xref: /llvm-project/llvm/lib/CodeGen/StackProtector.cpp (revision 467432899bc2f71842ed1b24d24c094da02af7d4)
1 //===- StackProtector.cpp - Stack Protector Insertion ---------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass inserts stack protectors into functions which need them. A variable
10 // with a random value in it is stored onto the stack before the local variables
11 // are allocated. Upon exiting the block, the stored value is checked. If it's
12 // changed, then there was some sort of violation and the program aborts.
13 //
14 //===----------------------------------------------------------------------===//
15 
16 #include "llvm/CodeGen/StackProtector.h"
17 #include "llvm/ADT/SmallPtrSet.h"
18 #include "llvm/ADT/Statistic.h"
19 #include "llvm/Analysis/BranchProbabilityInfo.h"
20 #include "llvm/Analysis/EHPersonalities.h"
21 #include "llvm/Analysis/MemoryLocation.h"
22 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Attributes.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Constants.h"
30 #include "llvm/IR/DataLayout.h"
31 #include "llvm/IR/DerivedTypes.h"
32 #include "llvm/IR/Dominators.h"
33 #include "llvm/IR/Function.h"
34 #include "llvm/IR/IRBuilder.h"
35 #include "llvm/IR/Instruction.h"
36 #include "llvm/IR/Instructions.h"
37 #include "llvm/IR/IntrinsicInst.h"
38 #include "llvm/IR/Intrinsics.h"
39 #include "llvm/IR/MDBuilder.h"
40 #include "llvm/IR/Module.h"
41 #include "llvm/IR/Type.h"
42 #include "llvm/IR/User.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/Pass.h"
45 #include "llvm/Support/Casting.h"
46 #include "llvm/Support/CommandLine.h"
47 #include "llvm/Target/TargetMachine.h"
48 #include "llvm/Target/TargetOptions.h"
49 #include <optional>
50 #include <utility>
51 
52 using namespace llvm;
53 
54 #define DEBUG_TYPE "stack-protector"
55 
56 STATISTIC(NumFunProtected, "Number of functions protected");
57 STATISTIC(NumAddrTaken, "Number of local variables that have their address"
58                         " taken.");
59 
60 static cl::opt<bool> EnableSelectionDAGSP("enable-selectiondag-sp",
61                                           cl::init(true), cl::Hidden);
62 
63 char StackProtector::ID = 0;
64 
65 StackProtector::StackProtector() : FunctionPass(ID), SSPBufferSize(8) {
66   initializeStackProtectorPass(*PassRegistry::getPassRegistry());
67 }
68 
69 INITIALIZE_PASS_BEGIN(StackProtector, DEBUG_TYPE,
70                       "Insert stack protectors", false, true)
71 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
72 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
73 INITIALIZE_PASS_END(StackProtector, DEBUG_TYPE,
74                     "Insert stack protectors", false, true)
75 
76 FunctionPass *llvm::createStackProtectorPass() { return new StackProtector(); }
77 
78 void StackProtector::getAnalysisUsage(AnalysisUsage &AU) const {
79   AU.addRequired<TargetPassConfig>();
80   AU.addPreserved<DominatorTreeWrapperPass>();
81 }
82 
83 bool StackProtector::runOnFunction(Function &Fn) {
84   F = &Fn;
85   M = F->getParent();
86   DominatorTreeWrapperPass *DTWP =
87       getAnalysisIfAvailable<DominatorTreeWrapperPass>();
88   DT = DTWP ? &DTWP->getDomTree() : nullptr;
89   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
90   Trip = TM->getTargetTriple();
91   TLI = TM->getSubtargetImpl(Fn)->getTargetLowering();
92   HasPrologue = false;
93   HasIRCheck = false;
94 
95   Attribute Attr = Fn.getFnAttribute("stack-protector-buffer-size");
96   if (Attr.isStringAttribute() &&
97       Attr.getValueAsString().getAsInteger(10, SSPBufferSize))
98     return false; // Invalid integer string
99 
100   if (!RequiresStackProtector())
101     return false;
102 
103   // TODO(etienneb): Functions with funclets are not correctly supported now.
104   // Do nothing if this is funclet-based personality.
105   if (Fn.hasPersonalityFn()) {
106     EHPersonality Personality = classifyEHPersonality(Fn.getPersonalityFn());
107     if (isFuncletEHPersonality(Personality))
108       return false;
109   }
110 
111   ++NumFunProtected;
112   return InsertStackProtectors();
113 }
114 
115 /// \param [out] IsLarge is set to true if a protectable array is found and
116 /// it is "large" ( >= ssp-buffer-size).  In the case of a structure with
117 /// multiple arrays, this gets set if any of them is large.
118 bool StackProtector::ContainsProtectableArray(Type *Ty, bool &IsLarge,
119                                               bool Strong,
120                                               bool InStruct) const {
121   if (!Ty)
122     return false;
123   if (ArrayType *AT = dyn_cast<ArrayType>(Ty)) {
124     if (!AT->getElementType()->isIntegerTy(8)) {
125       // If we're on a non-Darwin platform or we're inside of a structure, don't
126       // add stack protectors unless the array is a character array.
127       // However, in strong mode any array, regardless of type and size,
128       // triggers a protector.
129       if (!Strong && (InStruct || !Trip.isOSDarwin()))
130         return false;
131     }
132 
133     // If an array has more than SSPBufferSize bytes of allocated space, then we
134     // emit stack protectors.
135     if (SSPBufferSize <= M->getDataLayout().getTypeAllocSize(AT)) {
136       IsLarge = true;
137       return true;
138     }
139 
140     if (Strong)
141       // Require a protector for all arrays in strong mode
142       return true;
143   }
144 
145   const StructType *ST = dyn_cast<StructType>(Ty);
146   if (!ST)
147     return false;
148 
149   bool NeedsProtector = false;
150   for (Type *ET : ST->elements())
151     if (ContainsProtectableArray(ET, IsLarge, Strong, true)) {
152       // If the element is a protectable array and is large (>= SSPBufferSize)
153       // then we are done.  If the protectable array is not large, then
154       // keep looking in case a subsequent element is a large array.
155       if (IsLarge)
156         return true;
157       NeedsProtector = true;
158     }
159 
160   return NeedsProtector;
161 }
162 
163 bool StackProtector::HasAddressTaken(const Instruction *AI,
164                                      TypeSize AllocSize) {
165   const DataLayout &DL = M->getDataLayout();
166   for (const User *U : AI->users()) {
167     const auto *I = cast<Instruction>(U);
168     // If this instruction accesses memory make sure it doesn't access beyond
169     // the bounds of the allocated object.
170     std::optional<MemoryLocation> MemLoc = MemoryLocation::getOrNone(I);
171     if (MemLoc && MemLoc->Size.hasValue() &&
172         !TypeSize::isKnownGE(AllocSize,
173                              TypeSize::getFixed(MemLoc->Size.getValue())))
174       return true;
175     switch (I->getOpcode()) {
176     case Instruction::Store:
177       if (AI == cast<StoreInst>(I)->getValueOperand())
178         return true;
179       break;
180     case Instruction::AtomicCmpXchg:
181       // cmpxchg conceptually includes both a load and store from the same
182       // location. So, like store, the value being stored is what matters.
183       if (AI == cast<AtomicCmpXchgInst>(I)->getNewValOperand())
184         return true;
185       break;
186     case Instruction::PtrToInt:
187       if (AI == cast<PtrToIntInst>(I)->getOperand(0))
188         return true;
189       break;
190     case Instruction::Call: {
191       // Ignore intrinsics that do not become real instructions.
192       // TODO: Narrow this to intrinsics that have store-like effects.
193       const auto *CI = cast<CallInst>(I);
194       if (!CI->isDebugOrPseudoInst() && !CI->isLifetimeStartOrEnd())
195         return true;
196       break;
197     }
198     case Instruction::Invoke:
199       return true;
200     case Instruction::GetElementPtr: {
201       // If the GEP offset is out-of-bounds, or is non-constant and so has to be
202       // assumed to be potentially out-of-bounds, then any memory access that
203       // would use it could also be out-of-bounds meaning stack protection is
204       // required.
205       const GetElementPtrInst *GEP = cast<GetElementPtrInst>(I);
206       unsigned IndexSize = DL.getIndexTypeSizeInBits(I->getType());
207       APInt Offset(IndexSize, 0);
208       if (!GEP->accumulateConstantOffset(DL, Offset))
209         return true;
210       TypeSize OffsetSize = TypeSize::Fixed(Offset.getLimitedValue());
211       if (!TypeSize::isKnownGT(AllocSize, OffsetSize))
212         return true;
213       // Adjust AllocSize to be the space remaining after this offset.
214       // We can't subtract a fixed size from a scalable one, so in that case
215       // assume the scalable value is of minimum size.
216       TypeSize NewAllocSize =
217           TypeSize::Fixed(AllocSize.getKnownMinValue()) - OffsetSize;
218       if (HasAddressTaken(I, NewAllocSize))
219         return true;
220       break;
221     }
222     case Instruction::BitCast:
223     case Instruction::Select:
224     case Instruction::AddrSpaceCast:
225       if (HasAddressTaken(I, AllocSize))
226         return true;
227       break;
228     case Instruction::PHI: {
229       // Keep track of what PHI nodes we have already visited to ensure
230       // they are only visited once.
231       const auto *PN = cast<PHINode>(I);
232       if (VisitedPHIs.insert(PN).second)
233         if (HasAddressTaken(PN, AllocSize))
234           return true;
235       break;
236     }
237     case Instruction::Load:
238     case Instruction::AtomicRMW:
239     case Instruction::Ret:
240       // These instructions take an address operand, but have load-like or
241       // other innocuous behavior that should not trigger a stack protector.
242       // atomicrmw conceptually has both load and store semantics, but the
243       // value being stored must be integer; so if a pointer is being stored,
244       // we'll catch it in the PtrToInt case above.
245       break;
246     default:
247       // Conservatively return true for any instruction that takes an address
248       // operand, but is not handled above.
249       return true;
250     }
251   }
252   return false;
253 }
254 
255 /// Search for the first call to the llvm.stackprotector intrinsic and return it
256 /// if present.
257 static const CallInst *findStackProtectorIntrinsic(Function &F) {
258   for (const BasicBlock &BB : F)
259     for (const Instruction &I : BB)
260       if (const auto *II = dyn_cast<IntrinsicInst>(&I))
261         if (II->getIntrinsicID() == Intrinsic::stackprotector)
262           return II;
263   return nullptr;
264 }
265 
266 /// Check whether or not this function needs a stack protector based
267 /// upon the stack protector level.
268 ///
269 /// We use two heuristics: a standard (ssp) and strong (sspstrong).
270 /// The standard heuristic which will add a guard variable to functions that
271 /// call alloca with a either a variable size or a size >= SSPBufferSize,
272 /// functions with character buffers larger than SSPBufferSize, and functions
273 /// with aggregates containing character buffers larger than SSPBufferSize. The
274 /// strong heuristic will add a guard variables to functions that call alloca
275 /// regardless of size, functions with any buffer regardless of type and size,
276 /// functions with aggregates that contain any buffer regardless of type and
277 /// size, and functions that contain stack-based variables that have had their
278 /// address taken.
279 bool StackProtector::RequiresStackProtector() {
280   bool Strong = false;
281   bool NeedsProtector = false;
282 
283   if (F->hasFnAttribute(Attribute::SafeStack))
284     return false;
285 
286   // We are constructing the OptimizationRemarkEmitter on the fly rather than
287   // using the analysis pass to avoid building DominatorTree and LoopInfo which
288   // are not available this late in the IR pipeline.
289   OptimizationRemarkEmitter ORE(F);
290 
291   if (F->hasFnAttribute(Attribute::StackProtectReq)) {
292     ORE.emit([&]() {
293       return OptimizationRemark(DEBUG_TYPE, "StackProtectorRequested", F)
294              << "Stack protection applied to function "
295              << ore::NV("Function", F)
296              << " due to a function attribute or command-line switch";
297     });
298     NeedsProtector = true;
299     Strong = true; // Use the same heuristic as strong to determine SSPLayout
300   } else if (F->hasFnAttribute(Attribute::StackProtectStrong))
301     Strong = true;
302   else if (!F->hasFnAttribute(Attribute::StackProtect))
303     return false;
304 
305   for (const BasicBlock &BB : *F) {
306     for (const Instruction &I : BB) {
307       if (const AllocaInst *AI = dyn_cast<AllocaInst>(&I)) {
308         if (AI->isArrayAllocation()) {
309           auto RemarkBuilder = [&]() {
310             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAllocaOrArray",
311                                       &I)
312                    << "Stack protection applied to function "
313                    << ore::NV("Function", F)
314                    << " due to a call to alloca or use of a variable length "
315                       "array";
316           };
317           if (const auto *CI = dyn_cast<ConstantInt>(AI->getArraySize())) {
318             if (CI->getLimitedValue(SSPBufferSize) >= SSPBufferSize) {
319               // A call to alloca with size >= SSPBufferSize requires
320               // stack protectors.
321               Layout.insert(std::make_pair(AI,
322                                            MachineFrameInfo::SSPLK_LargeArray));
323               ORE.emit(RemarkBuilder);
324               NeedsProtector = true;
325             } else if (Strong) {
326               // Require protectors for all alloca calls in strong mode.
327               Layout.insert(std::make_pair(AI,
328                                            MachineFrameInfo::SSPLK_SmallArray));
329               ORE.emit(RemarkBuilder);
330               NeedsProtector = true;
331             }
332           } else {
333             // A call to alloca with a variable size requires protectors.
334             Layout.insert(std::make_pair(AI,
335                                          MachineFrameInfo::SSPLK_LargeArray));
336             ORE.emit(RemarkBuilder);
337             NeedsProtector = true;
338           }
339           continue;
340         }
341 
342         bool IsLarge = false;
343         if (ContainsProtectableArray(AI->getAllocatedType(), IsLarge, Strong)) {
344           Layout.insert(std::make_pair(AI, IsLarge
345                                        ? MachineFrameInfo::SSPLK_LargeArray
346                                        : MachineFrameInfo::SSPLK_SmallArray));
347           ORE.emit([&]() {
348             return OptimizationRemark(DEBUG_TYPE, "StackProtectorBuffer", &I)
349                    << "Stack protection applied to function "
350                    << ore::NV("Function", F)
351                    << " due to a stack allocated buffer or struct containing a "
352                       "buffer";
353           });
354           NeedsProtector = true;
355           continue;
356         }
357 
358         if (Strong && HasAddressTaken(AI, M->getDataLayout().getTypeAllocSize(
359                                               AI->getAllocatedType()))) {
360           ++NumAddrTaken;
361           Layout.insert(std::make_pair(AI, MachineFrameInfo::SSPLK_AddrOf));
362           ORE.emit([&]() {
363             return OptimizationRemark(DEBUG_TYPE, "StackProtectorAddressTaken",
364                                       &I)
365                    << "Stack protection applied to function "
366                    << ore::NV("Function", F)
367                    << " due to the address of a local variable being taken";
368           });
369           NeedsProtector = true;
370         }
371         // Clear any PHIs that we visited, to make sure we examine all uses of
372         // any subsequent allocas that we look at.
373         VisitedPHIs.clear();
374       }
375     }
376   }
377 
378   return NeedsProtector;
379 }
380 
381 /// Create a stack guard loading and populate whether SelectionDAG SSP is
382 /// supported.
383 static Value *getStackGuard(const TargetLoweringBase *TLI, Module *M,
384                             IRBuilder<> &B,
385                             bool *SupportsSelectionDAGSP = nullptr) {
386   Value *Guard = TLI->getIRStackGuard(B);
387   StringRef GuardMode = M->getStackProtectorGuard();
388   if ((GuardMode == "tls" || GuardMode.empty()) && Guard)
389     return B.CreateLoad(B.getInt8PtrTy(), Guard, true, "StackGuard");
390 
391   // Use SelectionDAG SSP handling, since there isn't an IR guard.
392   //
393   // This is more or less weird, since we optionally output whether we
394   // should perform a SelectionDAG SP here. The reason is that it's strictly
395   // defined as !TLI->getIRStackGuard(B), where getIRStackGuard is also
396   // mutating. There is no way to get this bit without mutating the IR, so
397   // getting this bit has to happen in this right time.
398   //
399   // We could have define a new function TLI::supportsSelectionDAGSP(), but that
400   // will put more burden on the backends' overriding work, especially when it
401   // actually conveys the same information getIRStackGuard() already gives.
402   if (SupportsSelectionDAGSP)
403     *SupportsSelectionDAGSP = true;
404   TLI->insertSSPDeclarations(*M);
405   return B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
406 }
407 
408 /// Insert code into the entry block that stores the stack guard
409 /// variable onto the stack:
410 ///
411 ///   entry:
412 ///     StackGuardSlot = alloca i8*
413 ///     StackGuard = <stack guard>
414 ///     call void @llvm.stackprotector(StackGuard, StackGuardSlot)
415 ///
416 /// Returns true if the platform/triple supports the stackprotectorcreate pseudo
417 /// node.
418 static bool CreatePrologue(Function *F, Module *M, Instruction *CheckLoc,
419                            const TargetLoweringBase *TLI, AllocaInst *&AI) {
420   bool SupportsSelectionDAGSP = false;
421   IRBuilder<> B(&F->getEntryBlock().front());
422   PointerType *PtrTy = Type::getInt8PtrTy(CheckLoc->getContext());
423   AI = B.CreateAlloca(PtrTy, nullptr, "StackGuardSlot");
424 
425   Value *GuardSlot = getStackGuard(TLI, M, B, &SupportsSelectionDAGSP);
426   B.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackprotector),
427                {GuardSlot, AI});
428   return SupportsSelectionDAGSP;
429 }
430 
431 /// InsertStackProtectors - Insert code into the prologue and epilogue of the
432 /// function.
433 ///
434 ///  - The prologue code loads and stores the stack guard onto the stack.
435 ///  - The epilogue checks the value stored in the prologue against the original
436 ///    value. It calls __stack_chk_fail if they differ.
437 bool StackProtector::InsertStackProtectors() {
438   // If the target wants to XOR the frame pointer into the guard value, it's
439   // impossible to emit the check in IR, so the target *must* support stack
440   // protection in SDAG.
441   bool SupportsSelectionDAGSP =
442       TLI->useStackGuardXorFP() ||
443       (EnableSelectionDAGSP && !TM->Options.EnableFastISel);
444   AllocaInst *AI = nullptr; // Place on stack that stores the stack guard.
445 
446   for (BasicBlock &BB : llvm::make_early_inc_range(*F)) {
447     Instruction *CheckLoc = dyn_cast<ReturnInst>(BB.getTerminator());
448     if (!CheckLoc) {
449       for (auto &Inst : BB) {
450         auto *CB = dyn_cast<CallBase>(&Inst);
451         if (!CB)
452           continue;
453         if (!CB->doesNotReturn())
454           continue;
455         // Do stack check before non-return calls (e.g: __cxa_throw)
456         CheckLoc = CB;
457         break;
458       }
459     }
460 
461     if (!CheckLoc)
462       continue;
463 
464     // Generate prologue instrumentation if not already generated.
465     if (!HasPrologue) {
466       HasPrologue = true;
467       SupportsSelectionDAGSP &= CreatePrologue(F, M, CheckLoc, TLI, AI);
468     }
469 
470     // SelectionDAG based code generation. Nothing else needs to be done here.
471     // The epilogue instrumentation is postponed to SelectionDAG.
472     if (SupportsSelectionDAGSP)
473       break;
474 
475     // Find the stack guard slot if the prologue was not created by this pass
476     // itself via a previous call to CreatePrologue().
477     if (!AI) {
478       const CallInst *SPCall = findStackProtectorIntrinsic(*F);
479       assert(SPCall && "Call to llvm.stackprotector is missing");
480       AI = cast<AllocaInst>(SPCall->getArgOperand(1));
481     }
482 
483     // Set HasIRCheck to true, so that SelectionDAG will not generate its own
484     // version. SelectionDAG called 'shouldEmitSDCheck' to check whether
485     // instrumentation has already been generated.
486     HasIRCheck = true;
487 
488     // If we're instrumenting a block with a tail call, the check has to be
489     // inserted before the call rather than between it and the return. The
490     // verifier guarantees that a tail call is either directly before the
491     // return or with a single correct bitcast of the return value in between so
492     // we don't need to worry about many situations here.
493     Instruction *Prev = CheckLoc->getPrevNonDebugInstruction();
494     if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
495       CheckLoc = Prev;
496     else if (Prev) {
497       Prev = Prev->getPrevNonDebugInstruction();
498       if (Prev && isa<CallInst>(Prev) && cast<CallInst>(Prev)->isTailCall())
499         CheckLoc = Prev;
500     }
501 
502     // Generate epilogue instrumentation. The epilogue intrumentation can be
503     // function-based or inlined depending on which mechanism the target is
504     // providing.
505     if (Function *GuardCheck = TLI->getSSPStackGuardCheck(*M)) {
506       // Generate the function-based epilogue instrumentation.
507       // The target provides a guard check function, generate a call to it.
508       IRBuilder<> B(CheckLoc);
509       LoadInst *Guard = B.CreateLoad(B.getInt8PtrTy(), AI, true, "Guard");
510       CallInst *Call = B.CreateCall(GuardCheck, {Guard});
511       Call->setAttributes(GuardCheck->getAttributes());
512       Call->setCallingConv(GuardCheck->getCallingConv());
513     } else {
514       // Generate the epilogue with inline instrumentation.
515       // If we do not support SelectionDAG based calls, generate IR level
516       // calls.
517       //
518       // For each block with a return instruction, convert this:
519       //
520       //   return:
521       //     ...
522       //     ret ...
523       //
524       // into this:
525       //
526       //   return:
527       //     ...
528       //     %1 = <stack guard>
529       //     %2 = load StackGuardSlot
530       //     %3 = cmp i1 %1, %2
531       //     br i1 %3, label %SP_return, label %CallStackCheckFailBlk
532       //
533       //   SP_return:
534       //     ret ...
535       //
536       //   CallStackCheckFailBlk:
537       //     call void @__stack_chk_fail()
538       //     unreachable
539 
540       // Create the FailBB. We duplicate the BB every time since the MI tail
541       // merge pass will merge together all of the various BB into one including
542       // fail BB generated by the stack protector pseudo instruction.
543       BasicBlock *FailBB = CreateFailBB();
544 
545       // Split the basic block before the return instruction.
546       BasicBlock *NewBB =
547           BB.splitBasicBlock(CheckLoc->getIterator(), "SP_return");
548 
549       // Update the dominator tree if we need to.
550       if (DT && DT->isReachableFromEntry(&BB)) {
551         DT->addNewBlock(NewBB, &BB);
552         DT->addNewBlock(FailBB, &BB);
553       }
554 
555       // Remove default branch instruction to the new BB.
556       BB.getTerminator()->eraseFromParent();
557 
558       // Move the newly created basic block to the point right after the old
559       // basic block so that it's in the "fall through" position.
560       NewBB->moveAfter(&BB);
561 
562       // Generate the stack protector instructions in the old basic block.
563       IRBuilder<> B(&BB);
564       Value *Guard = getStackGuard(TLI, M, B);
565       LoadInst *LI2 = B.CreateLoad(B.getInt8PtrTy(), AI, true);
566       Value *Cmp = B.CreateICmpEQ(Guard, LI2);
567       auto SuccessProb =
568           BranchProbabilityInfo::getBranchProbStackProtector(true);
569       auto FailureProb =
570           BranchProbabilityInfo::getBranchProbStackProtector(false);
571       MDNode *Weights = MDBuilder(F->getContext())
572                             .createBranchWeights(SuccessProb.getNumerator(),
573                                                  FailureProb.getNumerator());
574       B.CreateCondBr(Cmp, NewBB, FailBB, Weights);
575     }
576   }
577 
578   // Return if we didn't modify any basic blocks. i.e., there are no return
579   // statements in the function.
580   return HasPrologue;
581 }
582 
583 /// CreateFailBB - Create a basic block to jump to when the stack protector
584 /// check fails.
585 BasicBlock *StackProtector::CreateFailBB() {
586   LLVMContext &Context = F->getContext();
587   BasicBlock *FailBB = BasicBlock::Create(Context, "CallStackCheckFailBlk", F);
588   IRBuilder<> B(FailBB);
589   if (F->getSubprogram())
590     B.SetCurrentDebugLocation(
591         DILocation::get(Context, 0, 0, F->getSubprogram()));
592   if (Trip.isOSOpenBSD()) {
593     FunctionCallee StackChkFail = M->getOrInsertFunction(
594         "__stack_smash_handler", Type::getVoidTy(Context),
595         Type::getInt8PtrTy(Context));
596 
597     B.CreateCall(StackChkFail, B.CreateGlobalStringPtr(F->getName(), "SSH"));
598   } else {
599     FunctionCallee StackChkFail =
600         M->getOrInsertFunction("__stack_chk_fail", Type::getVoidTy(Context));
601 
602     B.CreateCall(StackChkFail, {});
603   }
604   B.CreateUnreachable();
605   return FailBB;
606 }
607 
608 bool StackProtector::shouldEmitSDCheck(const BasicBlock &BB) const {
609   return HasPrologue && !HasIRCheck && isa<ReturnInst>(BB.getTerminator());
610 }
611 
612 void StackProtector::copyToMachineFrameInfo(MachineFrameInfo &MFI) const {
613   if (Layout.empty())
614     return;
615 
616   for (int I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
617     if (MFI.isDeadObjectIndex(I))
618       continue;
619 
620     const AllocaInst *AI = MFI.getObjectAllocation(I);
621     if (!AI)
622       continue;
623 
624     SSPLayoutMap::const_iterator LI = Layout.find(AI);
625     if (LI == Layout.end())
626       continue;
627 
628     MFI.setObjectSSPLayout(I, LI->second);
629   }
630 }
631