1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #include "llvm/CodeGen/StackProtector.h" 18 #include "llvm/ADT/SmallPtrSet.h" 19 #include "llvm/ADT/Statistic.h" 20 #include "llvm/Analysis/BranchProbabilityInfo.h" 21 #include "llvm/Analysis/EHPersonalities.h" 22 #include "llvm/Analysis/ValueTracking.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/MDBuilder.h" 36 #include "llvm/IR/Module.h" 37 #include "llvm/Support/CommandLine.h" 38 #include "llvm/Target/TargetSubtargetInfo.h" 39 #include <cstdlib> 40 using namespace llvm; 41 42 #define DEBUG_TYPE "stack-protector" 43 44 STATISTIC(NumFunProtected, "Number of functions protected"); 45 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 46 " taken."); 47 48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 49 cl::init(true), cl::Hidden); 50 51 char StackProtector::ID = 0; 52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 53 false, true) 54 55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 56 return new StackProtector(TM); 57 } 58 59 StackProtector::SSPLayoutKind 60 StackProtector::getSSPLayout(const AllocaInst *AI) const { 61 return AI ? Layout.lookup(AI) : SSPLK_None; 62 } 63 64 void StackProtector::adjustForColoring(const AllocaInst *From, 65 const AllocaInst *To) { 66 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 67 // tag from the remapped to the target alloca. The remapped alloca should 68 // have a size smaller than or equal to the replacement alloca. 69 SSPLayoutMap::iterator I = Layout.find(From); 70 if (I != Layout.end()) { 71 SSPLayoutKind Kind = I->second; 72 Layout.erase(I); 73 74 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 75 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 76 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 77 I = Layout.find(To); 78 if (I == Layout.end()) 79 Layout.insert(std::make_pair(To, Kind)); 80 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 81 I->second = Kind; 82 } 83 } 84 85 bool StackProtector::runOnFunction(Function &Fn) { 86 F = &Fn; 87 M = F->getParent(); 88 DominatorTreeWrapperPass *DTWP = 89 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 90 DT = DTWP ? &DTWP->getDomTree() : nullptr; 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 96 if (Attr.isStringAttribute() && 97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 98 return false; // Invalid integer string 99 100 if (!RequiresStackProtector()) 101 return false; 102 103 // TODO(etienneb): Functions with funclets are not correctly supported now. 104 // Do nothing if this is funclet-based personality. 105 if (Fn.hasPersonalityFn()) { 106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 107 if (isFuncletEHPersonality(Personality)) 108 return false; 109 } 110 111 ++NumFunProtected; 112 return InsertStackProtectors(); 113 } 114 115 /// \param [out] IsLarge is set to true if a protectable array is found and 116 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 117 /// multiple arrays, this gets set if any of them is large. 118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 119 bool Strong, 120 bool InStruct) const { 121 if (!Ty) 122 return false; 123 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 124 if (!AT->getElementType()->isIntegerTy(8)) { 125 // If we're on a non-Darwin platform or we're inside of a structure, don't 126 // add stack protectors unless the array is a character array. 127 // However, in strong mode any array, regardless of type and size, 128 // triggers a protector. 129 if (!Strong && (InStruct || !Trip.isOSDarwin())) 130 return false; 131 } 132 133 // If an array has more than SSPBufferSize bytes of allocated space, then we 134 // emit stack protectors. 135 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 136 IsLarge = true; 137 return true; 138 } 139 140 if (Strong) 141 // Require a protector for all arrays in strong mode 142 return true; 143 } 144 145 const StructType *ST = dyn_cast<StructType>(Ty); 146 if (!ST) 147 return false; 148 149 bool NeedsProtector = false; 150 for (StructType::element_iterator I = ST->element_begin(), 151 E = ST->element_end(); 152 I != E; ++I) 153 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 154 // If the element is a protectable array and is large (>= SSPBufferSize) 155 // then we are done. If the protectable array is not large, then 156 // keep looking in case a subsequent element is a large array. 157 if (IsLarge) 158 return true; 159 NeedsProtector = true; 160 } 161 162 return NeedsProtector; 163 } 164 165 bool StackProtector::HasAddressTaken(const Instruction *AI) { 166 for (const User *U : AI->users()) { 167 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 168 if (AI == SI->getValueOperand()) 169 return true; 170 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 171 if (AI == SI->getOperand(0)) 172 return true; 173 } else if (isa<CallInst>(U)) { 174 return true; 175 } else if (isa<InvokeInst>(U)) { 176 return true; 177 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 178 if (HasAddressTaken(SI)) 179 return true; 180 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 181 // Keep track of what PHI nodes we have already visited to ensure 182 // they are only visited once. 183 if (VisitedPHIs.insert(PN).second) 184 if (HasAddressTaken(PN)) 185 return true; 186 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 187 if (HasAddressTaken(GEP)) 188 return true; 189 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 190 if (HasAddressTaken(BI)) 191 return true; 192 } 193 } 194 return false; 195 } 196 197 /// \brief Check whether or not this function needs a stack protector based 198 /// upon the stack protector level. 199 /// 200 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 201 /// The standard heuristic which will add a guard variable to functions that 202 /// call alloca with a either a variable size or a size >= SSPBufferSize, 203 /// functions with character buffers larger than SSPBufferSize, and functions 204 /// with aggregates containing character buffers larger than SSPBufferSize. The 205 /// strong heuristic will add a guard variables to functions that call alloca 206 /// regardless of size, functions with any buffer regardless of type and size, 207 /// functions with aggregates that contain any buffer regardless of type and 208 /// size, and functions that contain stack-based variables that have had their 209 /// address taken. 210 bool StackProtector::RequiresStackProtector() { 211 bool Strong = false; 212 bool NeedsProtector = false; 213 for (const BasicBlock &BB : *F) 214 for (const Instruction &I : BB) 215 if (const CallInst *CI = dyn_cast<CallInst>(&I)) 216 if (CI->getCalledFunction() == 217 Intrinsic::getDeclaration(F->getParent(), 218 Intrinsic::stackprotector)) 219 HasPrologue = true; 220 221 if (F->hasFnAttribute(Attribute::SafeStack)) 222 return false; 223 224 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 225 NeedsProtector = true; 226 Strong = true; // Use the same heuristic as strong to determine SSPLayout 227 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 228 Strong = true; 229 else if (HasPrologue) 230 NeedsProtector = true; 231 else if (!F->hasFnAttribute(Attribute::StackProtect)) 232 return false; 233 234 for (const BasicBlock &BB : *F) { 235 for (const Instruction &I : BB) { 236 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 237 if (AI->isArrayAllocation()) { 238 // SSP-Strong: Enable protectors for any call to alloca, regardless 239 // of size. 240 if (Strong) 241 return true; 242 243 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 244 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 245 // A call to alloca with size >= SSPBufferSize requires 246 // stack protectors. 247 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 248 NeedsProtector = true; 249 } else if (Strong) { 250 // Require protectors for all alloca calls in strong mode. 251 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 252 NeedsProtector = true; 253 } 254 } else { 255 // A call to alloca with a variable size requires protectors. 256 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 257 NeedsProtector = true; 258 } 259 continue; 260 } 261 262 bool IsLarge = false; 263 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 264 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 265 : SSPLK_SmallArray)); 266 NeedsProtector = true; 267 continue; 268 } 269 270 if (Strong && HasAddressTaken(AI)) { 271 ++NumAddrTaken; 272 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 273 NeedsProtector = true; 274 } 275 } 276 } 277 } 278 279 return NeedsProtector; 280 } 281 282 /// Create a stack guard loading and populate whether SelectionDAG SSP is 283 /// supported. 284 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 285 IRBuilder<> &B, 286 bool *SupportsSelectionDAGSP = nullptr) { 287 if (Value *Guard = TLI->getIRStackGuard(B)) 288 return B.CreateLoad(Guard, true, "StackGuard"); 289 290 // Use SelectionDAG SSP handling, since there isn't an IR guard. 291 // 292 // This is more or less weird, since we optionally output whether we 293 // should perform a SelectionDAG SP here. The reason is that it's strictly 294 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 295 // mutating. There is no way to get this bit without mutating the IR, so 296 // getting this bit has to happen in this right time. 297 // 298 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 299 // will put more burden on the backends' overriding work, especially when it 300 // actually conveys the same information getIRStackGuard() already gives. 301 if (SupportsSelectionDAGSP) 302 *SupportsSelectionDAGSP = true; 303 TLI->insertSSPDeclarations(*M); 304 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 305 } 306 307 /// Insert code into the entry block that stores the stack guard 308 /// variable onto the stack: 309 /// 310 /// entry: 311 /// StackGuardSlot = alloca i8* 312 /// StackGuard = <stack guard> 313 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 314 /// 315 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 316 /// node. 317 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 318 const TargetLoweringBase *TLI, AllocaInst *&AI) { 319 bool SupportsSelectionDAGSP = false; 320 IRBuilder<> B(&F->getEntryBlock().front()); 321 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 322 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 323 324 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 325 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 326 {GuardSlot, AI}); 327 return SupportsSelectionDAGSP; 328 } 329 330 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 331 /// function. 332 /// 333 /// - The prologue code loads and stores the stack guard onto the stack. 334 /// - The epilogue checks the value stored in the prologue against the original 335 /// value. It calls __stack_chk_fail if they differ. 336 bool StackProtector::InsertStackProtectors() { 337 bool SupportsSelectionDAGSP = 338 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 339 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 340 341 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 342 BasicBlock *BB = &*I++; 343 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 344 if (!RI) 345 continue; 346 347 // Generate prologue instrumentation if not already generated. 348 if (!HasPrologue) { 349 HasPrologue = true; 350 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 351 } 352 353 // SelectionDAG based code generation. Nothing else needs to be done here. 354 // The epilogue instrumentation is postponed to SelectionDAG. 355 if (SupportsSelectionDAGSP) 356 break; 357 358 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 359 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 360 // instrumentation has already been generated. 361 HasIRCheck = true; 362 363 // Generate epilogue instrumentation. The epilogue intrumentation can be 364 // function-based or inlined depending on which mechanism the target is 365 // providing. 366 if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 367 // Generate the function-based epilogue instrumentation. 368 // The target provides a guard check function, generate a call to it. 369 IRBuilder<> B(RI); 370 LoadInst *Guard = B.CreateLoad(AI, true, "Guard"); 371 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 372 llvm::Function *Function = cast<llvm::Function>(GuardCheck); 373 Call->setAttributes(Function->getAttributes()); 374 Call->setCallingConv(Function->getCallingConv()); 375 } else { 376 // Generate the epilogue with inline instrumentation. 377 // If we do not support SelectionDAG based tail calls, generate IR level 378 // tail calls. 379 // 380 // For each block with a return instruction, convert this: 381 // 382 // return: 383 // ... 384 // ret ... 385 // 386 // into this: 387 // 388 // return: 389 // ... 390 // %1 = <stack guard> 391 // %2 = load StackGuardSlot 392 // %3 = cmp i1 %1, %2 393 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 394 // 395 // SP_return: 396 // ret ... 397 // 398 // CallStackCheckFailBlk: 399 // call void @__stack_chk_fail() 400 // unreachable 401 402 // Create the FailBB. We duplicate the BB every time since the MI tail 403 // merge pass will merge together all of the various BB into one including 404 // fail BB generated by the stack protector pseudo instruction. 405 BasicBlock *FailBB = CreateFailBB(); 406 407 // Split the basic block before the return instruction. 408 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 409 410 // Update the dominator tree if we need to. 411 if (DT && DT->isReachableFromEntry(BB)) { 412 DT->addNewBlock(NewBB, BB); 413 DT->addNewBlock(FailBB, BB); 414 } 415 416 // Remove default branch instruction to the new BB. 417 BB->getTerminator()->eraseFromParent(); 418 419 // Move the newly created basic block to the point right after the old 420 // basic block so that it's in the "fall through" position. 421 NewBB->moveAfter(BB); 422 423 // Generate the stack protector instructions in the old basic block. 424 IRBuilder<> B(BB); 425 Value *Guard = getStackGuard(TLI, M, B); 426 LoadInst *LI2 = B.CreateLoad(AI, true); 427 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 428 auto SuccessProb = 429 BranchProbabilityInfo::getBranchProbStackProtector(true); 430 auto FailureProb = 431 BranchProbabilityInfo::getBranchProbStackProtector(false); 432 MDNode *Weights = MDBuilder(F->getContext()) 433 .createBranchWeights(SuccessProb.getNumerator(), 434 FailureProb.getNumerator()); 435 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 436 } 437 } 438 439 // Return if we didn't modify any basic blocks. i.e., there are no return 440 // statements in the function. 441 return HasPrologue; 442 } 443 444 /// CreateFailBB - Create a basic block to jump to when the stack protector 445 /// check fails. 446 BasicBlock *StackProtector::CreateFailBB() { 447 LLVMContext &Context = F->getContext(); 448 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 449 IRBuilder<> B(FailBB); 450 if (Trip.isOSOpenBSD()) { 451 Constant *StackChkFail = 452 M->getOrInsertFunction("__stack_smash_handler", 453 Type::getVoidTy(Context), 454 Type::getInt8PtrTy(Context), nullptr); 455 456 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 457 } else { 458 Constant *StackChkFail = 459 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context), 460 nullptr); 461 B.CreateCall(StackChkFail, {}); 462 } 463 B.CreateUnreachable(); 464 return FailBB; 465 } 466 467 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 468 return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator()); 469 } 470