1 //===-- StackProtector.cpp - Stack Protector Insertion --------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This pass inserts stack protectors into functions which need them. A variable 11 // with a random value in it is stored onto the stack before the local variables 12 // are allocated. Upon exiting the block, the stored value is checked. If it's 13 // changed, then there was some sort of violation and the program aborts. 14 // 15 //===----------------------------------------------------------------------===// 16 17 #define DEBUG_TYPE "stack-protector" 18 #include "llvm/CodeGen/StackProtector.h" 19 #include "llvm/ADT/SmallPtrSet.h" 20 #include "llvm/ADT/Statistic.h" 21 #include "llvm/Analysis/ValueTracking.h" 22 #include "llvm/CodeGen/Analysis.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/IR/Attributes.h" 25 #include "llvm/IR/Constants.h" 26 #include "llvm/IR/DataLayout.h" 27 #include "llvm/IR/DerivedTypes.h" 28 #include "llvm/IR/Function.h" 29 #include "llvm/IR/GlobalValue.h" 30 #include "llvm/IR/GlobalVariable.h" 31 #include "llvm/IR/IRBuilder.h" 32 #include "llvm/IR/Instructions.h" 33 #include "llvm/IR/IntrinsicInst.h" 34 #include "llvm/IR/Intrinsics.h" 35 #include "llvm/IR/Module.h" 36 #include "llvm/Support/CommandLine.h" 37 #include <cstdlib> 38 using namespace llvm; 39 40 STATISTIC(NumFunProtected, "Number of functions protected"); 41 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 42 " taken."); 43 44 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 45 cl::init(true), cl::Hidden); 46 47 char StackProtector::ID = 0; 48 INITIALIZE_PASS(StackProtector, "stack-protector", "Insert stack protectors", 49 false, true) 50 51 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) { 52 return new StackProtector(TM); 53 } 54 55 StackProtector::SSPLayoutKind 56 StackProtector::getSSPLayout(const AllocaInst *AI) const { 57 return AI ? Layout.lookup(AI) : SSPLK_None; 58 } 59 60 void StackProtector::adjustForColoring(const AllocaInst *From, 61 const AllocaInst *To) { 62 // When coloring replaces one alloca with another, transfer the SSPLayoutKind 63 // tag from the remapped to the target alloca. The remapped alloca should 64 // have a size smaller than or equal to the replacement alloca. 65 SSPLayoutMap::iterator I = Layout.find(From); 66 if (I != Layout.end()) { 67 SSPLayoutKind Kind = I->second; 68 Layout.erase(I); 69 70 // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite 71 // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that 72 // SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 73 I = Layout.find(To); 74 if (I == Layout.end()) 75 Layout.insert(std::make_pair(To, Kind)); 76 else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf) 77 I->second = Kind; 78 } 79 } 80 81 bool StackProtector::runOnFunction(Function &Fn) { 82 F = &Fn; 83 M = F->getParent(); 84 DominatorTreeWrapperPass *DTWP = 85 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 86 DT = DTWP ? &DTWP->getDomTree() : 0; 87 TLI = TM->getTargetLowering(); 88 89 if (!RequiresStackProtector()) 90 return false; 91 92 Attribute Attr = Fn.getAttributes().getAttribute( 93 AttributeSet::FunctionIndex, "stack-protector-buffer-size"); 94 if (Attr.isStringAttribute() && 95 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 96 return false; // Invalid integer string 97 98 ++NumFunProtected; 99 return InsertStackProtectors(); 100 } 101 102 /// \param [out] IsLarge is set to true if a protectable array is found and 103 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 104 /// multiple arrays, this gets set if any of them is large. 105 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 106 bool Strong, 107 bool InStruct) const { 108 if (!Ty) 109 return false; 110 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 111 if (!AT->getElementType()->isIntegerTy(8)) { 112 // If we're on a non-Darwin platform or we're inside of a structure, don't 113 // add stack protectors unless the array is a character array. 114 // However, in strong mode any array, regardless of type and size, 115 // triggers a protector. 116 if (!Strong && (InStruct || !Trip.isOSDarwin())) 117 return false; 118 } 119 120 // If an array has more than SSPBufferSize bytes of allocated space, then we 121 // emit stack protectors. 122 if (SSPBufferSize <= TLI->getDataLayout()->getTypeAllocSize(AT)) { 123 IsLarge = true; 124 return true; 125 } 126 127 if (Strong) 128 // Require a protector for all arrays in strong mode 129 return true; 130 } 131 132 const StructType *ST = dyn_cast<StructType>(Ty); 133 if (!ST) 134 return false; 135 136 bool NeedsProtector = false; 137 for (StructType::element_iterator I = ST->element_begin(), 138 E = ST->element_end(); 139 I != E; ++I) 140 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 141 // If the element is a protectable array and is large (>= SSPBufferSize) 142 // then we are done. If the protectable array is not large, then 143 // keep looking in case a subsequent element is a large array. 144 if (IsLarge) 145 return true; 146 NeedsProtector = true; 147 } 148 149 return NeedsProtector; 150 } 151 152 bool StackProtector::HasAddressTaken(const Instruction *AI) { 153 for (const User *U : AI->users()) { 154 if (const StoreInst *SI = dyn_cast<StoreInst>(U)) { 155 if (AI == SI->getValueOperand()) 156 return true; 157 } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) { 158 if (AI == SI->getOperand(0)) 159 return true; 160 } else if (isa<CallInst>(U)) { 161 return true; 162 } else if (isa<InvokeInst>(U)) { 163 return true; 164 } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) { 165 if (HasAddressTaken(SI)) 166 return true; 167 } else if (const PHINode *PN = dyn_cast<PHINode>(U)) { 168 // Keep track of what PHI nodes we have already visited to ensure 169 // they are only visited once. 170 if (VisitedPHIs.insert(PN)) 171 if (HasAddressTaken(PN)) 172 return true; 173 } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) { 174 if (HasAddressTaken(GEP)) 175 return true; 176 } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) { 177 if (HasAddressTaken(BI)) 178 return true; 179 } 180 } 181 return false; 182 } 183 184 /// \brief Check whether or not this function needs a stack protector based 185 /// upon the stack protector level. 186 /// 187 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 188 /// The standard heuristic which will add a guard variable to functions that 189 /// call alloca with a either a variable size or a size >= SSPBufferSize, 190 /// functions with character buffers larger than SSPBufferSize, and functions 191 /// with aggregates containing character buffers larger than SSPBufferSize. The 192 /// strong heuristic will add a guard variables to functions that call alloca 193 /// regardless of size, functions with any buffer regardless of type and size, 194 /// functions with aggregates that contain any buffer regardless of type and 195 /// size, and functions that contain stack-based variables that have had their 196 /// address taken. 197 bool StackProtector::RequiresStackProtector() { 198 bool Strong = false; 199 bool NeedsProtector = false; 200 if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 201 Attribute::StackProtectReq)) { 202 NeedsProtector = true; 203 Strong = true; // Use the same heuristic as strong to determine SSPLayout 204 } else if (F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 205 Attribute::StackProtectStrong)) 206 Strong = true; 207 else if (!F->getAttributes().hasAttribute(AttributeSet::FunctionIndex, 208 Attribute::StackProtect)) 209 return false; 210 211 for (Function::iterator I = F->begin(), E = F->end(); I != E; ++I) { 212 BasicBlock *BB = I; 213 214 for (BasicBlock::iterator II = BB->begin(), IE = BB->end(); II != IE; 215 ++II) { 216 if (AllocaInst *AI = dyn_cast<AllocaInst>(II)) { 217 if (AI->isArrayAllocation()) { 218 // SSP-Strong: Enable protectors for any call to alloca, regardless 219 // of size. 220 if (Strong) 221 return true; 222 223 if (const ConstantInt *CI = 224 dyn_cast<ConstantInt>(AI->getArraySize())) { 225 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 226 // A call to alloca with size >= SSPBufferSize requires 227 // stack protectors. 228 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 229 NeedsProtector = true; 230 } else if (Strong) { 231 // Require protectors for all alloca calls in strong mode. 232 Layout.insert(std::make_pair(AI, SSPLK_SmallArray)); 233 NeedsProtector = true; 234 } 235 } else { 236 // A call to alloca with a variable size requires protectors. 237 Layout.insert(std::make_pair(AI, SSPLK_LargeArray)); 238 NeedsProtector = true; 239 } 240 continue; 241 } 242 243 bool IsLarge = false; 244 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 245 Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray 246 : SSPLK_SmallArray)); 247 NeedsProtector = true; 248 continue; 249 } 250 251 if (Strong && HasAddressTaken(AI)) { 252 ++NumAddrTaken; 253 Layout.insert(std::make_pair(AI, SSPLK_AddrOf)); 254 NeedsProtector = true; 255 } 256 } 257 } 258 } 259 260 return NeedsProtector; 261 } 262 263 static bool InstructionWillNotHaveChain(const Instruction *I) { 264 return !I->mayHaveSideEffects() && !I->mayReadFromMemory() && 265 isSafeToSpeculativelyExecute(I); 266 } 267 268 /// Identify if RI has a previous instruction in the "Tail Position" and return 269 /// it. Otherwise return 0. 270 /// 271 /// This is based off of the code in llvm::isInTailCallPosition. The difference 272 /// is that it inverts the first part of llvm::isInTailCallPosition since 273 /// isInTailCallPosition is checking if a call is in a tail call position, and 274 /// we are searching for an unknown tail call that might be in the tail call 275 /// position. Once we find the call though, the code uses the same refactored 276 /// code, returnTypeIsEligibleForTailCall. 277 static CallInst *FindPotentialTailCall(BasicBlock *BB, ReturnInst *RI, 278 const TargetLoweringBase *TLI) { 279 // Establish a reasonable upper bound on the maximum amount of instructions we 280 // will look through to find a tail call. 281 unsigned SearchCounter = 0; 282 const unsigned MaxSearch = 4; 283 bool NoInterposingChain = true; 284 285 for (BasicBlock::reverse_iterator I = std::next(BB->rbegin()), E = BB->rend(); 286 I != E && SearchCounter < MaxSearch; ++I) { 287 Instruction *Inst = &*I; 288 289 // Skip over debug intrinsics and do not allow them to affect our MaxSearch 290 // counter. 291 if (isa<DbgInfoIntrinsic>(Inst)) 292 continue; 293 294 // If we find a call and the following conditions are satisifed, then we 295 // have found a tail call that satisfies at least the target independent 296 // requirements of a tail call: 297 // 298 // 1. The call site has the tail marker. 299 // 300 // 2. The call site either will not cause the creation of a chain or if a 301 // chain is necessary there are no instructions in between the callsite and 302 // the call which would create an interposing chain. 303 // 304 // 3. The return type of the function does not impede tail call 305 // optimization. 306 if (CallInst *CI = dyn_cast<CallInst>(Inst)) { 307 if (CI->isTailCall() && 308 (InstructionWillNotHaveChain(CI) || NoInterposingChain) && 309 returnTypeIsEligibleForTailCall(BB->getParent(), CI, RI, *TLI)) 310 return CI; 311 } 312 313 // If we did not find a call see if we have an instruction that may create 314 // an interposing chain. 315 NoInterposingChain = 316 NoInterposingChain && InstructionWillNotHaveChain(Inst); 317 318 // Increment max search. 319 SearchCounter++; 320 } 321 322 return 0; 323 } 324 325 /// Insert code into the entry block that stores the __stack_chk_guard 326 /// variable onto the stack: 327 /// 328 /// entry: 329 /// StackGuardSlot = alloca i8* 330 /// StackGuard = load __stack_chk_guard 331 /// call void @llvm.stackprotect.create(StackGuard, StackGuardSlot) 332 /// 333 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 334 /// node. 335 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 336 const TargetLoweringBase *TLI, const Triple &Trip, 337 AllocaInst *&AI, Value *&StackGuardVar) { 338 bool SupportsSelectionDAGSP = false; 339 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 340 unsigned AddressSpace, Offset; 341 if (TLI->getStackCookieLocation(AddressSpace, Offset)) { 342 Constant *OffsetVal = 343 ConstantInt::get(Type::getInt32Ty(RI->getContext()), Offset); 344 345 StackGuardVar = ConstantExpr::getIntToPtr( 346 OffsetVal, PointerType::get(PtrTy, AddressSpace)); 347 } else if (Trip.getOS() == llvm::Triple::OpenBSD) { 348 StackGuardVar = M->getOrInsertGlobal("__guard_local", PtrTy); 349 cast<GlobalValue>(StackGuardVar) 350 ->setVisibility(GlobalValue::HiddenVisibility); 351 } else { 352 SupportsSelectionDAGSP = true; 353 StackGuardVar = M->getOrInsertGlobal("__stack_chk_guard", PtrTy); 354 } 355 356 IRBuilder<> B(&F->getEntryBlock().front()); 357 AI = B.CreateAlloca(PtrTy, 0, "StackGuardSlot"); 358 LoadInst *LI = B.CreateLoad(StackGuardVar, "StackGuard"); 359 B.CreateCall2(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), LI, 360 AI); 361 362 return SupportsSelectionDAGSP; 363 } 364 365 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 366 /// function. 367 /// 368 /// - The prologue code loads and stores the stack guard onto the stack. 369 /// - The epilogue checks the value stored in the prologue against the original 370 /// value. It calls __stack_chk_fail if they differ. 371 bool StackProtector::InsertStackProtectors() { 372 bool HasPrologue = false; 373 bool SupportsSelectionDAGSP = 374 EnableSelectionDAGSP && !TM->Options.EnableFastISel; 375 AllocaInst *AI = 0; // Place on stack that stores the stack guard. 376 Value *StackGuardVar = 0; // The stack guard variable. 377 378 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 379 BasicBlock *BB = I++; 380 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 381 if (!RI) 382 continue; 383 384 if (!HasPrologue) { 385 HasPrologue = true; 386 SupportsSelectionDAGSP &= 387 CreatePrologue(F, M, RI, TLI, Trip, AI, StackGuardVar); 388 } 389 390 if (SupportsSelectionDAGSP) { 391 // Since we have a potential tail call, insert the special stack check 392 // intrinsic. 393 Instruction *InsertionPt = 0; 394 if (CallInst *CI = FindPotentialTailCall(BB, RI, TLI)) { 395 InsertionPt = CI; 396 } else { 397 InsertionPt = RI; 398 // At this point we know that BB has a return statement so it *DOES* 399 // have a terminator. 400 assert(InsertionPt != 0 && "BB must have a terminator instruction at " 401 "this point."); 402 } 403 404 Function *Intrinsic = 405 Intrinsic::getDeclaration(M, Intrinsic::stackprotectorcheck); 406 CallInst::Create(Intrinsic, StackGuardVar, "", InsertionPt); 407 408 } else { 409 // If we do not support SelectionDAG based tail calls, generate IR level 410 // tail calls. 411 // 412 // For each block with a return instruction, convert this: 413 // 414 // return: 415 // ... 416 // ret ... 417 // 418 // into this: 419 // 420 // return: 421 // ... 422 // %1 = load __stack_chk_guard 423 // %2 = load StackGuardSlot 424 // %3 = cmp i1 %1, %2 425 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 426 // 427 // SP_return: 428 // ret ... 429 // 430 // CallStackCheckFailBlk: 431 // call void @__stack_chk_fail() 432 // unreachable 433 434 // Create the FailBB. We duplicate the BB every time since the MI tail 435 // merge pass will merge together all of the various BB into one including 436 // fail BB generated by the stack protector pseudo instruction. 437 BasicBlock *FailBB = CreateFailBB(); 438 439 // Split the basic block before the return instruction. 440 BasicBlock *NewBB = BB->splitBasicBlock(RI, "SP_return"); 441 442 // Update the dominator tree if we need to. 443 if (DT && DT->isReachableFromEntry(BB)) { 444 DT->addNewBlock(NewBB, BB); 445 DT->addNewBlock(FailBB, BB); 446 } 447 448 // Remove default branch instruction to the new BB. 449 BB->getTerminator()->eraseFromParent(); 450 451 // Move the newly created basic block to the point right after the old 452 // basic block so that it's in the "fall through" position. 453 NewBB->moveAfter(BB); 454 455 // Generate the stack protector instructions in the old basic block. 456 IRBuilder<> B(BB); 457 LoadInst *LI1 = B.CreateLoad(StackGuardVar); 458 LoadInst *LI2 = B.CreateLoad(AI); 459 Value *Cmp = B.CreateICmpEQ(LI1, LI2); 460 B.CreateCondBr(Cmp, NewBB, FailBB); 461 } 462 } 463 464 // Return if we didn't modify any basic blocks. I.e., there are no return 465 // statements in the function. 466 if (!HasPrologue) 467 return false; 468 469 return true; 470 } 471 472 /// CreateFailBB - Create a basic block to jump to when the stack protector 473 /// check fails. 474 BasicBlock *StackProtector::CreateFailBB() { 475 LLVMContext &Context = F->getContext(); 476 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 477 IRBuilder<> B(FailBB); 478 if (Trip.getOS() == llvm::Triple::OpenBSD) { 479 Constant *StackChkFail = M->getOrInsertFunction( 480 "__stack_smash_handler", Type::getVoidTy(Context), 481 Type::getInt8PtrTy(Context), NULL); 482 483 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 484 } else { 485 Constant *StackChkFail = M->getOrInsertFunction( 486 "__stack_chk_fail", Type::getVoidTy(Context), NULL); 487 B.CreateCall(StackChkFail); 488 } 489 B.CreateUnreachable(); 490 return FailBB; 491 } 492