xref: /llvm-project/llvm/lib/CodeGen/TargetLoweringBase.cpp (revision 0ee32c45730c94be1b7d5fa60a0e8dff5751d014)
1 //===- TargetLoweringBase.cpp - Implement the TargetLoweringBase class ----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This implements the TargetLoweringBase class.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/BitVector.h"
14 #include "llvm/ADT/STLExtras.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/StringExtras.h"
17 #include "llvm/ADT/StringRef.h"
18 #include "llvm/ADT/Twine.h"
19 #include "llvm/Analysis/Loads.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Analysis.h"
22 #include "llvm/CodeGen/ISDOpcodes.h"
23 #include "llvm/CodeGen/MachineBasicBlock.h"
24 #include "llvm/CodeGen/MachineFrameInfo.h"
25 #include "llvm/CodeGen/MachineFunction.h"
26 #include "llvm/CodeGen/MachineInstr.h"
27 #include "llvm/CodeGen/MachineInstrBuilder.h"
28 #include "llvm/CodeGen/MachineMemOperand.h"
29 #include "llvm/CodeGen/MachineOperand.h"
30 #include "llvm/CodeGen/MachineRegisterInfo.h"
31 #include "llvm/CodeGen/RuntimeLibcallUtil.h"
32 #include "llvm/CodeGen/StackMaps.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetOpcodes.h"
35 #include "llvm/CodeGen/TargetRegisterInfo.h"
36 #include "llvm/CodeGen/ValueTypes.h"
37 #include "llvm/CodeGenTypes/MachineValueType.h"
38 #include "llvm/IR/Attributes.h"
39 #include "llvm/IR/CallingConv.h"
40 #include "llvm/IR/DataLayout.h"
41 #include "llvm/IR/DerivedTypes.h"
42 #include "llvm/IR/Function.h"
43 #include "llvm/IR/GlobalValue.h"
44 #include "llvm/IR/GlobalVariable.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/Module.h"
47 #include "llvm/IR/Type.h"
48 #include "llvm/Support/Casting.h"
49 #include "llvm/Support/CommandLine.h"
50 #include "llvm/Support/Compiler.h"
51 #include "llvm/Support/ErrorHandling.h"
52 #include "llvm/Support/MathExtras.h"
53 #include "llvm/Target/TargetMachine.h"
54 #include "llvm/Target/TargetOptions.h"
55 #include "llvm/TargetParser/Triple.h"
56 #include "llvm/Transforms/Utils/SizeOpts.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <cstring>
61 #include <iterator>
62 #include <string>
63 #include <tuple>
64 #include <utility>
65 
66 using namespace llvm;
67 
68 static cl::opt<bool> JumpIsExpensiveOverride(
69     "jump-is-expensive", cl::init(false),
70     cl::desc("Do not create extra branches to split comparison logic."),
71     cl::Hidden);
72 
73 static cl::opt<unsigned> MinimumJumpTableEntries
74   ("min-jump-table-entries", cl::init(4), cl::Hidden,
75    cl::desc("Set minimum number of entries to use a jump table."));
76 
77 static cl::opt<unsigned> MaximumJumpTableSize
78   ("max-jump-table-size", cl::init(UINT_MAX), cl::Hidden,
79    cl::desc("Set maximum size of jump tables."));
80 
81 /// Minimum jump table density for normal functions.
82 static cl::opt<unsigned>
83     JumpTableDensity("jump-table-density", cl::init(10), cl::Hidden,
84                      cl::desc("Minimum density for building a jump table in "
85                               "a normal function"));
86 
87 /// Minimum jump table density for -Os or -Oz functions.
88 static cl::opt<unsigned> OptsizeJumpTableDensity(
89     "optsize-jump-table-density", cl::init(40), cl::Hidden,
90     cl::desc("Minimum density for building a jump table in "
91              "an optsize function"));
92 
93 // FIXME: This option is only to test if the strict fp operation processed
94 // correctly by preventing mutating strict fp operation to normal fp operation
95 // during development. When the backend supports strict float operation, this
96 // option will be meaningless.
97 static cl::opt<bool> DisableStrictNodeMutation("disable-strictnode-mutation",
98        cl::desc("Don't mutate strict-float node to a legalize node"),
99        cl::init(false), cl::Hidden);
100 
101 /// GetFPLibCall - Helper to return the right libcall for the given floating
102 /// point type, or UNKNOWN_LIBCALL if there is none.
103 RTLIB::Libcall RTLIB::getFPLibCall(EVT VT,
104                                    RTLIB::Libcall Call_F32,
105                                    RTLIB::Libcall Call_F64,
106                                    RTLIB::Libcall Call_F80,
107                                    RTLIB::Libcall Call_F128,
108                                    RTLIB::Libcall Call_PPCF128) {
109   return
110     VT == MVT::f32 ? Call_F32 :
111     VT == MVT::f64 ? Call_F64 :
112     VT == MVT::f80 ? Call_F80 :
113     VT == MVT::f128 ? Call_F128 :
114     VT == MVT::ppcf128 ? Call_PPCF128 :
115     RTLIB::UNKNOWN_LIBCALL;
116 }
117 
118 /// getFPEXT - Return the FPEXT_*_* value for the given types, or
119 /// UNKNOWN_LIBCALL if there is none.
120 RTLIB::Libcall RTLIB::getFPEXT(EVT OpVT, EVT RetVT) {
121   if (OpVT == MVT::f16) {
122     if (RetVT == MVT::f32)
123       return FPEXT_F16_F32;
124     if (RetVT == MVT::f64)
125       return FPEXT_F16_F64;
126     if (RetVT == MVT::f80)
127       return FPEXT_F16_F80;
128     if (RetVT == MVT::f128)
129       return FPEXT_F16_F128;
130   } else if (OpVT == MVT::f32) {
131     if (RetVT == MVT::f64)
132       return FPEXT_F32_F64;
133     if (RetVT == MVT::f128)
134       return FPEXT_F32_F128;
135     if (RetVT == MVT::ppcf128)
136       return FPEXT_F32_PPCF128;
137   } else if (OpVT == MVT::f64) {
138     if (RetVT == MVT::f128)
139       return FPEXT_F64_F128;
140     else if (RetVT == MVT::ppcf128)
141       return FPEXT_F64_PPCF128;
142   } else if (OpVT == MVT::f80) {
143     if (RetVT == MVT::f128)
144       return FPEXT_F80_F128;
145   } else if (OpVT == MVT::bf16) {
146     if (RetVT == MVT::f32)
147       return FPEXT_BF16_F32;
148   }
149 
150   return UNKNOWN_LIBCALL;
151 }
152 
153 /// getFPROUND - Return the FPROUND_*_* value for the given types, or
154 /// UNKNOWN_LIBCALL if there is none.
155 RTLIB::Libcall RTLIB::getFPROUND(EVT OpVT, EVT RetVT) {
156   if (RetVT == MVT::f16) {
157     if (OpVT == MVT::f32)
158       return FPROUND_F32_F16;
159     if (OpVT == MVT::f64)
160       return FPROUND_F64_F16;
161     if (OpVT == MVT::f80)
162       return FPROUND_F80_F16;
163     if (OpVT == MVT::f128)
164       return FPROUND_F128_F16;
165     if (OpVT == MVT::ppcf128)
166       return FPROUND_PPCF128_F16;
167   } else if (RetVT == MVT::bf16) {
168     if (OpVT == MVT::f32)
169       return FPROUND_F32_BF16;
170     if (OpVT == MVT::f64)
171       return FPROUND_F64_BF16;
172   } else if (RetVT == MVT::f32) {
173     if (OpVT == MVT::f64)
174       return FPROUND_F64_F32;
175     if (OpVT == MVT::f80)
176       return FPROUND_F80_F32;
177     if (OpVT == MVT::f128)
178       return FPROUND_F128_F32;
179     if (OpVT == MVT::ppcf128)
180       return FPROUND_PPCF128_F32;
181   } else if (RetVT == MVT::f64) {
182     if (OpVT == MVT::f80)
183       return FPROUND_F80_F64;
184     if (OpVT == MVT::f128)
185       return FPROUND_F128_F64;
186     if (OpVT == MVT::ppcf128)
187       return FPROUND_PPCF128_F64;
188   } else if (RetVT == MVT::f80) {
189     if (OpVT == MVT::f128)
190       return FPROUND_F128_F80;
191   }
192 
193   return UNKNOWN_LIBCALL;
194 }
195 
196 /// getFPTOSINT - Return the FPTOSINT_*_* value for the given types, or
197 /// UNKNOWN_LIBCALL if there is none.
198 RTLIB::Libcall RTLIB::getFPTOSINT(EVT OpVT, EVT RetVT) {
199   if (OpVT == MVT::f16) {
200     if (RetVT == MVT::i32)
201       return FPTOSINT_F16_I32;
202     if (RetVT == MVT::i64)
203       return FPTOSINT_F16_I64;
204     if (RetVT == MVT::i128)
205       return FPTOSINT_F16_I128;
206   } else if (OpVT == MVT::f32) {
207     if (RetVT == MVT::i32)
208       return FPTOSINT_F32_I32;
209     if (RetVT == MVT::i64)
210       return FPTOSINT_F32_I64;
211     if (RetVT == MVT::i128)
212       return FPTOSINT_F32_I128;
213   } else if (OpVT == MVT::f64) {
214     if (RetVT == MVT::i32)
215       return FPTOSINT_F64_I32;
216     if (RetVT == MVT::i64)
217       return FPTOSINT_F64_I64;
218     if (RetVT == MVT::i128)
219       return FPTOSINT_F64_I128;
220   } else if (OpVT == MVT::f80) {
221     if (RetVT == MVT::i32)
222       return FPTOSINT_F80_I32;
223     if (RetVT == MVT::i64)
224       return FPTOSINT_F80_I64;
225     if (RetVT == MVT::i128)
226       return FPTOSINT_F80_I128;
227   } else if (OpVT == MVT::f128) {
228     if (RetVT == MVT::i32)
229       return FPTOSINT_F128_I32;
230     if (RetVT == MVT::i64)
231       return FPTOSINT_F128_I64;
232     if (RetVT == MVT::i128)
233       return FPTOSINT_F128_I128;
234   } else if (OpVT == MVT::ppcf128) {
235     if (RetVT == MVT::i32)
236       return FPTOSINT_PPCF128_I32;
237     if (RetVT == MVT::i64)
238       return FPTOSINT_PPCF128_I64;
239     if (RetVT == MVT::i128)
240       return FPTOSINT_PPCF128_I128;
241   }
242   return UNKNOWN_LIBCALL;
243 }
244 
245 /// getFPTOUINT - Return the FPTOUINT_*_* value for the given types, or
246 /// UNKNOWN_LIBCALL if there is none.
247 RTLIB::Libcall RTLIB::getFPTOUINT(EVT OpVT, EVT RetVT) {
248   if (OpVT == MVT::f16) {
249     if (RetVT == MVT::i32)
250       return FPTOUINT_F16_I32;
251     if (RetVT == MVT::i64)
252       return FPTOUINT_F16_I64;
253     if (RetVT == MVT::i128)
254       return FPTOUINT_F16_I128;
255   } else if (OpVT == MVT::f32) {
256     if (RetVT == MVT::i32)
257       return FPTOUINT_F32_I32;
258     if (RetVT == MVT::i64)
259       return FPTOUINT_F32_I64;
260     if (RetVT == MVT::i128)
261       return FPTOUINT_F32_I128;
262   } else if (OpVT == MVT::f64) {
263     if (RetVT == MVT::i32)
264       return FPTOUINT_F64_I32;
265     if (RetVT == MVT::i64)
266       return FPTOUINT_F64_I64;
267     if (RetVT == MVT::i128)
268       return FPTOUINT_F64_I128;
269   } else if (OpVT == MVT::f80) {
270     if (RetVT == MVT::i32)
271       return FPTOUINT_F80_I32;
272     if (RetVT == MVT::i64)
273       return FPTOUINT_F80_I64;
274     if (RetVT == MVT::i128)
275       return FPTOUINT_F80_I128;
276   } else if (OpVT == MVT::f128) {
277     if (RetVT == MVT::i32)
278       return FPTOUINT_F128_I32;
279     if (RetVT == MVT::i64)
280       return FPTOUINT_F128_I64;
281     if (RetVT == MVT::i128)
282       return FPTOUINT_F128_I128;
283   } else if (OpVT == MVT::ppcf128) {
284     if (RetVT == MVT::i32)
285       return FPTOUINT_PPCF128_I32;
286     if (RetVT == MVT::i64)
287       return FPTOUINT_PPCF128_I64;
288     if (RetVT == MVT::i128)
289       return FPTOUINT_PPCF128_I128;
290   }
291   return UNKNOWN_LIBCALL;
292 }
293 
294 /// getSINTTOFP - Return the SINTTOFP_*_* value for the given types, or
295 /// UNKNOWN_LIBCALL if there is none.
296 RTLIB::Libcall RTLIB::getSINTTOFP(EVT OpVT, EVT RetVT) {
297   if (OpVT == MVT::i32) {
298     if (RetVT == MVT::f16)
299       return SINTTOFP_I32_F16;
300     if (RetVT == MVT::f32)
301       return SINTTOFP_I32_F32;
302     if (RetVT == MVT::f64)
303       return SINTTOFP_I32_F64;
304     if (RetVT == MVT::f80)
305       return SINTTOFP_I32_F80;
306     if (RetVT == MVT::f128)
307       return SINTTOFP_I32_F128;
308     if (RetVT == MVT::ppcf128)
309       return SINTTOFP_I32_PPCF128;
310   } else if (OpVT == MVT::i64) {
311     if (RetVT == MVT::f16)
312       return SINTTOFP_I64_F16;
313     if (RetVT == MVT::f32)
314       return SINTTOFP_I64_F32;
315     if (RetVT == MVT::f64)
316       return SINTTOFP_I64_F64;
317     if (RetVT == MVT::f80)
318       return SINTTOFP_I64_F80;
319     if (RetVT == MVT::f128)
320       return SINTTOFP_I64_F128;
321     if (RetVT == MVT::ppcf128)
322       return SINTTOFP_I64_PPCF128;
323   } else if (OpVT == MVT::i128) {
324     if (RetVT == MVT::f16)
325       return SINTTOFP_I128_F16;
326     if (RetVT == MVT::f32)
327       return SINTTOFP_I128_F32;
328     if (RetVT == MVT::f64)
329       return SINTTOFP_I128_F64;
330     if (RetVT == MVT::f80)
331       return SINTTOFP_I128_F80;
332     if (RetVT == MVT::f128)
333       return SINTTOFP_I128_F128;
334     if (RetVT == MVT::ppcf128)
335       return SINTTOFP_I128_PPCF128;
336   }
337   return UNKNOWN_LIBCALL;
338 }
339 
340 /// getUINTTOFP - Return the UINTTOFP_*_* value for the given types, or
341 /// UNKNOWN_LIBCALL if there is none.
342 RTLIB::Libcall RTLIB::getUINTTOFP(EVT OpVT, EVT RetVT) {
343   if (OpVT == MVT::i32) {
344     if (RetVT == MVT::f16)
345       return UINTTOFP_I32_F16;
346     if (RetVT == MVT::f32)
347       return UINTTOFP_I32_F32;
348     if (RetVT == MVT::f64)
349       return UINTTOFP_I32_F64;
350     if (RetVT == MVT::f80)
351       return UINTTOFP_I32_F80;
352     if (RetVT == MVT::f128)
353       return UINTTOFP_I32_F128;
354     if (RetVT == MVT::ppcf128)
355       return UINTTOFP_I32_PPCF128;
356   } else if (OpVT == MVT::i64) {
357     if (RetVT == MVT::f16)
358       return UINTTOFP_I64_F16;
359     if (RetVT == MVT::f32)
360       return UINTTOFP_I64_F32;
361     if (RetVT == MVT::f64)
362       return UINTTOFP_I64_F64;
363     if (RetVT == MVT::f80)
364       return UINTTOFP_I64_F80;
365     if (RetVT == MVT::f128)
366       return UINTTOFP_I64_F128;
367     if (RetVT == MVT::ppcf128)
368       return UINTTOFP_I64_PPCF128;
369   } else if (OpVT == MVT::i128) {
370     if (RetVT == MVT::f16)
371       return UINTTOFP_I128_F16;
372     if (RetVT == MVT::f32)
373       return UINTTOFP_I128_F32;
374     if (RetVT == MVT::f64)
375       return UINTTOFP_I128_F64;
376     if (RetVT == MVT::f80)
377       return UINTTOFP_I128_F80;
378     if (RetVT == MVT::f128)
379       return UINTTOFP_I128_F128;
380     if (RetVT == MVT::ppcf128)
381       return UINTTOFP_I128_PPCF128;
382   }
383   return UNKNOWN_LIBCALL;
384 }
385 
386 RTLIB::Libcall RTLIB::getPOWI(EVT RetVT) {
387   return getFPLibCall(RetVT, POWI_F32, POWI_F64, POWI_F80, POWI_F128,
388                       POWI_PPCF128);
389 }
390 
391 RTLIB::Libcall RTLIB::getLDEXP(EVT RetVT) {
392   return getFPLibCall(RetVT, LDEXP_F32, LDEXP_F64, LDEXP_F80, LDEXP_F128,
393                       LDEXP_PPCF128);
394 }
395 
396 RTLIB::Libcall RTLIB::getFREXP(EVT RetVT) {
397   return getFPLibCall(RetVT, FREXP_F32, FREXP_F64, FREXP_F80, FREXP_F128,
398                       FREXP_PPCF128);
399 }
400 
401 RTLIB::Libcall RTLIB::getOutlineAtomicHelper(const Libcall (&LC)[5][4],
402                                              AtomicOrdering Order,
403                                              uint64_t MemSize) {
404   unsigned ModeN, ModelN;
405   switch (MemSize) {
406   case 1:
407     ModeN = 0;
408     break;
409   case 2:
410     ModeN = 1;
411     break;
412   case 4:
413     ModeN = 2;
414     break;
415   case 8:
416     ModeN = 3;
417     break;
418   case 16:
419     ModeN = 4;
420     break;
421   default:
422     return RTLIB::UNKNOWN_LIBCALL;
423   }
424 
425   switch (Order) {
426   case AtomicOrdering::Monotonic:
427     ModelN = 0;
428     break;
429   case AtomicOrdering::Acquire:
430     ModelN = 1;
431     break;
432   case AtomicOrdering::Release:
433     ModelN = 2;
434     break;
435   case AtomicOrdering::AcquireRelease:
436   case AtomicOrdering::SequentiallyConsistent:
437     ModelN = 3;
438     break;
439   default:
440     return UNKNOWN_LIBCALL;
441   }
442 
443   return LC[ModeN][ModelN];
444 }
445 
446 RTLIB::Libcall RTLIB::getOUTLINE_ATOMIC(unsigned Opc, AtomicOrdering Order,
447                                         MVT VT) {
448   if (!VT.isScalarInteger())
449     return UNKNOWN_LIBCALL;
450   uint64_t MemSize = VT.getScalarSizeInBits() / 8;
451 
452 #define LCALLS(A, B)                                                           \
453   { A##B##_RELAX, A##B##_ACQ, A##B##_REL, A##B##_ACQ_REL }
454 #define LCALL5(A)                                                              \
455   LCALLS(A, 1), LCALLS(A, 2), LCALLS(A, 4), LCALLS(A, 8), LCALLS(A, 16)
456   switch (Opc) {
457   case ISD::ATOMIC_CMP_SWAP: {
458     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_CAS)};
459     return getOutlineAtomicHelper(LC, Order, MemSize);
460   }
461   case ISD::ATOMIC_SWAP: {
462     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_SWP)};
463     return getOutlineAtomicHelper(LC, Order, MemSize);
464   }
465   case ISD::ATOMIC_LOAD_ADD: {
466     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDADD)};
467     return getOutlineAtomicHelper(LC, Order, MemSize);
468   }
469   case ISD::ATOMIC_LOAD_OR: {
470     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDSET)};
471     return getOutlineAtomicHelper(LC, Order, MemSize);
472   }
473   case ISD::ATOMIC_LOAD_CLR: {
474     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDCLR)};
475     return getOutlineAtomicHelper(LC, Order, MemSize);
476   }
477   case ISD::ATOMIC_LOAD_XOR: {
478     const Libcall LC[5][4] = {LCALL5(OUTLINE_ATOMIC_LDEOR)};
479     return getOutlineAtomicHelper(LC, Order, MemSize);
480   }
481   default:
482     return UNKNOWN_LIBCALL;
483   }
484 #undef LCALLS
485 #undef LCALL5
486 }
487 
488 RTLIB::Libcall RTLIB::getSYNC(unsigned Opc, MVT VT) {
489 #define OP_TO_LIBCALL(Name, Enum)                                              \
490   case Name:                                                                   \
491     switch (VT.SimpleTy) {                                                     \
492     default:                                                                   \
493       return UNKNOWN_LIBCALL;                                                  \
494     case MVT::i8:                                                              \
495       return Enum##_1;                                                         \
496     case MVT::i16:                                                             \
497       return Enum##_2;                                                         \
498     case MVT::i32:                                                             \
499       return Enum##_4;                                                         \
500     case MVT::i64:                                                             \
501       return Enum##_8;                                                         \
502     case MVT::i128:                                                            \
503       return Enum##_16;                                                        \
504     }
505 
506   switch (Opc) {
507     OP_TO_LIBCALL(ISD::ATOMIC_SWAP, SYNC_LOCK_TEST_AND_SET)
508     OP_TO_LIBCALL(ISD::ATOMIC_CMP_SWAP, SYNC_VAL_COMPARE_AND_SWAP)
509     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_ADD, SYNC_FETCH_AND_ADD)
510     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_SUB, SYNC_FETCH_AND_SUB)
511     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_AND, SYNC_FETCH_AND_AND)
512     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_OR, SYNC_FETCH_AND_OR)
513     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_XOR, SYNC_FETCH_AND_XOR)
514     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_NAND, SYNC_FETCH_AND_NAND)
515     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MAX, SYNC_FETCH_AND_MAX)
516     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMAX, SYNC_FETCH_AND_UMAX)
517     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_MIN, SYNC_FETCH_AND_MIN)
518     OP_TO_LIBCALL(ISD::ATOMIC_LOAD_UMIN, SYNC_FETCH_AND_UMIN)
519   }
520 
521 #undef OP_TO_LIBCALL
522 
523   return UNKNOWN_LIBCALL;
524 }
525 
526 RTLIB::Libcall RTLIB::getMEMCPY_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
527   switch (ElementSize) {
528   case 1:
529     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_1;
530   case 2:
531     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_2;
532   case 4:
533     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_4;
534   case 8:
535     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_8;
536   case 16:
537     return MEMCPY_ELEMENT_UNORDERED_ATOMIC_16;
538   default:
539     return UNKNOWN_LIBCALL;
540   }
541 }
542 
543 RTLIB::Libcall RTLIB::getMEMMOVE_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
544   switch (ElementSize) {
545   case 1:
546     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_1;
547   case 2:
548     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_2;
549   case 4:
550     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_4;
551   case 8:
552     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_8;
553   case 16:
554     return MEMMOVE_ELEMENT_UNORDERED_ATOMIC_16;
555   default:
556     return UNKNOWN_LIBCALL;
557   }
558 }
559 
560 RTLIB::Libcall RTLIB::getMEMSET_ELEMENT_UNORDERED_ATOMIC(uint64_t ElementSize) {
561   switch (ElementSize) {
562   case 1:
563     return MEMSET_ELEMENT_UNORDERED_ATOMIC_1;
564   case 2:
565     return MEMSET_ELEMENT_UNORDERED_ATOMIC_2;
566   case 4:
567     return MEMSET_ELEMENT_UNORDERED_ATOMIC_4;
568   case 8:
569     return MEMSET_ELEMENT_UNORDERED_ATOMIC_8;
570   case 16:
571     return MEMSET_ELEMENT_UNORDERED_ATOMIC_16;
572   default:
573     return UNKNOWN_LIBCALL;
574   }
575 }
576 
577 void RTLIB::initCmpLibcallCCs(ISD::CondCode *CmpLibcallCCs) {
578   std::fill(CmpLibcallCCs, CmpLibcallCCs + RTLIB::UNKNOWN_LIBCALL,
579             ISD::SETCC_INVALID);
580   CmpLibcallCCs[RTLIB::OEQ_F32] = ISD::SETEQ;
581   CmpLibcallCCs[RTLIB::OEQ_F64] = ISD::SETEQ;
582   CmpLibcallCCs[RTLIB::OEQ_F128] = ISD::SETEQ;
583   CmpLibcallCCs[RTLIB::OEQ_PPCF128] = ISD::SETEQ;
584   CmpLibcallCCs[RTLIB::UNE_F32] = ISD::SETNE;
585   CmpLibcallCCs[RTLIB::UNE_F64] = ISD::SETNE;
586   CmpLibcallCCs[RTLIB::UNE_F128] = ISD::SETNE;
587   CmpLibcallCCs[RTLIB::UNE_PPCF128] = ISD::SETNE;
588   CmpLibcallCCs[RTLIB::OGE_F32] = ISD::SETGE;
589   CmpLibcallCCs[RTLIB::OGE_F64] = ISD::SETGE;
590   CmpLibcallCCs[RTLIB::OGE_F128] = ISD::SETGE;
591   CmpLibcallCCs[RTLIB::OGE_PPCF128] = ISD::SETGE;
592   CmpLibcallCCs[RTLIB::OLT_F32] = ISD::SETLT;
593   CmpLibcallCCs[RTLIB::OLT_F64] = ISD::SETLT;
594   CmpLibcallCCs[RTLIB::OLT_F128] = ISD::SETLT;
595   CmpLibcallCCs[RTLIB::OLT_PPCF128] = ISD::SETLT;
596   CmpLibcallCCs[RTLIB::OLE_F32] = ISD::SETLE;
597   CmpLibcallCCs[RTLIB::OLE_F64] = ISD::SETLE;
598   CmpLibcallCCs[RTLIB::OLE_F128] = ISD::SETLE;
599   CmpLibcallCCs[RTLIB::OLE_PPCF128] = ISD::SETLE;
600   CmpLibcallCCs[RTLIB::OGT_F32] = ISD::SETGT;
601   CmpLibcallCCs[RTLIB::OGT_F64] = ISD::SETGT;
602   CmpLibcallCCs[RTLIB::OGT_F128] = ISD::SETGT;
603   CmpLibcallCCs[RTLIB::OGT_PPCF128] = ISD::SETGT;
604   CmpLibcallCCs[RTLIB::UO_F32] = ISD::SETNE;
605   CmpLibcallCCs[RTLIB::UO_F64] = ISD::SETNE;
606   CmpLibcallCCs[RTLIB::UO_F128] = ISD::SETNE;
607   CmpLibcallCCs[RTLIB::UO_PPCF128] = ISD::SETNE;
608 }
609 
610 /// NOTE: The TargetMachine owns TLOF.
611 TargetLoweringBase::TargetLoweringBase(const TargetMachine &tm)
612     : TM(tm), Libcalls(TM.getTargetTriple()) {
613   initActions();
614 
615   // Perform these initializations only once.
616   MaxStoresPerMemset = MaxStoresPerMemcpy = MaxStoresPerMemmove =
617       MaxLoadsPerMemcmp = 8;
618   MaxGluedStoresPerMemcpy = 0;
619   MaxStoresPerMemsetOptSize = MaxStoresPerMemcpyOptSize =
620       MaxStoresPerMemmoveOptSize = MaxLoadsPerMemcmpOptSize = 4;
621   HasMultipleConditionRegisters = false;
622   HasExtractBitsInsn = false;
623   JumpIsExpensive = JumpIsExpensiveOverride;
624   PredictableSelectIsExpensive = false;
625   EnableExtLdPromotion = false;
626   StackPointerRegisterToSaveRestore = 0;
627   BooleanContents = UndefinedBooleanContent;
628   BooleanFloatContents = UndefinedBooleanContent;
629   BooleanVectorContents = UndefinedBooleanContent;
630   SchedPreferenceInfo = Sched::ILP;
631   GatherAllAliasesMaxDepth = 18;
632   IsStrictFPEnabled = DisableStrictNodeMutation;
633   MaxBytesForAlignment = 0;
634   MaxAtomicSizeInBitsSupported = 0;
635 
636   // Assume that even with libcalls, no target supports wider than 128 bit
637   // division.
638   MaxDivRemBitWidthSupported = 128;
639 
640   MaxLargeFPConvertBitWidthSupported = llvm::IntegerType::MAX_INT_BITS;
641 
642   MinCmpXchgSizeInBits = 0;
643   SupportsUnalignedAtomics = false;
644 
645   RTLIB::initCmpLibcallCCs(CmpLibcallCCs);
646 }
647 
648 void TargetLoweringBase::initActions() {
649   // All operations default to being supported.
650   memset(OpActions, 0, sizeof(OpActions));
651   memset(LoadExtActions, 0, sizeof(LoadExtActions));
652   memset(TruncStoreActions, 0, sizeof(TruncStoreActions));
653   memset(IndexedModeActions, 0, sizeof(IndexedModeActions));
654   memset(CondCodeActions, 0, sizeof(CondCodeActions));
655   std::fill(std::begin(RegClassForVT), std::end(RegClassForVT), nullptr);
656   std::fill(std::begin(TargetDAGCombineArray),
657             std::end(TargetDAGCombineArray), 0);
658 
659   // Let extending atomic loads be unsupported by default.
660   for (MVT ValVT : MVT::all_valuetypes())
661     for (MVT MemVT : MVT::all_valuetypes())
662       setAtomicLoadExtAction({ISD::SEXTLOAD, ISD::ZEXTLOAD}, ValVT, MemVT,
663                              Expand);
664 
665   // We're somewhat special casing MVT::i2 and MVT::i4. Ideally we want to
666   // remove this and targets should individually set these types if not legal.
667   for (ISD::NodeType NT : enum_seq(ISD::DELETED_NODE, ISD::BUILTIN_OP_END,
668                                    force_iteration_on_noniterable_enum)) {
669     for (MVT VT : {MVT::i2, MVT::i4})
670       OpActions[(unsigned)VT.SimpleTy][NT] = Expand;
671   }
672   for (MVT AVT : MVT::all_valuetypes()) {
673     for (MVT VT : {MVT::i2, MVT::i4, MVT::v128i2, MVT::v64i4}) {
674       setTruncStoreAction(AVT, VT, Expand);
675       setLoadExtAction(ISD::EXTLOAD, AVT, VT, Expand);
676       setLoadExtAction(ISD::ZEXTLOAD, AVT, VT, Expand);
677     }
678   }
679   for (unsigned IM = (unsigned)ISD::PRE_INC;
680        IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
681     for (MVT VT : {MVT::i2, MVT::i4}) {
682       setIndexedLoadAction(IM, VT, Expand);
683       setIndexedStoreAction(IM, VT, Expand);
684       setIndexedMaskedLoadAction(IM, VT, Expand);
685       setIndexedMaskedStoreAction(IM, VT, Expand);
686     }
687   }
688 
689   for (MVT VT : MVT::fp_valuetypes()) {
690     MVT IntVT = MVT::getIntegerVT(VT.getFixedSizeInBits());
691     if (IntVT.isValid()) {
692       setOperationAction(ISD::ATOMIC_SWAP, VT, Promote);
693       AddPromotedToType(ISD::ATOMIC_SWAP, VT, IntVT);
694     }
695   }
696 
697   // Set default actions for various operations.
698   for (MVT VT : MVT::all_valuetypes()) {
699     // Default all indexed load / store to expand.
700     for (unsigned IM = (unsigned)ISD::PRE_INC;
701          IM != (unsigned)ISD::LAST_INDEXED_MODE; ++IM) {
702       setIndexedLoadAction(IM, VT, Expand);
703       setIndexedStoreAction(IM, VT, Expand);
704       setIndexedMaskedLoadAction(IM, VT, Expand);
705       setIndexedMaskedStoreAction(IM, VT, Expand);
706     }
707 
708     // Most backends expect to see the node which just returns the value loaded.
709     setOperationAction(ISD::ATOMIC_CMP_SWAP_WITH_SUCCESS, VT, Expand);
710 
711     // These operations default to expand.
712     setOperationAction({ISD::FGETSIGN,       ISD::CONCAT_VECTORS,
713                         ISD::FMINNUM,        ISD::FMAXNUM,
714                         ISD::FMINNUM_IEEE,   ISD::FMAXNUM_IEEE,
715                         ISD::FMINIMUM,       ISD::FMAXIMUM,
716                         ISD::FMAD,           ISD::SMIN,
717                         ISD::SMAX,           ISD::UMIN,
718                         ISD::UMAX,           ISD::ABS,
719                         ISD::FSHL,           ISD::FSHR,
720                         ISD::SADDSAT,        ISD::UADDSAT,
721                         ISD::SSUBSAT,        ISD::USUBSAT,
722                         ISD::SSHLSAT,        ISD::USHLSAT,
723                         ISD::SMULFIX,        ISD::SMULFIXSAT,
724                         ISD::UMULFIX,        ISD::UMULFIXSAT,
725                         ISD::SDIVFIX,        ISD::SDIVFIXSAT,
726                         ISD::UDIVFIX,        ISD::UDIVFIXSAT,
727                         ISD::FP_TO_SINT_SAT, ISD::FP_TO_UINT_SAT,
728                         ISD::IS_FPCLASS},
729                        VT, Expand);
730 
731     // Overflow operations default to expand
732     setOperationAction({ISD::SADDO, ISD::SSUBO, ISD::UADDO, ISD::USUBO,
733                         ISD::SMULO, ISD::UMULO},
734                        VT, Expand);
735 
736     // Carry-using overflow operations default to expand.
737     setOperationAction({ISD::UADDO_CARRY, ISD::USUBO_CARRY, ISD::SETCCCARRY,
738                         ISD::SADDO_CARRY, ISD::SSUBO_CARRY},
739                        VT, Expand);
740 
741     // ADDC/ADDE/SUBC/SUBE default to expand.
742     setOperationAction({ISD::ADDC, ISD::ADDE, ISD::SUBC, ISD::SUBE}, VT,
743                        Expand);
744 
745     // [US]CMP default to expand
746     setOperationAction({ISD::UCMP, ISD::SCMP}, VT, Expand);
747 
748     // Halving adds
749     setOperationAction(
750         {ISD::AVGFLOORS, ISD::AVGFLOORU, ISD::AVGCEILS, ISD::AVGCEILU}, VT,
751         Expand);
752 
753     // Absolute difference
754     setOperationAction({ISD::ABDS, ISD::ABDU}, VT, Expand);
755 
756     // These default to Expand so they will be expanded to CTLZ/CTTZ by default.
757     setOperationAction({ISD::CTLZ_ZERO_UNDEF, ISD::CTTZ_ZERO_UNDEF}, VT,
758                        Expand);
759 
760     setOperationAction({ISD::BITREVERSE, ISD::PARITY}, VT, Expand);
761 
762     // These library functions default to expand.
763     setOperationAction({ISD::FROUND, ISD::FPOWI, ISD::FLDEXP, ISD::FFREXP}, VT,
764                        Expand);
765 
766     // These operations default to expand for vector types.
767     if (VT.isVector())
768       setOperationAction(
769           {ISD::FCOPYSIGN, ISD::SIGN_EXTEND_INREG, ISD::ANY_EXTEND_VECTOR_INREG,
770            ISD::SIGN_EXTEND_VECTOR_INREG, ISD::ZERO_EXTEND_VECTOR_INREG,
771            ISD::SPLAT_VECTOR, ISD::LRINT, ISD::LLRINT, ISD::FTAN, ISD::FACOS,
772            ISD::FASIN, ISD::FATAN, ISD::FCOSH, ISD::FSINH, ISD::FTANH},
773           VT, Expand);
774 
775       // Constrained floating-point operations default to expand.
776 #define DAG_INSTRUCTION(NAME, NARG, ROUND_MODE, INTRINSIC, DAGN)               \
777     setOperationAction(ISD::STRICT_##DAGN, VT, Expand);
778 #include "llvm/IR/ConstrainedOps.def"
779 
780     // For most targets @llvm.get.dynamic.area.offset just returns 0.
781     setOperationAction(ISD::GET_DYNAMIC_AREA_OFFSET, VT, Expand);
782 
783     // Vector reduction default to expand.
784     setOperationAction(
785         {ISD::VECREDUCE_FADD, ISD::VECREDUCE_FMUL, ISD::VECREDUCE_ADD,
786          ISD::VECREDUCE_MUL, ISD::VECREDUCE_AND, ISD::VECREDUCE_OR,
787          ISD::VECREDUCE_XOR, ISD::VECREDUCE_SMAX, ISD::VECREDUCE_SMIN,
788          ISD::VECREDUCE_UMAX, ISD::VECREDUCE_UMIN, ISD::VECREDUCE_FMAX,
789          ISD::VECREDUCE_FMIN, ISD::VECREDUCE_FMAXIMUM, ISD::VECREDUCE_FMINIMUM,
790          ISD::VECREDUCE_SEQ_FADD, ISD::VECREDUCE_SEQ_FMUL},
791         VT, Expand);
792 
793     // Named vector shuffles default to expand.
794     setOperationAction(ISD::VECTOR_SPLICE, VT, Expand);
795 
796     // Only some target support this vector operation. Most need to expand it.
797     setOperationAction(ISD::VECTOR_COMPRESS, VT, Expand);
798 
799     // VP operations default to expand.
800 #define BEGIN_REGISTER_VP_SDNODE(SDOPC, ...)                                   \
801     setOperationAction(ISD::SDOPC, VT, Expand);
802 #include "llvm/IR/VPIntrinsics.def"
803 
804     // FP environment operations default to expand.
805     setOperationAction(ISD::GET_FPENV, VT, Expand);
806     setOperationAction(ISD::SET_FPENV, VT, Expand);
807     setOperationAction(ISD::RESET_FPENV, VT, Expand);
808   }
809 
810   // Most targets ignore the @llvm.prefetch intrinsic.
811   setOperationAction(ISD::PREFETCH, MVT::Other, Expand);
812 
813   // Most targets also ignore the @llvm.readcyclecounter intrinsic.
814   setOperationAction(ISD::READCYCLECOUNTER, MVT::i64, Expand);
815 
816   // Most targets also ignore the @llvm.readsteadycounter intrinsic.
817   setOperationAction(ISD::READSTEADYCOUNTER, MVT::i64, Expand);
818 
819   // ConstantFP nodes default to expand.  Targets can either change this to
820   // Legal, in which case all fp constants are legal, or use isFPImmLegal()
821   // to optimize expansions for certain constants.
822   setOperationAction(ISD::ConstantFP,
823                      {MVT::bf16, MVT::f16, MVT::f32, MVT::f64, MVT::f80, MVT::f128},
824                      Expand);
825 
826   // These library functions default to expand.
827   setOperationAction({ISD::FCBRT,      ISD::FLOG,  ISD::FLOG2,  ISD::FLOG10,
828                       ISD::FEXP,       ISD::FEXP2, ISD::FEXP10, ISD::FFLOOR,
829                       ISD::FNEARBYINT, ISD::FCEIL, ISD::FRINT,  ISD::FTRUNC,
830                       ISD::FROUNDEVEN, ISD::FTAN,  ISD::FACOS,  ISD::FASIN,
831                       ISD::FATAN,      ISD::FCOSH, ISD::FSINH,  ISD::FTANH},
832                      {MVT::f32, MVT::f64, MVT::f128}, Expand);
833 
834   // FIXME: Query RuntimeLibCalls to make the decision.
835   setOperationAction({ISD::LRINT, ISD::LLRINT, ISD::LROUND, ISD::LLROUND},
836                      {MVT::f32, MVT::f64, MVT::f128}, LibCall);
837 
838   setOperationAction({ISD::FTAN, ISD::FACOS, ISD::FASIN, ISD::FATAN, ISD::FCOSH,
839                       ISD::FSINH, ISD::FTANH},
840                      MVT::f16, Promote);
841   // Default ISD::TRAP to expand (which turns it into abort).
842   setOperationAction(ISD::TRAP, MVT::Other, Expand);
843 
844   // On most systems, DEBUGTRAP and TRAP have no difference. The "Expand"
845   // here is to inform DAG Legalizer to replace DEBUGTRAP with TRAP.
846   setOperationAction(ISD::DEBUGTRAP, MVT::Other, Expand);
847 
848   setOperationAction(ISD::UBSANTRAP, MVT::Other, Expand);
849 
850   setOperationAction(ISD::GET_FPENV_MEM, MVT::Other, Expand);
851   setOperationAction(ISD::SET_FPENV_MEM, MVT::Other, Expand);
852 
853   for (MVT VT : {MVT::i8, MVT::i16, MVT::i32, MVT::i64}) {
854     setOperationAction(ISD::GET_FPMODE, VT, Expand);
855     setOperationAction(ISD::SET_FPMODE, VT, Expand);
856   }
857   setOperationAction(ISD::RESET_FPMODE, MVT::Other, Expand);
858 
859   // This one by default will call __clear_cache unless the target
860   // wants something different.
861   setOperationAction(ISD::CLEAR_CACHE, MVT::Other, LibCall);
862 }
863 
864 MVT TargetLoweringBase::getScalarShiftAmountTy(const DataLayout &DL,
865                                                EVT) const {
866   return MVT::getIntegerVT(DL.getPointerSizeInBits(0));
867 }
868 
869 EVT TargetLoweringBase::getShiftAmountTy(EVT LHSTy,
870                                          const DataLayout &DL) const {
871   assert(LHSTy.isInteger() && "Shift amount is not an integer type!");
872   if (LHSTy.isVector())
873     return LHSTy;
874   MVT ShiftVT = getScalarShiftAmountTy(DL, LHSTy);
875   // If any possible shift value won't fit in the prefered type, just use
876   // something safe. Assume it will be legalized when the shift is expanded.
877   if (ShiftVT.getSizeInBits() < Log2_32_Ceil(LHSTy.getSizeInBits()))
878     ShiftVT = MVT::i32;
879   assert(ShiftVT.getSizeInBits() >= Log2_32_Ceil(LHSTy.getSizeInBits()) &&
880          "ShiftVT is still too small!");
881   return ShiftVT;
882 }
883 
884 bool TargetLoweringBase::canOpTrap(unsigned Op, EVT VT) const {
885   assert(isTypeLegal(VT));
886   switch (Op) {
887   default:
888     return false;
889   case ISD::SDIV:
890   case ISD::UDIV:
891   case ISD::SREM:
892   case ISD::UREM:
893     return true;
894   }
895 }
896 
897 bool TargetLoweringBase::isFreeAddrSpaceCast(unsigned SrcAS,
898                                              unsigned DestAS) const {
899   return TM.isNoopAddrSpaceCast(SrcAS, DestAS);
900 }
901 
902 unsigned TargetLoweringBase::getBitWidthForCttzElements(
903     Type *RetTy, ElementCount EC, bool ZeroIsPoison,
904     const ConstantRange *VScaleRange) const {
905   // Find the smallest "sensible" element type to use for the expansion.
906   ConstantRange CR(APInt(64, EC.getKnownMinValue()));
907   if (EC.isScalable())
908     CR = CR.umul_sat(*VScaleRange);
909 
910   if (ZeroIsPoison)
911     CR = CR.subtract(APInt(64, 1));
912 
913   unsigned EltWidth = RetTy->getScalarSizeInBits();
914   EltWidth = std::min(EltWidth, (unsigned)CR.getActiveBits());
915   EltWidth = std::max(llvm::bit_ceil(EltWidth), (unsigned)8);
916 
917   return EltWidth;
918 }
919 
920 void TargetLoweringBase::setJumpIsExpensive(bool isExpensive) {
921   // If the command-line option was specified, ignore this request.
922   if (!JumpIsExpensiveOverride.getNumOccurrences())
923     JumpIsExpensive = isExpensive;
924 }
925 
926 TargetLoweringBase::LegalizeKind
927 TargetLoweringBase::getTypeConversion(LLVMContext &Context, EVT VT) const {
928   // If this is a simple type, use the ComputeRegisterProp mechanism.
929   if (VT.isSimple()) {
930     MVT SVT = VT.getSimpleVT();
931     assert((unsigned)SVT.SimpleTy < std::size(TransformToType));
932     MVT NVT = TransformToType[SVT.SimpleTy];
933     LegalizeTypeAction LA = ValueTypeActions.getTypeAction(SVT);
934 
935     assert((LA == TypeLegal || LA == TypeSoftenFloat ||
936             LA == TypeSoftPromoteHalf ||
937             (NVT.isVector() ||
938              ValueTypeActions.getTypeAction(NVT) != TypePromoteInteger)) &&
939            "Promote may not follow Expand or Promote");
940 
941     if (LA == TypeSplitVector)
942       return LegalizeKind(LA, EVT(SVT).getHalfNumVectorElementsVT(Context));
943     if (LA == TypeScalarizeVector)
944       return LegalizeKind(LA, SVT.getVectorElementType());
945     return LegalizeKind(LA, NVT);
946   }
947 
948   // Handle Extended Scalar Types.
949   if (!VT.isVector()) {
950     assert(VT.isInteger() && "Float types must be simple");
951     unsigned BitSize = VT.getSizeInBits();
952     // First promote to a power-of-two size, then expand if necessary.
953     if (BitSize < 8 || !isPowerOf2_32(BitSize)) {
954       EVT NVT = VT.getRoundIntegerType(Context);
955       assert(NVT != VT && "Unable to round integer VT");
956       LegalizeKind NextStep = getTypeConversion(Context, NVT);
957       // Avoid multi-step promotion.
958       if (NextStep.first == TypePromoteInteger)
959         return NextStep;
960       // Return rounded integer type.
961       return LegalizeKind(TypePromoteInteger, NVT);
962     }
963 
964     return LegalizeKind(TypeExpandInteger,
965                         EVT::getIntegerVT(Context, VT.getSizeInBits() / 2));
966   }
967 
968   // Handle vector types.
969   ElementCount NumElts = VT.getVectorElementCount();
970   EVT EltVT = VT.getVectorElementType();
971 
972   // Vectors with only one element are always scalarized.
973   if (NumElts.isScalar())
974     return LegalizeKind(TypeScalarizeVector, EltVT);
975 
976   // Try to widen vector elements until the element type is a power of two and
977   // promote it to a legal type later on, for example:
978   // <3 x i8> -> <4 x i8> -> <4 x i32>
979   if (EltVT.isInteger()) {
980     // Vectors with a number of elements that is not a power of two are always
981     // widened, for example <3 x i8> -> <4 x i8>.
982     if (!VT.isPow2VectorType()) {
983       NumElts = NumElts.coefficientNextPowerOf2();
984       EVT NVT = EVT::getVectorVT(Context, EltVT, NumElts);
985       return LegalizeKind(TypeWidenVector, NVT);
986     }
987 
988     // Examine the element type.
989     LegalizeKind LK = getTypeConversion(Context, EltVT);
990 
991     // If type is to be expanded, split the vector.
992     //  <4 x i140> -> <2 x i140>
993     if (LK.first == TypeExpandInteger) {
994       if (VT.getVectorElementCount().isScalable())
995         return LegalizeKind(TypeScalarizeScalableVector, EltVT);
996       return LegalizeKind(TypeSplitVector,
997                           VT.getHalfNumVectorElementsVT(Context));
998     }
999 
1000     // Promote the integer element types until a legal vector type is found
1001     // or until the element integer type is too big. If a legal type was not
1002     // found, fallback to the usual mechanism of widening/splitting the
1003     // vector.
1004     EVT OldEltVT = EltVT;
1005     while (true) {
1006       // Increase the bitwidth of the element to the next pow-of-two
1007       // (which is greater than 8 bits).
1008       EltVT = EVT::getIntegerVT(Context, 1 + EltVT.getSizeInBits())
1009                   .getRoundIntegerType(Context);
1010 
1011       // Stop trying when getting a non-simple element type.
1012       // Note that vector elements may be greater than legal vector element
1013       // types. Example: X86 XMM registers hold 64bit element on 32bit
1014       // systems.
1015       if (!EltVT.isSimple())
1016         break;
1017 
1018       // Build a new vector type and check if it is legal.
1019       MVT NVT = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1020       // Found a legal promoted vector type.
1021       if (NVT != MVT() && ValueTypeActions.getTypeAction(NVT) == TypeLegal)
1022         return LegalizeKind(TypePromoteInteger,
1023                             EVT::getVectorVT(Context, EltVT, NumElts));
1024     }
1025 
1026     // Reset the type to the unexpanded type if we did not find a legal vector
1027     // type with a promoted vector element type.
1028     EltVT = OldEltVT;
1029   }
1030 
1031   // Try to widen the vector until a legal type is found.
1032   // If there is no wider legal type, split the vector.
1033   while (true) {
1034     // Round up to the next power of 2.
1035     NumElts = NumElts.coefficientNextPowerOf2();
1036 
1037     // If there is no simple vector type with this many elements then there
1038     // cannot be a larger legal vector type.  Note that this assumes that
1039     // there are no skipped intermediate vector types in the simple types.
1040     if (!EltVT.isSimple())
1041       break;
1042     MVT LargerVector = MVT::getVectorVT(EltVT.getSimpleVT(), NumElts);
1043     if (LargerVector == MVT())
1044       break;
1045 
1046     // If this type is legal then widen the vector.
1047     if (ValueTypeActions.getTypeAction(LargerVector) == TypeLegal)
1048       return LegalizeKind(TypeWidenVector, LargerVector);
1049   }
1050 
1051   // Widen odd vectors to next power of two.
1052   if (!VT.isPow2VectorType()) {
1053     EVT NVT = VT.getPow2VectorType(Context);
1054     return LegalizeKind(TypeWidenVector, NVT);
1055   }
1056 
1057   if (VT.getVectorElementCount() == ElementCount::getScalable(1))
1058     return LegalizeKind(TypeScalarizeScalableVector, EltVT);
1059 
1060   // Vectors with illegal element types are expanded.
1061   EVT NVT = EVT::getVectorVT(Context, EltVT,
1062                              VT.getVectorElementCount().divideCoefficientBy(2));
1063   return LegalizeKind(TypeSplitVector, NVT);
1064 }
1065 
1066 static unsigned getVectorTypeBreakdownMVT(MVT VT, MVT &IntermediateVT,
1067                                           unsigned &NumIntermediates,
1068                                           MVT &RegisterVT,
1069                                           TargetLoweringBase *TLI) {
1070   // Figure out the right, legal destination reg to copy into.
1071   ElementCount EC = VT.getVectorElementCount();
1072   MVT EltTy = VT.getVectorElementType();
1073 
1074   unsigned NumVectorRegs = 1;
1075 
1076   // Scalable vectors cannot be scalarized, so splitting or widening is
1077   // required.
1078   if (VT.isScalableVector() && !isPowerOf2_32(EC.getKnownMinValue()))
1079     llvm_unreachable(
1080         "Splitting or widening of non-power-of-2 MVTs is not implemented.");
1081 
1082   // FIXME: We don't support non-power-of-2-sized vectors for now.
1083   // Ideally we could break down into LHS/RHS like LegalizeDAG does.
1084   if (!isPowerOf2_32(EC.getKnownMinValue())) {
1085     // Split EC to unit size (scalable property is preserved).
1086     NumVectorRegs = EC.getKnownMinValue();
1087     EC = ElementCount::getFixed(1);
1088   }
1089 
1090   // Divide the input until we get to a supported size. This will
1091   // always end up with an EC that represent a scalar or a scalable
1092   // scalar.
1093   while (EC.getKnownMinValue() > 1 &&
1094          !TLI->isTypeLegal(MVT::getVectorVT(EltTy, EC))) {
1095     EC = EC.divideCoefficientBy(2);
1096     NumVectorRegs <<= 1;
1097   }
1098 
1099   NumIntermediates = NumVectorRegs;
1100 
1101   MVT NewVT = MVT::getVectorVT(EltTy, EC);
1102   if (!TLI->isTypeLegal(NewVT))
1103     NewVT = EltTy;
1104   IntermediateVT = NewVT;
1105 
1106   unsigned LaneSizeInBits = NewVT.getScalarSizeInBits();
1107 
1108   // Convert sizes such as i33 to i64.
1109   LaneSizeInBits = llvm::bit_ceil(LaneSizeInBits);
1110 
1111   MVT DestVT = TLI->getRegisterType(NewVT);
1112   RegisterVT = DestVT;
1113   if (EVT(DestVT).bitsLT(NewVT))    // Value is expanded, e.g. i64 -> i16.
1114     return NumVectorRegs * (LaneSizeInBits / DestVT.getScalarSizeInBits());
1115 
1116   // Otherwise, promotion or legal types use the same number of registers as
1117   // the vector decimated to the appropriate level.
1118   return NumVectorRegs;
1119 }
1120 
1121 /// isLegalRC - Return true if the value types that can be represented by the
1122 /// specified register class are all legal.
1123 bool TargetLoweringBase::isLegalRC(const TargetRegisterInfo &TRI,
1124                                    const TargetRegisterClass &RC) const {
1125   for (const auto *I = TRI.legalclasstypes_begin(RC); *I != MVT::Other; ++I)
1126     if (isTypeLegal(*I))
1127       return true;
1128   return false;
1129 }
1130 
1131 /// Replace/modify any TargetFrameIndex operands with a targte-dependent
1132 /// sequence of memory operands that is recognized by PrologEpilogInserter.
1133 MachineBasicBlock *
1134 TargetLoweringBase::emitPatchPoint(MachineInstr &InitialMI,
1135                                    MachineBasicBlock *MBB) const {
1136   MachineInstr *MI = &InitialMI;
1137   MachineFunction &MF = *MI->getMF();
1138   MachineFrameInfo &MFI = MF.getFrameInfo();
1139 
1140   // We're handling multiple types of operands here:
1141   // PATCHPOINT MetaArgs - live-in, read only, direct
1142   // STATEPOINT Deopt Spill - live-through, read only, indirect
1143   // STATEPOINT Deopt Alloca - live-through, read only, direct
1144   // (We're currently conservative and mark the deopt slots read/write in
1145   // practice.)
1146   // STATEPOINT GC Spill - live-through, read/write, indirect
1147   // STATEPOINT GC Alloca - live-through, read/write, direct
1148   // The live-in vs live-through is handled already (the live through ones are
1149   // all stack slots), but we need to handle the different type of stackmap
1150   // operands and memory effects here.
1151 
1152   if (llvm::none_of(MI->operands(),
1153                     [](MachineOperand &Operand) { return Operand.isFI(); }))
1154     return MBB;
1155 
1156   MachineInstrBuilder MIB = BuildMI(MF, MI->getDebugLoc(), MI->getDesc());
1157 
1158   // Inherit previous memory operands.
1159   MIB.cloneMemRefs(*MI);
1160 
1161   for (unsigned i = 0; i < MI->getNumOperands(); ++i) {
1162     MachineOperand &MO = MI->getOperand(i);
1163     if (!MO.isFI()) {
1164       // Index of Def operand this Use it tied to.
1165       // Since Defs are coming before Uses, if Use is tied, then
1166       // index of Def must be smaller that index of that Use.
1167       // Also, Defs preserve their position in new MI.
1168       unsigned TiedTo = i;
1169       if (MO.isReg() && MO.isTied())
1170         TiedTo = MI->findTiedOperandIdx(i);
1171       MIB.add(MO);
1172       if (TiedTo < i)
1173         MIB->tieOperands(TiedTo, MIB->getNumOperands() - 1);
1174       continue;
1175     }
1176 
1177     // foldMemoryOperand builds a new MI after replacing a single FI operand
1178     // with the canonical set of five x86 addressing-mode operands.
1179     int FI = MO.getIndex();
1180 
1181     // Add frame index operands recognized by stackmaps.cpp
1182     if (MFI.isStatepointSpillSlotObjectIndex(FI)) {
1183       // indirect-mem-ref tag, size, #FI, offset.
1184       // Used for spills inserted by StatepointLowering.  This codepath is not
1185       // used for patchpoints/stackmaps at all, for these spilling is done via
1186       // foldMemoryOperand callback only.
1187       assert(MI->getOpcode() == TargetOpcode::STATEPOINT && "sanity");
1188       MIB.addImm(StackMaps::IndirectMemRefOp);
1189       MIB.addImm(MFI.getObjectSize(FI));
1190       MIB.add(MO);
1191       MIB.addImm(0);
1192     } else {
1193       // direct-mem-ref tag, #FI, offset.
1194       // Used by patchpoint, and direct alloca arguments to statepoints
1195       MIB.addImm(StackMaps::DirectMemRefOp);
1196       MIB.add(MO);
1197       MIB.addImm(0);
1198     }
1199 
1200     assert(MIB->mayLoad() && "Folded a stackmap use to a non-load!");
1201 
1202     // Add a new memory operand for this FI.
1203     assert(MFI.getObjectOffset(FI) != -1);
1204 
1205     // Note: STATEPOINT MMOs are added during SelectionDAG.  STACKMAP, and
1206     // PATCHPOINT should be updated to do the same. (TODO)
1207     if (MI->getOpcode() != TargetOpcode::STATEPOINT) {
1208       auto Flags = MachineMemOperand::MOLoad;
1209       MachineMemOperand *MMO = MF.getMachineMemOperand(
1210           MachinePointerInfo::getFixedStack(MF, FI), Flags,
1211           MF.getDataLayout().getPointerSize(), MFI.getObjectAlign(FI));
1212       MIB->addMemOperand(MF, MMO);
1213     }
1214   }
1215   MBB->insert(MachineBasicBlock::iterator(MI), MIB);
1216   MI->eraseFromParent();
1217   return MBB;
1218 }
1219 
1220 /// findRepresentativeClass - Return the largest legal super-reg register class
1221 /// of the register class for the specified type and its associated "cost".
1222 // This function is in TargetLowering because it uses RegClassForVT which would
1223 // need to be moved to TargetRegisterInfo and would necessitate moving
1224 // isTypeLegal over as well - a massive change that would just require
1225 // TargetLowering having a TargetRegisterInfo class member that it would use.
1226 std::pair<const TargetRegisterClass *, uint8_t>
1227 TargetLoweringBase::findRepresentativeClass(const TargetRegisterInfo *TRI,
1228                                             MVT VT) const {
1229   const TargetRegisterClass *RC = RegClassForVT[VT.SimpleTy];
1230   if (!RC)
1231     return std::make_pair(RC, 0);
1232 
1233   // Compute the set of all super-register classes.
1234   BitVector SuperRegRC(TRI->getNumRegClasses());
1235   for (SuperRegClassIterator RCI(RC, TRI); RCI.isValid(); ++RCI)
1236     SuperRegRC.setBitsInMask(RCI.getMask());
1237 
1238   // Find the first legal register class with the largest spill size.
1239   const TargetRegisterClass *BestRC = RC;
1240   for (unsigned i : SuperRegRC.set_bits()) {
1241     const TargetRegisterClass *SuperRC = TRI->getRegClass(i);
1242     // We want the largest possible spill size.
1243     if (TRI->getSpillSize(*SuperRC) <= TRI->getSpillSize(*BestRC))
1244       continue;
1245     if (!isLegalRC(*TRI, *SuperRC))
1246       continue;
1247     BestRC = SuperRC;
1248   }
1249   return std::make_pair(BestRC, 1);
1250 }
1251 
1252 /// computeRegisterProperties - Once all of the register classes are added,
1253 /// this allows us to compute derived properties we expose.
1254 void TargetLoweringBase::computeRegisterProperties(
1255     const TargetRegisterInfo *TRI) {
1256   // Everything defaults to needing one register.
1257   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1258     NumRegistersForVT[i] = 1;
1259     RegisterTypeForVT[i] = TransformToType[i] = (MVT::SimpleValueType)i;
1260   }
1261   // ...except isVoid, which doesn't need any registers.
1262   NumRegistersForVT[MVT::isVoid] = 0;
1263 
1264   // Find the largest integer register class.
1265   unsigned LargestIntReg = MVT::LAST_INTEGER_VALUETYPE;
1266   for (; RegClassForVT[LargestIntReg] == nullptr; --LargestIntReg)
1267     assert(LargestIntReg != MVT::i1 && "No integer registers defined!");
1268 
1269   // Every integer value type larger than this largest register takes twice as
1270   // many registers to represent as the previous ValueType.
1271   for (unsigned ExpandedReg = LargestIntReg + 1;
1272        ExpandedReg <= MVT::LAST_INTEGER_VALUETYPE; ++ExpandedReg) {
1273     NumRegistersForVT[ExpandedReg] = 2*NumRegistersForVT[ExpandedReg-1];
1274     RegisterTypeForVT[ExpandedReg] = (MVT::SimpleValueType)LargestIntReg;
1275     TransformToType[ExpandedReg] = (MVT::SimpleValueType)(ExpandedReg - 1);
1276     ValueTypeActions.setTypeAction((MVT::SimpleValueType)ExpandedReg,
1277                                    TypeExpandInteger);
1278   }
1279 
1280   // Inspect all of the ValueType's smaller than the largest integer
1281   // register to see which ones need promotion.
1282   unsigned LegalIntReg = LargestIntReg;
1283   for (unsigned IntReg = LargestIntReg - 1;
1284        IntReg >= (unsigned)MVT::i1; --IntReg) {
1285     MVT IVT = (MVT::SimpleValueType)IntReg;
1286     if (isTypeLegal(IVT)) {
1287       LegalIntReg = IntReg;
1288     } else {
1289       RegisterTypeForVT[IntReg] = TransformToType[IntReg] =
1290         (MVT::SimpleValueType)LegalIntReg;
1291       ValueTypeActions.setTypeAction(IVT, TypePromoteInteger);
1292     }
1293   }
1294 
1295   // ppcf128 type is really two f64's.
1296   if (!isTypeLegal(MVT::ppcf128)) {
1297     if (isTypeLegal(MVT::f64)) {
1298       NumRegistersForVT[MVT::ppcf128] = 2*NumRegistersForVT[MVT::f64];
1299       RegisterTypeForVT[MVT::ppcf128] = MVT::f64;
1300       TransformToType[MVT::ppcf128] = MVT::f64;
1301       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeExpandFloat);
1302     } else {
1303       NumRegistersForVT[MVT::ppcf128] = NumRegistersForVT[MVT::i128];
1304       RegisterTypeForVT[MVT::ppcf128] = RegisterTypeForVT[MVT::i128];
1305       TransformToType[MVT::ppcf128] = MVT::i128;
1306       ValueTypeActions.setTypeAction(MVT::ppcf128, TypeSoftenFloat);
1307     }
1308   }
1309 
1310   // Decide how to handle f128. If the target does not have native f128 support,
1311   // expand it to i128 and we will be generating soft float library calls.
1312   if (!isTypeLegal(MVT::f128)) {
1313     NumRegistersForVT[MVT::f128] = NumRegistersForVT[MVT::i128];
1314     RegisterTypeForVT[MVT::f128] = RegisterTypeForVT[MVT::i128];
1315     TransformToType[MVT::f128] = MVT::i128;
1316     ValueTypeActions.setTypeAction(MVT::f128, TypeSoftenFloat);
1317   }
1318 
1319   // Decide how to handle f80. If the target does not have native f80 support,
1320   // expand it to i96 and we will be generating soft float library calls.
1321   if (!isTypeLegal(MVT::f80)) {
1322     NumRegistersForVT[MVT::f80] = 3*NumRegistersForVT[MVT::i32];
1323     RegisterTypeForVT[MVT::f80] = RegisterTypeForVT[MVT::i32];
1324     TransformToType[MVT::f80] = MVT::i32;
1325     ValueTypeActions.setTypeAction(MVT::f80, TypeSoftenFloat);
1326   }
1327 
1328   // Decide how to handle f64. If the target does not have native f64 support,
1329   // expand it to i64 and we will be generating soft float library calls.
1330   if (!isTypeLegal(MVT::f64)) {
1331     NumRegistersForVT[MVT::f64] = NumRegistersForVT[MVT::i64];
1332     RegisterTypeForVT[MVT::f64] = RegisterTypeForVT[MVT::i64];
1333     TransformToType[MVT::f64] = MVT::i64;
1334     ValueTypeActions.setTypeAction(MVT::f64, TypeSoftenFloat);
1335   }
1336 
1337   // Decide how to handle f32. If the target does not have native f32 support,
1338   // expand it to i32 and we will be generating soft float library calls.
1339   if (!isTypeLegal(MVT::f32)) {
1340     NumRegistersForVT[MVT::f32] = NumRegistersForVT[MVT::i32];
1341     RegisterTypeForVT[MVT::f32] = RegisterTypeForVT[MVT::i32];
1342     TransformToType[MVT::f32] = MVT::i32;
1343     ValueTypeActions.setTypeAction(MVT::f32, TypeSoftenFloat);
1344   }
1345 
1346   // Decide how to handle f16. If the target does not have native f16 support,
1347   // promote it to f32, because there are no f16 library calls (except for
1348   // conversions).
1349   if (!isTypeLegal(MVT::f16)) {
1350     // Allow targets to control how we legalize half.
1351     bool SoftPromoteHalfType = softPromoteHalfType();
1352     bool UseFPRegsForHalfType = !SoftPromoteHalfType || useFPRegsForHalfType();
1353 
1354     if (!UseFPRegsForHalfType) {
1355       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::i16];
1356       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::i16];
1357     } else {
1358       NumRegistersForVT[MVT::f16] = NumRegistersForVT[MVT::f32];
1359       RegisterTypeForVT[MVT::f16] = RegisterTypeForVT[MVT::f32];
1360     }
1361     TransformToType[MVT::f16] = MVT::f32;
1362     if (SoftPromoteHalfType) {
1363       ValueTypeActions.setTypeAction(MVT::f16, TypeSoftPromoteHalf);
1364     } else {
1365       ValueTypeActions.setTypeAction(MVT::f16, TypePromoteFloat);
1366     }
1367   }
1368 
1369   // Decide how to handle bf16. If the target does not have native bf16 support,
1370   // promote it to f32, because there are no bf16 library calls (except for
1371   // converting from f32 to bf16).
1372   if (!isTypeLegal(MVT::bf16)) {
1373     NumRegistersForVT[MVT::bf16] = NumRegistersForVT[MVT::f32];
1374     RegisterTypeForVT[MVT::bf16] = RegisterTypeForVT[MVT::f32];
1375     TransformToType[MVT::bf16] = MVT::f32;
1376     ValueTypeActions.setTypeAction(MVT::bf16, TypeSoftPromoteHalf);
1377   }
1378 
1379   // Loop over all of the vector value types to see which need transformations.
1380   for (unsigned i = MVT::FIRST_VECTOR_VALUETYPE;
1381        i <= (unsigned)MVT::LAST_VECTOR_VALUETYPE; ++i) {
1382     MVT VT = (MVT::SimpleValueType) i;
1383     if (isTypeLegal(VT))
1384       continue;
1385 
1386     MVT EltVT = VT.getVectorElementType();
1387     ElementCount EC = VT.getVectorElementCount();
1388     bool IsLegalWiderType = false;
1389     bool IsScalable = VT.isScalableVector();
1390     LegalizeTypeAction PreferredAction = getPreferredVectorAction(VT);
1391     switch (PreferredAction) {
1392     case TypePromoteInteger: {
1393       MVT::SimpleValueType EndVT = IsScalable ?
1394                                    MVT::LAST_INTEGER_SCALABLE_VECTOR_VALUETYPE :
1395                                    MVT::LAST_INTEGER_FIXEDLEN_VECTOR_VALUETYPE;
1396       // Try to promote the elements of integer vectors. If no legal
1397       // promotion was found, fall through to the widen-vector method.
1398       for (unsigned nVT = i + 1;
1399            (MVT::SimpleValueType)nVT <= EndVT; ++nVT) {
1400         MVT SVT = (MVT::SimpleValueType) nVT;
1401         // Promote vectors of integers to vectors with the same number
1402         // of elements, with a wider element type.
1403         if (SVT.getScalarSizeInBits() > EltVT.getFixedSizeInBits() &&
1404             SVT.getVectorElementCount() == EC && isTypeLegal(SVT)) {
1405           TransformToType[i] = SVT;
1406           RegisterTypeForVT[i] = SVT;
1407           NumRegistersForVT[i] = 1;
1408           ValueTypeActions.setTypeAction(VT, TypePromoteInteger);
1409           IsLegalWiderType = true;
1410           break;
1411         }
1412       }
1413       if (IsLegalWiderType)
1414         break;
1415       [[fallthrough]];
1416     }
1417 
1418     case TypeWidenVector:
1419       if (isPowerOf2_32(EC.getKnownMinValue())) {
1420         // Try to widen the vector.
1421         for (unsigned nVT = i + 1; nVT <= MVT::LAST_VECTOR_VALUETYPE; ++nVT) {
1422           MVT SVT = (MVT::SimpleValueType) nVT;
1423           if (SVT.getVectorElementType() == EltVT &&
1424               SVT.isScalableVector() == IsScalable &&
1425               SVT.getVectorElementCount().getKnownMinValue() >
1426                   EC.getKnownMinValue() &&
1427               isTypeLegal(SVT)) {
1428             TransformToType[i] = SVT;
1429             RegisterTypeForVT[i] = SVT;
1430             NumRegistersForVT[i] = 1;
1431             ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1432             IsLegalWiderType = true;
1433             break;
1434           }
1435         }
1436         if (IsLegalWiderType)
1437           break;
1438       } else {
1439         // Only widen to the next power of 2 to keep consistency with EVT.
1440         MVT NVT = VT.getPow2VectorType();
1441         if (isTypeLegal(NVT)) {
1442           TransformToType[i] = NVT;
1443           ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1444           RegisterTypeForVT[i] = NVT;
1445           NumRegistersForVT[i] = 1;
1446           break;
1447         }
1448       }
1449       [[fallthrough]];
1450 
1451     case TypeSplitVector:
1452     case TypeScalarizeVector: {
1453       MVT IntermediateVT;
1454       MVT RegisterVT;
1455       unsigned NumIntermediates;
1456       unsigned NumRegisters = getVectorTypeBreakdownMVT(VT, IntermediateVT,
1457           NumIntermediates, RegisterVT, this);
1458       NumRegistersForVT[i] = NumRegisters;
1459       assert(NumRegistersForVT[i] == NumRegisters &&
1460              "NumRegistersForVT size cannot represent NumRegisters!");
1461       RegisterTypeForVT[i] = RegisterVT;
1462 
1463       MVT NVT = VT.getPow2VectorType();
1464       if (NVT == VT) {
1465         // Type is already a power of 2.  The default action is to split.
1466         TransformToType[i] = MVT::Other;
1467         if (PreferredAction == TypeScalarizeVector)
1468           ValueTypeActions.setTypeAction(VT, TypeScalarizeVector);
1469         else if (PreferredAction == TypeSplitVector)
1470           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1471         else if (EC.getKnownMinValue() > 1)
1472           ValueTypeActions.setTypeAction(VT, TypeSplitVector);
1473         else
1474           ValueTypeActions.setTypeAction(VT, EC.isScalable()
1475                                                  ? TypeScalarizeScalableVector
1476                                                  : TypeScalarizeVector);
1477       } else {
1478         TransformToType[i] = NVT;
1479         ValueTypeActions.setTypeAction(VT, TypeWidenVector);
1480       }
1481       break;
1482     }
1483     default:
1484       llvm_unreachable("Unknown vector legalization action!");
1485     }
1486   }
1487 
1488   // Determine the 'representative' register class for each value type.
1489   // An representative register class is the largest (meaning one which is
1490   // not a sub-register class / subreg register class) legal register class for
1491   // a group of value types. For example, on i386, i8, i16, and i32
1492   // representative would be GR32; while on x86_64 it's GR64.
1493   for (unsigned i = 0; i != MVT::VALUETYPE_SIZE; ++i) {
1494     const TargetRegisterClass* RRC;
1495     uint8_t Cost;
1496     std::tie(RRC, Cost) = findRepresentativeClass(TRI, (MVT::SimpleValueType)i);
1497     RepRegClassForVT[i] = RRC;
1498     RepRegClassCostForVT[i] = Cost;
1499   }
1500 }
1501 
1502 EVT TargetLoweringBase::getSetCCResultType(const DataLayout &DL, LLVMContext &,
1503                                            EVT VT) const {
1504   assert(!VT.isVector() && "No default SetCC type for vectors!");
1505   return getPointerTy(DL).SimpleTy;
1506 }
1507 
1508 MVT::SimpleValueType TargetLoweringBase::getCmpLibcallReturnType() const {
1509   return MVT::i32; // return the default value
1510 }
1511 
1512 /// getVectorTypeBreakdown - Vector types are broken down into some number of
1513 /// legal first class types.  For example, MVT::v8f32 maps to 2 MVT::v4f32
1514 /// with Altivec or SSE1, or 8 promoted MVT::f64 values with the X86 FP stack.
1515 /// Similarly, MVT::v2i64 turns into 4 MVT::i32 values with both PPC and X86.
1516 ///
1517 /// This method returns the number of registers needed, and the VT for each
1518 /// register.  It also returns the VT and quantity of the intermediate values
1519 /// before they are promoted/expanded.
1520 unsigned TargetLoweringBase::getVectorTypeBreakdown(LLVMContext &Context,
1521                                                     EVT VT, EVT &IntermediateVT,
1522                                                     unsigned &NumIntermediates,
1523                                                     MVT &RegisterVT) const {
1524   ElementCount EltCnt = VT.getVectorElementCount();
1525 
1526   // If there is a wider vector type with the same element type as this one,
1527   // or a promoted vector type that has the same number of elements which
1528   // are wider, then we should convert to that legal vector type.
1529   // This handles things like <2 x float> -> <4 x float> and
1530   // <4 x i1> -> <4 x i32>.
1531   LegalizeTypeAction TA = getTypeAction(Context, VT);
1532   if (!EltCnt.isScalar() &&
1533       (TA == TypeWidenVector || TA == TypePromoteInteger)) {
1534     EVT RegisterEVT = getTypeToTransformTo(Context, VT);
1535     if (isTypeLegal(RegisterEVT)) {
1536       IntermediateVT = RegisterEVT;
1537       RegisterVT = RegisterEVT.getSimpleVT();
1538       NumIntermediates = 1;
1539       return 1;
1540     }
1541   }
1542 
1543   // Figure out the right, legal destination reg to copy into.
1544   EVT EltTy = VT.getVectorElementType();
1545 
1546   unsigned NumVectorRegs = 1;
1547 
1548   // Scalable vectors cannot be scalarized, so handle the legalisation of the
1549   // types like done elsewhere in SelectionDAG.
1550   if (EltCnt.isScalable()) {
1551     LegalizeKind LK;
1552     EVT PartVT = VT;
1553     do {
1554       // Iterate until we've found a legal (part) type to hold VT.
1555       LK = getTypeConversion(Context, PartVT);
1556       PartVT = LK.second;
1557     } while (LK.first != TypeLegal);
1558 
1559     if (!PartVT.isVector()) {
1560       report_fatal_error(
1561           "Don't know how to legalize this scalable vector type");
1562     }
1563 
1564     NumIntermediates =
1565         divideCeil(VT.getVectorElementCount().getKnownMinValue(),
1566                    PartVT.getVectorElementCount().getKnownMinValue());
1567     IntermediateVT = PartVT;
1568     RegisterVT = getRegisterType(Context, IntermediateVT);
1569     return NumIntermediates;
1570   }
1571 
1572   // FIXME: We don't support non-power-of-2-sized vectors for now.  Ideally
1573   // we could break down into LHS/RHS like LegalizeDAG does.
1574   if (!isPowerOf2_32(EltCnt.getKnownMinValue())) {
1575     NumVectorRegs = EltCnt.getKnownMinValue();
1576     EltCnt = ElementCount::getFixed(1);
1577   }
1578 
1579   // Divide the input until we get to a supported size.  This will always
1580   // end with a scalar if the target doesn't support vectors.
1581   while (EltCnt.getKnownMinValue() > 1 &&
1582          !isTypeLegal(EVT::getVectorVT(Context, EltTy, EltCnt))) {
1583     EltCnt = EltCnt.divideCoefficientBy(2);
1584     NumVectorRegs <<= 1;
1585   }
1586 
1587   NumIntermediates = NumVectorRegs;
1588 
1589   EVT NewVT = EVT::getVectorVT(Context, EltTy, EltCnt);
1590   if (!isTypeLegal(NewVT))
1591     NewVT = EltTy;
1592   IntermediateVT = NewVT;
1593 
1594   MVT DestVT = getRegisterType(Context, NewVT);
1595   RegisterVT = DestVT;
1596 
1597   if (EVT(DestVT).bitsLT(NewVT)) {  // Value is expanded, e.g. i64 -> i16.
1598     TypeSize NewVTSize = NewVT.getSizeInBits();
1599     // Convert sizes such as i33 to i64.
1600     if (!llvm::has_single_bit<uint32_t>(NewVTSize.getKnownMinValue()))
1601       NewVTSize = NewVTSize.coefficientNextPowerOf2();
1602     return NumVectorRegs*(NewVTSize/DestVT.getSizeInBits());
1603   }
1604 
1605   // Otherwise, promotion or legal types use the same number of registers as
1606   // the vector decimated to the appropriate level.
1607   return NumVectorRegs;
1608 }
1609 
1610 bool TargetLoweringBase::isSuitableForJumpTable(const SwitchInst *SI,
1611                                                 uint64_t NumCases,
1612                                                 uint64_t Range,
1613                                                 ProfileSummaryInfo *PSI,
1614                                                 BlockFrequencyInfo *BFI) const {
1615   // FIXME: This function check the maximum table size and density, but the
1616   // minimum size is not checked. It would be nice if the minimum size is
1617   // also combined within this function. Currently, the minimum size check is
1618   // performed in findJumpTable() in SelectionDAGBuiler and
1619   // getEstimatedNumberOfCaseClusters() in BasicTTIImpl.
1620   const bool OptForSize =
1621       SI->getParent()->getParent()->hasOptSize() ||
1622       llvm::shouldOptimizeForSize(SI->getParent(), PSI, BFI);
1623   const unsigned MinDensity = getMinimumJumpTableDensity(OptForSize);
1624   const unsigned MaxJumpTableSize = getMaximumJumpTableSize();
1625 
1626   // Check whether the number of cases is small enough and
1627   // the range is dense enough for a jump table.
1628   return (OptForSize || Range <= MaxJumpTableSize) &&
1629          (NumCases * 100 >= Range * MinDensity);
1630 }
1631 
1632 MVT TargetLoweringBase::getPreferredSwitchConditionType(LLVMContext &Context,
1633                                                         EVT ConditionVT) const {
1634   return getRegisterType(Context, ConditionVT);
1635 }
1636 
1637 /// Get the EVTs and ArgFlags collections that represent the legalized return
1638 /// type of the given function.  This does not require a DAG or a return value,
1639 /// and is suitable for use before any DAGs for the function are constructed.
1640 /// TODO: Move this out of TargetLowering.cpp.
1641 void llvm::GetReturnInfo(CallingConv::ID CC, Type *ReturnType,
1642                          AttributeList attr,
1643                          SmallVectorImpl<ISD::OutputArg> &Outs,
1644                          const TargetLowering &TLI, const DataLayout &DL) {
1645   SmallVector<EVT, 4> ValueVTs;
1646   ComputeValueVTs(TLI, DL, ReturnType, ValueVTs);
1647   unsigned NumValues = ValueVTs.size();
1648   if (NumValues == 0) return;
1649 
1650   for (unsigned j = 0, f = NumValues; j != f; ++j) {
1651     EVT VT = ValueVTs[j];
1652     ISD::NodeType ExtendKind = ISD::ANY_EXTEND;
1653 
1654     if (attr.hasRetAttr(Attribute::SExt))
1655       ExtendKind = ISD::SIGN_EXTEND;
1656     else if (attr.hasRetAttr(Attribute::ZExt))
1657       ExtendKind = ISD::ZERO_EXTEND;
1658 
1659     if (ExtendKind != ISD::ANY_EXTEND && VT.isInteger())
1660       VT = TLI.getTypeForExtReturn(ReturnType->getContext(), VT, ExtendKind);
1661 
1662     unsigned NumParts =
1663         TLI.getNumRegistersForCallingConv(ReturnType->getContext(), CC, VT);
1664     MVT PartVT =
1665         TLI.getRegisterTypeForCallingConv(ReturnType->getContext(), CC, VT);
1666 
1667     // 'inreg' on function refers to return value
1668     ISD::ArgFlagsTy Flags = ISD::ArgFlagsTy();
1669     if (attr.hasRetAttr(Attribute::InReg))
1670       Flags.setInReg();
1671 
1672     // Propagate extension type if any
1673     if (attr.hasRetAttr(Attribute::SExt))
1674       Flags.setSExt();
1675     else if (attr.hasRetAttr(Attribute::ZExt))
1676       Flags.setZExt();
1677 
1678     for (unsigned i = 0; i < NumParts; ++i) {
1679       ISD::ArgFlagsTy OutFlags = Flags;
1680       if (NumParts > 1 && i == 0)
1681         OutFlags.setSplit();
1682       else if (i == NumParts - 1 && i != 0)
1683         OutFlags.setSplitEnd();
1684 
1685       Outs.push_back(
1686           ISD::OutputArg(OutFlags, PartVT, VT, /*isfixed=*/true, 0, 0));
1687     }
1688   }
1689 }
1690 
1691 /// getByValTypeAlignment - Return the desired alignment for ByVal aggregate
1692 /// function arguments in the caller parameter area.  This is the actual
1693 /// alignment, not its logarithm.
1694 uint64_t TargetLoweringBase::getByValTypeAlignment(Type *Ty,
1695                                                    const DataLayout &DL) const {
1696   return DL.getABITypeAlign(Ty).value();
1697 }
1698 
1699 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1700     LLVMContext &Context, const DataLayout &DL, EVT VT, unsigned AddrSpace,
1701     Align Alignment, MachineMemOperand::Flags Flags, unsigned *Fast) const {
1702   // Check if the specified alignment is sufficient based on the data layout.
1703   // TODO: While using the data layout works in practice, a better solution
1704   // would be to implement this check directly (make this a virtual function).
1705   // For example, the ABI alignment may change based on software platform while
1706   // this function should only be affected by hardware implementation.
1707   Type *Ty = VT.getTypeForEVT(Context);
1708   if (VT.isZeroSized() || Alignment >= DL.getABITypeAlign(Ty)) {
1709     // Assume that an access that meets the ABI-specified alignment is fast.
1710     if (Fast != nullptr)
1711       *Fast = 1;
1712     return true;
1713   }
1714 
1715   // This is a misaligned access.
1716   return allowsMisalignedMemoryAccesses(VT, AddrSpace, Alignment, Flags, Fast);
1717 }
1718 
1719 bool TargetLoweringBase::allowsMemoryAccessForAlignment(
1720     LLVMContext &Context, const DataLayout &DL, EVT VT,
1721     const MachineMemOperand &MMO, unsigned *Fast) const {
1722   return allowsMemoryAccessForAlignment(Context, DL, VT, MMO.getAddrSpace(),
1723                                         MMO.getAlign(), MMO.getFlags(), Fast);
1724 }
1725 
1726 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1727                                             const DataLayout &DL, EVT VT,
1728                                             unsigned AddrSpace, Align Alignment,
1729                                             MachineMemOperand::Flags Flags,
1730                                             unsigned *Fast) const {
1731   return allowsMemoryAccessForAlignment(Context, DL, VT, AddrSpace, Alignment,
1732                                         Flags, Fast);
1733 }
1734 
1735 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1736                                             const DataLayout &DL, EVT VT,
1737                                             const MachineMemOperand &MMO,
1738                                             unsigned *Fast) const {
1739   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1740                             MMO.getFlags(), Fast);
1741 }
1742 
1743 bool TargetLoweringBase::allowsMemoryAccess(LLVMContext &Context,
1744                                             const DataLayout &DL, LLT Ty,
1745                                             const MachineMemOperand &MMO,
1746                                             unsigned *Fast) const {
1747   EVT VT = getApproximateEVTForLLT(Ty, DL, Context);
1748   return allowsMemoryAccess(Context, DL, VT, MMO.getAddrSpace(), MMO.getAlign(),
1749                             MMO.getFlags(), Fast);
1750 }
1751 
1752 //===----------------------------------------------------------------------===//
1753 //  TargetTransformInfo Helpers
1754 //===----------------------------------------------------------------------===//
1755 
1756 int TargetLoweringBase::InstructionOpcodeToISD(unsigned Opcode) const {
1757   enum InstructionOpcodes {
1758 #define HANDLE_INST(NUM, OPCODE, CLASS) OPCODE = NUM,
1759 #define LAST_OTHER_INST(NUM) InstructionOpcodesCount = NUM
1760 #include "llvm/IR/Instruction.def"
1761   };
1762   switch (static_cast<InstructionOpcodes>(Opcode)) {
1763   case Ret:            return 0;
1764   case Br:             return 0;
1765   case Switch:         return 0;
1766   case IndirectBr:     return 0;
1767   case Invoke:         return 0;
1768   case CallBr:         return 0;
1769   case Resume:         return 0;
1770   case Unreachable:    return 0;
1771   case CleanupRet:     return 0;
1772   case CatchRet:       return 0;
1773   case CatchPad:       return 0;
1774   case CatchSwitch:    return 0;
1775   case CleanupPad:     return 0;
1776   case FNeg:           return ISD::FNEG;
1777   case Add:            return ISD::ADD;
1778   case FAdd:           return ISD::FADD;
1779   case Sub:            return ISD::SUB;
1780   case FSub:           return ISD::FSUB;
1781   case Mul:            return ISD::MUL;
1782   case FMul:           return ISD::FMUL;
1783   case UDiv:           return ISD::UDIV;
1784   case SDiv:           return ISD::SDIV;
1785   case FDiv:           return ISD::FDIV;
1786   case URem:           return ISD::UREM;
1787   case SRem:           return ISD::SREM;
1788   case FRem:           return ISD::FREM;
1789   case Shl:            return ISD::SHL;
1790   case LShr:           return ISD::SRL;
1791   case AShr:           return ISD::SRA;
1792   case And:            return ISD::AND;
1793   case Or:             return ISD::OR;
1794   case Xor:            return ISD::XOR;
1795   case Alloca:         return 0;
1796   case Load:           return ISD::LOAD;
1797   case Store:          return ISD::STORE;
1798   case GetElementPtr:  return 0;
1799   case Fence:          return 0;
1800   case AtomicCmpXchg:  return 0;
1801   case AtomicRMW:      return 0;
1802   case Trunc:          return ISD::TRUNCATE;
1803   case ZExt:           return ISD::ZERO_EXTEND;
1804   case SExt:           return ISD::SIGN_EXTEND;
1805   case FPToUI:         return ISD::FP_TO_UINT;
1806   case FPToSI:         return ISD::FP_TO_SINT;
1807   case UIToFP:         return ISD::UINT_TO_FP;
1808   case SIToFP:         return ISD::SINT_TO_FP;
1809   case FPTrunc:        return ISD::FP_ROUND;
1810   case FPExt:          return ISD::FP_EXTEND;
1811   case PtrToInt:       return ISD::BITCAST;
1812   case IntToPtr:       return ISD::BITCAST;
1813   case BitCast:        return ISD::BITCAST;
1814   case AddrSpaceCast:  return ISD::ADDRSPACECAST;
1815   case ICmp:           return ISD::SETCC;
1816   case FCmp:           return ISD::SETCC;
1817   case PHI:            return 0;
1818   case Call:           return 0;
1819   case Select:         return ISD::SELECT;
1820   case UserOp1:        return 0;
1821   case UserOp2:        return 0;
1822   case VAArg:          return 0;
1823   case ExtractElement: return ISD::EXTRACT_VECTOR_ELT;
1824   case InsertElement:  return ISD::INSERT_VECTOR_ELT;
1825   case ShuffleVector:  return ISD::VECTOR_SHUFFLE;
1826   case ExtractValue:   return ISD::MERGE_VALUES;
1827   case InsertValue:    return ISD::MERGE_VALUES;
1828   case LandingPad:     return 0;
1829   case Freeze:         return ISD::FREEZE;
1830   }
1831 
1832   llvm_unreachable("Unknown instruction type encountered!");
1833 }
1834 
1835 Value *
1836 TargetLoweringBase::getDefaultSafeStackPointerLocation(IRBuilderBase &IRB,
1837                                                        bool UseTLS) const {
1838   // compiler-rt provides a variable with a magic name.  Targets that do not
1839   // link with compiler-rt may also provide such a variable.
1840   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1841   const char *UnsafeStackPtrVar = "__safestack_unsafe_stack_ptr";
1842   auto UnsafeStackPtr =
1843       dyn_cast_or_null<GlobalVariable>(M->getNamedValue(UnsafeStackPtrVar));
1844 
1845   Type *StackPtrTy = PointerType::getUnqual(M->getContext());
1846 
1847   if (!UnsafeStackPtr) {
1848     auto TLSModel = UseTLS ?
1849         GlobalValue::InitialExecTLSModel :
1850         GlobalValue::NotThreadLocal;
1851     // The global variable is not defined yet, define it ourselves.
1852     // We use the initial-exec TLS model because we do not support the
1853     // variable living anywhere other than in the main executable.
1854     UnsafeStackPtr = new GlobalVariable(
1855         *M, StackPtrTy, false, GlobalValue::ExternalLinkage, nullptr,
1856         UnsafeStackPtrVar, nullptr, TLSModel);
1857   } else {
1858     // The variable exists, check its type and attributes.
1859     if (UnsafeStackPtr->getValueType() != StackPtrTy)
1860       report_fatal_error(Twine(UnsafeStackPtrVar) + " must have void* type");
1861     if (UseTLS != UnsafeStackPtr->isThreadLocal())
1862       report_fatal_error(Twine(UnsafeStackPtrVar) + " must " +
1863                          (UseTLS ? "" : "not ") + "be thread-local");
1864   }
1865   return UnsafeStackPtr;
1866 }
1867 
1868 Value *
1869 TargetLoweringBase::getSafeStackPointerLocation(IRBuilderBase &IRB) const {
1870   if (!TM.getTargetTriple().isAndroid())
1871     return getDefaultSafeStackPointerLocation(IRB, true);
1872 
1873   // Android provides a libc function to retrieve the address of the current
1874   // thread's unsafe stack pointer.
1875   Module *M = IRB.GetInsertBlock()->getParent()->getParent();
1876   auto *PtrTy = PointerType::getUnqual(M->getContext());
1877   FunctionCallee Fn =
1878       M->getOrInsertFunction("__safestack_pointer_address", PtrTy);
1879   return IRB.CreateCall(Fn);
1880 }
1881 
1882 //===----------------------------------------------------------------------===//
1883 //  Loop Strength Reduction hooks
1884 //===----------------------------------------------------------------------===//
1885 
1886 /// isLegalAddressingMode - Return true if the addressing mode represented
1887 /// by AM is legal for this target, for a load/store of the specified type.
1888 bool TargetLoweringBase::isLegalAddressingMode(const DataLayout &DL,
1889                                                const AddrMode &AM, Type *Ty,
1890                                                unsigned AS, Instruction *I) const {
1891   // The default implementation of this implements a conservative RISCy, r+r and
1892   // r+i addr mode.
1893 
1894   // Scalable offsets not supported
1895   if (AM.ScalableOffset)
1896     return false;
1897 
1898   // Allows a sign-extended 16-bit immediate field.
1899   if (AM.BaseOffs <= -(1LL << 16) || AM.BaseOffs >= (1LL << 16)-1)
1900     return false;
1901 
1902   // No global is ever allowed as a base.
1903   if (AM.BaseGV)
1904     return false;
1905 
1906   // Only support r+r,
1907   switch (AM.Scale) {
1908   case 0:  // "r+i" or just "i", depending on HasBaseReg.
1909     break;
1910   case 1:
1911     if (AM.HasBaseReg && AM.BaseOffs)  // "r+r+i" is not allowed.
1912       return false;
1913     // Otherwise we have r+r or r+i.
1914     break;
1915   case 2:
1916     if (AM.HasBaseReg || AM.BaseOffs)  // 2*r+r  or  2*r+i is not allowed.
1917       return false;
1918     // Allow 2*r as r+r.
1919     break;
1920   default: // Don't allow n * r
1921     return false;
1922   }
1923 
1924   return true;
1925 }
1926 
1927 //===----------------------------------------------------------------------===//
1928 //  Stack Protector
1929 //===----------------------------------------------------------------------===//
1930 
1931 // For OpenBSD return its special guard variable. Otherwise return nullptr,
1932 // so that SelectionDAG handle SSP.
1933 Value *TargetLoweringBase::getIRStackGuard(IRBuilderBase &IRB) const {
1934   if (getTargetMachine().getTargetTriple().isOSOpenBSD()) {
1935     Module &M = *IRB.GetInsertBlock()->getParent()->getParent();
1936     PointerType *PtrTy = PointerType::getUnqual(M.getContext());
1937     Constant *C = M.getOrInsertGlobal("__guard_local", PtrTy);
1938     if (GlobalVariable *G = dyn_cast_or_null<GlobalVariable>(C))
1939       G->setVisibility(GlobalValue::HiddenVisibility);
1940     return C;
1941   }
1942   return nullptr;
1943 }
1944 
1945 // Currently only support "standard" __stack_chk_guard.
1946 // TODO: add LOAD_STACK_GUARD support.
1947 void TargetLoweringBase::insertSSPDeclarations(Module &M) const {
1948   if (!M.getNamedValue("__stack_chk_guard")) {
1949     auto *GV = new GlobalVariable(M, PointerType::getUnqual(M.getContext()),
1950                                   false, GlobalVariable::ExternalLinkage,
1951                                   nullptr, "__stack_chk_guard");
1952 
1953     // FreeBSD has "__stack_chk_guard" defined externally on libc.so
1954     if (M.getDirectAccessExternalData() &&
1955         !TM.getTargetTriple().isWindowsGNUEnvironment() &&
1956         !(TM.getTargetTriple().isPPC64() &&
1957           TM.getTargetTriple().isOSFreeBSD()) &&
1958         (!TM.getTargetTriple().isOSDarwin() ||
1959          TM.getRelocationModel() == Reloc::Static))
1960       GV->setDSOLocal(true);
1961   }
1962 }
1963 
1964 // Currently only support "standard" __stack_chk_guard.
1965 // TODO: add LOAD_STACK_GUARD support.
1966 Value *TargetLoweringBase::getSDagStackGuard(const Module &M) const {
1967   return M.getNamedValue("__stack_chk_guard");
1968 }
1969 
1970 Function *TargetLoweringBase::getSSPStackGuardCheck(const Module &M) const {
1971   return nullptr;
1972 }
1973 
1974 unsigned TargetLoweringBase::getMinimumJumpTableEntries() const {
1975   return MinimumJumpTableEntries;
1976 }
1977 
1978 void TargetLoweringBase::setMinimumJumpTableEntries(unsigned Val) {
1979   MinimumJumpTableEntries = Val;
1980 }
1981 
1982 unsigned TargetLoweringBase::getMinimumJumpTableDensity(bool OptForSize) const {
1983   return OptForSize ? OptsizeJumpTableDensity : JumpTableDensity;
1984 }
1985 
1986 unsigned TargetLoweringBase::getMaximumJumpTableSize() const {
1987   return MaximumJumpTableSize;
1988 }
1989 
1990 void TargetLoweringBase::setMaximumJumpTableSize(unsigned Val) {
1991   MaximumJumpTableSize = Val;
1992 }
1993 
1994 bool TargetLoweringBase::isJumpTableRelative() const {
1995   return getTargetMachine().isPositionIndependent();
1996 }
1997 
1998 Align TargetLoweringBase::getPrefLoopAlignment(MachineLoop *ML) const {
1999   if (TM.Options.LoopAlignment)
2000     return Align(TM.Options.LoopAlignment);
2001   return PrefLoopAlignment;
2002 }
2003 
2004 unsigned TargetLoweringBase::getMaxPermittedBytesForAlignment(
2005     MachineBasicBlock *MBB) const {
2006   return MaxBytesForAlignment;
2007 }
2008 
2009 //===----------------------------------------------------------------------===//
2010 //  Reciprocal Estimates
2011 //===----------------------------------------------------------------------===//
2012 
2013 /// Get the reciprocal estimate attribute string for a function that will
2014 /// override the target defaults.
2015 static StringRef getRecipEstimateForFunc(MachineFunction &MF) {
2016   const Function &F = MF.getFunction();
2017   return F.getFnAttribute("reciprocal-estimates").getValueAsString();
2018 }
2019 
2020 /// Construct a string for the given reciprocal operation of the given type.
2021 /// This string should match the corresponding option to the front-end's
2022 /// "-mrecip" flag assuming those strings have been passed through in an
2023 /// attribute string. For example, "vec-divf" for a division of a vXf32.
2024 static std::string getReciprocalOpName(bool IsSqrt, EVT VT) {
2025   std::string Name = VT.isVector() ? "vec-" : "";
2026 
2027   Name += IsSqrt ? "sqrt" : "div";
2028 
2029   // TODO: Handle other float types?
2030   if (VT.getScalarType() == MVT::f64) {
2031     Name += "d";
2032   } else if (VT.getScalarType() == MVT::f16) {
2033     Name += "h";
2034   } else {
2035     assert(VT.getScalarType() == MVT::f32 &&
2036            "Unexpected FP type for reciprocal estimate");
2037     Name += "f";
2038   }
2039 
2040   return Name;
2041 }
2042 
2043 /// Return the character position and value (a single numeric character) of a
2044 /// customized refinement operation in the input string if it exists. Return
2045 /// false if there is no customized refinement step count.
2046 static bool parseRefinementStep(StringRef In, size_t &Position,
2047                                 uint8_t &Value) {
2048   const char RefStepToken = ':';
2049   Position = In.find(RefStepToken);
2050   if (Position == StringRef::npos)
2051     return false;
2052 
2053   StringRef RefStepString = In.substr(Position + 1);
2054   // Allow exactly one numeric character for the additional refinement
2055   // step parameter.
2056   if (RefStepString.size() == 1) {
2057     char RefStepChar = RefStepString[0];
2058     if (isDigit(RefStepChar)) {
2059       Value = RefStepChar - '0';
2060       return true;
2061     }
2062   }
2063   report_fatal_error("Invalid refinement step for -recip.");
2064 }
2065 
2066 /// For the input attribute string, return one of the ReciprocalEstimate enum
2067 /// status values (enabled, disabled, or not specified) for this operation on
2068 /// the specified data type.
2069 static int getOpEnabled(bool IsSqrt, EVT VT, StringRef Override) {
2070   if (Override.empty())
2071     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2072 
2073   SmallVector<StringRef, 4> OverrideVector;
2074   Override.split(OverrideVector, ',');
2075   unsigned NumArgs = OverrideVector.size();
2076 
2077   // Check if "all", "none", or "default" was specified.
2078   if (NumArgs == 1) {
2079     // Look for an optional setting of the number of refinement steps needed
2080     // for this type of reciprocal operation.
2081     size_t RefPos;
2082     uint8_t RefSteps;
2083     if (parseRefinementStep(Override, RefPos, RefSteps)) {
2084       // Split the string for further processing.
2085       Override = Override.substr(0, RefPos);
2086     }
2087 
2088     // All reciprocal types are enabled.
2089     if (Override == "all")
2090       return TargetLoweringBase::ReciprocalEstimate::Enabled;
2091 
2092     // All reciprocal types are disabled.
2093     if (Override == "none")
2094       return TargetLoweringBase::ReciprocalEstimate::Disabled;
2095 
2096     // Target defaults for enablement are used.
2097     if (Override == "default")
2098       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2099   }
2100 
2101   // The attribute string may omit the size suffix ('f'/'d').
2102   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2103   std::string VTNameNoSize = VTName;
2104   VTNameNoSize.pop_back();
2105   static const char DisabledPrefix = '!';
2106 
2107   for (StringRef RecipType : OverrideVector) {
2108     size_t RefPos;
2109     uint8_t RefSteps;
2110     if (parseRefinementStep(RecipType, RefPos, RefSteps))
2111       RecipType = RecipType.substr(0, RefPos);
2112 
2113     // Ignore the disablement token for string matching.
2114     bool IsDisabled = RecipType[0] == DisabledPrefix;
2115     if (IsDisabled)
2116       RecipType = RecipType.substr(1);
2117 
2118     if (RecipType == VTName || RecipType == VTNameNoSize)
2119       return IsDisabled ? TargetLoweringBase::ReciprocalEstimate::Disabled
2120                         : TargetLoweringBase::ReciprocalEstimate::Enabled;
2121   }
2122 
2123   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2124 }
2125 
2126 /// For the input attribute string, return the customized refinement step count
2127 /// for this operation on the specified data type. If the step count does not
2128 /// exist, return the ReciprocalEstimate enum value for unspecified.
2129 static int getOpRefinementSteps(bool IsSqrt, EVT VT, StringRef Override) {
2130   if (Override.empty())
2131     return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2132 
2133   SmallVector<StringRef, 4> OverrideVector;
2134   Override.split(OverrideVector, ',');
2135   unsigned NumArgs = OverrideVector.size();
2136 
2137   // Check if "all", "default", or "none" was specified.
2138   if (NumArgs == 1) {
2139     // Look for an optional setting of the number of refinement steps needed
2140     // for this type of reciprocal operation.
2141     size_t RefPos;
2142     uint8_t RefSteps;
2143     if (!parseRefinementStep(Override, RefPos, RefSteps))
2144       return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2145 
2146     // Split the string for further processing.
2147     Override = Override.substr(0, RefPos);
2148     assert(Override != "none" &&
2149            "Disabled reciprocals, but specifed refinement steps?");
2150 
2151     // If this is a general override, return the specified number of steps.
2152     if (Override == "all" || Override == "default")
2153       return RefSteps;
2154   }
2155 
2156   // The attribute string may omit the size suffix ('f'/'d').
2157   std::string VTName = getReciprocalOpName(IsSqrt, VT);
2158   std::string VTNameNoSize = VTName;
2159   VTNameNoSize.pop_back();
2160 
2161   for (StringRef RecipType : OverrideVector) {
2162     size_t RefPos;
2163     uint8_t RefSteps;
2164     if (!parseRefinementStep(RecipType, RefPos, RefSteps))
2165       continue;
2166 
2167     RecipType = RecipType.substr(0, RefPos);
2168     if (RecipType == VTName || RecipType == VTNameNoSize)
2169       return RefSteps;
2170   }
2171 
2172   return TargetLoweringBase::ReciprocalEstimate::Unspecified;
2173 }
2174 
2175 int TargetLoweringBase::getRecipEstimateSqrtEnabled(EVT VT,
2176                                                     MachineFunction &MF) const {
2177   return getOpEnabled(true, VT, getRecipEstimateForFunc(MF));
2178 }
2179 
2180 int TargetLoweringBase::getRecipEstimateDivEnabled(EVT VT,
2181                                                    MachineFunction &MF) const {
2182   return getOpEnabled(false, VT, getRecipEstimateForFunc(MF));
2183 }
2184 
2185 int TargetLoweringBase::getSqrtRefinementSteps(EVT VT,
2186                                                MachineFunction &MF) const {
2187   return getOpRefinementSteps(true, VT, getRecipEstimateForFunc(MF));
2188 }
2189 
2190 int TargetLoweringBase::getDivRefinementSteps(EVT VT,
2191                                               MachineFunction &MF) const {
2192   return getOpRefinementSteps(false, VT, getRecipEstimateForFunc(MF));
2193 }
2194 
2195 bool TargetLoweringBase::isLoadBitCastBeneficial(
2196     EVT LoadVT, EVT BitcastVT, const SelectionDAG &DAG,
2197     const MachineMemOperand &MMO) const {
2198   // Single-element vectors are scalarized, so we should generally avoid having
2199   // any memory operations on such types, as they would get scalarized too.
2200   if (LoadVT.isFixedLengthVector() && BitcastVT.isFixedLengthVector() &&
2201       BitcastVT.getVectorNumElements() == 1)
2202     return false;
2203 
2204   // Don't do if we could do an indexed load on the original type, but not on
2205   // the new one.
2206   if (!LoadVT.isSimple() || !BitcastVT.isSimple())
2207     return true;
2208 
2209   MVT LoadMVT = LoadVT.getSimpleVT();
2210 
2211   // Don't bother doing this if it's just going to be promoted again later, as
2212   // doing so might interfere with other combines.
2213   if (getOperationAction(ISD::LOAD, LoadMVT) == Promote &&
2214       getTypeToPromoteTo(ISD::LOAD, LoadMVT) == BitcastVT.getSimpleVT())
2215     return false;
2216 
2217   unsigned Fast = 0;
2218   return allowsMemoryAccess(*DAG.getContext(), DAG.getDataLayout(), BitcastVT,
2219                             MMO, &Fast) &&
2220          Fast;
2221 }
2222 
2223 void TargetLoweringBase::finalizeLowering(MachineFunction &MF) const {
2224   MF.getRegInfo().freezeReservedRegs();
2225 }
2226 
2227 MachineMemOperand::Flags TargetLoweringBase::getLoadMemOperandFlags(
2228     const LoadInst &LI, const DataLayout &DL, AssumptionCache *AC,
2229     const TargetLibraryInfo *LibInfo) const {
2230   MachineMemOperand::Flags Flags = MachineMemOperand::MOLoad;
2231   if (LI.isVolatile())
2232     Flags |= MachineMemOperand::MOVolatile;
2233 
2234   if (LI.hasMetadata(LLVMContext::MD_nontemporal))
2235     Flags |= MachineMemOperand::MONonTemporal;
2236 
2237   if (LI.hasMetadata(LLVMContext::MD_invariant_load))
2238     Flags |= MachineMemOperand::MOInvariant;
2239 
2240   if (isDereferenceableAndAlignedPointer(LI.getPointerOperand(), LI.getType(),
2241                                          LI.getAlign(), DL, &LI, AC,
2242                                          /*DT=*/nullptr, LibInfo))
2243     Flags |= MachineMemOperand::MODereferenceable;
2244 
2245   Flags |= getTargetMMOFlags(LI);
2246   return Flags;
2247 }
2248 
2249 MachineMemOperand::Flags
2250 TargetLoweringBase::getStoreMemOperandFlags(const StoreInst &SI,
2251                                             const DataLayout &DL) const {
2252   MachineMemOperand::Flags Flags = MachineMemOperand::MOStore;
2253 
2254   if (SI.isVolatile())
2255     Flags |= MachineMemOperand::MOVolatile;
2256 
2257   if (SI.hasMetadata(LLVMContext::MD_nontemporal))
2258     Flags |= MachineMemOperand::MONonTemporal;
2259 
2260   // FIXME: Not preserving dereferenceable
2261   Flags |= getTargetMMOFlags(SI);
2262   return Flags;
2263 }
2264 
2265 MachineMemOperand::Flags
2266 TargetLoweringBase::getAtomicMemOperandFlags(const Instruction &AI,
2267                                              const DataLayout &DL) const {
2268   auto Flags = MachineMemOperand::MOLoad | MachineMemOperand::MOStore;
2269 
2270   if (const AtomicRMWInst *RMW = dyn_cast<AtomicRMWInst>(&AI)) {
2271     if (RMW->isVolatile())
2272       Flags |= MachineMemOperand::MOVolatile;
2273   } else if (const AtomicCmpXchgInst *CmpX = dyn_cast<AtomicCmpXchgInst>(&AI)) {
2274     if (CmpX->isVolatile())
2275       Flags |= MachineMemOperand::MOVolatile;
2276   } else
2277     llvm_unreachable("not an atomic instruction");
2278 
2279   // FIXME: Not preserving dereferenceable
2280   Flags |= getTargetMMOFlags(AI);
2281   return Flags;
2282 }
2283 
2284 Instruction *TargetLoweringBase::emitLeadingFence(IRBuilderBase &Builder,
2285                                                   Instruction *Inst,
2286                                                   AtomicOrdering Ord) const {
2287   if (isReleaseOrStronger(Ord) && Inst->hasAtomicStore())
2288     return Builder.CreateFence(Ord);
2289   else
2290     return nullptr;
2291 }
2292 
2293 Instruction *TargetLoweringBase::emitTrailingFence(IRBuilderBase &Builder,
2294                                                    Instruction *Inst,
2295                                                    AtomicOrdering Ord) const {
2296   if (isAcquireOrStronger(Ord))
2297     return Builder.CreateFence(Ord);
2298   else
2299     return nullptr;
2300 }
2301 
2302 //===----------------------------------------------------------------------===//
2303 //  GlobalISel Hooks
2304 //===----------------------------------------------------------------------===//
2305 
2306 bool TargetLoweringBase::shouldLocalize(const MachineInstr &MI,
2307                                         const TargetTransformInfo *TTI) const {
2308   auto &MF = *MI.getMF();
2309   auto &MRI = MF.getRegInfo();
2310   // Assuming a spill and reload of a value has a cost of 1 instruction each,
2311   // this helper function computes the maximum number of uses we should consider
2312   // for remat. E.g. on arm64 global addresses take 2 insts to materialize. We
2313   // break even in terms of code size when the original MI has 2 users vs
2314   // choosing to potentially spill. Any more than 2 users we we have a net code
2315   // size increase. This doesn't take into account register pressure though.
2316   auto maxUses = [](unsigned RematCost) {
2317     // A cost of 1 means remats are basically free.
2318     if (RematCost == 1)
2319       return std::numeric_limits<unsigned>::max();
2320     if (RematCost == 2)
2321       return 2U;
2322 
2323     // Remat is too expensive, only sink if there's one user.
2324     if (RematCost > 2)
2325       return 1U;
2326     llvm_unreachable("Unexpected remat cost");
2327   };
2328 
2329   switch (MI.getOpcode()) {
2330   default:
2331     return false;
2332   // Constants-like instructions should be close to their users.
2333   // We don't want long live-ranges for them.
2334   case TargetOpcode::G_CONSTANT:
2335   case TargetOpcode::G_FCONSTANT:
2336   case TargetOpcode::G_FRAME_INDEX:
2337   case TargetOpcode::G_INTTOPTR:
2338     return true;
2339   case TargetOpcode::G_GLOBAL_VALUE: {
2340     unsigned RematCost = TTI->getGISelRematGlobalCost();
2341     Register Reg = MI.getOperand(0).getReg();
2342     unsigned MaxUses = maxUses(RematCost);
2343     if (MaxUses == UINT_MAX)
2344       return true; // Remats are "free" so always localize.
2345     return MRI.hasAtMostUserInstrs(Reg, MaxUses);
2346   }
2347   }
2348 }
2349