xref: /llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 51599687865ed713da7545b79c4f42df13076a58)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass inserts stack protectors into functions which need them. A variable
11 // with a random value in it is stored onto the stack before the local variables
12 // are allocated. Upon exiting the block, the stored value is checked. If it's
13 // changed, then there was some sort of violation and the program aborts.
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/OptimizationDiagnosticInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/StackProtector.h"
24 #include "llvm/IR/Attributes.h"
25 #include "llvm/IR/BasicBlock.h"
26 #include "llvm/IR/Constants.h"
27 #include "llvm/IR/DataLayout.h"
28 #include "llvm/IR/DebugInfo.h"
29 #include "llvm/IR/DebugLoc.h"
30 #include "llvm/IR/DerivedTypes.h"
31 #include "llvm/IR/Function.h"
32 #include "llvm/IR/IRBuilder.h"
33 #include "llvm/IR/Instruction.h"
34 #include "llvm/IR/Instructions.h"
35 #include "llvm/IR/Intrinsics.h"
36 #include "llvm/IR/MDBuilder.h"
37 #include "llvm/IR/Module.h"
38 #include "llvm/IR/Type.h"
39 #include "llvm/IR/User.h"
40 #include "llvm/Pass.h"
41 #include "llvm/Support/Casting.h"
42 #include "llvm/Support/CommandLine.h"
43 #include "llvm/Target/TargetLowering.h"
44 #include "llvm/Target/TargetMachine.h"
45 #include "llvm/Target/TargetOptions.h"
46 #include "llvm/Target/TargetSubtargetInfo.h"
47 #include <utility>
48 
49 using namespace llvm;
50 
51 #define DEBUG_TYPE "stack-protector"
52 
53 STATISTIC(NumFunProtected, "Number of functions protected");
54 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
55                         " taken.");
56 
57 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
58                                           cl::init(true), cl::Hidden);
59 
60 char StackProtector::ID = 0;
61 INITIALIZE_TM_PASS(StackProtector, "stack-protector", "Insert stack protectors",
62                    false, true)
63 
64 FunctionPass *llvm::createStackProtectorPass(const TargetMachine *TM) {
65   return new StackProtector(TM);
66 }
67 
68 StackProtector::SSPLayoutKind
69 StackProtector::getSSPLayout(const AllocaInst *AI) const {
70   return AI ? Layout.lookup(AI) : SSPLK_None;
71 }
72 
73 void StackProtector::adjustForColoring(const AllocaInst *From,
74                                        const AllocaInst *To) {
75   // When coloring replaces one alloca with another, transfer the SSPLayoutKind
76   // tag from the remapped to the target alloca. The remapped alloca should
77   // have a size smaller than or equal to the replacement alloca.
78   SSPLayoutMap::iterator I = Layout.find(From);
79   if (I != Layout.end()) {
80     SSPLayoutKind Kind = I->second;
81     Layout.erase(I);
82 
83     // Transfer the tag, but make sure that SSPLK_AddrOf does not overwrite
84     // SSPLK_SmallArray or SSPLK_LargeArray, and make sure that
85     // SSPLK_SmallArray does not overwrite SSPLK_LargeArray.
86     I = Layout.find(To);
87     if (I == Layout.end())
88       Layout.insert(std::make_pair(To, Kind));
89     else if (I->second != SSPLK_LargeArray && Kind != SSPLK_AddrOf)
90       I->second = Kind;
91   }
92 }
93 
94 bool StackProtector::runOnFunction(Function &Fn) {
95   F = &Fn;
96   M = F->getParent();
97   DominatorTreeWrapperPass *DTWP =
98       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
99   DT = DTWP ? &DTWP->getDomTree() : nullptr;
100   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
101   HasPrologue = false;
102   HasIRCheck = false;
103 
104   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
105   if (Attr.isStringAttribute() &&
106       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
107     return false; // Invalid integer string
108 
109   if (!RequiresStackProtector())
110     return false;
111 
112   // TODO(etienneb): Functions with funclets are not correctly supported now.
113   // Do nothing if this is funclet-based personality.
114   if (Fn.hasPersonalityFn()) {
115     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
116     if (isFuncletEHPersonality(Personality))
117       return false;
118   }
119 
120   ++NumFunProtected;
121   return InsertStackProtectors();
122 }
123 
124 /// \param [out] IsLarge is set to true if a protectable array is found and
125 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
126 /// multiple arrays, this gets set if any of them is large.
127 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
128                                               bool Strong,
129                                               bool InStruct) const {
130   if (!Ty)
131     return false;
132   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
133     if (!AT->getElementType()->isIntegerTy(8)) {
134       // If we're on a non-Darwin platform or we're inside of a structure, don't
135       // add stack protectors unless the array is a character array.
136       // However, in strong mode any array, regardless of type and size,
137       // triggers a protector.
138       if (!Strong && (InStruct || !Trip.isOSDarwin()))
139         return false;
140     }
141 
142     // If an array has more than SSPBufferSize bytes of allocated space, then we
143     // emit stack protectors.
144     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
145       IsLarge = true;
146       return true;
147     }
148 
149     if (Strong)
150       // Require a protector for all arrays in strong mode
151       return true;
152   }
153 
154   const StructType *ST = dyn_cast<StructType>(Ty);
155   if (!ST)
156     return false;
157 
158   bool NeedsProtector = false;
159   for (StructType::element_iterator I = ST->element_begin(),
160                                     E = ST->element_end();
161        I != E; ++I)
162     if (ContainsProtectableArray(*I, IsLarge, Strong, true)) {
163       // If the element is a protectable array and is large (>= SSPBufferSize)
164       // then we are done.  If the protectable array is not large, then
165       // keep looking in case a subsequent element is a large array.
166       if (IsLarge)
167         return true;
168       NeedsProtector = true;
169     }
170 
171   return NeedsProtector;
172 }
173 
174 bool StackProtector::HasAddressTaken(const Instruction *AI) {
175   for (const User *U : AI->users()) {
176     if (const StoreInst *SI = dyn_cast<StoreInst>(U)) {
177       if (AI == SI->getValueOperand())
178         return true;
179     } else if (const PtrToIntInst *SI = dyn_cast<PtrToIntInst>(U)) {
180       if (AI == SI->getOperand(0))
181         return true;
182     } else if (isa<CallInst>(U)) {
183       return true;
184     } else if (isa<InvokeInst>(U)) {
185       return true;
186     } else if (const SelectInst *SI = dyn_cast<SelectInst>(U)) {
187       if (HasAddressTaken(SI))
188         return true;
189     } else if (const PHINode *PN = dyn_cast<PHINode>(U)) {
190       // Keep track of what PHI nodes we have already visited to ensure
191       // they are only visited once.
192       if (VisitedPHIs.insert(PN).second)
193         if (HasAddressTaken(PN))
194           return true;
195     } else if (const GetElementPtrInst *GEP = dyn_cast<GetElementPtrInst>(U)) {
196       if (HasAddressTaken(GEP))
197         return true;
198     } else if (const BitCastInst *BI = dyn_cast<BitCastInst>(U)) {
199       if (HasAddressTaken(BI))
200         return true;
201     }
202   }
203   return false;
204 }
205 
206 /// \brief Check whether or not this function needs a stack protector based
207 /// upon the stack protector level.
208 ///
209 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
210 /// The standard heuristic which will add a guard variable to functions that
211 /// call alloca with a either a variable size or a size >= SSPBufferSize,
212 /// functions with character buffers larger than SSPBufferSize, and functions
213 /// with aggregates containing character buffers larger than SSPBufferSize. The
214 /// strong heuristic will add a guard variables to functions that call alloca
215 /// regardless of size, functions with any buffer regardless of type and size,
216 /// functions with aggregates that contain any buffer regardless of type and
217 /// size, and functions that contain stack-based variables that have had their
218 /// address taken.
219 bool StackProtector::RequiresStackProtector() {
220   bool Strong = false;
221   bool NeedsProtector = false;
222   for (const BasicBlock &BB : *F)
223     for (const Instruction &I : BB)
224       if (const CallInst *CI = dyn_cast<CallInst>(&I))
225         if (CI->getCalledFunction() ==
226             Intrinsic::getDeclaration(F->getParent(),
227                                       Intrinsic::stackprotector))
228           HasPrologue = true;
229 
230   if (F->hasFnAttribute(Attribute::SafeStack))
231     return false;
232 
233   // We are constructing the OptimizationRemarkEmitter on the fly rather than
234   // using the analysis pass to avoid building DominatorTree and LoopInfo which
235   // are not available this late in the IR pipeline.
236   OptimizationRemarkEmitter ORE(F);
237   auto ReasonStub =
238       Twine("Stack protection applied to function " + F->getName() + " due to ")
239           .str();
240 
241   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
242     ORE.emit(OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
243              << ReasonStub << "a function attribute or command-line switch");
244     NeedsProtector = true;
245     Strong = true; // Use the same heuristic as strong to determine SSPLayout
246   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
247     Strong = true;
248   else if (HasPrologue)
249     NeedsProtector = true;
250   else if (!F->hasFnAttribute(Attribute::StackProtect))
251     return false;
252 
253   for (const BasicBlock &BB : *F) {
254     for (const Instruction &I : BB) {
255       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
256         if (AI->isArrayAllocation()) {
257           OptimizationRemark Remark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
258                                     &I);
259           Remark << ReasonStub
260                  << "a call to alloca or use of a variable length array";
261           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
262             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
263               // A call to alloca with size >= SSPBufferSize requires
264               // stack protectors.
265               Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
266               ORE.emit(Remark);
267               NeedsProtector = true;
268             } else if (Strong) {
269               // Require protectors for all alloca calls in strong mode.
270               Layout.insert(std::make_pair(AI, SSPLK_SmallArray));
271               ORE.emit(Remark);
272               NeedsProtector = true;
273             }
274           } else {
275             // A call to alloca with a variable size requires protectors.
276             Layout.insert(std::make_pair(AI, SSPLK_LargeArray));
277             ORE.emit(Remark);
278             NeedsProtector = true;
279           }
280           continue;
281         }
282 
283         bool IsLarge = false;
284         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
285           Layout.insert(std::make_pair(AI, IsLarge ? SSPLK_LargeArray
286                                                    : SSPLK_SmallArray));
287           ORE.emit(OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
288                    << ReasonStub
289                    << "a stack allocated buffer or struct containing a buffer");
290           NeedsProtector = true;
291           continue;
292         }
293 
294         if (Strong && HasAddressTaken(AI)) {
295           ++NumAddrTaken;
296           Layout.insert(std::make_pair(AI, SSPLK_AddrOf));
297           ORE.emit(
298               OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken", &I)
299               << ReasonStub << "the address of a local variable being taken");
300           NeedsProtector = true;
301         }
302       }
303     }
304   }
305 
306   return NeedsProtector;
307 }
308 
309 /// Create a stack guard loading and populate whether SelectionDAG SSP is
310 /// supported.
311 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
312                             IRBuilder<> &B,
313                             bool *SupportsSelectionDAGSP = nullptr) {
314   if (Value *Guard = TLI->getIRStackGuard(B))
315     return B.CreateLoad(Guard, true, "StackGuard");
316 
317   // Use SelectionDAG SSP handling, since there isn't an IR guard.
318   //
319   // This is more or less weird, since we optionally output whether we
320   // should perform a SelectionDAG SP here. The reason is that it's strictly
321   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
322   // mutating. There is no way to get this bit without mutating the IR, so
323   // getting this bit has to happen in this right time.
324   //
325   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
326   // will put more burden on the backends' overriding work, especially when it
327   // actually conveys the same information getIRStackGuard() already gives.
328   if (SupportsSelectionDAGSP)
329     *SupportsSelectionDAGSP = true;
330   TLI->insertSSPDeclarations(*M);
331   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
332 }
333 
334 /// Insert code into the entry block that stores the stack guard
335 /// variable onto the stack:
336 ///
337 ///   entry:
338 ///     StackGuardSlot = alloca i8*
339 ///     StackGuard = <stack guard>
340 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
341 ///
342 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
343 /// node.
344 static bool CreatePrologue(Function *F, Module *M, ReturnInst *RI,
345                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
346   bool SupportsSelectionDAGSP = false;
347   IRBuilder<> B(&F->getEntryBlock().front());
348   PointerType *PtrTy = Type::getInt8PtrTy(RI->getContext());
349   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
350 
351   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
352   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
353                {GuardSlot, AI});
354   return SupportsSelectionDAGSP;
355 }
356 
357 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
358 /// function.
359 ///
360 ///  - The prologue code loads and stores the stack guard onto the stack.
361 ///  - The epilogue checks the value stored in the prologue against the original
362 ///    value. It calls __stack_chk_fail if they differ.
363 bool StackProtector::InsertStackProtectors() {
364   bool SupportsSelectionDAGSP =
365       EnableSelectionDAGSP && !TM->Options.EnableFastISel;
366   AllocaInst *AI = nullptr;       // Place on stack that stores the stack guard.
367 
368   for (Function::iterator I = F->begin(), E = F->end(); I != E;) {
369     BasicBlock *BB = &*I++;
370     ReturnInst *RI = dyn_cast<ReturnInst>(BB->getTerminator());
371     if (!RI)
372       continue;
373 
374     // Generate prologue instrumentation if not already generated.
375     if (!HasPrologue) {
376       HasPrologue = true;
377       SupportsSelectionDAGSP &= CreatePrologue(F, M, RI, TLI, AI);
378     }
379 
380     // SelectionDAG based code generation. Nothing else needs to be done here.
381     // The epilogue instrumentation is postponed to SelectionDAG.
382     if (SupportsSelectionDAGSP)
383       break;
384 
385     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
386     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
387     // instrumentation has already been generated.
388     HasIRCheck = true;
389 
390     // Generate epilogue instrumentation. The epilogue intrumentation can be
391     // function-based or inlined depending on which mechanism the target is
392     // providing.
393     if (Value* GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
394       // Generate the function-based epilogue instrumentation.
395       // The target provides a guard check function, generate a call to it.
396       IRBuilder<> B(RI);
397       LoadInst *Guard = B.CreateLoad(AI, true, "Guard");
398       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
399       llvm::Function *Function = cast<llvm::Function>(GuardCheck);
400       Call->setAttributes(Function->getAttributes());
401       Call->setCallingConv(Function->getCallingConv());
402     } else {
403       // Generate the epilogue with inline instrumentation.
404       // If we do not support SelectionDAG based tail calls, generate IR level
405       // tail calls.
406       //
407       // For each block with a return instruction, convert this:
408       //
409       //   return:
410       //     ...
411       //     ret ...
412       //
413       // into this:
414       //
415       //   return:
416       //     ...
417       //     %1 = <stack guard>
418       //     %2 = load StackGuardSlot
419       //     %3 = cmp i1 %1, %2
420       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
421       //
422       //   SP_return:
423       //     ret ...
424       //
425       //   CallStackCheckFailBlk:
426       //     call void @__stack_chk_fail()
427       //     unreachable
428 
429       // Create the FailBB. We duplicate the BB every time since the MI tail
430       // merge pass will merge together all of the various BB into one including
431       // fail BB generated by the stack protector pseudo instruction.
432       BasicBlock *FailBB = CreateFailBB();
433 
434       // Split the basic block before the return instruction.
435       BasicBlock *NewBB = BB->splitBasicBlock(RI->getIterator(), "SP_return");
436 
437       // Update the dominator tree if we need to.
438       if (DT && DT->isReachableFromEntry(BB)) {
439         DT->addNewBlock(NewBB, BB);
440         DT->addNewBlock(FailBB, BB);
441       }
442 
443       // Remove default branch instruction to the new BB.
444       BB->getTerminator()->eraseFromParent();
445 
446       // Move the newly created basic block to the point right after the old
447       // basic block so that it's in the "fall through" position.
448       NewBB->moveAfter(BB);
449 
450       // Generate the stack protector instructions in the old basic block.
451       IRBuilder<> B(BB);
452       Value *Guard = getStackGuard(TLI, M, B);
453       LoadInst *LI2 = B.CreateLoad(AI, true);
454       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
455       auto SuccessProb =
456           BranchProbabilityInfo::getBranchProbStackProtector(true);
457       auto FailureProb =
458           BranchProbabilityInfo::getBranchProbStackProtector(false);
459       MDNode *Weights = MDBuilder(F->getContext())
460                             .createBranchWeights(SuccessProb.getNumerator(),
461                                                  FailureProb.getNumerator());
462       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
463     }
464   }
465 
466   // Return if we didn't modify any basic blocks. i.e., there are no return
467   // statements in the function.
468   return HasPrologue;
469 }
470 
471 /// CreateFailBB - Create a basic block to jump to when the stack protector
472 /// check fails.
473 BasicBlock *StackProtector::CreateFailBB() {
474   LLVMContext &Context = F->getContext();
475   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
476   IRBuilder<> B(FailBB);
477   B.SetCurrentDebugLocation(DebugLoc::get(0, 0, F->getSubprogram()));
478   if (Trip.isOSOpenBSD()) {
479     Constant *StackChkFail =
480         M->getOrInsertFunction("__stack_smash_handler",
481                                Type::getVoidTy(Context),
482                                Type::getInt8PtrTy(Context), nullptr);
483 
484     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
485   } else {
486     Constant *StackChkFail =
487         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context),
488                                nullptr);
489     B.CreateCall(StackChkFail, {});
490   }
491   B.CreateUnreachable();
492   return FailBB;
493 }
494 
495 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
496   return HasPrologue && !HasIRCheck && dyn_cast<ReturnInst>(BB.getTerminator());
497 }
498