class for the specified type and its associated "cost".
1562 // This function is in TargetLowering because it uses RegClassForVT which would
1563 // need to be moved to TargetRegisterInfo and would necessitate moving
1564 // isTypeLegal over as well - a massive change that would just require
1565 // TargetLowering having a TargetRegisterInfo class member that it would use.
1566 std::pair<const TargetRegisterClass *, uint8_t>
1567 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1568                                             MVT VT) const {
1569   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1570   if (!RC)
1571     return std::make_pair(RC, 0);
1572 
1573   // Compute the set of all super-register classes.
1574   BitVector SuperRegRC(TRI->getNumRegClasses());
1575   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1576     SuperRegRC.setBitsInMask(RCI.getMask());
1577 
1578   // Find the first legal register class with the largest spill size.
1579   const TargetRegisterClass *BestRC = RC;
1580   for (unsigned i : SuperRegRC.set_bits()) {
1581     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1582     // We want the largest possible spill size.
1583     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1584       continue;
1585     if (!isLegalRC(*TRI, *SuperRC))
1586       continue;
1587     BestRC = SuperRC;
1588   }
1589   return std::make_pair(BestRC, 1);
1590 }
1591 
1592 /// computeRegisterProperties - Once all of the register classes are added,
1593 /// this allows us to compute derived properties we expose.
1594 void TargetLoweringBase::computeRegisterProperties(
1595     const TargetRegisterInfo *TRI) {
1596   // Everything defaults to needing one register.
1597   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1598     NumRegistersForVT[i] = 1;
1599     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1600   }
1601   // ...except isVoid, which doesn't need any registers.
1602   NumRegistersForVT[MVT::isVoid] = 0;
1603 
1604   // Find the largest integer register class.
1605   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1606   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1607     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1608 
1609   // Every integer value type larger than this largest register takes twice as
1610   // many registers to represent as the previous ValueType.
1611   for (unsigned ExpandedReg = LargestIntReg + 1;
1612        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1613     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1614     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1615     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1616     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1617                                    TypeExpandInteger);
1618   }
1619 
1620   // Inspect all of the ValueType's smaller than the largest integer
1621   // register to see which ones need promotion.
1622   unsigned LegalIntReg = LargestIntReg;
1623   for (unsigned IntReg = LargestIntReg - 1;
1624        IntReg >= (unsigned)MVT::i1; --IntReg) {
1625     MVT IVT = (MVT::SimpleValueType)IntReg;
1626     if (isTypeLegal(IVT)) {
1627       LegalIntReg = IntReg;
1628     } else {
1629       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1630         (MVT::SimpleValueType)LegalIntReg;
1631       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1632     }
1633   }
1634 
1635   // ppcf128 type is really two f64's.
1636   if (!isTypeLegal(MVT::ppcf128)) {
1637     if (isTypeLegal(MVT::f64)) {
1638       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1639       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1640       TransformToType[MVT::ppcf128] = MVT::f64;
1641       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1642     } else {
1643       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1644       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1645       TransformToType[MVT::ppcf128] = MVT::i128;
1646       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1647     }
1648   }
1649 
1650   // Decide how to handle f128. If the target does not have native f128 support,
1651   // expand it to i128 and we will be generating soft float library calls.
1652   if (!isTypeLegal(MVT::f128)) {
1653     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1654     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1655     TransformToType[MVT::f128] = MVT::i128;
1656     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1657   }
1658 
1659   // Decide how to handle f80. If the target does not have native f80 support,
1660   // expand it to i96 and we will be generating soft float library calls.
1661   if (!isTypeLegal(MVT::f80)) {
1662     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1663     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1664     TransformToType[MVT::f80] = MVT::i32;
1665     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1666   }
1667 
1668   // Decide how to handle f64. If the target does not have native f64 support,
1669   // expand it to i64 and we will be generating soft float library calls.
1670   if (!isTypeLegal(MVT::f64)) {
1671     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1672     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1673     TransformToType[MVT::f64] = MVT::i64;
1674     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1675   }
1676 
1677   // Decide how to handle f32. If the target does not have native f32 support,
1678   // expand it to i32 and we will be generating soft float library calls.
1679   if (!isTypeLegal(MVT::f32)) {
1680     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1681     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1682     TransformToType[MVT::f32] = MVT::i32;
1683     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1684   }
1685 
1686   // Decide how to handle f16. If the target does not have native f16 support,
1687   // promote it to f32, because there are no f16 library calls (except for
1688   // conversions).
1689   if (!isTypeLegal(MVT::f16)) {
1690     // Allow targets to control how we legalize half.
1691     bool SoftPromoteHalfType = softPromoteHalfType();
1692     bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1693 
1694     if (!UseFPRegsForHalfType) {
1695       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1696       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1697     } else {
1698       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1699       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1700     }
1701     TransformToType[MVT::f16] = MVT::f32;
1702     if (SoftPromoteHalfType) {
1703       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1704     } else {
1705       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1706     }
1707   }
1708 
1709   // Decide how to handle bf16. If the target does not have native bf16 support,
1710   // promote it to f32, because there are no bf16 library calls (except for
1711   // converting from f32 to bf16).
1712   if (!isTypeLegal(MVT::bf16)) {
1713     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1714     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1715     TransformToType[MVT::bf16] = MVT::f32;
1716     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1717   }
1718 
1719   // Loop over all of the vector value types to see which need transformations.
1720   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1721        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1722     MVT VT = (MVT::SimpleValueType) i;
1723     if (isTypeLegal(VT))
1724       continue;
1725 
1726     MVT EltVT = VT.getVectorElementType();
1727     ElementCount EC = VT.getVectorElementCount();
1728     bool IsLegalWiderType = false;
1729     bool IsScalable = VT.isScalableVector();
1730     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1731     switch (PreferredAction) {
1732     case TypePromoteInteger: {
1733       MVT::SimpleValueType EndVT = IsScalable ?
1734                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1735                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1736       // Try to promote the elements of integer vectors. If no legal
1737       // promotion was found, fall through to the widen-vector method.
1738       for (unsigned nVT = i + 1;
1739            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1740         MVT SVT = (MVT::SimpleValueType) nVT;
1741         // Promote vectors of integers to vectors with the same number
1742         // of elements, with a wider element type.
1743         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1744             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1745           TransformToType[i] = SVT;
1746           RegisterTypeForVT[i] = SVT;
1747           NumRegistersForVT[i] = 1;
1748           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1749           IsLegalWiderType = true;
1750           break;
1751         }
1752       }
1753       if (IsLegalWiderType)
1754         break;
1755       [[fallthrough]];
1756     }
1757 
1758     case TypeWidenVector:
1759       if (isPowerOf2_32(EC.getKnownMinValue())) {
1760         // Try to widen the vector.
1761         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1762           MVT SVT = (MVT::SimpleValueType) nVT;
1763           if (SVT.getVectorElementType() == EltVT &&
1764               SVT.isScalableVector() == IsScalable &&
1765               SVT.getVectorElementCount().getKnownMinValue() >
1766                   EC.getKnownMinValue() &&
1767               isTypeLegal(SVT)) {
1768             TransformToType[i] = SVT;
1769             RegisterTypeForVT[i] = SVT;
1770             NumRegistersForVT[i] = 1;
1771             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1772             IsLegalWiderType = true;
1773             break;
1774           }
1775         }
1776         if (IsLegalWiderType)
1777           break;
1778       } else {
1779         // Only widen to the next power of 2 to keep consistency with EVT.
1780         MVT NVT = VT.getPow2VectorType();
1781         if (isTypeLegal(NVT)) {
1782           TransformToType[i] = NVT;
1783           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1784           RegisterTypeForVT[i] = NVT;
1785           NumRegistersForVT[i] = 1;
1786           break;
1787         }
1788       }
1789       [[fallthrough]];
1790 
1791     case TypeSplitVector:
1792     case TypeScalarizeVector: {
1793       MVT IntermediateVT;
1794       MVT RegisterVT;
1795       unsigned NumIntermediates;
1796       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1797           NumIntermediates, RegisterVT, this);
1798       NumRegistersForVT[i] = NumRegisters;
1799       assert(NumRegistersForVT[i] == NumRegisters &&
1800              "NumRegistersForVT size cannot represent NumRegisters!");
1801       RegisterTypeForVT[i] = RegisterVT;
1802 
1803       MVT NVT = VT.getPow2VectorType();
1804       if (NVT == VT) {
1805         // Type is already a power of 2.  The default action is to split.
1806         TransformToType[i] = MVT::Other;
1807         if (PreferredAction == TypeScalarizeVector)
1808           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1809         else if (PreferredAction == TypeSplitVector)
1810           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1811         else if (EC.getKnownMinValue() > 1)
1812           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1813         else
1814           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1815                                                  ? TypeScalarizeScalableVector
1816                                                  : TypeScalarizeVector);
1817       } else {
1818         TransformToType[i] = NVT;
1819         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1820       }
1821       break;
1822     }
1823     default:
1824       llvm_unreachable("Unknown vector legalization action!");
1825     }
1826   }
1827 
1828   // Determine the 'representative' register class for each value type.
1829   // An representative register class is the largest (meaning one which is
1830   // not a sub-register class / subreg register class) legal register class for
1831   // a group of value types. For example, on i386, i8, i16, and i32
1832   // representative would be GR32; while on x86_64 it's GR64.
1833   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1834     const TargetRegisterClass* RRC;
1835     uint8_t Cost;
1836     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1837     RepRegClassForVT[i] = RRC;
1838     RepRegClassCostForVT[i] = Cost;
1839   }
1840 }
1841 
1842 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1843                                            EVT VT) const {
1844   assert(!VT.isVector() && "No default SetCC type for vectors!");
1845   return getPointerTy(DL).SimpleTy;
1846 }
1847 
1848 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1849   return MVT::i32; // return the default value
1850 }
1851 
1852 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1853 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1854 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1855 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1856 ///
1857 /// This method returns the number of registers needed, and the VT for each
1858 /// register.  It also returns the VT and quantity of the intermediate values
1859 /// before they are promoted/expanded.
1860 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1861                                                     EVT VT, EVT &IntermediateVT,
1862                                                     unsigned &NumIntermediates,
1863                                                     MVT &RegisterVT) const {
1864   ElementCount EltCnt = VT.getVectorElementCount();
1865 
1866   // If there is a wider vector type with the same element type as this one,
1867   // or a promoted vector type that has the same number of elements which
1868   // are wider, then we should convert to that legal vector type.
1869   // This handles things like <2 x float> -> <4 x float> and
1870   // <4 x i1> -> <4 x i32>.
1871   LegalizeTypeAction TA = getTypeAction(Context, VT);
1872   if (!EltCnt.isScalar() &&
1873       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1874     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1875     if (isTypeLegal(RegisterEVT)) {
1876       IntermediateVT = RegisterEVT;
1877       RegisterVT = RegisterEVT.getSimpleVT();
1878       NumIntermediates = 1;
1879       return 1;
1880     }
1881   }
1882 
1883   // Figure out the right, legal destination reg to copy into.
1884   EVT EltTy = VT.getVectorElementType();
1885 
1886   unsigned NumVectorRegs = 1;
1887 
1888   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1889   // types like done elsewhere in SelectionDAG.
1890   if (EltCnt.isScalable()) {
1891     LegalizeKind LK;
1892     EVT PartVT = VT;
1893     do {
1894       // Iterate until we've found a legal (part) type to hold VT.
1895       LK = getTypeConversion(Context, PartVT);
1896       PartVT = LK.second;
1897     } while (LK.first != TypeLegal);
1898 
1899     if (!PartVT.isVector()) {
1900       report_fatal_error(
1901           "Don't know how to legalize this scalable vector type");
1902     }
1903 
1904     NumIntermediates =
1905         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1906                    PartVT.getVectorElementCount().getKnownMinValue());
1907     IntermediateVT = PartVT;
1908     RegisterVT = getRegisterType(Context, IntermediateVT);
1909     return NumIntermediates;
1910   }
1911 
1912   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1913   // we could break down into LHS/RHS like LegalizeDAG does.
1914   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1915     NumVectorRegs = EltCnt.getKnownMinValue();
1916     EltCnt = ElementCount::getFixed(1);
1917   }
1918 
1919   // Divide the input until we get to a supported size.  This will always
1920   // end with a scalar if the target doesn't support vectors.
1921   while (EltCnt.getKnownMinValue() > 1 &&
1922          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1923     EltCnt = EltCnt.divideCoefficientBy(2);
1924     NumVectorRegs <<= 1;
1925   }
1926 
1927   NumIntermediates = NumVectorRegs;
1928 
1929   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1930   if (!isTypeLegal(NewVT))
1931     NewVT = EltTy;
1932   IntermediateVT = NewVT;
1933 
1934   MVT DestVT = getRegisterType(Context, NewVT);
1935   RegisterVT = DestVT;
1936 
1937   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1938     TypeSize NewVTSize = NewVT.getSizeInBits();
1939     // Convert sizes such as i33 to i64.
1940     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1941       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1942     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1943   }
1944 
1945   // Otherwise, promotion or legal types use the same number of registers as
1946   // the vector decimated to the appropriate level.
1947   return NumVectorRegs;
1948 }
1949 
1950 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1951                                                 uint64_t NumCases,
1952                                                 uint64_t Range,
1953                                                 ProfileSummaryInfo *PSI,
1954                                                 BlockFrequencyInfo *BFI) const {
1955   // FIXME: This function check the maximum table size and density, but the
1956   // minimum size is not checked. It would be nice if the minimum size is
1957   // also combined within this function. Currently, the minimum size check is
1958   // performed in findJumpTable() in SelectionDAGBuiler and
1959   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1960   const bool OptForSize =
1961       SI->getParent()->getParent()->hasOptSize() ||
1962       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1963   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1964   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1965 
1966   // Check whether the number of cases is small enough and
1967   // the range is dense enough for a jump table.
1968   return (OptForSize || Range <= MaxJumpTableSize) &&
1969          (NumCases * 100 >= Range * MinDensity);
1970 }
1971 
1972 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1973                                                         EVT ConditionVT) const {
1974   return getRegisterType(Context, ConditionVT);
1975 }
1976 
1977 /// Get the EVTs and ArgFlags collections that represent the legalized return
1978 /// type of the given function.  This does not require a DAG or a return value,
1979 /// and is suitable for use before any DAGs for the function are constructed.
1980 /// TODO: Move this out of TargetLowering.cpp.
1981 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1982                          AttributeList attr,
1983                          SmallVectorImpl<ISD::OutputArg> &Outs,
1984                          const TargetLowering &TLI, const DataLayout &DL) {
1985   SmallVector<EVT, 4> ValueVTs;
1986   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1987   unsigned NumValues = ValueVTs.size();
1988   if (NumValues == 0) return;
1989 
1990   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1991     EVT VT = ValueVTs[j];
1992     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1993 
1994     if (attr.hasRetAttr(Attribute::SExt))
1995       ExtendKind = ISD::SIGN_EXTEND;
1996     else if (attr.hasRetAttr(Attribute::ZExt))
1997       ExtendKind = ISD::ZERO_EXTEND;
1998 
1999     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
2000       VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
2001 
2002     unsigned NumParts =
2003         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
2004     MVT PartVT =
2005         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
2006 
2007     // 'inreg' on function refers to return value
2008     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
2009     if (attr.hasRetAttr(Attribute::InReg))
2010       Flags.setInReg();
2011 
2012     // Propagate extension type if any
2013     if (attr.hasRetAttr(Attribute::SExt))
2014       Flags.setSExt();
2015     else if (attr.hasRetAttr(Attribute::ZExt))
2016       Flags.setZExt();
2017 
2018     for (unsigned i = 0; i < NumParts; ++i) {
2019       ISD::ArgFlagsTy OutFlags = Flags;
2020       if (NumParts > 1 && i == 0)
2021         OutFlags.setSplit();
2022       else if (i == NumParts - 1 && i != 0)
2023         OutFlags.setSplitEnd();
2024 
2025       Outs.push_back(
2026           ISD::OutputArg(OutFlags, PartVT, VT, /*isfixed=*/true, 0, 0));
2027     }
2028   }
2029 }
2030 
2031 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
2032 /// function arguments in the caller parameter area.  This is the actual
2033 /// alignment, not its logarithm.
2034 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
2035                                                    const DataLayout &DL) const {
2036   return DL.getABITypeAlign(Ty).value();
2037 }
2038 
2039 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
2040     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
2041     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
2042   // Check if the specified alignment is sufficient based on the data layout.
2043   // TODO: While using the data layout works in practice, a better solution
2044   // would be to implement this check directly (make this a virtual function).
2045   // For example, the ABI alignment may change based on software platform while
2046   // this function should only be affected by hardware implementation.
2047   Type *Ty = VT.getTypeForEVT(Context);
2048   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
2049     // Assume that an access that meets the ABI-specified alignment is fast.
2050     if (Fast != nullptr)
2051       *Fast = 1;
2052     return true;
2053   }
2054 
2055   // This is a misaligned access.
2056   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
2057 }
2058 
2059 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
2060     LLVMContext &Context, const DataLayout &DL, EVT VT,
2061     const MachineMemOperand &MMO, unsigned *Fast) const {
2062   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
2063                                         MMO.getAlign(), MMO.getFlags(), Fast);
2064 }
2065 
2066 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
2067                                             const DataLayout &DL, EVT VT,
2068                                             unsigned AddrSpace, Align Alignment,
2069                                             MachineMemOperand::Flags Flags,
2070                                             unsigned *Fast) const {
2071   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
2072                                         Flags, Fast);
2073 }
2074 
2075 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
2076                                             const DataLayout &DL, EVT VT,
2077                                             const MachineMemOperand &MMO,
2078                                             unsigned *Fast) const {
2079   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2080                             MMO.getFlags(), Fast);
2081 }
2082 
2083 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
2084                                             const DataLayout &DL, LLT Ty,
2085                                             const MachineMemOperand &MMO,
2086                                             unsigned *Fast) const {
2087   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
2088   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
2089                             MMO.getFlags(), Fast);
2090 }
2091 
2092 //===----------------------------------------------------------------------===//
2093 //  TargetTransformInfo Helpers
2094 //===----------------------------------------------------------------------===//
2095 
2096 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
2097   enum InstructionOpcodes {
2098 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
2099 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
2100 #include "llvm/IR/Instruction.def"
2101   };
2102   switch (static_cast<InstructionOpcodes>(Opcode)) {
2103   case Ret:            return 0;
2104   case Br:             return 0;
2105   case Switch:         return 0;
2106   case IndirectBr:     return 0;
2107   case Invoke:         return 0;
2108   case CallBr:         return 0;
2109   case Resume:         return 0;
2110   case Unreachable:    return 0;
2111   case CleanupRet:     return 0;
2112   case CatchRet:       return 0;
2113   case CatchPad:       return 0;
2114   case CatchSwitch:    return 0;
2115   case CleanupPad:     return 0;
2116   case FNeg:           return ISD::FNEG;
2117   case Add:            return ISD::ADD;
2118   case FAdd:           return ISD::FADD;
2119   case Sub:            return ISD::SUB;
2120   case FSub:           return ISD::FSUB;
2121   case Mul:            return ISD::MUL;
2122   case FMul:           return ISD::FMUL;
2123   case UDiv:           return ISD::UDIV;
2124   case SDiv:           return ISD::SDIV;
2125   case FDiv:           return ISD::FDIV;
2126   case URem:           return ISD::UREM;
2127   case SRem:           return ISD::SREM;
2128   case FRem:           return ISD::FREM;
2129   case Shl:            return ISD::SHL;
2130   case LShr:           return ISD::SRL;
2131   case AShr:           return ISD::SRA;
2132   case And:            return ISD::AND;
2133   case Or:             return ISD::OR;
2134   case Xor:            return ISD::XOR;
2135   case Alloca:         return 0;
2136   case Load:           return ISD::LOAD;
2137   case Store:          return ISD::STORE;
2138   case GetElementPtr:  return 0;
2139   case Fence:          return 0;
2140   case AtomicCmpXchg:  return 0;
2141   case AtomicRMW:      return 0;
2142   case Trunc:          return ISD::TRUNCATE;
2143   case ZExt:           return ISD::ZERO_EXTEND;
2144   case SExt:           return ISD::SIGN_EXTEND;
2145   case FPToUI:         return ISD::FP_TO_UINT;
2146   case FPToSI:         return ISD::FP_TO_SINT;
2147   case UIToFP:         return ISD::UINT_TO_FP;
2148   case SIToFP:         return ISD::SINT_TO_FP;
2149   case FPTrunc:        return ISD::FP_ROUND;
2150   case FPExt:          return ISD::FP_EXTEND;
2151   case PtrToInt:       return ISD::BITCAST;
2152   case IntToPtr:       return ISD::BITCAST;
2153   case BitCast:        return ISD::BITCAST;
2154   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
2155   case ICmp:           return ISD::SETCC;
2156   case FCmp:           return ISD::SETCC;
2157   case PHI:            return 0;
2158   case Call:           return 0;
2159   case Select:         return ISD::SELECT;
2160   case UserOp1:        return 0;
2161   case UserOp2:        return 0;
2162   case VAArg:          return 0;
2163   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
2164   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
2165   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
2166   case ExtractValue:   return ISD::MERGE_VALUES;
2167   case InsertValue:    return ISD::MERGE_VALUES;
2168   case LandingPad:     return 0;
2169   case Freeze:         return ISD::FREEZE;
2170   }
2171 
2172   llvm_unreachable("Unknown instruction type encountered!");
2173 }
2174 
2175 Value *
2176 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
2177                                                        bool UseTLS) const {
2178   // compiler-rt provides a variable with a magic name.  Targets that do not
2179   // link with compiler-rt may also provide such a variable.
2180   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2181   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
2182   auto UnsafeStackPtr =
2183       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
2184 
2185   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
2186 
2187   if (!UnsafeStackPtr) {
2188     auto TLSModel = UseTLS ?
2189         GlobalValue::InitialExecTLSModel :
2190         GlobalValue::NotThreadLocal;
2191     // The global variable is not defined yet, define it ourselves.
2192     // We use the initial-exec TLS model because we do not support the
2193     // variable living anywhere other than in the main executable.
2194     UnsafeStackPtr = new GlobalVariable(
2195         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
2196         UnsafeStackPtrVar, nullptr, TLSModel);
2197   } else {
2198     // The variable exists, check its type and attributes.
2199     if (UnsafeStackPtr->getValueType() != StackPtrTy)
2200       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
2201     if (UseTLS != UnsafeStackPtr->isThreadLocal())
2202       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
2203                          (UseTLS ? "" : "not ") + "be thread-local");
2204   }
2205   return UnsafeStackPtr;
2206 }
2207 
2208 Value *
2209 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
2210   if (!TM.getTargetTriple().isAndroid())
2211     return getDefaultSafeStackPointerLocation(IRB, true);
2212 
2213   // Android provides a libc function to retrieve the address of the current
2214   // thread's unsafe stack pointer.
2215   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
2216   auto *PtrTy = PointerType::getUnqual(M->getContext());
2217   FunctionCallee Fn =
2218       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
2219   return IRB.CreateCall(Fn);
2220 }
2221 
2222 //===----------------------------------------------------------------------===//
2223 //  Loop Strength Reduction hooks
2224 //===----------------------------------------------------------------------===//
2225 
2226 /// isLegalAddressingMode - Return true if the addressing mode represented
2227 /// by AM is legal for this target, for a load/store of the specified type.
2228 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
2229                                                const AddrMode &AM, Type *Ty,
2230                                                unsigned AS, Instruction *I) const {
2231   // The default implementation of this implements a conservative RISCy, r+r and
2232   // r+i addr mode.
2233 
2234   // Scalable offsets not supported
2235   if (AM.ScalableOffset)
2236     return false;
2237 
2238   // Allows a sign-extended 16-bit immediate field.
2239   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
2240     return false;
2241 
2242   // No global is ever allowed as a base.
2243   if (AM.BaseGV)
2244     return false;
2245 
2246   // Only support r+r,
2247   switch (AM.Scale) {
2248   case 0:  // "r+i" or just "i", depending on HasBaseReg.
2249     break;
2250   case 1:
2251     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
2252       return false;
2253     // Otherwise we have r+r or r+i.
2254     break;
2255   case 2:
2256     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
2257       return false;
2258     // Allow 2*r as r+r.
2259     break;
2260   default: // Don't allow n * r
2261     return false;
2262   }
2263 
2264   return true;
2265 }
2266 
2267 //===----------------------------------------------------------------------===//
2268 //  Stack Protector
2269 //===----------------------------------------------------------------------===//
2270 
2271 // For OpenBSD return its special guard variable. Otherwise return nullptr,
2272 // so that SelectionDAG handle SSP.
2273 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
2274   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
2275     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
2276     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
2277     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
2278     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
2279       G->setVisibility(GlobalValue::HiddenVisibility);
2280     return C;
2281   }
2282   return nullptr;
2283 }
2284 
2285 // Currently only support "standard" __stack_chk_guard.
2286 // TODO: add LOAD_STACK_GUARD support.
2287 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
2288   if (!M.getNamedValue("__stack_chk_guard")) {
2289     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
2290                                   false, GlobalVariable::ExternalLinkage,
2291                                   nullptr, "__stack_chk_guard");
2292 
2293     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
2294     if (M.getDirectAccessExternalData() &&
2295         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
2296         !(TM.getTargetTriple().isPPC64() &&
2297           TM.getTargetTriple().isOSFreeBSD()) &&
2298         (!TM.getTargetTriple().isOSDarwin() ||
2299          TM.getRelocationModel() == Reloc::Static))
2300       GV->setDSOLocal(true);
2301   }
2302 }
2303 
2304 // Currently only support "standard" __stack_chk_guard.
2305 // TODO: add LOAD_STACK_GUARD support.
2306 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
2307   return M.getNamedValue("__stack_chk_guard");
2308 }
2309 
2310 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
2311   return nullptr;
2312 }
2313 
2314 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
2315   return MinimumJumpTableEntries;
2316 }
2317 
2318 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
2319   MinimumJumpTableEntries = Val;
2320 }
2321 
2322 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
2323   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
2324 }
2325 
2326 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
2327   return MaximumJumpTableSize;
2328 }
2329 
2330 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
2331   MaximumJumpTableSize = Val;
2332 }
2333 
2334 bool TargetLoweringBase::isJumpTableRelative() const {
2335   return getTargetMachine().isPositionIndependent();
2336 }
2337 
2338 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
2339   if (TM.Options.LoopAlignment)
2340     return Align(TM.Options.LoopAlignment);
2341   return PrefLoopAlignment;
2342 }
2343 
2344 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2345     MachineBasicBlock *MBB) const {
2346   return MaxBytesForAlignment;
2347 }
2348 
2349 //===----------------------------------------------------------------------===//
2350 //  Reciprocal Estimates
2351 //===----------------------------------------------------------------------===//
2352 
2353 /// Get the reciprocal estimate attribute string for a function that will
2354 /// override the target defaults.
2355 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2356   const Function &F = MF.getFunction();
2357   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2358 }
2359 
2360 /// Construct a string for the given reciprocal operation of the given type.
2361 /// This string should match the corresponding option to the front-end's
2362 /// "-mrecip" flag assuming those strings have been passed through in an
2363 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2364 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2365   std::string Name = VT.isVector() ? "vec-" : "";
2366 
2367   Name += IsSqrt ? "sqrt" : "div";
2368 
2369   // TODO: Handle other float types?
2370   if (VT.getScalarType() == MVT::f64) {
2371     Name += "d";
2372   } else if (VT.getScalarType() == MVT::f16) {
2373     Name += "h";
2374   } else {
2375     assert(VT.getScalarType() == MVT::f32 &&
2376            "Unexpected FP type for reciprocal estimate");
2377     Name += "f";
2378   }
2379 
2380   return Name;
2381 }
2382 
2383 /// Return the character position and value (a single numeric character) of a
2384 /// customized refinement operation in the input string if it exists. Return
2385 /// false if there is no customized refinement step count.
2386 static bool parseRefinementStep(StringRef In, size_t &Position,
2387                                 uint8_t &Value) {
2388   const char RefStepToken = ':';
2389   Position = In.find(RefStepToken);
2390   if (Position == StringRef::npos)
2391     return false;
2392 
2393   StringRef RefStepString = In.substr(Position + 1);
2394   // Allow exactly one numeric character for the additional refinement
2395   // step parameter.
2396   if (RefStepString.size() == 1) {
2397     char RefStepChar = RefStepString[0];
2398     if (isDigit(RefStepChar)) {
2399       Value = RefStepChar - '0';
2400       return true;
2401     }
2402   }
2403   report_fatal_error("Invalid refinement step for -recip.");
2404 }
2405 
2406 /// For the input attribute string, return one of the ReciprocalEstimate enum
2407 /// status values (enabled, disabled, or not specified) for this operation on
2408 /// the specified data type.
2409 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2410   if (Override.empty())
2411     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2412 
2413   SmallVector<StringRef, 4> OverrideVector;
2414   Override.split(OverrideVector, ',');
2415   unsigned NumArgs = OverrideVector.size();
2416 
2417   // Check if "all", "none", or "default" was specified.
2418   if (NumArgs == 1) {
2419     // Look for an optional setting of the number of refinement steps needed
2420     // for this type of reciprocal operation.
2421     size_t RefPos;
2422     uint8_t RefSteps;
2423     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2424       // Split the string for further processing.
2425       Override = Override.substr(0, RefPos);
2426     }
2427 
2428     // All reciprocal types are enabled.
2429     if (Override == "all")
2430       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2431 
2432     // All reciprocal types are disabled.
2433     if (Override == "none")
2434       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2435 
2436     // Target defaults for enablement are used.
2437     if (Override == "default")
2438       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2439   }
2440 
2441   // The attribute string may omit the size suffix ('f'/'d').
2442   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2443   std::string VTNameNoSize = VTName;
2444   VTNameNoSize.pop_back();
2445   static const char DisabledPrefix = '!';
2446 
2447   for (StringRef RecipType : OverrideVector) {
2448     size_t RefPos;
2449     uint8_t RefSteps;
2450     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2451       RecipType = RecipType.substr(0, RefPos);
2452 
2453     // Ignore the disablement token for string matching.
2454     bool IsDisabled = RecipType[0] == DisabledPrefix;
2455     if (IsDisabled)
2456       RecipType = RecipType.substr(1);
2457 
2458     if (RecipType == VTName || RecipType == VTNameNoSize)
2459       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2460                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2461   }
2462 
2463   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2464 }
2465 
2466 /// For the input attribute string, return the customized refinement step count
2467 /// for this operation on the specified data type. If the step count does not
2468 /// exist, return the ReciprocalEstimate enum value for unspecified.
2469 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2470   if (Override.empty())
2471     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2472 
2473   SmallVector<StringRef, 4> OverrideVector;
2474   Override.split(OverrideVector, ',');
2475   unsigned NumArgs = OverrideVector.size();
2476 
2477   // Check if "all", "default", or "none" was specified.
2478   if (NumArgs == 1) {
2479     // Look for an optional setting of the number of refinement steps needed
2480     // for this type of reciprocal operation.
2481     size_t RefPos;
2482     uint8_t RefSteps;
2483     if (!parseRefinementStep(Override, RefPos, RefSteps))
2484       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2485 
2486     // Split the string for further processing.
2487     Override = Override.substr(0, RefPos);
2488     assert(Override != "none" &&
2489            "Disabled reciprocals, but specifed refinement steps?");
2490 
2491     // If this is a general override, return the specified number of steps.
2492     if (Override == "all" || Override == "default")
2493       return RefSteps;
2494   }
2495 
2496   // The attribute string may omit the size suffix ('f'/'d').
2497   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2498   std::string VTNameNoSize = VTName;
2499   VTNameNoSize.pop_back();
2500 
2501   for (StringRef RecipType : OverrideVector) {
2502     size_t RefPos;
2503     uint8_t RefSteps;
2504     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2505       continue;
2506 
2507     RecipType = RecipType.substr(0, RefPos);
2508     if (RecipType == VTName || RecipType == VTNameNoSize)
2509       return RefSteps;
2510   }
2511 
2512   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2513 }
2514 
2515 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2516                                                     MachineFunction &MF) const {
2517   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2518 }
2519 
2520 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2521                                                    MachineFunction &MF) const {
2522   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2523 }
2524 
2525 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2526                                                MachineFunction &MF) const {
2527   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2528 }
2529 
2530 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2531                                               MachineFunction &MF) const {
2532   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2533 }
2534 
2535 bool TargetLoweringBase::isLoadBitCastBeneficial(
2536     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2537     const MachineMemOperand &MMO) const {
2538   // Single-element vectors are scalarized, so we should generally avoid having
2539   // any memory operations on such types, as they would get scalarized too.
2540   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2541       BitcastVT.getVectorNumElements() == 1)
2542     return false;
2543 
2544   // Don't do if we could do an indexed load on the original type, but not on
2545   // the new one.
2546   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2547     return true;
2548 
2549   MVT LoadMVT = LoadVT.getSimpleVT();
2550 
2551   // Don't bother doing this if it's just going to be promoted again later, as
2552   // doing so might interfere with other combines.
2553   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2554       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2555     return false;
2556 
2557   unsigned Fast = 0;
2558   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2559                             MMO, &Fast) &&
2560          Fast;
2561 }
2562 
2563 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2564   MF.getRegInfo().freezeReservedRegs();
2565 }
2566 
2567 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2568     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2569     const TargetLibraryInfo *LibInfo) const {
2570   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2571   if (LI.isVolatile())
2572     Flags |= MachineMemOperand::MOVolatile;
2573 
2574   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2575     Flags |= MachineMemOperand::MONonTemporal;
2576 
2577   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2578     Flags |= MachineMemOperand::MOInvariant;
2579 
2580   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2581                                          LI.getAlign(), DL, &LI, AC,
2582                                          /*DT=*/nullptr, LibInfo))
2583     Flags |= MachineMemOperand::MODereferenceable;
2584 
2585   Flags |= getTargetMMOFlags(LI);
2586   return Flags;
2587 }
2588 
2589 MachineMemOperand::Flags
2590 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2591                                             const DataLayout &DL) const {
2592   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2593 
2594   if (SI.isVolatile())
2595     Flags |= MachineMemOperand::MOVolatile;
2596 
2597   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2598     Flags |= MachineMemOperand::MONonTemporal;
2599 
2600   // FIXME: Not preserving dereferenceable
2601   Flags |= getTargetMMOFlags(SI);
2602   return Flags;
2603 }
2604 
2605 MachineMemOperand::Flags
2606 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2607                                              const DataLayout &DL) const {
2608   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2609 
2610   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2611     if (RMW->isVolatile())
2612       Flags |= MachineMemOperand::MOVolatile;
2613   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2614     if (CmpX->isVolatile())
2615       Flags |= MachineMemOperand::MOVolatile;
2616   } else
2617     llvm_unreachable("not an atomic instruction");
2618 
2619   // FIXME: Not preserving dereferenceable
2620   Flags |= getTargetMMOFlags(AI);
2621   return Flags;
2622 }
2623 
2624 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2625                                                   Instruction *Inst,
2626                                                   AtomicOrdering Ord) const {
2627   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2628     return Builder.CreateFence(Ord);
2629   else
2630     return nullptr;
2631 }
2632 
2633 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2634                                                    Instruction *Inst,
2635                                                    AtomicOrdering Ord) const {
2636   if (isAcquireOrStronger(Ord))
2637     return Builder.CreateFence(Ord);
2638   else
2639     return nullptr;
2640 }
2641 
2642 //===----------------------------------------------------------------------===//
2643 //  GlobalISel Hooks
2644 //===----------------------------------------------------------------------===//
2645 
2646 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2647                                         const TargetTransformInfo *TTI) const {
2648   auto &MF = *MI.getMF();
2649   auto &MRI = MF.getRegInfo();
2650   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2651   // this helper function computes the maximum number of uses we should consider
2652   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2653   // break even in terms of code size when the original MI has 2 users vs
2654   // choosing to potentially spill. Any more than 2 users we we have a net code
2655   // size increase. This doesn't take into account register pressure though.
2656   auto maxUses = [](unsigned RematCost) {
2657     // A cost of 1 means remats are basically free.
2658     if (RematCost == 1)
2659       return std::numeric_limits<unsigned>::max();
2660     if (RematCost == 2)
2661       return 2U;
2662 
2663     // Remat is too expensive, only sink if there's one user.
2664     if (RematCost > 2)
2665       return 1U;
2666     llvm_unreachable("Unexpected remat cost");
2667   };
2668 
2669   switch (MI.getOpcode()) {
2670   default:
2671     return false;
2672   // Constants-like instructions should be close to their users.
2673   // We don't want long live-ranges for them.
2674   case TargetOpcode::G_CONSTANT:
2675   case TargetOpcode::G_FCONSTANT:
2676   case TargetOpcode::G_FRAME_INDEX:
2677   case TargetOpcode::G_INTTOPTR:
2678     return true;
2679   case TargetOpcode::G_GLOBAL_VALUE: {
2680     unsigned RematCost = TTI->getGISelRematGlobalCost();
2681     Register Reg = MI.getOperand(0).getReg();
2682     unsigned MaxUses = maxUses(RematCost);
2683     if (MaxUses == UINT_MAX)
2684       return true; // Remats are "free" so always localize.
2685     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2686   }
2687   }
2688 }
2689