1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DerivedTypes.h" 32 #include "llvm/IR/Dominators.h" 33 #include "llvm/IR/Function.h" 34 #include "llvm/IR/IRBuilder.h" 35 #include "llvm/IR/Instruction.h" 36 #include "llvm/IR/Instructions.h" 37 #include "llvm/IR/IntrinsicInst.h" 38 #include "llvm/IR/Intrinsics.h" 39 #include "llvm/IR/MDBuilder.h" 40 #include "llvm/IR/Module.h" 41 #include "llvm/IR/Type.h" 42 #include "llvm/IR/User.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/Pass.h" 45 #include "llvm/Support/Casting.h" 46 #include "llvm/Support/CommandLine.h" 47 #include "llvm/Target/TargetMachine.h" 48 #include "llvm/Target/TargetOptions.h" 49 #include "llvm/Transforms/Utils/BasicBlockUtils.h" 50 #include <optional> 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "stack-protector" 56 57 STATISTIC(NumFunProtected, "Number of functions protected"); 58 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 59 " taken."); 60 61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 62 cl::init(true), cl::Hidden); 63 64 char StackProtector::ID = 0; 65 66 StackProtector::StackProtector() : FunctionPass(ID) { 67 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 68 } 69 70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 71 "Insert stack protectors", false, true) 72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass) 74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 75 "Insert stack protectors", false, true) 76 77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 78 79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 80 AU.addRequired<TargetPassConfig>(); 81 AU.addPreserved<DominatorTreeWrapperPass>(); 82 } 83 84 bool StackProtector::runOnFunction(Function &Fn) { 85 F = &Fn; 86 M = F->getParent(); 87 if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) 88 DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy); 89 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 90 Trip = TM->getTargetTriple(); 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 SSPBufferSize = Fn.getFnAttributeAsParsedInteger( 96 "stack-protector-buffer-size", DefaultSSPBufferSize); 97 if (!RequiresStackProtector()) 98 return false; 99 100 // TODO(etienneb): Functions with funclets are not correctly supported now. 101 // Do nothing if this is funclet-based personality. 102 if (Fn.hasPersonalityFn()) { 103 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 104 if (isFuncletEHPersonality(Personality)) 105 return false; 106 } 107 108 ++NumFunProtected; 109 bool Changed = InsertStackProtectors(); 110 #ifdef EXPENSIVE_CHECKS 111 assert((!DTU || 112 DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) && 113 "Failed to maintain validity of domtree!"); 114 #endif 115 DTU.reset(); 116 return Changed; 117 } 118 119 /// \param [out] IsLarge is set to true if a protectable array is found and 120 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 121 /// multiple arrays, this gets set if any of them is large. 122 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 123 bool Strong, 124 bool InStruct) const { 125 if (!Ty) 126 return false; 127 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 128 if (!AT->getElementType()->isIntegerTy(8)) { 129 // If we're on a non-Darwin platform or we're inside of a structure, don't 130 // add stack protectors unless the array is a character array. 131 // However, in strong mode any array, regardless of type and size, 132 // triggers a protector. 133 if (!Strong && (InStruct || !Trip.isOSDarwin())) 134 return false; 135 } 136 137 // If an array has more than SSPBufferSize bytes of allocated space, then we 138 // emit stack protectors. 139 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 140 IsLarge = true; 141 return true; 142 } 143 144 if (Strong) 145 // Require a protector for all arrays in strong mode 146 return true; 147 } 148 149 const StructType *ST = dyn_cast<StructType>(Ty); 150 if (!ST) 151 return false; 152 153 bool NeedsProtector = false; 154 for (Type *ET : ST->elements()) 155 if (ContainsProtectableArray(ET, IsLarge, Strong, true)) { 156 // If the element is a protectable array and is large (>= SSPBufferSize) 157 // then we are done. If the protectable array is not large, then 158 // keep looking in case a subsequent element is a large array. 159 if (IsLarge) 160 return true; 161 NeedsProtector = true; 162 } 163 164 return NeedsProtector; 165 } 166 167 bool StackProtector::HasAddressTaken(const Instruction *AI, 168 TypeSize AllocSize) { 169 const DataLayout &DL = M->getDataLayout(); 170 for (const User *U : AI->users()) { 171 const auto *I = cast<Instruction>(U); 172 // If this instruction accesses memory make sure it doesn't access beyond 173 // the bounds of the allocated object. 174 std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 175 if (MemLoc && MemLoc->Size.hasValue() && 176 !TypeSize::isKnownGE(AllocSize, 177 TypeSize::getFixed(MemLoc->Size.getValue()))) 178 return true; 179 switch (I->getOpcode()) { 180 case Instruction::Store: 181 if (AI == cast<StoreInst>(I)->getValueOperand()) 182 return true; 183 break; 184 case Instruction::AtomicCmpXchg: 185 // cmpxchg conceptually includes both a load and store from the same 186 // location. So, like store, the value being stored is what matters. 187 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 188 return true; 189 break; 190 case Instruction::PtrToInt: 191 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 192 return true; 193 break; 194 case Instruction::Call: { 195 // Ignore intrinsics that do not become real instructions. 196 // TODO: Narrow this to intrinsics that have store-like effects. 197 const auto *CI = cast<CallInst>(I); 198 if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd()) 199 return true; 200 break; 201 } 202 case Instruction::Invoke: 203 return true; 204 case Instruction::GetElementPtr: { 205 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 206 // assumed to be potentially out-of-bounds, then any memory access that 207 // would use it could also be out-of-bounds meaning stack protection is 208 // required. 209 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 210 unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType()); 211 APInt Offset(IndexSize, 0); 212 if (!GEP->accumulateConstantOffset(DL, Offset)) 213 return true; 214 TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue()); 215 if (!TypeSize::isKnownGT(AllocSize, OffsetSize)) 216 return true; 217 // Adjust AllocSize to be the space remaining after this offset. 218 // We can't subtract a fixed size from a scalable one, so in that case 219 // assume the scalable value is of minimum size. 220 TypeSize NewAllocSize = 221 TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize; 222 if (HasAddressTaken(I, NewAllocSize)) 223 return true; 224 break; 225 } 226 case Instruction::BitCast: 227 case Instruction::Select: 228 case Instruction::AddrSpaceCast: 229 if (HasAddressTaken(I, AllocSize)) 230 return true; 231 break; 232 case Instruction::PHI: { 233 // Keep track of what PHI nodes we have already visited to ensure 234 // they are only visited once. 235 const auto *PN = cast<PHINode>(I); 236 if (VisitedPHIs.insert(PN).second) 237 if (HasAddressTaken(PN, AllocSize)) 238 return true; 239 break; 240 } 241 case Instruction::Load: 242 case Instruction::AtomicRMW: 243 case Instruction::Ret: 244 // These instructions take an address operand, but have load-like or 245 // other innocuous behavior that should not trigger a stack protector. 246 // atomicrmw conceptually has both load and store semantics, but the 247 // value being stored must be integer; so if a pointer is being stored, 248 // we'll catch it in the PtrToInt case above. 249 break; 250 default: 251 // Conservatively return true for any instruction that takes an address 252 // operand, but is not handled above. 253 return true; 254 } 255 } 256 return false; 257 } 258 259 /// Search for the first call to the llvm.stackprotector intrinsic and return it 260 /// if present. 261 static const CallInst *findStackProtectorIntrinsic(Function &F) { 262 for (const BasicBlock &BB : F) 263 for (const Instruction &I : BB) 264 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 265 if (II->getIntrinsicID() == Intrinsic::stackprotector) 266 return II; 267 return nullptr; 268 } 269 270 /// Check whether or not this function needs a stack protector based 271 /// upon the stack protector level. 272 /// 273 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 274 /// The standard heuristic which will add a guard variable to functions that 275 /// call alloca with a either a variable size or a size >= SSPBufferSize, 276 /// functions with character buffers larger than SSPBufferSize, and functions 277 /// with aggregates containing character buffers larger than SSPBufferSize. The 278 /// strong heuristic will add a guard variables to functions that call alloca 279 /// regardless of size, functions with any buffer regardless of type and size, 280 /// functions with aggregates that contain any buffer regardless of type and 281 /// size, and functions that contain stack-based variables that have had their 282 /// address taken. 283 bool StackProtector::RequiresStackProtector() { 284 bool Strong = false; 285 bool NeedsProtector = false; 286 287 if (F->hasFnAttribute(Attribute::SafeStack)) 288 return false; 289 290 // We are constructing the OptimizationRemarkEmitter on the fly rather than 291 // using the analysis pass to avoid building DominatorTree and LoopInfo which 292 // are not available this late in the IR pipeline. 293 OptimizationRemarkEmitter ORE(F); 294 295 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 296 ORE.emit([&]() { 297 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 298 << "Stack protection applied to function " 299 << ore::NV("Function", F) 300 << " due to a function attribute or command-line switch"; 301 }); 302 NeedsProtector = true; 303 Strong = true; // Use the same heuristic as strong to determine SSPLayout 304 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 305 Strong = true; 306 else if (!F->hasFnAttribute(Attribute::StackProtect)) 307 return false; 308 309 for (const BasicBlock &BB : *F) { 310 for (const Instruction &I : BB) { 311 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 312 if (AI->isArrayAllocation()) { 313 auto RemarkBuilder = [&]() { 314 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 315 &I) 316 << "Stack protection applied to function " 317 << ore::NV("Function", F) 318 << " due to a call to alloca or use of a variable length " 319 "array"; 320 }; 321 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 322 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 323 // A call to alloca with size >= SSPBufferSize requires 324 // stack protectors. 325 Layout.insert(std::make_pair(AI, 326 MachineFrameInfo::SSPLK_LargeArray)); 327 ORE.emit(RemarkBuilder); 328 NeedsProtector = true; 329 } else if (Strong) { 330 // Require protectors for all alloca calls in strong mode. 331 Layout.insert(std::make_pair(AI, 332 MachineFrameInfo::SSPLK_SmallArray)); 333 ORE.emit(RemarkBuilder); 334 NeedsProtector = true; 335 } 336 } else { 337 // A call to alloca with a variable size requires protectors. 338 Layout.insert(std::make_pair(AI, 339 MachineFrameInfo::SSPLK_LargeArray)); 340 ORE.emit(RemarkBuilder); 341 NeedsProtector = true; 342 } 343 continue; 344 } 345 346 bool IsLarge = false; 347 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 348 Layout.insert(std::make_pair(AI, IsLarge 349 ? MachineFrameInfo::SSPLK_LargeArray 350 : MachineFrameInfo::SSPLK_SmallArray)); 351 ORE.emit([&]() { 352 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 353 << "Stack protection applied to function " 354 << ore::NV("Function", F) 355 << " due to a stack allocated buffer or struct containing a " 356 "buffer"; 357 }); 358 NeedsProtector = true; 359 continue; 360 } 361 362 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 363 AI->getAllocatedType()))) { 364 ++NumAddrTaken; 365 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 366 ORE.emit([&]() { 367 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 368 &I) 369 << "Stack protection applied to function " 370 << ore::NV("Function", F) 371 << " due to the address of a local variable being taken"; 372 }); 373 NeedsProtector = true; 374 } 375 // Clear any PHIs that we visited, to make sure we examine all uses of 376 // any subsequent allocas that we look at. 377 VisitedPHIs.clear(); 378 } 379 } 380 } 381 382 return NeedsProtector; 383 } 384 385 /// Create a stack guard loading and populate whether SelectionDAG SSP is 386 /// supported. 387 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 388 IRBuilder<> &B, 389 bool *SupportsSelectionDAGSP = nullptr) { 390 Value *Guard = TLI->getIRStackGuard(B); 391 StringRef GuardMode = M->getStackProtectorGuard(); 392 if ((GuardMode == "tls" || GuardMode.empty()) && Guard) 393 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 394 395 // Use SelectionDAG SSP handling, since there isn't an IR guard. 396 // 397 // This is more or less weird, since we optionally output whether we 398 // should perform a SelectionDAG SP here. The reason is that it's strictly 399 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 400 // mutating. There is no way to get this bit without mutating the IR, so 401 // getting this bit has to happen in this right time. 402 // 403 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 404 // will put more burden on the backends' overriding work, especially when it 405 // actually conveys the same information getIRStackGuard() already gives. 406 if (SupportsSelectionDAGSP) 407 *SupportsSelectionDAGSP = true; 408 TLI->insertSSPDeclarations(*M); 409 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 410 } 411 412 /// Insert code into the entry block that stores the stack guard 413 /// variable onto the stack: 414 /// 415 /// entry: 416 /// StackGuardSlot = alloca i8* 417 /// StackGuard = <stack guard> 418 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 419 /// 420 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 421 /// node. 422 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc, 423 const TargetLoweringBase *TLI, AllocaInst *&AI) { 424 bool SupportsSelectionDAGSP = false; 425 IRBuilder<> B(&F->getEntryBlock().front()); 426 PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext()); 427 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 428 429 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 430 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 431 {GuardSlot, AI}); 432 return SupportsSelectionDAGSP; 433 } 434 435 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 436 /// function. 437 /// 438 /// - The prologue code loads and stores the stack guard onto the stack. 439 /// - The epilogue checks the value stored in the prologue against the original 440 /// value. It calls __stack_chk_fail if they differ. 441 bool StackProtector::InsertStackProtectors() { 442 // If the target wants to XOR the frame pointer into the guard value, it's 443 // impossible to emit the check in IR, so the target *must* support stack 444 // protection in SDAG. 445 bool SupportsSelectionDAGSP = 446 TLI->useStackGuardXorFP() || 447 (EnableSelectionDAGSP && !TM->Options.EnableFastISel); 448 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 449 BasicBlock *FailBB = nullptr; 450 451 for (BasicBlock &BB : llvm::make_early_inc_range(*F)) { 452 // This is stack protector auto generated check BB, skip it. 453 if (&BB == FailBB) 454 continue; 455 Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator()); 456 if (!CheckLoc) { 457 for (auto &Inst : BB) { 458 auto *CB = dyn_cast<CallBase>(&Inst); 459 if (!CB) 460 continue; 461 if (!CB->doesNotReturn()) 462 continue; 463 // Do stack check before non-return calls (e.g: __cxa_throw) 464 CheckLoc = CB; 465 break; 466 } 467 } 468 469 if (!CheckLoc) 470 continue; 471 472 // Generate prologue instrumentation if not already generated. 473 if (!HasPrologue) { 474 HasPrologue = true; 475 SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI); 476 } 477 478 // SelectionDAG based code generation. Nothing else needs to be done here. 479 // The epilogue instrumentation is postponed to SelectionDAG. 480 if (SupportsSelectionDAGSP) 481 break; 482 483 // Find the stack guard slot if the prologue was not created by this pass 484 // itself via a previous call to CreatePrologue(). 485 if (!AI) { 486 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 487 assert(SPCall && "Call to llvm.stackprotector is missing"); 488 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 489 } 490 491 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 492 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 493 // instrumentation has already been generated. 494 HasIRCheck = true; 495 496 // If we're instrumenting a block with a tail call, the check has to be 497 // inserted before the call rather than between it and the return. The 498 // verifier guarantees that a tail call is either directly before the 499 // return or with a single correct bitcast of the return value in between so 500 // we don't need to worry about many situations here. 501 Instruction *Prev = CheckLoc->getPrevNonDebugInstruction(); 502 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 503 CheckLoc = Prev; 504 else if (Prev) { 505 Prev = Prev->getPrevNonDebugInstruction(); 506 if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall()) 507 CheckLoc = Prev; 508 } 509 510 // Generate epilogue instrumentation. The epilogue intrumentation can be 511 // function-based or inlined depending on which mechanism the target is 512 // providing. 513 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 514 // Generate the function-based epilogue instrumentation. 515 // The target provides a guard check function, generate a call to it. 516 IRBuilder<> B(CheckLoc); 517 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 518 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 519 Call->setAttributes(GuardCheck->getAttributes()); 520 Call->setCallingConv(GuardCheck->getCallingConv()); 521 } else { 522 // Generate the epilogue with inline instrumentation. 523 // If we do not support SelectionDAG based calls, generate IR level 524 // calls. 525 // 526 // For each block with a return instruction, convert this: 527 // 528 // return: 529 // ... 530 // ret ... 531 // 532 // into this: 533 // 534 // return: 535 // ... 536 // %1 = <stack guard> 537 // %2 = load StackGuardSlot 538 // %3 = icmp ne i1 %1, %2 539 // br i1 %3, label %CallStackCheckFailBlk, label %SP_return 540 // 541 // SP_return: 542 // ret ... 543 // 544 // CallStackCheckFailBlk: 545 // call void @__stack_chk_fail() 546 // unreachable 547 548 // Create the FailBB. We duplicate the BB every time since the MI tail 549 // merge pass will merge together all of the various BB into one including 550 // fail BB generated by the stack protector pseudo instruction. 551 if (!FailBB) 552 FailBB = CreateFailBB(); 553 554 IRBuilder<> B(CheckLoc); 555 Value *Guard = getStackGuard(TLI, M, B); 556 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 557 auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2)); 558 auto SuccessProb = 559 BranchProbabilityInfo::getBranchProbStackProtector(true); 560 auto FailureProb = 561 BranchProbabilityInfo::getBranchProbStackProtector(false); 562 MDNode *Weights = MDBuilder(F->getContext()) 563 .createBranchWeights(FailureProb.getNumerator(), 564 SuccessProb.getNumerator()); 565 566 SplitBlockAndInsertIfThen(Cmp, CheckLoc, 567 /*Unreachable=*/false, Weights, 568 DTU ? &*DTU : nullptr, 569 /*LI=*/nullptr, /*ThenBlock=*/FailBB); 570 571 auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator()); 572 BasicBlock *NewBB = BI->getSuccessor(1); 573 NewBB->setName("SP_return"); 574 NewBB->moveAfter(&BB); 575 576 Cmp->setPredicate(Cmp->getInversePredicate()); 577 BI->swapSuccessors(); 578 } 579 } 580 581 // Return if we didn't modify any basic blocks. i.e., there are no return 582 // statements in the function. 583 return HasPrologue; 584 } 585 586 /// CreateFailBB - Create a basic block to jump to when the stack protector 587 /// check fails. 588 BasicBlock *StackProtector::CreateFailBB() { 589 LLVMContext &Context = F->getContext(); 590 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 591 IRBuilder<> B(FailBB); 592 if (F->getSubprogram()) 593 B.SetCurrentDebugLocation( 594 DILocation::get(Context, 0, 0, F->getSubprogram())); 595 if (Trip.isOSOpenBSD()) { 596 FunctionCallee StackChkFail = M->getOrInsertFunction( 597 "__stack_smash_handler", Type::getVoidTy(Context), 598 Type::getInt8PtrTy(Context)); 599 600 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 601 } else { 602 FunctionCallee StackChkFail = 603 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 604 605 B.CreateCall(StackChkFail, {}); 606 } 607 B.CreateUnreachable(); 608 return FailBB; 609 } 610 611 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 612 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 613 } 614 615 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 616 if (Layout.empty()) 617 return; 618 619 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 620 if (MFI.isDeadObjectIndex(I)) 621 continue; 622 623 const AllocaInst *AI = MFI.getObjectAllocation(I); 624 if (!AI) 625 continue; 626 627 SSPLayoutMap::const_iterator LI = Layout.find(AI); 628 if (LI == Layout.end()) 629 continue; 630 631 MFI.setObjectSSPLayout(I, LI->second); 632 } 633 } 634