xref: /llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision db6bd02185981cbf0e7a50273d7c24b110d96c90)
1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/CodeGen/StackProtector.h"
18 #include "llvm/ADT/SmallPtrSet.h"
19 #include "llvm/ADT/Statistic.h"
20 #include "llvm/Analysis/BranchProbabilityInfo.h"
21 #include "llvm/Analysis/EHPersonalities.h"
22 #include "llvm/Analysis/ValueTracking.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/Constants.h"
26 #include "llvm/IR/DataLayout.h"
27 #include "llvm/IR/DerivedTypes.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/GlobalValue.h"
30 #include "llvm/IR/GlobalVariable.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instructions.h"
33 #include "llvm/IR/IntrinsicInst.h"
34 #include "llvm/IR/Intrinsics.h"
35 #include "llvm/IR/MDBuilder.h"
36 #include "llvm/IR/Module.h"
37 #include "llvm/Support/CommandLine.h"
38 #include "llvm/Target/TargetSubtargetInfo.h"
39 #include <cstdlib>
40 using namespace llvm;
41 
42 #define DEBUG_TYPE "stack-protector"
43 
44 STATISTIC(NumFunProtected, "Number of functions protected");
45 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
46                         " taken.");
47 
48 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
49                                           cl::init(true), cl::Hidden);
50 
51 char StackProtector::ID = 0;
52 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors",
53                 false, true)
54 
55 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
56   return new StackProtector(TM);
57 }
58 
59 StackProtector::SSPLayoutKind
60 StackProtector::getSSPLayout(const AllocaInst *AI) const {
61   return AI ? Layout.lookup(AI) : SSPLK_None;
62 }
63 
64 void StackProtector::adjustForColoring(const AllocaInst *From,
65                                        const AllocaInst *To) {
66   // When coloring replaces one alloca with another, transfer the SSPLayoutKind
67   // tag from the remapped to the target alloca. The remapped alloca should
68   // have a size smaller than or equal to the replacement alloca.
69   SSPLayoutMap::iterator I = Layout.find(From);
70   if (I != Layout.end()) {
71     SSPLayoutKind Kind = I->second;
72     Layout.erase(I);
73 
74     // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
75     // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
76     // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
77     I = Layout.find(To);
78     if (I == Layout.end())
79       Layout.insert(std::make_pair(To, Kind));
80     else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
81       I->second = Kind;
82   }
83 }
84 
85 bool StackProtector::runOnFunction(Function &Fn) {
86   F = &Fn;
87   M = F->getParent();
88   DominatorTreeWrapperPass *DTWP =
89       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
90   DT = DTWP ? &DTWP->getDomTree() : nullptr;
91   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92   HasPrologue = false;
93   HasIRCheck = false;
94 
95   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
96   if (Attr.isStringAttribute() &&
97       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
98     return false; // Invalid integer string
99 
100   if (!RequiresStackProtector())
101     return false;
102 
103   // TODO(etienneb): Functions with funclets are not correctly supported now.
104   // Do nothing if this is funclet-based personality.
105   if (Fn.hasPersonalityFn()) {
106     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107     if (isFuncletEHPersonality(Personality))
108       return false;
109   }
110 
111   ++NumFunProtected;
112   return InsertStackProtectors();
113 }
114 
115 /// \param [out] IsLarge is set to true if a protectable array is found and
116 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
117 /// multiple arrays, this gets set if any of them is large.
118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
119                                               bool Strong,
120                                               bool InStruct) const {
121   if (!Ty)
122     return false;
123   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
124     if (!AT->getElementType()->isIntegerTy(8)) {
125       // If we're on a non-Darwin platform or we're inside of a structure, don't
126       // add stack protectors unless the array is a character array.
127       // However, in strong mode any array, regardless of type and size,
128       // triggers a protector.
129       if (!Strong && (InStruct || !Trip.isOSDarwin()))
130         return false;
131     }
132 
133     // If an array has more than SSPBufferSize bytes of allocated space, then we
134     // emit stack protectors.
135     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
136       IsLarge = true;
137       return true;
138     }
139 
140     if (Strong)
141       // Require a protector for all arrays in strong mode
142       return true;
143   }
144 
145   const StructType *ST = dyn_cast<StructType>(Ty);
146   if (!ST)
147     return false;
148 
149   bool NeedsProtector = false;
150   for (StructType::element_iterator I = ST->element_begin(),
151                                     E = ST->element_end();
152        I != E; ++I)
153     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
154       // If the element is a protectable array and is large (>= SSPBufferSize)
155       // then we are done.  If the protectable array is not large, then
156       // keep looking in case a subsequent element is a large array.
157       if (IsLarge)
158         return true;
159       NeedsProtector = true;
160     }
161 
162   return NeedsProtector;
163 }
164 
165 bool StackProtector::HasAddressTaken(const Instruction *AI) {
166   for (const User *U : AI->users()) {
167     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
168       if (AI == SI->getValueOperand())
169         return true;
170     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
171       if (AI == SI->getOperand(0))
172         return true;
173     } else if (isa<CallInst>(U)) {
174       return true;
175     } else if (isa<InvokeInst>(U)) {
176       return true;
177     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
178       if (HasAddressTaken(SI))
179         return true;
180     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
181       // Keep track of what PHI nodes we have already visited to ensure
182       // they are only visited once.
183       if (VisitedPHIs.insert(PN).second)
184         if (HasAddressTaken(PN))
185           return true;
186     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
187       if (HasAddressTaken(GEP))
188         return true;
189     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
190       if (HasAddressTaken(BI))
191         return true;
192     }
193   }
194   return false;
195 }
196 
197 /// \brief Check whether or not this function needs a stack protector based
198 /// upon the stack protector level.
199 ///
200 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
201 /// The standard heuristic which will add a guard variable to functions that
202 /// call alloca with a either a variable size or a size >= SSPBufferSize,
203 /// functions with character buffers larger than SSPBufferSize, and functions
204 /// with aggregates containing character buffers larger than SSPBufferSize. The
205 /// strong heuristic will add a guard variables to functions that call alloca
206 /// regardless of size, functions with any buffer regardless of type and size,
207 /// functions with aggregates that contain any buffer regardless of type and
208 /// size, and functions that contain stack-based variables that have had their
209 /// address taken.
210 bool StackProtector::RequiresStackProtector() {
211   bool Strong = false;
212   bool NeedsProtector = false;
213   for (const BasicBlock &BB : *F)
214     for (const Instruction &I : BB)
215       if (const CallInst *CI = dyn_cast<CallInst>(&I))
216         if (CI->getCalledFunction() ==
217             Intrinsic::getDeclaration(F->getParent(),
218                                       Intrinsic::stackprotector))
219           HasPrologue = true;
220 
221   if (F->hasFnAttribute(Attribute::SafeStack))
222     return false;
223 
224   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
225     NeedsProtector = true;
226     Strong = true; // Use the same heuristic as strong to determine SSPLayout
227   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
228     Strong = true;
229   else if (HasPrologue)
230     NeedsProtector = true;
231   else if (!F->hasFnAttribute(Attribute::StackProtect))
232     return false;
233 
234   for (const BasicBlock &BB : *F) {
235     for (const Instruction &I : BB) {
236       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
237         if (AI->isArrayAllocation()) {
238           // SSP-Strong: Enable protectors for any call to alloca, regardless
239           // of size.
240           if (Strong)
241             return true;
242 
243           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
244             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
245               // A call to alloca with size >= SSPBufferSize requires
246               // stack protectors.
247               Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
248               NeedsProtector = true;
249             } else if (Strong) {
250               // Require protectors for all alloca calls in strong mode.
251               Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
252               NeedsProtector = true;
253             }
254           } else {
255             // A call to alloca with a variable size requires protectors.
256             Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
257             NeedsProtector = true;
258           }
259           continue;
260         }
261 
262         bool IsLarge = false;
263         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
264           Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
265                                                    : SSPLK_SmallArray));
266           NeedsProtector = true;
267           continue;
268         }
269 
270         if (Strong && HasAddressTaken(AI)) {
271           ++NumAddrTaken;
272           Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
273           NeedsProtector = true;
274         }
275       }
276     }
277   }
278 
279   return NeedsProtector;
280 }
281 
282 /// Create a stack guard loading and populate whether SelectionDAG SSP is
283 /// supported.
284 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
285                             IRBuilder<> &B,
286                             bool *SupportsSelectionDAGSP = nullptr) {
287   if (Value *Guard = TLI->getIRStackGuard(B))
288     return B.CreateLoad(Guard, true, "StackGuard");
289 
290   // Use SelectionDAG SSP handling, since there isn't an IR guard.
291   //
292   // This is more or less weird, since we optionally output whether we
293   // should perform a SelectionDAG SP here. The reason is that it's strictly
294   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
295   // mutating. There is no way to get this bit without mutating the IR, so
296   // getting this bit has to happen in this right time.
297   //
298   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
299   // will put more burden on the backends' overriding work, especially when it
300   // actually conveys the same information getIRStackGuard() already gives.
301   if (SupportsSelectionDAGSP)
302     *SupportsSelectionDAGSP = true;
303   TLI->insertSSPDeclarations(*M);
304   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
305 }
306 
307 /// Insert code into the entry block that stores the stack guard
308 /// variable onto the stack:
309 ///
310 ///   entry:
311 ///     StackGuardSlot = alloca i8*
312 ///     StackGuard = <stack guard>
313 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
314 ///
315 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
316 /// node.
317 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
318                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
319   bool SupportsSelectionDAGSP = false;
320   IRBuilder<> B(&F->getEntryBlock().front());
321   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
322   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
323 
324   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
325   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
326                {GuardSlot, AI});
327   return SupportsSelectionDAGSP;
328 }
329 
330 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
331 /// function.
332 ///
333 ///  - The prologue code loads and stores the stack guard onto the stack.
334 ///  - The epilogue checks the value stored in the prologue against the original
335 ///    value. It calls __stack_chk_fail if they differ.
336 bool StackProtector::InsertStackProtectors() {
337   bool SupportsSelectionDAGSP =
338       EnableSelectionDAGSP && !TM->Options.EnableFastISel;
339   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
340 
341   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
342     BasicBlock *BB = &*I++;
343     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
344     if (!RI)
345       continue;
346 
347     // Generate prologue instrumentation if not already generated.
348     if (!HasPrologue) {
349       HasPrologue = true;
350       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
351     }
352 
353     // SelectionDAG based code generation. Nothing else needs to be done here.
354     // The epilogue instrumentation is postponed to SelectionDAG.
355     if (SupportsSelectionDAGSP)
356       break;
357 
358     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
359     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
360     // instrumentation has already been generated.
361     HasIRCheck = true;
362 
363     // Generate epilogue instrumentation. The epilogue intrumentation can be
364     // function-based or inlined depending on which mechanism the target is
365     // providing.
366     if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
367       // Generate the function-based epilogue instrumentation.
368       // The target provides a guard check function, generate a call to it.
369       IRBuilder<> B(RI);
370       LoadInst *Guard = B.CreateLoad(AI, true, "Guard");
371       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
372       llvm::Function *Function = cast<llvm::Function>(GuardCheck);
373       Call->setAttributes(Function->getAttributes());
374       Call->setCallingConv(Function->getCallingConv());
375     } else {
376       // Generate the epilogue with inline instrumentation.
377       // If we do not support SelectionDAG based tail calls, generate IR level
378       // tail calls.
379       //
380       // For each block with a return instruction, convert this:
381       //
382       //   return:
383       //     ...
384       //     ret ...
385       //
386       // into this:
387       //
388       //   return:
389       //     ...
390       //     %1 = <stack guard>
391       //     %2 = load StackGuardSlot
392       //     %3 = cmp i1 %1, %2
393       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
394       //
395       //   SP_return:
396       //     ret ...
397       //
398       //   CallStackCheckFailBlk:
399       //     call void @__stack_chk_fail()
400       //     unreachable
401 
402       // Create the FailBB. We duplicate the BB every time since the MI tail
403       // merge pass will merge together all of the various BB into one including
404       // fail BB generated by the stack protector pseudo instruction.
405       BasicBlock *FailBB = CreateFailBB();
406 
407       // Split the basic block before the return instruction.
408       BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
409 
410       // Update the dominator tree if we need to.
411       if (DT && DT->isReachableFromEntry(BB)) {
412         DT->addNewBlock(NewBB, BB);
413         DT->addNewBlock(FailBB, BB);
414       }
415 
416       // Remove default branch instruction to the new BB.
417       BB->getTerminator()->eraseFromParent();
418 
419       // Move the newly created basic block to the point right after the old
420       // basic block so that it's in the "fall through" position.
421       NewBB->moveAfter(BB);
422 
423       // Generate the stack protector instructions in the old basic block.
424       IRBuilder<> B(BB);
425       Value *Guard = getStackGuard(TLI, M, B);
426       LoadInst *LI2 = B.CreateLoad(AI, true);
427       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
428       auto SuccessProb =
429           BranchProbabilityInfo::getBranchProbStackProtector(true);
430       auto FailureProb =
431           BranchProbabilityInfo::getBranchProbStackProtector(false);
432       MDNode *Weights = MDBuilder(F->getContext())
433                             .createBranchWeights(SuccessProb.getNumerator(),
434                                                  FailureProb.getNumerator());
435       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
436     }
437   }
438 
439   // Return if we didn't modify any basic blocks. i.e., there are no return
440   // statements in the function.
441   return HasPrologue;
442 }
443 
444 /// CreateFailBB - Create a basic block to jump to when the stack protector
445 /// check fails.
446 BasicBlock *StackProtector::CreateFailBB() {
447   LLVMContext &Context = F->getContext();
448   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
449   IRBuilder<> B(FailBB);
450   if (Trip.isOSOpenBSD()) {
451     Constant *StackChkFail =
452         M->getOrInsertFunction("__stack_smash_handler",
453                                Type::getVoidTy(Context),
454                                Type::getInt8PtrTy(Context), nullptr);
455 
456     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
457   } else {
458     Constant *StackChkFail =
459         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
460                                nullptr);
461     B.CreateCall(StackChkFail, {});
462   }
463   B.CreateUnreachable();
464   return FailBB;
465 }
466 
467 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
468   return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator());
469 }
470