xref: /llvm-project/llvm/lib/CodeGen/TailDuplicator.cpp (revision 559ea40d9a12b0027cd7dbd955da31c06e6369f8)
1 //===- TailDuplicator.cpp - Duplicate blocks into predecessors' tails -----===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This utility class duplicates basic blocks ending in unconditional branches
10 // into the tails of their predecessors.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "llvm/CodeGen/TailDuplicator.h"
15 #include "llvm/ADT/DenseMap.h"
16 #include "llvm/ADT/DenseSet.h"
17 #include "llvm/ADT/STLExtras.h"
18 #include "llvm/ADT/SetVector.h"
19 #include "llvm/ADT/SmallPtrSet.h"
20 #include "llvm/ADT/SmallVector.h"
21 #include "llvm/ADT/Statistic.h"
22 #include "llvm/CodeGen/MachineBasicBlock.h"
23 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
24 #include "llvm/CodeGen/MachineFunction.h"
25 #include "llvm/CodeGen/MachineInstr.h"
26 #include "llvm/CodeGen/MachineInstrBuilder.h"
27 #include "llvm/CodeGen/MachineOperand.h"
28 #include "llvm/CodeGen/MachineRegisterInfo.h"
29 #include "llvm/CodeGen/MachineSSAUpdater.h"
30 #include "llvm/CodeGen/MachineSizeOpts.h"
31 #include "llvm/CodeGen/TargetInstrInfo.h"
32 #include "llvm/CodeGen/TargetRegisterInfo.h"
33 #include "llvm/CodeGen/TargetSubtargetInfo.h"
34 #include "llvm/IR/DebugLoc.h"
35 #include "llvm/IR/Function.h"
36 #include "llvm/Support/CommandLine.h"
37 #include "llvm/Support/Debug.h"
38 #include "llvm/Support/ErrorHandling.h"
39 #include "llvm/Support/raw_ostream.h"
40 #include "llvm/Target/TargetMachine.h"
41 #include <algorithm>
42 #include <cassert>
43 #include <iterator>
44 #include <utility>
45 
46 using namespace llvm;
47 
48 #define DEBUG_TYPE "tailduplication"
49 
50 STATISTIC(NumTails, "Number of tails duplicated");
51 STATISTIC(NumTailDups, "Number of tail duplicated blocks");
52 STATISTIC(NumTailDupAdded,
53           "Number of instructions added due to tail duplication");
54 STATISTIC(NumTailDupRemoved,
55           "Number of instructions removed due to tail duplication");
56 STATISTIC(NumDeadBlocks, "Number of dead blocks removed");
57 STATISTIC(NumAddedPHIs, "Number of phis added");
58 
59 // Heuristic for tail duplication.
60 static cl::opt<unsigned> TailDuplicateSize(
61     "tail-dup-size",
62     cl::desc("Maximum instructions to consider tail duplicating"), cl::init(2),
63     cl::Hidden);
64 
65 static cl::opt<unsigned> TailDupIndirectBranchSize(
66     "tail-dup-indirect-size",
67     cl::desc("Maximum instructions to consider tail duplicating blocks that "
68              "end with indirect branches."), cl::init(20),
69     cl::Hidden);
70 
71 static cl::opt<unsigned>
72     TailDupPredSize("tail-dup-pred-size",
73                     cl::desc("Maximum predecessors (maximum successors at the "
74                              "same time) to consider tail duplicating blocks."),
75                     cl::init(16), cl::Hidden);
76 
77 static cl::opt<unsigned>
78     TailDupSuccSize("tail-dup-succ-size",
79                     cl::desc("Maximum successors (maximum predecessors at the "
80                              "same time) to consider tail duplicating blocks."),
81                     cl::init(16), cl::Hidden);
82 
83 static cl::opt<bool>
84     TailDupVerify("tail-dup-verify",
85                   cl::desc("Verify sanity of PHI instructions during taildup"),
86                   cl::init(false), cl::Hidden);
87 
88 static cl::opt<unsigned> TailDupLimit("tail-dup-limit", cl::init(~0U),
89                                       cl::Hidden);
90 
91 void TailDuplicator::initMF(MachineFunction &MFin, bool PreRegAlloc,
92                             const MachineBranchProbabilityInfo *MBPIin,
93                             MBFIWrapper *MBFIin,
94                             ProfileSummaryInfo *PSIin,
95                             bool LayoutModeIn, unsigned TailDupSizeIn) {
96   MF = &MFin;
97   TII = MF->getSubtarget().getInstrInfo();
98   TRI = MF->getSubtarget().getRegisterInfo();
99   MRI = &MF->getRegInfo();
100   MMI = &MF->getMMI();
101   MBPI = MBPIin;
102   MBFI = MBFIin;
103   PSI = PSIin;
104   TailDupSize = TailDupSizeIn;
105 
106   assert(MBPI != nullptr && "Machine Branch Probability Info required");
107 
108   LayoutMode = LayoutModeIn;
109   this->PreRegAlloc = PreRegAlloc;
110 }
111 
112 static void VerifyPHIs(MachineFunction &MF, bool CheckExtra) {
113   for (MachineBasicBlock &MBB : llvm::drop_begin(MF)) {
114     SmallSetVector<MachineBasicBlock *, 8> Preds(MBB.pred_begin(),
115                                                  MBB.pred_end());
116     MachineBasicBlock::iterator MI = MBB.begin();
117     while (MI != MBB.end()) {
118       if (!MI->isPHI())
119         break;
120       for (MachineBasicBlock *PredBB : Preds) {
121         bool Found = false;
122         for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
123           MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
124           if (PHIBB == PredBB) {
125             Found = true;
126             break;
127           }
128         }
129         if (!Found) {
130           dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": "
131                  << *MI;
132           dbgs() << "  missing input from predecessor "
133                  << printMBBReference(*PredBB) << '\n';
134           llvm_unreachable(nullptr);
135         }
136       }
137 
138       for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2) {
139         MachineBasicBlock *PHIBB = MI->getOperand(i + 1).getMBB();
140         if (CheckExtra && !Preds.count(PHIBB)) {
141           dbgs() << "Warning: malformed PHI in " << printMBBReference(MBB)
142                  << ": " << *MI;
143           dbgs() << "  extra input from predecessor "
144                  << printMBBReference(*PHIBB) << '\n';
145           llvm_unreachable(nullptr);
146         }
147         if (PHIBB->getNumber() < 0) {
148           dbgs() << "Malformed PHI in " << printMBBReference(MBB) << ": "
149                  << *MI;
150           dbgs() << "  non-existing " << printMBBReference(*PHIBB) << '\n';
151           llvm_unreachable(nullptr);
152         }
153       }
154       ++MI;
155     }
156   }
157 }
158 
159 /// Tail duplicate the block and cleanup.
160 /// \p IsSimple - return value of isSimpleBB
161 /// \p MBB - block to be duplicated
162 /// \p ForcedLayoutPred - If non-null, treat this block as the layout
163 ///     predecessor, instead of using the ordering in MF
164 /// \p DuplicatedPreds - if non-null, \p DuplicatedPreds will contain a list of
165 ///     all Preds that received a copy of \p MBB.
166 /// \p RemovalCallback - if non-null, called just before MBB is deleted.
167 bool TailDuplicator::tailDuplicateAndUpdate(
168     bool IsSimple, MachineBasicBlock *MBB,
169     MachineBasicBlock *ForcedLayoutPred,
170     SmallVectorImpl<MachineBasicBlock*> *DuplicatedPreds,
171     function_ref<void(MachineBasicBlock *)> *RemovalCallback,
172     SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
173   // Save the successors list.
174   SmallSetVector<MachineBasicBlock *, 8> Succs(MBB->succ_begin(),
175                                                MBB->succ_end());
176 
177   SmallVector<MachineBasicBlock *, 8> TDBBs;
178   SmallVector<MachineInstr *, 16> Copies;
179   if (!tailDuplicate(IsSimple, MBB, ForcedLayoutPred,
180                      TDBBs, Copies, CandidatePtr))
181     return false;
182 
183   ++NumTails;
184 
185   SmallVector<MachineInstr *, 8> NewPHIs;
186   MachineSSAUpdater SSAUpdate(*MF, &NewPHIs);
187 
188   // TailBB's immediate successors are now successors of those predecessors
189   // which duplicated TailBB. Add the predecessors as sources to the PHI
190   // instructions.
191   bool isDead = MBB->pred_empty() && !MBB->hasAddressTaken();
192   if (PreRegAlloc)
193     updateSuccessorsPHIs(MBB, isDead, TDBBs, Succs);
194 
195   // If it is dead, remove it.
196   if (isDead) {
197     NumTailDupRemoved += MBB->size();
198     removeDeadBlock(MBB, RemovalCallback);
199     ++NumDeadBlocks;
200   }
201 
202   // Update SSA form.
203   if (!SSAUpdateVRs.empty()) {
204     for (unsigned VReg : SSAUpdateVRs) {
205       SSAUpdate.Initialize(VReg);
206 
207       // If the original definition is still around, add it as an available
208       // value.
209       MachineInstr *DefMI = MRI->getVRegDef(VReg);
210       MachineBasicBlock *DefBB = nullptr;
211       if (DefMI) {
212         DefBB = DefMI->getParent();
213         SSAUpdate.AddAvailableValue(DefBB, VReg);
214       }
215 
216       // Add the new vregs as available values.
217       DenseMap<Register, AvailableValsTy>::iterator LI =
218           SSAUpdateVals.find(VReg);
219       for (std::pair<MachineBasicBlock *, Register> &J : LI->second) {
220         MachineBasicBlock *SrcBB = J.first;
221         Register SrcReg = J.second;
222         SSAUpdate.AddAvailableValue(SrcBB, SrcReg);
223       }
224 
225       SmallVector<MachineOperand *> DebugUses;
226       // Rewrite uses that are outside of the original def's block.
227       for (MachineOperand &UseMO :
228            llvm::make_early_inc_range(MRI->use_operands(VReg))) {
229         MachineInstr *UseMI = UseMO.getParent();
230         // Rewrite debug uses last so that they can take advantage of any
231         // register mappings introduced by other users in its BB, since we
232         // cannot create new register definitions specifically for the debug
233         // instruction (as debug instructions should not affect CodeGen).
234         if (UseMI->isDebugValue()) {
235           DebugUses.push_back(&UseMO);
236           continue;
237         }
238         if (UseMI->getParent() == DefBB && !UseMI->isPHI())
239           continue;
240         SSAUpdate.RewriteUse(UseMO);
241       }
242       for (auto *UseMO : DebugUses) {
243         MachineInstr *UseMI = UseMO->getParent();
244         UseMO->setReg(
245             SSAUpdate.GetValueInMiddleOfBlock(UseMI->getParent(), true));
246       }
247     }
248 
249     SSAUpdateVRs.clear();
250     SSAUpdateVals.clear();
251   }
252 
253   // Eliminate some of the copies inserted by tail duplication to maintain
254   // SSA form.
255   for (MachineInstr *Copy : Copies) {
256     if (!Copy->isCopy())
257       continue;
258     Register Dst = Copy->getOperand(0).getReg();
259     Register Src = Copy->getOperand(1).getReg();
260     if (MRI->hasOneNonDBGUse(Src) &&
261         MRI->constrainRegClass(Src, MRI->getRegClass(Dst))) {
262       // Copy is the only use. Do trivial copy propagation here.
263       MRI->replaceRegWith(Dst, Src);
264       Copy->eraseFromParent();
265     }
266   }
267 
268   if (NewPHIs.size())
269     NumAddedPHIs += NewPHIs.size();
270 
271   if (DuplicatedPreds)
272     *DuplicatedPreds = std::move(TDBBs);
273 
274   return true;
275 }
276 
277 /// Look for small blocks that are unconditionally branched to and do not fall
278 /// through. Tail-duplicate their instructions into their predecessors to
279 /// eliminate (dynamic) branches.
280 bool TailDuplicator::tailDuplicateBlocks() {
281   bool MadeChange = false;
282 
283   if (PreRegAlloc && TailDupVerify) {
284     LLVM_DEBUG(dbgs() << "\n*** Before tail-duplicating\n");
285     VerifyPHIs(*MF, true);
286   }
287 
288   for (MachineBasicBlock &MBB :
289        llvm::make_early_inc_range(llvm::drop_begin(*MF))) {
290     if (NumTails == TailDupLimit)
291       break;
292 
293     bool IsSimple = isSimpleBB(&MBB);
294 
295     if (!shouldTailDuplicate(IsSimple, MBB))
296       continue;
297 
298     MadeChange |= tailDuplicateAndUpdate(IsSimple, &MBB, nullptr);
299   }
300 
301   if (PreRegAlloc && TailDupVerify)
302     VerifyPHIs(*MF, false);
303 
304   return MadeChange;
305 }
306 
307 static bool isDefLiveOut(Register Reg, MachineBasicBlock *BB,
308                          const MachineRegisterInfo *MRI) {
309   for (MachineInstr &UseMI : MRI->use_instructions(Reg)) {
310     if (UseMI.isDebugValue())
311       continue;
312     if (UseMI.getParent() != BB)
313       return true;
314   }
315   return false;
316 }
317 
318 static unsigned getPHISrcRegOpIdx(MachineInstr *MI, MachineBasicBlock *SrcBB) {
319   for (unsigned i = 1, e = MI->getNumOperands(); i != e; i += 2)
320     if (MI->getOperand(i + 1).getMBB() == SrcBB)
321       return i;
322   return 0;
323 }
324 
325 // Remember which registers are used by phis in this block. This is
326 // used to determine which registers are liveout while modifying the
327 // block (which is why we need to copy the information).
328 static void getRegsUsedByPHIs(const MachineBasicBlock &BB,
329                               DenseSet<Register> *UsedByPhi) {
330   for (const auto &MI : BB) {
331     if (!MI.isPHI())
332       break;
333     for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
334       Register SrcReg = MI.getOperand(i).getReg();
335       UsedByPhi->insert(SrcReg);
336     }
337   }
338 }
339 
340 /// Add a definition and source virtual registers pair for SSA update.
341 void TailDuplicator::addSSAUpdateEntry(Register OrigReg, Register NewReg,
342                                        MachineBasicBlock *BB) {
343   DenseMap<Register, AvailableValsTy>::iterator LI =
344       SSAUpdateVals.find(OrigReg);
345   if (LI != SSAUpdateVals.end())
346     LI->second.push_back(std::make_pair(BB, NewReg));
347   else {
348     AvailableValsTy Vals;
349     Vals.push_back(std::make_pair(BB, NewReg));
350     SSAUpdateVals.insert(std::make_pair(OrigReg, Vals));
351     SSAUpdateVRs.push_back(OrigReg);
352   }
353 }
354 
355 /// Process PHI node in TailBB by turning it into a copy in PredBB. Remember the
356 /// source register that's contributed by PredBB and update SSA update map.
357 void TailDuplicator::processPHI(
358     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
359     DenseMap<Register, RegSubRegPair> &LocalVRMap,
360     SmallVectorImpl<std::pair<Register, RegSubRegPair>> &Copies,
361     const DenseSet<Register> &RegsUsedByPhi, bool Remove) {
362   Register DefReg = MI->getOperand(0).getReg();
363   unsigned SrcOpIdx = getPHISrcRegOpIdx(MI, PredBB);
364   assert(SrcOpIdx && "Unable to find matching PHI source?");
365   Register SrcReg = MI->getOperand(SrcOpIdx).getReg();
366   unsigned SrcSubReg = MI->getOperand(SrcOpIdx).getSubReg();
367   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
368   LocalVRMap.insert(std::make_pair(DefReg, RegSubRegPair(SrcReg, SrcSubReg)));
369 
370   // Insert a copy from source to the end of the block. The def register is the
371   // available value liveout of the block.
372   Register NewDef = MRI->createVirtualRegister(RC);
373   Copies.push_back(std::make_pair(NewDef, RegSubRegPair(SrcReg, SrcSubReg)));
374   if (isDefLiveOut(DefReg, TailBB, MRI) || RegsUsedByPhi.count(DefReg))
375     addSSAUpdateEntry(DefReg, NewDef, PredBB);
376 
377   if (!Remove)
378     return;
379 
380   // Remove PredBB from the PHI node.
381   MI->removeOperand(SrcOpIdx + 1);
382   MI->removeOperand(SrcOpIdx);
383   if (MI->getNumOperands() == 1 && !TailBB->hasAddressTaken())
384     MI->eraseFromParent();
385   else if (MI->getNumOperands() == 1)
386     MI->setDesc(TII->get(TargetOpcode::IMPLICIT_DEF));
387 }
388 
389 /// Duplicate a TailBB instruction to PredBB and update
390 /// the source operands due to earlier PHI translation.
391 void TailDuplicator::duplicateInstruction(
392     MachineInstr *MI, MachineBasicBlock *TailBB, MachineBasicBlock *PredBB,
393     DenseMap<Register, RegSubRegPair> &LocalVRMap,
394     const DenseSet<Register> &UsedByPhi) {
395   // Allow duplication of CFI instructions.
396   if (MI->isCFIInstruction()) {
397     BuildMI(*PredBB, PredBB->end(), PredBB->findDebugLoc(PredBB->begin()),
398             TII->get(TargetOpcode::CFI_INSTRUCTION))
399         .addCFIIndex(MI->getOperand(0).getCFIIndex())
400         .setMIFlags(MI->getFlags());
401     return;
402   }
403   MachineInstr &NewMI = TII->duplicate(*PredBB, PredBB->end(), *MI);
404   if (PreRegAlloc) {
405     for (unsigned i = 0, e = NewMI.getNumOperands(); i != e; ++i) {
406       MachineOperand &MO = NewMI.getOperand(i);
407       if (!MO.isReg())
408         continue;
409       Register Reg = MO.getReg();
410       if (!Reg.isVirtual())
411         continue;
412       if (MO.isDef()) {
413         const TargetRegisterClass *RC = MRI->getRegClass(Reg);
414         Register NewReg = MRI->createVirtualRegister(RC);
415         MO.setReg(NewReg);
416         LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
417         if (isDefLiveOut(Reg, TailBB, MRI) || UsedByPhi.count(Reg))
418           addSSAUpdateEntry(Reg, NewReg, PredBB);
419       } else {
420         auto VI = LocalVRMap.find(Reg);
421         if (VI != LocalVRMap.end()) {
422           // Need to make sure that the register class of the mapped register
423           // will satisfy the constraints of the class of the register being
424           // replaced.
425           auto *OrigRC = MRI->getRegClass(Reg);
426           auto *MappedRC = MRI->getRegClass(VI->second.Reg);
427           const TargetRegisterClass *ConstrRC;
428           if (VI->second.SubReg != 0) {
429             ConstrRC = TRI->getMatchingSuperRegClass(MappedRC, OrigRC,
430                                                      VI->second.SubReg);
431             if (ConstrRC) {
432               // The actual constraining (as in "find appropriate new class")
433               // is done by getMatchingSuperRegClass, so now we only need to
434               // change the class of the mapped register.
435               MRI->setRegClass(VI->second.Reg, ConstrRC);
436             }
437           } else {
438             // For mapped registers that do not have sub-registers, simply
439             // restrict their class to match the original one.
440 
441             // We don't want debug instructions affecting the resulting code so
442             // if we're cloning a debug instruction then just use MappedRC
443             // rather than constraining the register class further.
444             ConstrRC = NewMI.isDebugInstr()
445                            ? MappedRC
446                            : MRI->constrainRegClass(VI->second.Reg, OrigRC);
447           }
448 
449           if (ConstrRC) {
450             // If the class constraining succeeded, we can simply replace
451             // the old register with the mapped one.
452             MO.setReg(VI->second.Reg);
453             // We have Reg -> VI.Reg:VI.SubReg, so if Reg is used with a
454             // sub-register, we need to compose the sub-register indices.
455             MO.setSubReg(
456                 TRI->composeSubRegIndices(VI->second.SubReg, MO.getSubReg()));
457           } else {
458             // The direct replacement is not possible, due to failing register
459             // class constraints. An explicit COPY is necessary. Create one
460             // that can be reused.
461             Register NewReg = MRI->createVirtualRegister(OrigRC);
462             BuildMI(*PredBB, NewMI, NewMI.getDebugLoc(),
463                     TII->get(TargetOpcode::COPY), NewReg)
464                 .addReg(VI->second.Reg, 0, VI->second.SubReg);
465             LocalVRMap.erase(VI);
466             LocalVRMap.insert(std::make_pair(Reg, RegSubRegPair(NewReg, 0)));
467             MO.setReg(NewReg);
468             // The composed VI.Reg:VI.SubReg is replaced with NewReg, which
469             // is equivalent to the whole register Reg. Hence, Reg:subreg
470             // is same as NewReg:subreg, so keep the sub-register index
471             // unchanged.
472           }
473           // Clear any kill flags from this operand.  The new register could
474           // have uses after this one, so kills are not valid here.
475           MO.setIsKill(false);
476         }
477       }
478     }
479   }
480 }
481 
482 /// After FromBB is tail duplicated into its predecessor blocks, the successors
483 /// have gained new predecessors. Update the PHI instructions in them
484 /// accordingly.
485 void TailDuplicator::updateSuccessorsPHIs(
486     MachineBasicBlock *FromBB, bool isDead,
487     SmallVectorImpl<MachineBasicBlock *> &TDBBs,
488     SmallSetVector<MachineBasicBlock *, 8> &Succs) {
489   for (MachineBasicBlock *SuccBB : Succs) {
490     for (MachineInstr &MI : *SuccBB) {
491       if (!MI.isPHI())
492         break;
493       MachineInstrBuilder MIB(*FromBB->getParent(), MI);
494       unsigned Idx = 0;
495       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
496         MachineOperand &MO = MI.getOperand(i + 1);
497         if (MO.getMBB() == FromBB) {
498           Idx = i;
499           break;
500         }
501       }
502 
503       assert(Idx != 0);
504       MachineOperand &MO0 = MI.getOperand(Idx);
505       Register Reg = MO0.getReg();
506       if (isDead) {
507         // Folded into the previous BB.
508         // There could be duplicate phi source entries. FIXME: Should sdisel
509         // or earlier pass fixed this?
510         for (unsigned i = MI.getNumOperands() - 2; i != Idx; i -= 2) {
511           MachineOperand &MO = MI.getOperand(i + 1);
512           if (MO.getMBB() == FromBB) {
513             MI.removeOperand(i + 1);
514             MI.removeOperand(i);
515           }
516         }
517       } else
518         Idx = 0;
519 
520       // If Idx is set, the operands at Idx and Idx+1 must be removed.
521       // We reuse the location to avoid expensive removeOperand calls.
522 
523       DenseMap<Register, AvailableValsTy>::iterator LI =
524           SSAUpdateVals.find(Reg);
525       if (LI != SSAUpdateVals.end()) {
526         // This register is defined in the tail block.
527         for (const std::pair<MachineBasicBlock *, Register> &J : LI->second) {
528           MachineBasicBlock *SrcBB = J.first;
529           // If we didn't duplicate a bb into a particular predecessor, we
530           // might still have added an entry to SSAUpdateVals to correcly
531           // recompute SSA. If that case, avoid adding a dummy extra argument
532           // this PHI.
533           if (!SrcBB->isSuccessor(SuccBB))
534             continue;
535 
536           Register SrcReg = J.second;
537           if (Idx != 0) {
538             MI.getOperand(Idx).setReg(SrcReg);
539             MI.getOperand(Idx + 1).setMBB(SrcBB);
540             Idx = 0;
541           } else {
542             MIB.addReg(SrcReg).addMBB(SrcBB);
543           }
544         }
545       } else {
546         // Live in tail block, must also be live in predecessors.
547         for (MachineBasicBlock *SrcBB : TDBBs) {
548           if (Idx != 0) {
549             MI.getOperand(Idx).setReg(Reg);
550             MI.getOperand(Idx + 1).setMBB(SrcBB);
551             Idx = 0;
552           } else {
553             MIB.addReg(Reg).addMBB(SrcBB);
554           }
555         }
556       }
557       if (Idx != 0) {
558         MI.removeOperand(Idx + 1);
559         MI.removeOperand(Idx);
560       }
561     }
562   }
563 }
564 
565 /// Determine if it is profitable to duplicate this block.
566 bool TailDuplicator::shouldTailDuplicate(bool IsSimple,
567                                          MachineBasicBlock &TailBB) {
568   // When doing tail-duplication during layout, the block ordering is in flux,
569   // so canFallThrough returns a result based on incorrect information and
570   // should just be ignored.
571   if (!LayoutMode && TailBB.canFallThrough())
572     return false;
573 
574   // Don't try to tail-duplicate single-block loops.
575   if (TailBB.isSuccessor(&TailBB))
576     return false;
577 
578   // Duplicating a BB which has both multiple predecessors and successors will
579   // result in a complex CFG and also may cause huge amount of PHI nodes. If we
580   // want to remove this limitation, we have to address
581   // https://github.com/llvm/llvm-project/issues/78578.
582   if (TailBB.pred_size() > TailDupPredSize &&
583       TailBB.succ_size() > TailDupSuccSize)
584     return false;
585 
586   // Set the limit on the cost to duplicate. When optimizing for size,
587   // duplicate only one, because one branch instruction can be eliminated to
588   // compensate for the duplication.
589   unsigned MaxDuplicateCount;
590   bool OptForSize = MF->getFunction().hasOptSize() ||
591                     llvm::shouldOptimizeForSize(&TailBB, PSI, MBFI);
592   if (TailDupSize == 0)
593     MaxDuplicateCount = TailDuplicateSize;
594   else
595     MaxDuplicateCount = TailDupSize;
596   if (OptForSize)
597     MaxDuplicateCount = 1;
598 
599   // If the block to be duplicated ends in an unanalyzable fallthrough, don't
600   // duplicate it.
601   // A similar check is necessary in MachineBlockPlacement to make sure pairs of
602   // blocks with unanalyzable fallthrough get layed out contiguously.
603   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
604   SmallVector<MachineOperand, 4> PredCond;
605   if (TII->analyzeBranch(TailBB, PredTBB, PredFBB, PredCond) &&
606       TailBB.canFallThrough())
607     return false;
608 
609   // If the target has hardware branch prediction that can handle indirect
610   // branches, duplicating them can often make them predictable when there
611   // are common paths through the code.  The limit needs to be high enough
612   // to allow undoing the effects of tail merging and other optimizations
613   // that rearrange the predecessors of the indirect branch.
614 
615   bool HasIndirectbr = false;
616   if (!TailBB.empty())
617     HasIndirectbr = TailBB.back().isIndirectBranch();
618 
619   if (HasIndirectbr && PreRegAlloc)
620     MaxDuplicateCount = TailDupIndirectBranchSize;
621 
622   // Check the instructions in the block to determine whether tail-duplication
623   // is invalid or unlikely to be profitable.
624   unsigned InstrCount = 0;
625   for (MachineInstr &MI : TailBB) {
626     // Non-duplicable things shouldn't be tail-duplicated.
627     // CFI instructions are marked as non-duplicable, because Darwin compact
628     // unwind info emission can't handle multiple prologue setups. In case of
629     // DWARF, allow them be duplicated, so that their existence doesn't prevent
630     // tail duplication of some basic blocks, that would be duplicated otherwise.
631     if (MI.isNotDuplicable() &&
632         (TailBB.getParent()->getTarget().getTargetTriple().isOSDarwin() ||
633         !MI.isCFIInstruction()))
634       return false;
635 
636     // Convergent instructions can be duplicated only if doing so doesn't add
637     // new control dependencies, which is what we're going to do here.
638     if (MI.isConvergent())
639       return false;
640 
641     // Do not duplicate 'return' instructions if this is a pre-regalloc run.
642     // A return may expand into a lot more instructions (e.g. reload of callee
643     // saved registers) after PEI.
644     if (PreRegAlloc && MI.isReturn())
645       return false;
646 
647     // Avoid duplicating calls before register allocation. Calls presents a
648     // barrier to register allocation so duplicating them may end up increasing
649     // spills.
650     if (PreRegAlloc && MI.isCall())
651       return false;
652 
653     // TailDuplicator::appendCopies will erroneously place COPYs after
654     // INLINEASM_BR instructions after 4b0aa5724fea, which demonstrates the same
655     // bug that was fixed in f7a53d82c090.
656     // FIXME: Use findPHICopyInsertPoint() to find the correct insertion point
657     //        for the COPY when replacing PHIs.
658     if (MI.getOpcode() == TargetOpcode::INLINEASM_BR)
659       return false;
660 
661     if (MI.isBundle())
662       InstrCount += MI.getBundleSize();
663     else if (!MI.isPHI() && !MI.isMetaInstruction())
664       InstrCount += 1;
665 
666     if (InstrCount > MaxDuplicateCount)
667       return false;
668   }
669 
670   // Check if any of the successors of TailBB has a PHI node in which the
671   // value corresponding to TailBB uses a subregister.
672   // If a phi node uses a register paired with a subregister, the actual
673   // "value type" of the phi may differ from the type of the register without
674   // any subregisters. Due to a bug, tail duplication may add a new operand
675   // without a necessary subregister, producing an invalid code. This is
676   // demonstrated by test/CodeGen/Hexagon/tail-dup-subreg-abort.ll.
677   // Disable tail duplication for this case for now, until the problem is
678   // fixed.
679   for (auto *SB : TailBB.successors()) {
680     for (auto &I : *SB) {
681       if (!I.isPHI())
682         break;
683       unsigned Idx = getPHISrcRegOpIdx(&I, &TailBB);
684       assert(Idx != 0);
685       MachineOperand &PU = I.getOperand(Idx);
686       if (PU.getSubReg() != 0)
687         return false;
688     }
689   }
690 
691   if (HasIndirectbr && PreRegAlloc)
692     return true;
693 
694   if (IsSimple)
695     return true;
696 
697   if (!PreRegAlloc)
698     return true;
699 
700   return canCompletelyDuplicateBB(TailBB);
701 }
702 
703 /// True if this BB has only one unconditional jump.
704 bool TailDuplicator::isSimpleBB(MachineBasicBlock *TailBB) {
705   if (TailBB->succ_size() != 1)
706     return false;
707   if (TailBB->pred_empty())
708     return false;
709   MachineBasicBlock::iterator I = TailBB->getFirstNonDebugInstr(true);
710   if (I == TailBB->end())
711     return true;
712   return I->isUnconditionalBranch();
713 }
714 
715 static bool bothUsedInPHI(const MachineBasicBlock &A,
716                           const SmallPtrSet<MachineBasicBlock *, 8> &SuccsB) {
717   for (MachineBasicBlock *BB : A.successors())
718     if (SuccsB.count(BB) && !BB->empty() && BB->begin()->isPHI())
719       return true;
720 
721   return false;
722 }
723 
724 bool TailDuplicator::canCompletelyDuplicateBB(MachineBasicBlock &BB) {
725   for (MachineBasicBlock *PredBB : BB.predecessors()) {
726     if (PredBB->succ_size() > 1)
727       return false;
728 
729     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
730     SmallVector<MachineOperand, 4> PredCond;
731     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
732       return false;
733 
734     if (!PredCond.empty())
735       return false;
736   }
737   return true;
738 }
739 
740 bool TailDuplicator::duplicateSimpleBB(
741     MachineBasicBlock *TailBB, SmallVectorImpl<MachineBasicBlock *> &TDBBs,
742     const DenseSet<Register> &UsedByPhi) {
743   SmallPtrSet<MachineBasicBlock *, 8> Succs(TailBB->succ_begin(),
744                                             TailBB->succ_end());
745   SmallVector<MachineBasicBlock *, 8> Preds(TailBB->predecessors());
746   bool Changed = false;
747   for (MachineBasicBlock *PredBB : Preds) {
748     if (PredBB->hasEHPadSuccessor() || PredBB->mayHaveInlineAsmBr())
749       continue;
750 
751     if (bothUsedInPHI(*PredBB, Succs))
752       continue;
753 
754     MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
755     SmallVector<MachineOperand, 4> PredCond;
756     if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
757       continue;
758 
759     Changed = true;
760     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
761                       << "From simple Succ: " << *TailBB);
762 
763     MachineBasicBlock *NewTarget = *TailBB->succ_begin();
764     MachineBasicBlock *NextBB = PredBB->getNextNode();
765 
766     // Make PredFBB explicit.
767     if (PredCond.empty())
768       PredFBB = PredTBB;
769 
770     // Make fall through explicit.
771     if (!PredTBB)
772       PredTBB = NextBB;
773     if (!PredFBB)
774       PredFBB = NextBB;
775 
776     // Redirect
777     if (PredFBB == TailBB)
778       PredFBB = NewTarget;
779     if (PredTBB == TailBB)
780       PredTBB = NewTarget;
781 
782     // Make the branch unconditional if possible
783     if (PredTBB == PredFBB) {
784       PredCond.clear();
785       PredFBB = nullptr;
786     }
787 
788     // Avoid adding fall through branches.
789     if (PredFBB == NextBB)
790       PredFBB = nullptr;
791     if (PredTBB == NextBB && PredFBB == nullptr)
792       PredTBB = nullptr;
793 
794     auto DL = PredBB->findBranchDebugLoc();
795     TII->removeBranch(*PredBB);
796 
797     if (!PredBB->isSuccessor(NewTarget))
798       PredBB->replaceSuccessor(TailBB, NewTarget);
799     else {
800       PredBB->removeSuccessor(TailBB, true);
801       assert(PredBB->succ_size() <= 1);
802     }
803 
804     if (PredTBB)
805       TII->insertBranch(*PredBB, PredTBB, PredFBB, PredCond, DL);
806 
807     TDBBs.push_back(PredBB);
808   }
809   return Changed;
810 }
811 
812 bool TailDuplicator::canTailDuplicate(MachineBasicBlock *TailBB,
813                                       MachineBasicBlock *PredBB) {
814   // EH edges are ignored by analyzeBranch.
815   if (PredBB->succ_size() > 1)
816     return false;
817 
818   MachineBasicBlock *PredTBB = nullptr, *PredFBB = nullptr;
819   SmallVector<MachineOperand, 4> PredCond;
820   if (TII->analyzeBranch(*PredBB, PredTBB, PredFBB, PredCond))
821     return false;
822   if (!PredCond.empty())
823     return false;
824   // FIXME: This is overly conservative; it may be ok to relax this in the
825   // future under more specific conditions. If TailBB is an INLINEASM_BR
826   // indirect target, we need to see if the edge from PredBB to TailBB is from
827   // an INLINEASM_BR in PredBB, and then also if that edge was from the
828   // indirect target list, fallthrough/default target, or potentially both. If
829   // it's both, TailDuplicator::tailDuplicate will remove the edge, corrupting
830   // the successor list in PredBB and predecessor list in TailBB.
831   if (TailBB->isInlineAsmBrIndirectTarget())
832     return false;
833   return true;
834 }
835 
836 /// If it is profitable, duplicate TailBB's contents in each
837 /// of its predecessors.
838 /// \p IsSimple result of isSimpleBB
839 /// \p TailBB   Block to be duplicated.
840 /// \p ForcedLayoutPred  When non-null, use this block as the layout predecessor
841 ///                      instead of the previous block in MF's order.
842 /// \p TDBBs             A vector to keep track of all blocks tail-duplicated
843 ///                      into.
844 /// \p Copies            A vector of copy instructions inserted. Used later to
845 ///                      walk all the inserted copies and remove redundant ones.
846 bool TailDuplicator::tailDuplicate(bool IsSimple, MachineBasicBlock *TailBB,
847                           MachineBasicBlock *ForcedLayoutPred,
848                           SmallVectorImpl<MachineBasicBlock *> &TDBBs,
849                           SmallVectorImpl<MachineInstr *> &Copies,
850                           SmallVectorImpl<MachineBasicBlock *> *CandidatePtr) {
851   LLVM_DEBUG(dbgs() << "\n*** Tail-duplicating " << printMBBReference(*TailBB)
852                     << '\n');
853 
854   bool ShouldUpdateTerminators = TailBB->canFallThrough();
855 
856   DenseSet<Register> UsedByPhi;
857   getRegsUsedByPHIs(*TailBB, &UsedByPhi);
858 
859   if (IsSimple)
860     return duplicateSimpleBB(TailBB, TDBBs, UsedByPhi);
861 
862   // Iterate through all the unique predecessors and tail-duplicate this
863   // block into them, if possible. Copying the list ahead of time also
864   // avoids trouble with the predecessor list reallocating.
865   bool Changed = false;
866   SmallSetVector<MachineBasicBlock *, 8> Preds;
867   if (CandidatePtr)
868     Preds.insert(CandidatePtr->begin(), CandidatePtr->end());
869   else
870     Preds.insert(TailBB->pred_begin(), TailBB->pred_end());
871 
872   for (MachineBasicBlock *PredBB : Preds) {
873     assert(TailBB != PredBB &&
874            "Single-block loop should have been rejected earlier!");
875 
876     if (!canTailDuplicate(TailBB, PredBB))
877       continue;
878 
879     // Don't duplicate into a fall-through predecessor (at least for now).
880     // If profile is available, findDuplicateCandidates can choose better
881     // fall-through predecessor.
882     if (!(MF->getFunction().hasProfileData() && LayoutMode)) {
883       bool IsLayoutSuccessor = false;
884       if (ForcedLayoutPred)
885         IsLayoutSuccessor = (ForcedLayoutPred == PredBB);
886       else if (PredBB->isLayoutSuccessor(TailBB) && PredBB->canFallThrough())
887         IsLayoutSuccessor = true;
888       if (IsLayoutSuccessor)
889         continue;
890     }
891 
892     LLVM_DEBUG(dbgs() << "\nTail-duplicating into PredBB: " << *PredBB
893                       << "From Succ: " << *TailBB);
894 
895     TDBBs.push_back(PredBB);
896 
897     // Remove PredBB's unconditional branch.
898     TII->removeBranch(*PredBB);
899 
900     // Clone the contents of TailBB into PredBB.
901     DenseMap<Register, RegSubRegPair> LocalVRMap;
902     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
903     for (MachineInstr &MI : llvm::make_early_inc_range(*TailBB)) {
904       if (MI.isPHI()) {
905         // Replace the uses of the def of the PHI with the register coming
906         // from PredBB.
907         processPHI(&MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, true);
908       } else {
909         // Replace def of virtual registers with new registers, and update
910         // uses with PHI source register or the new registers.
911         duplicateInstruction(&MI, TailBB, PredBB, LocalVRMap, UsedByPhi);
912       }
913     }
914     appendCopies(PredBB, CopyInfos, Copies);
915 
916     NumTailDupAdded += TailBB->size() - 1; // subtract one for removed branch
917 
918     // Update the CFG.
919     PredBB->removeSuccessor(PredBB->succ_begin());
920     assert(PredBB->succ_empty() &&
921            "TailDuplicate called on block with multiple successors!");
922     for (MachineBasicBlock *Succ : TailBB->successors())
923       PredBB->addSuccessor(Succ, MBPI->getEdgeProbability(TailBB, Succ));
924 
925     // Update branches in pred to jump to tail's layout successor if needed.
926     if (ShouldUpdateTerminators)
927       PredBB->updateTerminator(TailBB->getNextNode());
928 
929     Changed = true;
930     ++NumTailDups;
931   }
932 
933   // If TailBB was duplicated into all its predecessors except for the prior
934   // block, which falls through unconditionally, move the contents of this
935   // block into the prior block.
936   MachineBasicBlock *PrevBB = ForcedLayoutPred;
937   if (!PrevBB)
938     PrevBB = &*std::prev(TailBB->getIterator());
939   MachineBasicBlock *PriorTBB = nullptr, *PriorFBB = nullptr;
940   SmallVector<MachineOperand, 4> PriorCond;
941   // This has to check PrevBB->succ_size() because EH edges are ignored by
942   // analyzeBranch.
943   if (PrevBB->succ_size() == 1 &&
944       // Layout preds are not always CFG preds. Check.
945       *PrevBB->succ_begin() == TailBB &&
946       !TII->analyzeBranch(*PrevBB, PriorTBB, PriorFBB, PriorCond) &&
947       PriorCond.empty() &&
948       (!PriorTBB || PriorTBB == TailBB) &&
949       TailBB->pred_size() == 1 &&
950       !TailBB->hasAddressTaken()) {
951     LLVM_DEBUG(dbgs() << "\nMerging into block: " << *PrevBB
952                       << "From MBB: " << *TailBB);
953     // There may be a branch to the layout successor. This is unlikely but it
954     // happens. The correct thing to do is to remove the branch before
955     // duplicating the instructions in all cases.
956     bool RemovedBranches = TII->removeBranch(*PrevBB) != 0;
957 
958     // If there are still tail instructions, abort the merge
959     if (PrevBB->getFirstTerminator() == PrevBB->end()) {
960       if (PreRegAlloc) {
961         DenseMap<Register, RegSubRegPair> LocalVRMap;
962         SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
963         MachineBasicBlock::iterator I = TailBB->begin();
964         // Process PHI instructions first.
965         while (I != TailBB->end() && I->isPHI()) {
966           // Replace the uses of the def of the PHI with the register coming
967           // from PredBB.
968           MachineInstr *MI = &*I++;
969           processPHI(MI, TailBB, PrevBB, LocalVRMap, CopyInfos, UsedByPhi,
970                      true);
971         }
972 
973         // Now copy the non-PHI instructions.
974         while (I != TailBB->end()) {
975           // Replace def of virtual registers with new registers, and update
976           // uses with PHI source register or the new registers.
977           MachineInstr *MI = &*I++;
978           assert(!MI->isBundle() && "Not expecting bundles before regalloc!");
979           duplicateInstruction(MI, TailBB, PrevBB, LocalVRMap, UsedByPhi);
980           MI->eraseFromParent();
981         }
982         appendCopies(PrevBB, CopyInfos, Copies);
983       } else {
984         TII->removeBranch(*PrevBB);
985         // No PHIs to worry about, just splice the instructions over.
986         PrevBB->splice(PrevBB->end(), TailBB, TailBB->begin(), TailBB->end());
987       }
988       PrevBB->removeSuccessor(PrevBB->succ_begin());
989       assert(PrevBB->succ_empty());
990       PrevBB->transferSuccessors(TailBB);
991 
992       // Update branches in PrevBB based on Tail's layout successor.
993       if (ShouldUpdateTerminators)
994         PrevBB->updateTerminator(TailBB->getNextNode());
995 
996       TDBBs.push_back(PrevBB);
997       Changed = true;
998     } else {
999       LLVM_DEBUG(dbgs() << "Abort merging blocks, the predecessor still "
1000                            "contains terminator instructions");
1001       // Return early if no changes were made
1002       if (!Changed)
1003         return RemovedBranches;
1004     }
1005     Changed |= RemovedBranches;
1006   }
1007 
1008   // If this is after register allocation, there are no phis to fix.
1009   if (!PreRegAlloc)
1010     return Changed;
1011 
1012   // If we made no changes so far, we are safe.
1013   if (!Changed)
1014     return Changed;
1015 
1016   // Handle the nasty case in that we duplicated a block that is part of a loop
1017   // into some but not all of its predecessors. For example:
1018   //    1 -> 2 <-> 3                 |
1019   //          \                      |
1020   //           \---> rest            |
1021   // if we duplicate 2 into 1 but not into 3, we end up with
1022   // 12 -> 3 <-> 2 -> rest           |
1023   //   \             /               |
1024   //    \----->-----/                |
1025   // If there was a "var = phi(1, 3)" in 2, it has to be ultimately replaced
1026   // with a phi in 3 (which now dominates 2).
1027   // What we do here is introduce a copy in 3 of the register defined by the
1028   // phi, just like when we are duplicating 2 into 3, but we don't copy any
1029   // real instructions or remove the 3 -> 2 edge from the phi in 2.
1030   for (MachineBasicBlock *PredBB : Preds) {
1031     if (is_contained(TDBBs, PredBB))
1032       continue;
1033 
1034     // EH edges
1035     if (PredBB->succ_size() != 1)
1036       continue;
1037 
1038     DenseMap<Register, RegSubRegPair> LocalVRMap;
1039     SmallVector<std::pair<Register, RegSubRegPair>, 4> CopyInfos;
1040     // Process PHI instructions first.
1041     for (MachineInstr &MI : make_early_inc_range(TailBB->phis())) {
1042       // Replace the uses of the def of the PHI with the register coming
1043       // from PredBB.
1044       processPHI(&MI, TailBB, PredBB, LocalVRMap, CopyInfos, UsedByPhi, false);
1045     }
1046     appendCopies(PredBB, CopyInfos, Copies);
1047   }
1048 
1049   return Changed;
1050 }
1051 
1052 /// At the end of the block \p MBB generate COPY instructions between registers
1053 /// described by \p CopyInfos. Append resulting instructions to \p Copies.
1054 void TailDuplicator::appendCopies(MachineBasicBlock *MBB,
1055       SmallVectorImpl<std::pair<Register, RegSubRegPair>> &CopyInfos,
1056       SmallVectorImpl<MachineInstr*> &Copies) {
1057   MachineBasicBlock::iterator Loc = MBB->getFirstTerminator();
1058   const MCInstrDesc &CopyD = TII->get(TargetOpcode::COPY);
1059   for (auto &CI : CopyInfos) {
1060     auto C = BuildMI(*MBB, Loc, DebugLoc(), CopyD, CI.first)
1061                 .addReg(CI.second.Reg, 0, CI.second.SubReg);
1062     Copies.push_back(C);
1063   }
1064 }
1065 
1066 /// Remove the specified dead machine basic block from the function, updating
1067 /// the CFG.
1068 void TailDuplicator::removeDeadBlock(
1069     MachineBasicBlock *MBB,
1070     function_ref<void(MachineBasicBlock *)> *RemovalCallback) {
1071   assert(MBB->pred_empty() && "MBB must be dead!");
1072   LLVM_DEBUG(dbgs() << "\nRemoving MBB: " << *MBB);
1073 
1074   MachineFunction *MF = MBB->getParent();
1075   // Update the call site info.
1076   for (const MachineInstr &MI : *MBB)
1077     if (MI.shouldUpdateCallSiteInfo())
1078       MF->eraseCallSiteInfo(&MI);
1079 
1080   if (RemovalCallback)
1081     (*RemovalCallback)(MBB);
1082 
1083   // Remove all successors.
1084   while (!MBB->succ_empty())
1085     MBB->removeSuccessor(MBB->succ_end() - 1);
1086 
1087   // Remove the block.
1088   MBB->eraseFromParent();
1089 }
1090