xref: /llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 7a2001509b7f787b93ee5bcc41c149973feaaa74)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
50 #include <optional>
51 #include <utility>
52 
53 using namespace llvm;
54 
55 #define DEBUG_TYPE "stack-protector"
56 
57 STATISTIC(NumFunProtected, "Number of functions protected");
58 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
59                         " taken.");
60 
61 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
62                                           cl::init(true), cl::Hidden);
63 
64 char StackProtector::ID = 0;
65 
66 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
67   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
68 }
69 
70 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
71                       "Insert stack protectors", false, true)
72 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
73 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
74 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
75                     "Insert stack protectors", false, true)
76 
77 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
78 
79 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
80   AU.addRequired<TargetPassConfig>();
81   AU.addPreserved<DominatorTreeWrapperPass>();
82 }
83 
84 bool StackProtector::runOnFunction(Function &Fn) {
85   F = &Fn;
86   M = F->getParent();
87   if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>())
88     DTU.emplace(DTWP->getDomTree(), DomTreeUpdater::UpdateStrategy::Lazy);
89   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
90   Trip = TM->getTargetTriple();
91   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92   HasPrologue = false;
93   HasIRCheck = false;
94 
95   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
96   if (Attr.isStringAttribute() &&
97       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
98     return false; // Invalid integer string
99 
100   if (!RequiresStackProtector())
101     return false;
102 
103   // TODO(etienneb): Functions with funclets are not correctly supported now.
104   // Do nothing if this is funclet-based personality.
105   if (Fn.hasPersonalityFn()) {
106     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107     if (isFuncletEHPersonality(Personality))
108       return false;
109   }
110 
111   ++NumFunProtected;
112   bool Changed = InsertStackProtectors();
113 #ifdef EXPENSIVE_CHECKS
114   assert((!DTU ||
115           DTU->getDomTree().verify(DominatorTree::VerificationLevel::Full)) &&
116          "Failed to maintain validity of domtree!");
117 #endif
118   DTU.reset();
119   return Changed;
120 }
121 
122 /// \param [out] IsLarge is set to true if a protectable array is found and
123 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
124 /// multiple arrays, this gets set if any of them is large.
125 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
126                                               bool Strong,
127                                               bool InStruct) const {
128   if (!Ty)
129     return false;
130   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
131     if (!AT->getElementType()->isIntegerTy(8)) {
132       // If we're on a non-Darwin platform or we're inside of a structure, don't
133       // add stack protectors unless the array is a character array.
134       // However, in strong mode any array, regardless of type and size,
135       // triggers a protector.
136       if (!Strong && (InStruct || !Trip.isOSDarwin()))
137         return false;
138     }
139 
140     // If an array has more than SSPBufferSize bytes of allocated space, then we
141     // emit stack protectors.
142     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
143       IsLarge = true;
144       return true;
145     }
146 
147     if (Strong)
148       // Require a protector for all arrays in strong mode
149       return true;
150   }
151 
152   const StructType *ST = dyn_cast<StructType>(Ty);
153   if (!ST)
154     return false;
155 
156   bool NeedsProtector = false;
157   for (Type *ET : ST->elements())
158     if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
159       // If the element is a protectable array and is large (>= SSPBufferSize)
160       // then we are done.  If the protectable array is not large, then
161       // keep looking in case a subsequent element is a large array.
162       if (IsLarge)
163         return true;
164       NeedsProtector = true;
165     }
166 
167   return NeedsProtector;
168 }
169 
170 bool StackProtector::HasAddressTaken(const Instruction *AI,
171                                      TypeSize AllocSize) {
172   const DataLayout &DL = M->getDataLayout();
173   for (const User *U : AI->users()) {
174     const auto *I = cast<Instruction>(U);
175     // If this instruction accesses memory make sure it doesn't access beyond
176     // the bounds of the allocated object.
177     std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
178     if (MemLoc && MemLoc->Size.hasValue() &&
179         !TypeSize::isKnownGE(AllocSize,
180                              TypeSize::getFixed(MemLoc->Size.getValue())))
181       return true;
182     switch (I->getOpcode()) {
183     case Instruction::Store:
184       if (AI == cast<StoreInst>(I)->getValueOperand())
185         return true;
186       break;
187     case Instruction::AtomicCmpXchg:
188       // cmpxchg conceptually includes both a load and store from the same
189       // location. So, like store, the value being stored is what matters.
190       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
191         return true;
192       break;
193     case Instruction::PtrToInt:
194       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
195         return true;
196       break;
197     case Instruction::Call: {
198       // Ignore intrinsics that do not become real instructions.
199       // TODO: Narrow this to intrinsics that have store-like effects.
200       const auto *CI = cast<CallInst>(I);
201       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
202         return true;
203       break;
204     }
205     case Instruction::Invoke:
206       return true;
207     case Instruction::GetElementPtr: {
208       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
209       // assumed to be potentially out-of-bounds, then any memory access that
210       // would use it could also be out-of-bounds meaning stack protection is
211       // required.
212       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
213       unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
214       APInt Offset(IndexSize, 0);
215       if (!GEP->accumulateConstantOffset(DL, Offset))
216         return true;
217       TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
218       if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
219         return true;
220       // Adjust AllocSize to be the space remaining after this offset.
221       // We can't subtract a fixed size from a scalable one, so in that case
222       // assume the scalable value is of minimum size.
223       TypeSize NewAllocSize =
224           TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
225       if (HasAddressTaken(I, NewAllocSize))
226         return true;
227       break;
228     }
229     case Instruction::BitCast:
230     case Instruction::Select:
231     case Instruction::AddrSpaceCast:
232       if (HasAddressTaken(I, AllocSize))
233         return true;
234       break;
235     case Instruction::PHI: {
236       // Keep track of what PHI nodes we have already visited to ensure
237       // they are only visited once.
238       const auto *PN = cast<PHINode>(I);
239       if (VisitedPHIs.insert(PN).second)
240         if (HasAddressTaken(PN, AllocSize))
241           return true;
242       break;
243     }
244     case Instruction::Load:
245     case Instruction::AtomicRMW:
246     case Instruction::Ret:
247       // These instructions take an address operand, but have load-like or
248       // other innocuous behavior that should not trigger a stack protector.
249       // atomicrmw conceptually has both load and store semantics, but the
250       // value being stored must be integer; so if a pointer is being stored,
251       // we'll catch it in the PtrToInt case above.
252       break;
253     default:
254       // Conservatively return true for any instruction that takes an address
255       // operand, but is not handled above.
256       return true;
257     }
258   }
259   return false;
260 }
261 
262 /// Search for the first call to the llvm.stackprotector intrinsic and return it
263 /// if present.
264 static const CallInst *findStackProtectorIntrinsic(Function &F) {
265   for (const BasicBlock &BB : F)
266     for (const Instruction &I : BB)
267       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
268         if (II->getIntrinsicID() == Intrinsic::stackprotector)
269           return II;
270   return nullptr;
271 }
272 
273 /// Check whether or not this function needs a stack protector based
274 /// upon the stack protector level.
275 ///
276 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
277 /// The standard heuristic which will add a guard variable to functions that
278 /// call alloca with a either a variable size or a size >= SSPBufferSize,
279 /// functions with character buffers larger than SSPBufferSize, and functions
280 /// with aggregates containing character buffers larger than SSPBufferSize. The
281 /// strong heuristic will add a guard variables to functions that call alloca
282 /// regardless of size, functions with any buffer regardless of type and size,
283 /// functions with aggregates that contain any buffer regardless of type and
284 /// size, and functions that contain stack-based variables that have had their
285 /// address taken.
286 bool StackProtector::RequiresStackProtector() {
287   bool Strong = false;
288   bool NeedsProtector = false;
289 
290   if (F->hasFnAttribute(Attribute::SafeStack))
291     return false;
292 
293   // We are constructing the OptimizationRemarkEmitter on the fly rather than
294   // using the analysis pass to avoid building DominatorTree and LoopInfo which
295   // are not available this late in the IR pipeline.
296   OptimizationRemarkEmitter ORE(F);
297 
298   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
299     ORE.emit([&]() {
300       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
301              << "Stack protection applied to function "
302              << ore::NV("Function", F)
303              << " due to a function attribute or command-line switch";
304     });
305     NeedsProtector = true;
306     Strong = true; // Use the same heuristic as strong to determine SSPLayout
307   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
308     Strong = true;
309   else if (!F->hasFnAttribute(Attribute::StackProtect))
310     return false;
311 
312   for (const BasicBlock &BB : *F) {
313     for (const Instruction &I : BB) {
314       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
315         if (AI->isArrayAllocation()) {
316           auto RemarkBuilder = [&]() {
317             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
318                                       &I)
319                    << "Stack protection applied to function "
320                    << ore::NV("Function", F)
321                    << " due to a call to alloca or use of a variable length "
322                       "array";
323           };
324           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
325             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
326               // A call to alloca with size >= SSPBufferSize requires
327               // stack protectors.
328               Layout.insert(std::make_pair(AI,
329                                            MachineFrameInfo::SSPLK_LargeArray));
330               ORE.emit(RemarkBuilder);
331               NeedsProtector = true;
332             } else if (Strong) {
333               // Require protectors for all alloca calls in strong mode.
334               Layout.insert(std::make_pair(AI,
335                                            MachineFrameInfo::SSPLK_SmallArray));
336               ORE.emit(RemarkBuilder);
337               NeedsProtector = true;
338             }
339           } else {
340             // A call to alloca with a variable size requires protectors.
341             Layout.insert(std::make_pair(AI,
342                                          MachineFrameInfo::SSPLK_LargeArray));
343             ORE.emit(RemarkBuilder);
344             NeedsProtector = true;
345           }
346           continue;
347         }
348 
349         bool IsLarge = false;
350         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
351           Layout.insert(std::make_pair(AI, IsLarge
352                                        ? MachineFrameInfo::SSPLK_LargeArray
353                                        : MachineFrameInfo::SSPLK_SmallArray));
354           ORE.emit([&]() {
355             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
356                    << "Stack protection applied to function "
357                    << ore::NV("Function", F)
358                    << " due to a stack allocated buffer or struct containing a "
359                       "buffer";
360           });
361           NeedsProtector = true;
362           continue;
363         }
364 
365         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
366                                               AI->getAllocatedType()))) {
367           ++NumAddrTaken;
368           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
369           ORE.emit([&]() {
370             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
371                                       &I)
372                    << "Stack protection applied to function "
373                    << ore::NV("Function", F)
374                    << " due to the address of a local variable being taken";
375           });
376           NeedsProtector = true;
377         }
378         // Clear any PHIs that we visited, to make sure we examine all uses of
379         // any subsequent allocas that we look at.
380         VisitedPHIs.clear();
381       }
382     }
383   }
384 
385   return NeedsProtector;
386 }
387 
388 /// Create a stack guard loading and populate whether SelectionDAG SSP is
389 /// supported.
390 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
391                             IRBuilder<> &B,
392                             bool *SupportsSelectionDAGSP = nullptr) {
393   Value *Guard = TLI->getIRStackGuard(B);
394   StringRef GuardMode = M->getStackProtectorGuard();
395   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
396     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
397 
398   // Use SelectionDAG SSP handling, since there isn't an IR guard.
399   //
400   // This is more or less weird, since we optionally output whether we
401   // should perform a SelectionDAG SP here. The reason is that it's strictly
402   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
403   // mutating. There is no way to get this bit without mutating the IR, so
404   // getting this bit has to happen in this right time.
405   //
406   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
407   // will put more burden on the backends' overriding work, especially when it
408   // actually conveys the same information getIRStackGuard() already gives.
409   if (SupportsSelectionDAGSP)
410     *SupportsSelectionDAGSP = true;
411   TLI->insertSSPDeclarations(*M);
412   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
413 }
414 
415 /// Insert code into the entry block that stores the stack guard
416 /// variable onto the stack:
417 ///
418 ///   entry:
419 ///     StackGuardSlot = alloca i8*
420 ///     StackGuard = <stack guard>
421 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
422 ///
423 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
424 /// node.
425 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc,
426                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
427   bool SupportsSelectionDAGSP = false;
428   IRBuilder<> B(&F->getEntryBlock().front());
429   PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext());
430   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
431 
432   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
433   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
434                {GuardSlot, AI});
435   return SupportsSelectionDAGSP;
436 }
437 
438 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
439 /// function.
440 ///
441 ///  - The prologue code loads and stores the stack guard onto the stack.
442 ///  - The epilogue checks the value stored in the prologue against the original
443 ///    value. It calls __stack_chk_fail if they differ.
444 bool StackProtector::InsertStackProtectors() {
445   // If the target wants to XOR the frame pointer into the guard value, it's
446   // impossible to emit the check in IR, so the target *must* support stack
447   // protection in SDAG.
448   bool SupportsSelectionDAGSP =
449       TLI->useStackGuardXorFP() ||
450       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
451   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
452   BasicBlock *FailBB = nullptr;
453 
454   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
455     // This is stack protector auto generated check BB, skip it.
456     if (&BB == FailBB)
457       continue;
458     Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator());
459     if (!CheckLoc) {
460       for (auto &Inst : BB) {
461         auto *CB = dyn_cast<CallBase>(&Inst);
462         if (!CB)
463           continue;
464         if (!CB->doesNotReturn())
465           continue;
466         // Do stack check before non-return calls (e.g: __cxa_throw)
467         CheckLoc = CB;
468         break;
469       }
470     }
471 
472     if (!CheckLoc)
473       continue;
474 
475     // Generate prologue instrumentation if not already generated.
476     if (!HasPrologue) {
477       HasPrologue = true;
478       SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI);
479     }
480 
481     // SelectionDAG based code generation. Nothing else needs to be done here.
482     // The epilogue instrumentation is postponed to SelectionDAG.
483     if (SupportsSelectionDAGSP)
484       break;
485 
486     // Find the stack guard slot if the prologue was not created by this pass
487     // itself via a previous call to CreatePrologue().
488     if (!AI) {
489       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
490       assert(SPCall && "Call to llvm.stackprotector is missing");
491       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
492     }
493 
494     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
495     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
496     // instrumentation has already been generated.
497     HasIRCheck = true;
498 
499     // If we're instrumenting a block with a tail call, the check has to be
500     // inserted before the call rather than between it and the return. The
501     // verifier guarantees that a tail call is either directly before the
502     // return or with a single correct bitcast of the return value in between so
503     // we don't need to worry about many situations here.
504     Instruction *Prev = CheckLoc->getPrevNonDebugInstruction();
505     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
506       CheckLoc = Prev;
507     else if (Prev) {
508       Prev = Prev->getPrevNonDebugInstruction();
509       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
510         CheckLoc = Prev;
511     }
512 
513     // Generate epilogue instrumentation. The epilogue intrumentation can be
514     // function-based or inlined depending on which mechanism the target is
515     // providing.
516     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
517       // Generate the function-based epilogue instrumentation.
518       // The target provides a guard check function, generate a call to it.
519       IRBuilder<> B(CheckLoc);
520       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
521       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
522       Call->setAttributes(GuardCheck->getAttributes());
523       Call->setCallingConv(GuardCheck->getCallingConv());
524     } else {
525       // Generate the epilogue with inline instrumentation.
526       // If we do not support SelectionDAG based calls, generate IR level
527       // calls.
528       //
529       // For each block with a return instruction, convert this:
530       //
531       //   return:
532       //     ...
533       //     ret ...
534       //
535       // into this:
536       //
537       //   return:
538       //     ...
539       //     %1 = <stack guard>
540       //     %2 = load StackGuardSlot
541       //     %3 = icmp ne i1 %1, %2
542       //     br i1 %3, label %CallStackCheckFailBlk, label %SP_return
543       //
544       //   SP_return:
545       //     ret ...
546       //
547       //   CallStackCheckFailBlk:
548       //     call void @__stack_chk_fail()
549       //     unreachable
550 
551       // Create the FailBB. We duplicate the BB every time since the MI tail
552       // merge pass will merge together all of the various BB into one including
553       // fail BB generated by the stack protector pseudo instruction.
554       if (!FailBB)
555         FailBB = CreateFailBB();
556 
557       IRBuilder<> B(CheckLoc);
558       Value *Guard = getStackGuard(TLI, M, B);
559       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
560       auto *Cmp = cast<ICmpInst>(B.CreateICmpNE(Guard, LI2));
561       auto SuccessProb =
562           BranchProbabilityInfo::getBranchProbStackProtector(true);
563       auto FailureProb =
564           BranchProbabilityInfo::getBranchProbStackProtector(false);
565       MDNode *Weights = MDBuilder(F->getContext())
566                             .createBranchWeights(FailureProb.getNumerator(),
567                                                  SuccessProb.getNumerator());
568 
569       SplitBlockAndInsertIfThen(Cmp, CheckLoc,
570                                 /*Unreachable=*/false, Weights,
571                                 DTU ? &*DTU : nullptr,
572                                 /*LI=*/nullptr, /*ThenBlock=*/FailBB);
573 
574       auto *BI = cast<BranchInst>(Cmp->getParent()->getTerminator());
575       BasicBlock *NewBB = BI->getSuccessor(1);
576       NewBB->setName("SP_return");
577       NewBB->moveAfter(&BB);
578 
579       Cmp->setPredicate(Cmp->getInversePredicate());
580       BI->swapSuccessors();
581     }
582   }
583 
584   // Return if we didn't modify any basic blocks. i.e., there are no return
585   // statements in the function.
586   return HasPrologue;
587 }
588 
589 /// CreateFailBB - Create a basic block to jump to when the stack protector
590 /// check fails.
591 BasicBlock *StackProtector::CreateFailBB() {
592   LLVMContext &Context = F->getContext();
593   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
594   IRBuilder<> B(FailBB);
595   if (F->getSubprogram())
596     B.SetCurrentDebugLocation(
597         DILocation::get(Context, 0, 0, F->getSubprogram()));
598   if (Trip.isOSOpenBSD()) {
599     FunctionCallee StackChkFail = M->getOrInsertFunction(
600         "__stack_smash_handler", Type::getVoidTy(Context),
601         Type::getInt8PtrTy(Context));
602 
603     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
604   } else {
605     FunctionCallee StackChkFail =
606         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
607 
608     B.CreateCall(StackChkFail, {});
609   }
610   B.CreateUnreachable();
611   return FailBB;
612 }
613 
614 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
615   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
616 }
617 
618 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
619   if (Layout.empty())
620     return;
621 
622   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
623     if (MFI.isDeadObjectIndex(I))
624       continue;
625 
626     const AllocaInst *AI = MFI.getObjectAllocation(I);
627     if (!AI)
628       continue;
629 
630     SSPLayoutMap::const_iterator LI = Layout.find(AI);
631     if (LI == Layout.end())
632       continue;
633 
634     MFI.setObjectSSPLayout(I, LI->second);
635   }
636 }
637