1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass inserts stack protectors into functions which need them. A variable 10 // with a random value in it is stored onto the stack before the local variables 11 // are allocated. Upon exiting the block, the stored value is checked. If it's 12 // changed, then there was some sort of violation and the program aborts. 13 // 14 //===----------------------------------------------------------------------===// 15 16 #include "llvm/CodeGen/StackProtector.h" 17 #include "llvm/ADT/SmallPtrSet.h" 18 #include "llvm/ADT/Statistic.h" 19 #include "llvm/Analysis/BranchProbabilityInfo.h" 20 #include "llvm/Analysis/EHPersonalities.h" 21 #include "llvm/Analysis/MemoryLocation.h" 22 #include "llvm/Analysis/OptimizationRemarkEmitter.h" 23 #include "llvm/CodeGen/Passes.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetPassConfig.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Attributes.h" 28 #include "llvm/IR/BasicBlock.h" 29 #include "llvm/IR/Constants.h" 30 #include "llvm/IR/DataLayout.h" 31 #include "llvm/IR/DebugInfo.h" 32 #include "llvm/IR/DebugLoc.h" 33 #include "llvm/IR/DerivedTypes.h" 34 #include "llvm/IR/Dominators.h" 35 #include "llvm/IR/Function.h" 36 #include "llvm/IR/IRBuilder.h" 37 #include "llvm/IR/Instruction.h" 38 #include "llvm/IR/Instructions.h" 39 #include "llvm/IR/IntrinsicInst.h" 40 #include "llvm/IR/Intrinsics.h" 41 #include "llvm/IR/MDBuilder.h" 42 #include "llvm/IR/Module.h" 43 #include "llvm/IR/Type.h" 44 #include "llvm/IR/User.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/Pass.h" 47 #include "llvm/Support/Casting.h" 48 #include "llvm/Support/CommandLine.h" 49 #include "llvm/Target/TargetMachine.h" 50 #include "llvm/Target/TargetOptions.h" 51 #include <utility> 52 53 using namespace llvm; 54 55 #define DEBUG_TYPE "stack-protector" 56 57 STATISTIC(NumFunProtected, "Number of functions protected"); 58 STATISTIC(NumAddrTaken, "Number of local variables that have their address" 59 " taken."); 60 61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp", 62 cl::init(true), cl::Hidden); 63 64 char StackProtector::ID = 0; 65 66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) { 67 initializeStackProtectorPass(*PassRegistry::getPassRegistry()); 68 } 69 70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE, 71 "Insert stack protectors", false, true) 72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig) 73 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE, 74 "Insert stack protectors", false, true) 75 76 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); } 77 78 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const { 79 AU.addRequired<TargetPassConfig>(); 80 AU.addPreserved<DominatorTreeWrapperPass>(); 81 } 82 83 bool StackProtector::runOnFunction(Function &Fn) { 84 F = &Fn; 85 M = F->getParent(); 86 DominatorTreeWrapperPass *DTWP = 87 getAnalysisIfAvailable<DominatorTreeWrapperPass>(); 88 DT = DTWP ? &DTWP->getDomTree() : nullptr; 89 TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>(); 90 Trip = TM->getTargetTriple(); 91 TLI = TM->getSubtargetImpl(Fn)->getTargetLowering(); 92 HasPrologue = false; 93 HasIRCheck = false; 94 95 Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size"); 96 if (Attr.isStringAttribute() && 97 Attr.getValueAsString().getAsInteger(10, SSPBufferSize)) 98 return false; // Invalid integer string 99 100 if (!RequiresStackProtector()) 101 return false; 102 103 // TODO(etienneb): Functions with funclets are not correctly supported now. 104 // Do nothing if this is funclet-based personality. 105 if (Fn.hasPersonalityFn()) { 106 EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn()); 107 if (isFuncletEHPersonality(Personality)) 108 return false; 109 } 110 111 ++NumFunProtected; 112 return InsertStackProtectors(); 113 } 114 115 /// \param [out] IsLarge is set to true if a protectable array is found and 116 /// it is "large" ( >= ssp-buffer-size). In the case of a structure with 117 /// multiple arrays, this gets set if any of them is large. 118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge, 119 bool Strong, 120 bool InStruct) const { 121 if (!Ty) 122 return false; 123 if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) { 124 if (!AT->getElementType()->isIntegerTy(8)) { 125 // If we're on a non-Darwin platform or we're inside of a structure, don't 126 // add stack protectors unless the array is a character array. 127 // However, in strong mode any array, regardless of type and size, 128 // triggers a protector. 129 if (!Strong && (InStruct || !Trip.isOSDarwin())) 130 return false; 131 } 132 133 // If an array has more than SSPBufferSize bytes of allocated space, then we 134 // emit stack protectors. 135 if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) { 136 IsLarge = true; 137 return true; 138 } 139 140 if (Strong) 141 // Require a protector for all arrays in strong mode 142 return true; 143 } 144 145 const StructType *ST = dyn_cast<StructType>(Ty); 146 if (!ST) 147 return false; 148 149 bool NeedsProtector = false; 150 for (StructType::element_iterator I = ST->element_begin(), 151 E = ST->element_end(); 152 I != E; ++I) 153 if (ContainsProtectableArray(*I, IsLarge, Strong, true)) { 154 // If the element is a protectable array and is large (>= SSPBufferSize) 155 // then we are done. If the protectable array is not large, then 156 // keep looking in case a subsequent element is a large array. 157 if (IsLarge) 158 return true; 159 NeedsProtector = true; 160 } 161 162 return NeedsProtector; 163 } 164 165 bool StackProtector::HasAddressTaken(const Instruction *AI, 166 uint64_t AllocSize) { 167 const DataLayout &DL = M->getDataLayout(); 168 for (const User *U : AI->users()) { 169 const auto *I = cast<Instruction>(U); 170 // If this instruction accesses memory make sure it doesn't access beyond 171 // the bounds of the allocated object. 172 Optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I); 173 if (MemLoc.hasValue() && MemLoc->Size.hasValue() && 174 MemLoc->Size.getValue() > AllocSize) 175 return true; 176 switch (I->getOpcode()) { 177 case Instruction::Store: 178 if (AI == cast<StoreInst>(I)->getValueOperand()) 179 return true; 180 break; 181 case Instruction::AtomicCmpXchg: 182 // cmpxchg conceptually includes both a load and store from the same 183 // location. So, like store, the value being stored is what matters. 184 if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand()) 185 return true; 186 break; 187 case Instruction::PtrToInt: 188 if (AI == cast<PtrToIntInst>(I)->getOperand(0)) 189 return true; 190 break; 191 case Instruction::Call: { 192 // Ignore intrinsics that do not become real instructions. 193 // TODO: Narrow this to intrinsics that have store-like effects. 194 const auto *CI = cast<CallInst>(I); 195 if (!isa<DbgInfoIntrinsic>(CI) && !CI->isLifetimeStartOrEnd()) 196 return true; 197 break; 198 } 199 case Instruction::Invoke: 200 return true; 201 case Instruction::GetElementPtr: { 202 // If the GEP offset is out-of-bounds, or is non-constant and so has to be 203 // assumed to be potentially out-of-bounds, then any memory access that 204 // would use it could also be out-of-bounds meaning stack protection is 205 // required. 206 const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I); 207 unsigned TypeSize = DL.getIndexTypeSizeInBits(I->getType()); 208 APInt Offset(TypeSize, 0); 209 APInt MaxOffset(TypeSize, AllocSize); 210 if (!GEP->accumulateConstantOffset(DL, Offset) || Offset.ugt(MaxOffset)) 211 return true; 212 // Adjust AllocSize to be the space remaining after this offset. 213 if (HasAddressTaken(I, AllocSize - Offset.getLimitedValue())) 214 return true; 215 break; 216 } 217 case Instruction::BitCast: 218 case Instruction::Select: 219 case Instruction::AddrSpaceCast: 220 if (HasAddressTaken(I, AllocSize)) 221 return true; 222 break; 223 case Instruction::PHI: { 224 // Keep track of what PHI nodes we have already visited to ensure 225 // they are only visited once. 226 const auto *PN = cast<PHINode>(I); 227 if (VisitedPHIs.insert(PN).second) 228 if (HasAddressTaken(PN, AllocSize)) 229 return true; 230 break; 231 } 232 case Instruction::Load: 233 case Instruction::AtomicRMW: 234 case Instruction::Ret: 235 // These instructions take an address operand, but have load-like or 236 // other innocuous behavior that should not trigger a stack protector. 237 // atomicrmw conceptually has both load and store semantics, but the 238 // value being stored must be integer; so if a pointer is being stored, 239 // we'll catch it in the PtrToInt case above. 240 break; 241 default: 242 // Conservatively return true for any instruction that takes an address 243 // operand, but is not handled above. 244 return true; 245 } 246 } 247 return false; 248 } 249 250 /// Search for the first call to the llvm.stackprotector intrinsic and return it 251 /// if present. 252 static const CallInst *findStackProtectorIntrinsic(Function &F) { 253 for (const BasicBlock &BB : F) 254 for (const Instruction &I : BB) 255 if (const auto *II = dyn_cast<IntrinsicInst>(&I)) 256 if (II->getIntrinsicID() == Intrinsic::stackprotector) 257 return II; 258 return nullptr; 259 } 260 261 /// Check whether or not this function needs a stack protector based 262 /// upon the stack protector level. 263 /// 264 /// We use two heuristics: a standard (ssp) and strong (sspstrong). 265 /// The standard heuristic which will add a guard variable to functions that 266 /// call alloca with a either a variable size or a size >= SSPBufferSize, 267 /// functions with character buffers larger than SSPBufferSize, and functions 268 /// with aggregates containing character buffers larger than SSPBufferSize. The 269 /// strong heuristic will add a guard variables to functions that call alloca 270 /// regardless of size, functions with any buffer regardless of type and size, 271 /// functions with aggregates that contain any buffer regardless of type and 272 /// size, and functions that contain stack-based variables that have had their 273 /// address taken. The heuristic will be disregarded for functions explicitly 274 /// marked nossp. 275 bool StackProtector::RequiresStackProtector() { 276 bool Strong = false; 277 bool NeedsProtector = false; 278 HasPrologue = findStackProtectorIntrinsic(*F); 279 280 if (F->hasFnAttribute(Attribute::SafeStack) || 281 F->hasFnAttribute(Attribute::NoStackProtect)) 282 return false; 283 284 // We are constructing the OptimizationRemarkEmitter on the fly rather than 285 // using the analysis pass to avoid building DominatorTree and LoopInfo which 286 // are not available this late in the IR pipeline. 287 OptimizationRemarkEmitter ORE(F); 288 289 if (F->hasFnAttribute(Attribute::StackProtectReq)) { 290 ORE.emit([&]() { 291 return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F) 292 << "Stack protection applied to function " 293 << ore::NV("Function", F) 294 << " due to a function attribute or command-line switch"; 295 }); 296 NeedsProtector = true; 297 Strong = true; // Use the same heuristic as strong to determine SSPLayout 298 } else if (F->hasFnAttribute(Attribute::StackProtectStrong)) 299 Strong = true; 300 else if (HasPrologue) 301 NeedsProtector = true; 302 else if (!F->hasFnAttribute(Attribute::StackProtect)) 303 return false; 304 305 for (const BasicBlock &BB : *F) { 306 for (const Instruction &I : BB) { 307 if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) { 308 if (AI->isArrayAllocation()) { 309 auto RemarkBuilder = [&]() { 310 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray", 311 &I) 312 << "Stack protection applied to function " 313 << ore::NV("Function", F) 314 << " due to a call to alloca or use of a variable length " 315 "array"; 316 }; 317 if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) { 318 if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) { 319 // A call to alloca with size >= SSPBufferSize requires 320 // stack protectors. 321 Layout.insert(std::make_pair(AI, 322 MachineFrameInfo::SSPLK_LargeArray)); 323 ORE.emit(RemarkBuilder); 324 NeedsProtector = true; 325 } else if (Strong) { 326 // Require protectors for all alloca calls in strong mode. 327 Layout.insert(std::make_pair(AI, 328 MachineFrameInfo::SSPLK_SmallArray)); 329 ORE.emit(RemarkBuilder); 330 NeedsProtector = true; 331 } 332 } else { 333 // A call to alloca with a variable size requires protectors. 334 Layout.insert(std::make_pair(AI, 335 MachineFrameInfo::SSPLK_LargeArray)); 336 ORE.emit(RemarkBuilder); 337 NeedsProtector = true; 338 } 339 continue; 340 } 341 342 bool IsLarge = false; 343 if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) { 344 Layout.insert(std::make_pair(AI, IsLarge 345 ? MachineFrameInfo::SSPLK_LargeArray 346 : MachineFrameInfo::SSPLK_SmallArray)); 347 ORE.emit([&]() { 348 return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I) 349 << "Stack protection applied to function " 350 << ore::NV("Function", F) 351 << " due to a stack allocated buffer or struct containing a " 352 "buffer"; 353 }); 354 NeedsProtector = true; 355 continue; 356 } 357 358 if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize( 359 AI->getAllocatedType()))) { 360 ++NumAddrTaken; 361 Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf)); 362 ORE.emit([&]() { 363 return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", 364 &I) 365 << "Stack protection applied to function " 366 << ore::NV("Function", F) 367 << " due to the address of a local variable being taken"; 368 }); 369 NeedsProtector = true; 370 } 371 // Clear any PHIs that we visited, to make sure we examine all uses of 372 // any subsequent allocas that we look at. 373 VisitedPHIs.clear(); 374 } 375 } 376 } 377 378 return NeedsProtector; 379 } 380 381 /// Create a stack guard loading and populate whether SelectionDAG SSP is 382 /// supported. 383 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M, 384 IRBuilder<> &B, 385 bool *SupportsSelectionDAGSP = nullptr) { 386 Value *Guard = TLI->getIRStackGuard(B); 387 auto GuardMode = TLI->getTargetMachine().Options.StackProtectorGuard; 388 if ((GuardMode == llvm::StackProtectorGuards::TLS || 389 GuardMode == llvm::StackProtectorGuards::None) && Guard) 390 return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard"); 391 392 // Use SelectionDAG SSP handling, since there isn't an IR guard. 393 // 394 // This is more or less weird, since we optionally output whether we 395 // should perform a SelectionDAG SP here. The reason is that it's strictly 396 // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also 397 // mutating. There is no way to get this bit without mutating the IR, so 398 // getting this bit has to happen in this right time. 399 // 400 // We could have define a new function TLI::supportsSelectionDAGSP(), but that 401 // will put more burden on the backends' overriding work, especially when it 402 // actually conveys the same information getIRStackGuard() already gives. 403 if (SupportsSelectionDAGSP) 404 *SupportsSelectionDAGSP = true; 405 TLI->insertSSPDeclarations(*M); 406 return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard)); 407 } 408 409 /// Insert code into the entry block that stores the stack guard 410 /// variable onto the stack: 411 /// 412 /// entry: 413 /// StackGuardSlot = alloca i8* 414 /// StackGuard = <stack guard> 415 /// call void @llvm.stackprotector(StackGuard, StackGuardSlot) 416 /// 417 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo 418 /// node. 419 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI, 420 const TargetLoweringBase *TLI, AllocaInst *&AI) { 421 bool SupportsSelectionDAGSP = false; 422 IRBuilder<> B(&F->getEntryBlock().front()); 423 PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext()); 424 AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot"); 425 426 Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP); 427 B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector), 428 {GuardSlot, AI}); 429 return SupportsSelectionDAGSP; 430 } 431 432 /// InsertStackProtectors - Insert code into the prologue and epilogue of the 433 /// function. 434 /// 435 /// - The prologue code loads and stores the stack guard onto the stack. 436 /// - The epilogue checks the value stored in the prologue against the original 437 /// value. It calls __stack_chk_fail if they differ. 438 bool StackProtector::InsertStackProtectors() { 439 // If the target wants to XOR the frame pointer into the guard value, it's 440 // impossible to emit the check in IR, so the target *must* support stack 441 // protection in SDAG. 442 bool SupportsSelectionDAGSP = 443 TLI->useStackGuardXorFP() || 444 (EnableSelectionDAGSP && !TM->Options.EnableFastISel && 445 !TM->Options.EnableGlobalISel); 446 AllocaInst *AI = nullptr; // Place on stack that stores the stack guard. 447 448 for (Function::iterator I = F->begin(), E = F->end(); I != E;) { 449 BasicBlock *BB = &*I++; 450 ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator()); 451 if (!RI) 452 continue; 453 454 // Generate prologue instrumentation if not already generated. 455 if (!HasPrologue) { 456 HasPrologue = true; 457 SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI); 458 } 459 460 // SelectionDAG based code generation. Nothing else needs to be done here. 461 // The epilogue instrumentation is postponed to SelectionDAG. 462 if (SupportsSelectionDAGSP) 463 break; 464 465 // Find the stack guard slot if the prologue was not created by this pass 466 // itself via a previous call to CreatePrologue(). 467 if (!AI) { 468 const CallInst *SPCall = findStackProtectorIntrinsic(*F); 469 assert(SPCall && "Call to llvm.stackprotector is missing"); 470 AI = cast<AllocaInst>(SPCall->getArgOperand(1)); 471 } 472 473 // Set HasIRCheck to true, so that SelectionDAG will not generate its own 474 // version. SelectionDAG called 'shouldEmitSDCheck' to check whether 475 // instrumentation has already been generated. 476 HasIRCheck = true; 477 478 // Generate epilogue instrumentation. The epilogue intrumentation can be 479 // function-based or inlined depending on which mechanism the target is 480 // providing. 481 if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) { 482 // Generate the function-based epilogue instrumentation. 483 // The target provides a guard check function, generate a call to it. 484 IRBuilder<> B(RI); 485 LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard"); 486 CallInst *Call = B.CreateCall(GuardCheck, {Guard}); 487 Call->setAttributes(GuardCheck->getAttributes()); 488 Call->setCallingConv(GuardCheck->getCallingConv()); 489 } else { 490 // Generate the epilogue with inline instrumentation. 491 // If we do not support SelectionDAG based tail calls, generate IR level 492 // tail calls. 493 // 494 // For each block with a return instruction, convert this: 495 // 496 // return: 497 // ... 498 // ret ... 499 // 500 // into this: 501 // 502 // return: 503 // ... 504 // %1 = <stack guard> 505 // %2 = load StackGuardSlot 506 // %3 = cmp i1 %1, %2 507 // br i1 %3, label %SP_return, label %CallStackCheckFailBlk 508 // 509 // SP_return: 510 // ret ... 511 // 512 // CallStackCheckFailBlk: 513 // call void @__stack_chk_fail() 514 // unreachable 515 516 // Create the FailBB. We duplicate the BB every time since the MI tail 517 // merge pass will merge together all of the various BB into one including 518 // fail BB generated by the stack protector pseudo instruction. 519 BasicBlock *FailBB = CreateFailBB(); 520 521 // Split the basic block before the return instruction. 522 BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return"); 523 524 // Update the dominator tree if we need to. 525 if (DT && DT->isReachableFromEntry(BB)) { 526 DT->addNewBlock(NewBB, BB); 527 DT->addNewBlock(FailBB, BB); 528 } 529 530 // Remove default branch instruction to the new BB. 531 BB->getTerminator()->eraseFromParent(); 532 533 // Move the newly created basic block to the point right after the old 534 // basic block so that it's in the "fall through" position. 535 NewBB->moveAfter(BB); 536 537 // Generate the stack protector instructions in the old basic block. 538 IRBuilder<> B(BB); 539 Value *Guard = getStackGuard(TLI, M, B); 540 LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true); 541 Value *Cmp = B.CreateICmpEQ(Guard, LI2); 542 auto SuccessProb = 543 BranchProbabilityInfo::getBranchProbStackProtector(true); 544 auto FailureProb = 545 BranchProbabilityInfo::getBranchProbStackProtector(false); 546 MDNode *Weights = MDBuilder(F->getContext()) 547 .createBranchWeights(SuccessProb.getNumerator(), 548 FailureProb.getNumerator()); 549 B.CreateCondBr(Cmp, NewBB, FailBB, Weights); 550 } 551 } 552 553 // Return if we didn't modify any basic blocks. i.e., there are no return 554 // statements in the function. 555 return HasPrologue; 556 } 557 558 /// CreateFailBB - Create a basic block to jump to when the stack protector 559 /// check fails. 560 BasicBlock *StackProtector::CreateFailBB() { 561 LLVMContext &Context = F->getContext(); 562 BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F); 563 IRBuilder<> B(FailBB); 564 B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram())); 565 if (Trip.isOSOpenBSD()) { 566 FunctionCallee StackChkFail = M->getOrInsertFunction( 567 "__stack_smash_handler", Type::getVoidTy(Context), 568 Type::getInt8PtrTy(Context)); 569 570 B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH")); 571 } else { 572 FunctionCallee StackChkFail = 573 M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context)); 574 575 B.CreateCall(StackChkFail, {}); 576 } 577 B.CreateUnreachable(); 578 return FailBB; 579 } 580 581 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const { 582 return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator()); 583 } 584 585 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const { 586 if (Layout.empty()) 587 return; 588 589 for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) { 590 if (MFI.isDeadObjectIndex(I)) 591 continue; 592 593 const AllocaInst *AI = MFI.getObjectAllocation(I); 594 if (!AI) 595 continue; 596 597 SSPLayoutMap::const_iterator LI = Layout.find(AI); 598 if (LI == Layout.end()) 599 continue; 600 601 MFI.setObjectSSPLayout(I, LI->second); 602 } 603 } 604