1 //===- StackColoring.cpp --------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass implements the stack-coloring optimization that looks for 10 // lifetime markers machine instructions (LIFETIME_START and LIFETIME_END), 11 // which represent the possible lifetime of stack slots. It attempts to 12 // merge disjoint stack slots and reduce the used stack space. 13 // NOTE: This pass is not StackSlotColoring, which optimizes spill slots. 14 // 15 // TODO: In the future we plan to improve stack coloring in the following ways: 16 // 1. Allow merging multiple small slots into a single larger slot at different 17 // offsets. 18 // 2. Merge this pass with StackSlotColoring and allow merging of allocas with 19 // spill slots. 20 // 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/StackColoring.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DepthFirstIterator.h" 27 #include "llvm/ADT/SmallPtrSet.h" 28 #include "llvm/ADT/SmallVector.h" 29 #include "llvm/ADT/Statistic.h" 30 #include "llvm/Analysis/ValueTracking.h" 31 #include "llvm/CodeGen/LiveInterval.h" 32 #include "llvm/CodeGen/MachineBasicBlock.h" 33 #include "llvm/CodeGen/MachineFrameInfo.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineMemOperand.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/Passes.h" 40 #include "llvm/CodeGen/PseudoSourceValueManager.h" 41 #include "llvm/CodeGen/SlotIndexes.h" 42 #include "llvm/CodeGen/TargetOpcodes.h" 43 #include "llvm/CodeGen/WinEHFuncInfo.h" 44 #include "llvm/Config/llvm-config.h" 45 #include "llvm/IR/Constants.h" 46 #include "llvm/IR/DebugInfoMetadata.h" 47 #include "llvm/IR/Instructions.h" 48 #include "llvm/IR/Metadata.h" 49 #include "llvm/IR/Use.h" 50 #include "llvm/IR/Value.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/Casting.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Compiler.h" 56 #include "llvm/Support/Debug.h" 57 #include "llvm/Support/raw_ostream.h" 58 #include <algorithm> 59 #include <cassert> 60 #include <limits> 61 #include <memory> 62 #include <utility> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "stack-coloring" 67 68 static cl::opt<bool> 69 DisableColoring("no-stack-coloring", 70 cl::init(false), cl::Hidden, 71 cl::desc("Disable stack coloring")); 72 73 /// The user may write code that uses allocas outside of the declared lifetime 74 /// zone. This can happen when the user returns a reference to a local 75 /// data-structure. We can detect these cases and decide not to optimize the 76 /// code. If this flag is enabled, we try to save the user. This option 77 /// is treated as overriding LifetimeStartOnFirstUse below. 78 static cl::opt<bool> 79 ProtectFromEscapedAllocas("protect-from-escaped-allocas", 80 cl::init(false), cl::Hidden, 81 cl::desc("Do not optimize lifetime zones that " 82 "are broken")); 83 84 /// Enable enhanced dataflow scheme for lifetime analysis (treat first 85 /// use of stack slot as start of slot lifetime, as opposed to looking 86 /// for LIFETIME_START marker). See "Implementation notes" below for 87 /// more info. 88 static cl::opt<bool> 89 LifetimeStartOnFirstUse("stackcoloring-lifetime-start-on-first-use", 90 cl::init(true), cl::Hidden, 91 cl::desc("Treat stack lifetimes as starting on first use, not on START marker.")); 92 93 94 STATISTIC(NumMarkerSeen, "Number of lifetime markers found."); 95 STATISTIC(StackSpaceSaved, "Number of bytes saved due to merging slots."); 96 STATISTIC(StackSlotMerged, "Number of stack slot merged."); 97 STATISTIC(EscapedAllocas, "Number of allocas that escaped the lifetime region"); 98 99 //===----------------------------------------------------------------------===// 100 // StackColoring Pass 101 //===----------------------------------------------------------------------===// 102 // 103 // Stack Coloring reduces stack usage by merging stack slots when they 104 // can't be used together. For example, consider the following C program: 105 // 106 // void bar(char *, int); 107 // void foo(bool var) { 108 // A: { 109 // char z[4096]; 110 // bar(z, 0); 111 // } 112 // 113 // char *p; 114 // char x[4096]; 115 // char y[4096]; 116 // if (var) { 117 // p = x; 118 // } else { 119 // bar(y, 1); 120 // p = y + 1024; 121 // } 122 // B: 123 // bar(p, 2); 124 // } 125 // 126 // Naively-compiled, this program would use 12k of stack space. However, the 127 // stack slot corresponding to `z` is always destroyed before either of the 128 // stack slots for `x` or `y` are used, and then `x` is only used if `var` 129 // is true, while `y` is only used if `var` is false. So in no time are 2 130 // of the stack slots used together, and therefore we can merge them, 131 // compiling the function using only a single 4k alloca: 132 // 133 // void foo(bool var) { // equivalent 134 // char x[4096]; 135 // char *p; 136 // bar(x, 0); 137 // if (var) { 138 // p = x; 139 // } else { 140 // bar(x, 1); 141 // p = x + 1024; 142 // } 143 // bar(p, 2); 144 // } 145 // 146 // This is an important optimization if we want stack space to be under 147 // control in large functions, both open-coded ones and ones created by 148 // inlining. 149 // 150 // Implementation Notes: 151 // --------------------- 152 // 153 // An important part of the above reasoning is that `z` can't be accessed 154 // while the latter 2 calls to `bar` are running. This is justified because 155 // `z`'s lifetime is over after we exit from block `A:`, so any further 156 // accesses to it would be UB. The way we represent this information 157 // in LLVM is by having frontends delimit blocks with `lifetime.start` 158 // and `lifetime.end` intrinsics. 159 // 160 // The effect of these intrinsics seems to be as follows (maybe I should 161 // specify this in the reference?): 162 // 163 // L1) at start, each stack-slot is marked as *out-of-scope*, unless no 164 // lifetime intrinsic refers to that stack slot, in which case 165 // it is marked as *in-scope*. 166 // L2) on a `lifetime.start`, a stack slot is marked as *in-scope* and 167 // the stack slot is overwritten with `undef`. 168 // L3) on a `lifetime.end`, a stack slot is marked as *out-of-scope*. 169 // L4) on function exit, all stack slots are marked as *out-of-scope*. 170 // L5) `lifetime.end` is a no-op when called on a slot that is already 171 // *out-of-scope*. 172 // L6) memory accesses to *out-of-scope* stack slots are UB. 173 // L7) when a stack-slot is marked as *out-of-scope*, all pointers to it 174 // are invalidated, unless the slot is "degenerate". This is used to 175 // justify not marking slots as in-use until the pointer to them is 176 // used, but feels a bit hacky in the presence of things like LICM. See 177 // the "Degenerate Slots" section for more details. 178 // 179 // Now, let's ground stack coloring on these rules. We'll define a slot 180 // as *in-use* at a (dynamic) point in execution if it either can be 181 // written to at that point, or if it has a live and non-undef content 182 // at that point. 183 // 184 // Obviously, slots that are never *in-use* together can be merged, and 185 // in our example `foo`, the slots for `x`, `y` and `z` are never 186 // in-use together (of course, sometimes slots that *are* in-use together 187 // might still be mergable, but we don't care about that here). 188 // 189 // In this implementation, we successively merge pairs of slots that are 190 // not *in-use* together. We could be smarter - for example, we could merge 191 // a single large slot with 2 small slots, or we could construct the 192 // interference graph and run a "smart" graph coloring algorithm, but with 193 // that aside, how do we find out whether a pair of slots might be *in-use* 194 // together? 195 // 196 // From our rules, we see that *out-of-scope* slots are never *in-use*, 197 // and from (L7) we see that "non-degenerate" slots remain non-*in-use* 198 // until their address is taken. Therefore, we can approximate slot activity 199 // using dataflow. 200 // 201 // A subtle point: naively, we might try to figure out which pairs of 202 // stack-slots interfere by propagating `S in-use` through the CFG for every 203 // stack-slot `S`, and having `S` and `T` interfere if there is a CFG point in 204 // which they are both *in-use*. 205 // 206 // That is sound, but overly conservative in some cases: in our (artificial) 207 // example `foo`, either `x` or `y` might be in use at the label `B:`, but 208 // as `x` is only in use if we came in from the `var` edge and `y` only 209 // if we came from the `!var` edge, they still can't be in use together. 210 // See PR32488 for an important real-life case. 211 // 212 // If we wanted to find all points of interference precisely, we could 213 // propagate `S in-use` and `S&T in-use` predicates through the CFG. That 214 // would be precise, but requires propagating `O(n^2)` dataflow facts. 215 // 216 // However, we aren't interested in the *set* of points of interference 217 // between 2 stack slots, only *whether* there *is* such a point. So we 218 // can rely on a little trick: for `S` and `T` to be in-use together, 219 // one of them needs to become in-use while the other is in-use (or 220 // they might both become in use simultaneously). We can check this 221 // by also keeping track of the points at which a stack slot might *start* 222 // being in-use. 223 // 224 // Exact first use: 225 // ---------------- 226 // 227 // Consider the following motivating example: 228 // 229 // int foo() { 230 // char b1[1024], b2[1024]; 231 // if (...) { 232 // char b3[1024]; 233 // <uses of b1, b3>; 234 // return x; 235 // } else { 236 // char b4[1024], b5[1024]; 237 // <uses of b2, b4, b5>; 238 // return y; 239 // } 240 // } 241 // 242 // In the code above, "b3" and "b4" are declared in distinct lexical 243 // scopes, meaning that it is easy to prove that they can share the 244 // same stack slot. Variables "b1" and "b2" are declared in the same 245 // scope, meaning that from a lexical point of view, their lifetimes 246 // overlap. From a control flow pointer of view, however, the two 247 // variables are accessed in disjoint regions of the CFG, thus it 248 // should be possible for them to share the same stack slot. An ideal 249 // stack allocation for the function above would look like: 250 // 251 // slot 0: b1, b2 252 // slot 1: b3, b4 253 // slot 2: b5 254 // 255 // Achieving this allocation is tricky, however, due to the way 256 // lifetime markers are inserted. Here is a simplified view of the 257 // control flow graph for the code above: 258 // 259 // +------ block 0 -------+ 260 // 0| LIFETIME_START b1, b2 | 261 // 1| <test 'if' condition> | 262 // +-----------------------+ 263 // ./ \. 264 // +------ block 1 -------+ +------ block 2 -------+ 265 // 2| LIFETIME_START b3 | 5| LIFETIME_START b4, b5 | 266 // 3| <uses of b1, b3> | 6| <uses of b2, b4, b5> | 267 // 4| LIFETIME_END b3 | 7| LIFETIME_END b4, b5 | 268 // +-----------------------+ +-----------------------+ 269 // \. /. 270 // +------ block 3 -------+ 271 // 8| <cleanupcode> | 272 // 9| LIFETIME_END b1, b2 | 273 // 10| return | 274 // +-----------------------+ 275 // 276 // If we create live intervals for the variables above strictly based 277 // on the lifetime markers, we'll get the set of intervals on the 278 // left. If we ignore the lifetime start markers and instead treat a 279 // variable's lifetime as beginning with the first reference to the 280 // var, then we get the intervals on the right. 281 // 282 // LIFETIME_START First Use 283 // b1: [0,9] [3,4] [8,9] 284 // b2: [0,9] [6,9] 285 // b3: [2,4] [3,4] 286 // b4: [5,7] [6,7] 287 // b5: [5,7] [6,7] 288 // 289 // For the intervals on the left, the best we can do is overlap two 290 // variables (b3 and b4, for example); this gives us a stack size of 291 // 4*1024 bytes, not ideal. When treating first-use as the start of a 292 // lifetime, we can additionally overlap b1 and b5, giving us a 3*1024 293 // byte stack (better). 294 // 295 // Degenerate Slots: 296 // ----------------- 297 // 298 // Relying entirely on first-use of stack slots is problematic, 299 // however, due to the fact that optimizations can sometimes migrate 300 // uses of a variable outside of its lifetime start/end region. Here 301 // is an example: 302 // 303 // int bar() { 304 // char b1[1024], b2[1024]; 305 // if (...) { 306 // <uses of b2> 307 // return y; 308 // } else { 309 // <uses of b1> 310 // while (...) { 311 // char b3[1024]; 312 // <uses of b3> 313 // } 314 // } 315 // } 316 // 317 // Before optimization, the control flow graph for the code above 318 // might look like the following: 319 // 320 // +------ block 0 -------+ 321 // 0| LIFETIME_START b1, b2 | 322 // 1| <test 'if' condition> | 323 // +-----------------------+ 324 // ./ \. 325 // +------ block 1 -------+ +------- block 2 -------+ 326 // 2| <uses of b2> | 3| <uses of b1> | 327 // +-----------------------+ +-----------------------+ 328 // | | 329 // | +------- block 3 -------+ <-\. 330 // | 4| <while condition> | | 331 // | +-----------------------+ | 332 // | / | | 333 // | / +------- block 4 -------+ 334 // \ / 5| LIFETIME_START b3 | | 335 // \ / 6| <uses of b3> | | 336 // \ / 7| LIFETIME_END b3 | | 337 // \ | +------------------------+ | 338 // \ | \ / 339 // +------ block 5 -----+ \--------------- 340 // 8| <cleanupcode> | 341 // 9| LIFETIME_END b1, b2 | 342 // 10| return | 343 // +---------------------+ 344 // 345 // During optimization, however, it can happen that an instruction 346 // computing an address in "b3" (for example, a loop-invariant GEP) is 347 // hoisted up out of the loop from block 4 to block 2. [Note that 348 // this is not an actual load from the stack, only an instruction that 349 // computes the address to be loaded]. If this happens, there is now a 350 // path leading from the first use of b3 to the return instruction 351 // that does not encounter the b3 LIFETIME_END, hence b3's lifetime is 352 // now larger than if we were computing live intervals strictly based 353 // on lifetime markers. In the example above, this lengthened lifetime 354 // would mean that it would appear illegal to overlap b3 with b2. 355 // 356 // To deal with this such cases, the code in ::collectMarkers() below 357 // tries to identify "degenerate" slots -- those slots where on a single 358 // forward pass through the CFG we encounter a first reference to slot 359 // K before we hit the slot K lifetime start marker. For such slots, 360 // we fall back on using the lifetime start marker as the beginning of 361 // the variable's lifetime. NB: with this implementation, slots can 362 // appear degenerate in cases where there is unstructured control flow: 363 // 364 // if (q) goto mid; 365 // if (x > 9) { 366 // int b[100]; 367 // memcpy(&b[0], ...); 368 // mid: b[k] = ...; 369 // abc(&b); 370 // } 371 // 372 // If in RPO ordering chosen to walk the CFG we happen to visit the b[k] 373 // before visiting the memcpy block (which will contain the lifetime start 374 // for "b" then it will appear that 'b' has a degenerate lifetime. 375 376 namespace { 377 378 /// StackColoring - A machine pass for merging disjoint stack allocations, 379 /// marked by the LIFETIME_START and LIFETIME_END pseudo instructions. 380 class StackColoring { 381 MachineFrameInfo *MFI = nullptr; 382 MachineFunction *MF = nullptr; 383 384 /// A class representing liveness information for a single basic block. 385 /// Each bit in the BitVector represents the liveness property 386 /// for a different stack slot. 387 struct BlockLifetimeInfo { 388 /// Which slots BEGINs in each basic block. 389 BitVector Begin; 390 391 /// Which slots ENDs in each basic block. 392 BitVector End; 393 394 /// Which slots are marked as LIVE_IN, coming into each basic block. 395 BitVector LiveIn; 396 397 /// Which slots are marked as LIVE_OUT, coming out of each basic block. 398 BitVector LiveOut; 399 }; 400 401 /// Maps active slots (per bit) for each basic block. 402 using LivenessMap = DenseMap<const MachineBasicBlock *, BlockLifetimeInfo>; 403 LivenessMap BlockLiveness; 404 405 /// Maps serial numbers to basic blocks. 406 DenseMap<const MachineBasicBlock *, int> BasicBlocks; 407 408 /// Maps basic blocks to a serial number. 409 SmallVector<const MachineBasicBlock *, 8> BasicBlockNumbering; 410 411 /// Maps slots to their use interval. Outside of this interval, slots 412 /// values are either dead or `undef` and they will not be written to. 413 SmallVector<std::unique_ptr<LiveInterval>, 16> Intervals; 414 415 /// Maps slots to the points where they can become in-use. 416 SmallVector<SmallVector<SlotIndex, 4>, 16> LiveStarts; 417 418 /// VNInfo is used for the construction of LiveIntervals. 419 VNInfo::Allocator VNInfoAllocator; 420 421 /// SlotIndex analysis object. 422 SlotIndexes *Indexes = nullptr; 423 424 /// The list of lifetime markers found. These markers are to be removed 425 /// once the coloring is done. 426 SmallVector<MachineInstr*, 8> Markers; 427 428 /// Record the FI slots for which we have seen some sort of 429 /// lifetime marker (either start or end). 430 BitVector InterestingSlots; 431 432 /// FI slots that need to be handled conservatively (for these 433 /// slots lifetime-start-on-first-use is disabled). 434 BitVector ConservativeSlots; 435 436 /// Number of iterations taken during data flow analysis. 437 unsigned NumIterations; 438 439 public: 440 StackColoring(SlotIndexes *Indexes) : Indexes(Indexes) {} 441 bool run(MachineFunction &Func); 442 443 private: 444 /// Used in collectMarkers 445 using BlockBitVecMap = DenseMap<const MachineBasicBlock *, BitVector>; 446 447 /// Debug. 448 void dump() const; 449 void dumpIntervals() const; 450 void dumpBB(MachineBasicBlock *MBB) const; 451 void dumpBV(const char *tag, const BitVector &BV) const; 452 453 /// Removes all of the lifetime marker instructions from the function. 454 /// \returns true if any markers were removed. 455 bool removeAllMarkers(); 456 457 /// Scan the machine function and find all of the lifetime markers. 458 /// Record the findings in the BEGIN and END vectors. 459 /// \returns the number of markers found. 460 unsigned collectMarkers(unsigned NumSlot); 461 462 /// Perform the dataflow calculation and calculate the lifetime for each of 463 /// the slots, based on the BEGIN/END vectors. Set the LifetimeLIVE_IN and 464 /// LifetimeLIVE_OUT maps that represent which stack slots are live coming 465 /// in and out blocks. 466 void calculateLocalLiveness(); 467 468 /// Returns TRUE if we're using the first-use-begins-lifetime method for 469 /// this slot (if FALSE, then the start marker is treated as start of lifetime). 470 bool applyFirstUse(int Slot) { 471 if (!LifetimeStartOnFirstUse || ProtectFromEscapedAllocas) 472 return false; 473 if (ConservativeSlots.test(Slot)) 474 return false; 475 return true; 476 } 477 478 /// Examines the specified instruction and returns TRUE if the instruction 479 /// represents the start or end of an interesting lifetime. The slot or slots 480 /// starting or ending are added to the vector "slots" and "isStart" is set 481 /// accordingly. 482 /// \returns True if inst contains a lifetime start or end 483 bool isLifetimeStartOrEnd(const MachineInstr &MI, 484 SmallVector<int, 4> &slots, 485 bool &isStart); 486 487 /// Construct the LiveIntervals for the slots. 488 void calculateLiveIntervals(unsigned NumSlots); 489 490 /// Go over the machine function and change instructions which use stack 491 /// slots to use the joint slots. 492 void remapInstructions(DenseMap<int, int> &SlotRemap); 493 494 /// The input program may contain instructions which are not inside lifetime 495 /// markers. This can happen due to a bug in the compiler or due to a bug in 496 /// user code (for example, returning a reference to a local variable). 497 /// This procedure checks all of the instructions in the function and 498 /// invalidates lifetime ranges which do not contain all of the instructions 499 /// which access that frame slot. 500 void removeInvalidSlotRanges(); 501 502 /// Map entries which point to other entries to their destination. 503 /// A->B->C becomes A->C. 504 void expungeSlotMap(DenseMap<int, int> &SlotRemap, unsigned NumSlots); 505 }; 506 507 class StackColoringLegacy : public MachineFunctionPass { 508 public: 509 static char ID; 510 511 StackColoringLegacy() : MachineFunctionPass(ID) {} 512 513 void getAnalysisUsage(AnalysisUsage &AU) const override; 514 bool runOnMachineFunction(MachineFunction &Func) override; 515 }; 516 517 } // end anonymous namespace 518 519 char StackColoringLegacy::ID = 0; 520 521 char &llvm::StackColoringLegacyID = StackColoringLegacy::ID; 522 523 INITIALIZE_PASS_BEGIN(StackColoringLegacy, DEBUG_TYPE, 524 "Merge disjoint stack slots", false, false) 525 INITIALIZE_PASS_DEPENDENCY(SlotIndexesWrapperPass) 526 INITIALIZE_PASS_END(StackColoringLegacy, DEBUG_TYPE, 527 "Merge disjoint stack slots", false, false) 528 529 void StackColoringLegacy::getAnalysisUsage(AnalysisUsage &AU) const { 530 AU.addRequired<SlotIndexesWrapperPass>(); 531 MachineFunctionPass::getAnalysisUsage(AU); 532 } 533 534 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 535 LLVM_DUMP_METHOD void StackColoring::dumpBV(const char *tag, 536 const BitVector &BV) const { 537 dbgs() << tag << " : { "; 538 for (unsigned I = 0, E = BV.size(); I != E; ++I) 539 dbgs() << BV.test(I) << " "; 540 dbgs() << "}\n"; 541 } 542 543 LLVM_DUMP_METHOD void StackColoring::dumpBB(MachineBasicBlock *MBB) const { 544 LivenessMap::const_iterator BI = BlockLiveness.find(MBB); 545 assert(BI != BlockLiveness.end() && "Block not found"); 546 const BlockLifetimeInfo &BlockInfo = BI->second; 547 548 dumpBV("BEGIN", BlockInfo.Begin); 549 dumpBV("END", BlockInfo.End); 550 dumpBV("LIVE_IN", BlockInfo.LiveIn); 551 dumpBV("LIVE_OUT", BlockInfo.LiveOut); 552 } 553 554 LLVM_DUMP_METHOD void StackColoring::dump() const { 555 for (MachineBasicBlock *MBB : depth_first(MF)) { 556 dbgs() << "Inspecting block #" << MBB->getNumber() << " [" 557 << MBB->getName() << "]\n"; 558 dumpBB(MBB); 559 } 560 } 561 562 LLVM_DUMP_METHOD void StackColoring::dumpIntervals() const { 563 for (unsigned I = 0, E = Intervals.size(); I != E; ++I) { 564 dbgs() << "Interval[" << I << "]:\n"; 565 Intervals[I]->dump(); 566 } 567 } 568 #endif 569 570 static inline int getStartOrEndSlot(const MachineInstr &MI) 571 { 572 assert((MI.getOpcode() == TargetOpcode::LIFETIME_START || 573 MI.getOpcode() == TargetOpcode::LIFETIME_END) && 574 "Expected LIFETIME_START or LIFETIME_END op"); 575 const MachineOperand &MO = MI.getOperand(0); 576 int Slot = MO.getIndex(); 577 if (Slot >= 0) 578 return Slot; 579 return -1; 580 } 581 582 // At the moment the only way to end a variable lifetime is with 583 // a VARIABLE_LIFETIME op (which can't contain a start). If things 584 // change and the IR allows for a single inst that both begins 585 // and ends lifetime(s), this interface will need to be reworked. 586 bool StackColoring::isLifetimeStartOrEnd(const MachineInstr &MI, 587 SmallVector<int, 4> &slots, 588 bool &isStart) { 589 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 590 MI.getOpcode() == TargetOpcode::LIFETIME_END) { 591 int Slot = getStartOrEndSlot(MI); 592 if (Slot < 0) 593 return false; 594 if (!InterestingSlots.test(Slot)) 595 return false; 596 slots.push_back(Slot); 597 if (MI.getOpcode() == TargetOpcode::LIFETIME_END) { 598 isStart = false; 599 return true; 600 } 601 if (!applyFirstUse(Slot)) { 602 isStart = true; 603 return true; 604 } 605 } else if (LifetimeStartOnFirstUse && !ProtectFromEscapedAllocas) { 606 if (!MI.isDebugInstr()) { 607 bool found = false; 608 for (const MachineOperand &MO : MI.operands()) { 609 if (!MO.isFI()) 610 continue; 611 int Slot = MO.getIndex(); 612 if (Slot<0) 613 continue; 614 if (InterestingSlots.test(Slot) && applyFirstUse(Slot)) { 615 slots.push_back(Slot); 616 found = true; 617 } 618 } 619 if (found) { 620 isStart = true; 621 return true; 622 } 623 } 624 } 625 return false; 626 } 627 628 unsigned StackColoring::collectMarkers(unsigned NumSlot) { 629 unsigned MarkersFound = 0; 630 BlockBitVecMap SeenStartMap; 631 InterestingSlots.clear(); 632 InterestingSlots.resize(NumSlot); 633 ConservativeSlots.clear(); 634 ConservativeSlots.resize(NumSlot); 635 636 // number of start and end lifetime ops for each slot 637 SmallVector<int, 8> NumStartLifetimes(NumSlot, 0); 638 SmallVector<int, 8> NumEndLifetimes(NumSlot, 0); 639 640 // Step 1: collect markers and populate the "InterestingSlots" 641 // and "ConservativeSlots" sets. 642 for (MachineBasicBlock *MBB : depth_first(MF)) { 643 // Compute the set of slots for which we've seen a START marker but have 644 // not yet seen an END marker at this point in the walk (e.g. on entry 645 // to this bb). 646 BitVector BetweenStartEnd; 647 BetweenStartEnd.resize(NumSlot); 648 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 649 BlockBitVecMap::const_iterator I = SeenStartMap.find(Pred); 650 if (I != SeenStartMap.end()) { 651 BetweenStartEnd |= I->second; 652 } 653 } 654 655 // Walk the instructions in the block to look for start/end ops. 656 for (MachineInstr &MI : *MBB) { 657 if (MI.isDebugInstr()) 658 continue; 659 if (MI.getOpcode() == TargetOpcode::LIFETIME_START || 660 MI.getOpcode() == TargetOpcode::LIFETIME_END) { 661 int Slot = getStartOrEndSlot(MI); 662 if (Slot < 0) 663 continue; 664 InterestingSlots.set(Slot); 665 if (MI.getOpcode() == TargetOpcode::LIFETIME_START) { 666 BetweenStartEnd.set(Slot); 667 NumStartLifetimes[Slot] += 1; 668 } else { 669 BetweenStartEnd.reset(Slot); 670 NumEndLifetimes[Slot] += 1; 671 } 672 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 673 if (Allocation) { 674 LLVM_DEBUG(dbgs() << "Found a lifetime "); 675 LLVM_DEBUG(dbgs() << (MI.getOpcode() == TargetOpcode::LIFETIME_START 676 ? "start" 677 : "end")); 678 LLVM_DEBUG(dbgs() << " marker for slot #" << Slot); 679 LLVM_DEBUG(dbgs() 680 << " with allocation: " << Allocation->getName() << "\n"); 681 } 682 Markers.push_back(&MI); 683 MarkersFound += 1; 684 } else { 685 for (const MachineOperand &MO : MI.operands()) { 686 if (!MO.isFI()) 687 continue; 688 int Slot = MO.getIndex(); 689 if (Slot < 0) 690 continue; 691 if (! BetweenStartEnd.test(Slot)) { 692 ConservativeSlots.set(Slot); 693 } 694 } 695 } 696 } 697 BitVector &SeenStart = SeenStartMap[MBB]; 698 SeenStart |= BetweenStartEnd; 699 } 700 if (!MarkersFound) { 701 return 0; 702 } 703 704 // PR27903: slots with multiple start or end lifetime ops are not 705 // safe to enable for "lifetime-start-on-first-use". 706 for (unsigned slot = 0; slot < NumSlot; ++slot) { 707 if (NumStartLifetimes[slot] > 1 || NumEndLifetimes[slot] > 1) 708 ConservativeSlots.set(slot); 709 } 710 711 // The write to the catch object by the personality function is not propely 712 // modeled in IR: It happens before any cleanuppads are executed, even if the 713 // first mention of the catch object is in a catchpad. As such, mark catch 714 // object slots as conservative, so they are excluded from first-use analysis. 715 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) 716 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) 717 for (WinEHHandlerType &H : TBME.HandlerArray) 718 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && 719 H.CatchObj.FrameIndex >= 0) 720 ConservativeSlots.set(H.CatchObj.FrameIndex); 721 722 LLVM_DEBUG(dumpBV("Conservative slots", ConservativeSlots)); 723 724 // Step 2: compute begin/end sets for each block 725 726 // NOTE: We use a depth-first iteration to ensure that we obtain a 727 // deterministic numbering. 728 for (MachineBasicBlock *MBB : depth_first(MF)) { 729 // Assign a serial number to this basic block. 730 BasicBlocks[MBB] = BasicBlockNumbering.size(); 731 BasicBlockNumbering.push_back(MBB); 732 733 // Keep a reference to avoid repeated lookups. 734 BlockLifetimeInfo &BlockInfo = BlockLiveness[MBB]; 735 736 BlockInfo.Begin.resize(NumSlot); 737 BlockInfo.End.resize(NumSlot); 738 739 SmallVector<int, 4> slots; 740 for (MachineInstr &MI : *MBB) { 741 bool isStart = false; 742 slots.clear(); 743 if (isLifetimeStartOrEnd(MI, slots, isStart)) { 744 if (!isStart) { 745 assert(slots.size() == 1 && "unexpected: MI ends multiple slots"); 746 int Slot = slots[0]; 747 if (BlockInfo.Begin.test(Slot)) { 748 BlockInfo.Begin.reset(Slot); 749 } 750 BlockInfo.End.set(Slot); 751 } else { 752 for (auto Slot : slots) { 753 LLVM_DEBUG(dbgs() << "Found a use of slot #" << Slot); 754 LLVM_DEBUG(dbgs() 755 << " at " << printMBBReference(*MBB) << " index "); 756 LLVM_DEBUG(Indexes->getInstructionIndex(MI).print(dbgs())); 757 const AllocaInst *Allocation = MFI->getObjectAllocation(Slot); 758 if (Allocation) { 759 LLVM_DEBUG(dbgs() 760 << " with allocation: " << Allocation->getName()); 761 } 762 LLVM_DEBUG(dbgs() << "\n"); 763 if (BlockInfo.End.test(Slot)) { 764 BlockInfo.End.reset(Slot); 765 } 766 BlockInfo.Begin.set(Slot); 767 } 768 } 769 } 770 } 771 } 772 773 // Update statistics. 774 NumMarkerSeen += MarkersFound; 775 return MarkersFound; 776 } 777 778 void StackColoring::calculateLocalLiveness() { 779 unsigned NumIters = 0; 780 bool changed = true; 781 // Create BitVector outside the loop and reuse them to avoid repeated heap 782 // allocations. 783 BitVector LocalLiveIn; 784 BitVector LocalLiveOut; 785 while (changed) { 786 changed = false; 787 ++NumIters; 788 789 for (const MachineBasicBlock *BB : BasicBlockNumbering) { 790 // Use an iterator to avoid repeated lookups. 791 LivenessMap::iterator BI = BlockLiveness.find(BB); 792 assert(BI != BlockLiveness.end() && "Block not found"); 793 BlockLifetimeInfo &BlockInfo = BI->second; 794 795 // Compute LiveIn by unioning together the LiveOut sets of all preds. 796 LocalLiveIn.clear(); 797 for (MachineBasicBlock *Pred : BB->predecessors()) { 798 LivenessMap::const_iterator I = BlockLiveness.find(Pred); 799 // PR37130: transformations prior to stack coloring can 800 // sometimes leave behind statically unreachable blocks; these 801 // can be safely skipped here. 802 if (I != BlockLiveness.end()) 803 LocalLiveIn |= I->second.LiveOut; 804 } 805 806 // Compute LiveOut by subtracting out lifetimes that end in this 807 // block, then adding in lifetimes that begin in this block. If 808 // we have both BEGIN and END markers in the same basic block 809 // then we know that the BEGIN marker comes after the END, 810 // because we already handle the case where the BEGIN comes 811 // before the END when collecting the markers (and building the 812 // BEGIN/END vectors). 813 LocalLiveOut = LocalLiveIn; 814 LocalLiveOut.reset(BlockInfo.End); 815 LocalLiveOut |= BlockInfo.Begin; 816 817 // Update block LiveIn set, noting whether it has changed. 818 if (LocalLiveIn.test(BlockInfo.LiveIn)) { 819 changed = true; 820 BlockInfo.LiveIn |= LocalLiveIn; 821 } 822 823 // Update block LiveOut set, noting whether it has changed. 824 if (LocalLiveOut.test(BlockInfo.LiveOut)) { 825 changed = true; 826 BlockInfo.LiveOut |= LocalLiveOut; 827 } 828 } 829 } // while changed. 830 831 NumIterations = NumIters; 832 } 833 834 void StackColoring::calculateLiveIntervals(unsigned NumSlots) { 835 SmallVector<SlotIndex, 16> Starts; 836 SmallVector<bool, 16> DefinitelyInUse; 837 838 // For each block, find which slots are active within this block 839 // and update the live intervals. 840 for (const MachineBasicBlock &MBB : *MF) { 841 Starts.clear(); 842 Starts.resize(NumSlots); 843 DefinitelyInUse.clear(); 844 DefinitelyInUse.resize(NumSlots); 845 846 // Start the interval of the slots that we previously found to be 'in-use'. 847 BlockLifetimeInfo &MBBLiveness = BlockLiveness[&MBB]; 848 for (int pos = MBBLiveness.LiveIn.find_first(); pos != -1; 849 pos = MBBLiveness.LiveIn.find_next(pos)) { 850 Starts[pos] = Indexes->getMBBStartIdx(&MBB); 851 } 852 853 // Create the interval for the basic blocks containing lifetime begin/end. 854 for (const MachineInstr &MI : MBB) { 855 SmallVector<int, 4> slots; 856 bool IsStart = false; 857 if (!isLifetimeStartOrEnd(MI, slots, IsStart)) 858 continue; 859 SlotIndex ThisIndex = Indexes->getInstructionIndex(MI); 860 for (auto Slot : slots) { 861 if (IsStart) { 862 // If a slot is already definitely in use, we don't have to emit 863 // a new start marker because there is already a pre-existing 864 // one. 865 if (!DefinitelyInUse[Slot]) { 866 LiveStarts[Slot].push_back(ThisIndex); 867 DefinitelyInUse[Slot] = true; 868 } 869 if (!Starts[Slot].isValid()) 870 Starts[Slot] = ThisIndex; 871 } else { 872 if (Starts[Slot].isValid()) { 873 VNInfo *VNI = Intervals[Slot]->getValNumInfo(0); 874 Intervals[Slot]->addSegment( 875 LiveInterval::Segment(Starts[Slot], ThisIndex, VNI)); 876 Starts[Slot] = SlotIndex(); // Invalidate the start index 877 DefinitelyInUse[Slot] = false; 878 } 879 } 880 } 881 } 882 883 // Finish up started segments 884 for (unsigned i = 0; i < NumSlots; ++i) { 885 if (!Starts[i].isValid()) 886 continue; 887 888 SlotIndex EndIdx = Indexes->getMBBEndIdx(&MBB); 889 VNInfo *VNI = Intervals[i]->getValNumInfo(0); 890 Intervals[i]->addSegment(LiveInterval::Segment(Starts[i], EndIdx, VNI)); 891 } 892 } 893 } 894 895 bool StackColoring::removeAllMarkers() { 896 unsigned Count = 0; 897 for (MachineInstr *MI : Markers) { 898 MI->eraseFromParent(); 899 Count++; 900 } 901 Markers.clear(); 902 903 LLVM_DEBUG(dbgs() << "Removed " << Count << " markers.\n"); 904 return Count; 905 } 906 907 void StackColoring::remapInstructions(DenseMap<int, int> &SlotRemap) { 908 unsigned FixedInstr = 0; 909 unsigned FixedMemOp = 0; 910 unsigned FixedDbg = 0; 911 912 // Remap debug information that refers to stack slots. 913 for (auto &VI : MF->getVariableDbgInfo()) { 914 if (!VI.Var || !VI.inStackSlot()) 915 continue; 916 int Slot = VI.getStackSlot(); 917 if (SlotRemap.count(Slot)) { 918 LLVM_DEBUG(dbgs() << "Remapping debug info for [" 919 << cast<DILocalVariable>(VI.Var)->getName() << "].\n"); 920 VI.updateStackSlot(SlotRemap[Slot]); 921 FixedDbg++; 922 } 923 } 924 925 // Keep a list of *allocas* which need to be remapped. 926 DenseMap<const AllocaInst*, const AllocaInst*> Allocas; 927 928 // Keep a list of allocas which has been affected by the remap. 929 SmallPtrSet<const AllocaInst*, 32> MergedAllocas; 930 931 for (const std::pair<int, int> &SI : SlotRemap) { 932 const AllocaInst *From = MFI->getObjectAllocation(SI.first); 933 const AllocaInst *To = MFI->getObjectAllocation(SI.second); 934 assert(To && From && "Invalid allocation object"); 935 Allocas[From] = To; 936 937 // If From is before wo, its possible that there is a use of From between 938 // them. 939 if (From->comesBefore(To)) 940 const_cast<AllocaInst*>(To)->moveBefore(const_cast<AllocaInst*>(From)); 941 942 // AA might be used later for instruction scheduling, and we need it to be 943 // able to deduce the correct aliasing releationships between pointers 944 // derived from the alloca being remapped and the target of that remapping. 945 // The only safe way, without directly informing AA about the remapping 946 // somehow, is to directly update the IR to reflect the change being made 947 // here. 948 Instruction *Inst = const_cast<AllocaInst *>(To); 949 if (From->getType() != To->getType()) { 950 BitCastInst *Cast = new BitCastInst(Inst, From->getType()); 951 Cast->insertAfter(Inst); 952 Inst = Cast; 953 } 954 955 // We keep both slots to maintain AliasAnalysis metadata later. 956 MergedAllocas.insert(From); 957 MergedAllocas.insert(To); 958 959 // Transfer the stack protector layout tag, but make sure that SSPLK_AddrOf 960 // does not overwrite SSPLK_SmallArray or SSPLK_LargeArray, and make sure 961 // that SSPLK_SmallArray does not overwrite SSPLK_LargeArray. 962 MachineFrameInfo::SSPLayoutKind FromKind 963 = MFI->getObjectSSPLayout(SI.first); 964 MachineFrameInfo::SSPLayoutKind ToKind = MFI->getObjectSSPLayout(SI.second); 965 if (FromKind != MachineFrameInfo::SSPLK_None && 966 (ToKind == MachineFrameInfo::SSPLK_None || 967 (ToKind != MachineFrameInfo::SSPLK_LargeArray && 968 FromKind != MachineFrameInfo::SSPLK_AddrOf))) 969 MFI->setObjectSSPLayout(SI.second, FromKind); 970 971 // The new alloca might not be valid in a llvm.dbg.declare for this 972 // variable, so poison out the use to make the verifier happy. 973 AllocaInst *FromAI = const_cast<AllocaInst *>(From); 974 if (FromAI->isUsedByMetadata()) 975 ValueAsMetadata::handleRAUW(FromAI, PoisonValue::get(FromAI->getType())); 976 for (auto &Use : FromAI->uses()) { 977 if (BitCastInst *BCI = dyn_cast<BitCastInst>(Use.get())) 978 if (BCI->isUsedByMetadata()) 979 ValueAsMetadata::handleRAUW(BCI, PoisonValue::get(BCI->getType())); 980 } 981 982 // Note that this will not replace uses in MMOs (which we'll update below), 983 // or anywhere else (which is why we won't delete the original 984 // instruction). 985 FromAI->replaceAllUsesWith(Inst); 986 } 987 988 // Remap all instructions to the new stack slots. 989 std::vector<std::vector<MachineMemOperand *>> SSRefs( 990 MFI->getObjectIndexEnd()); 991 for (MachineBasicBlock &BB : *MF) 992 for (MachineInstr &I : BB) { 993 // Skip lifetime markers. We'll remove them soon. 994 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 995 I.getOpcode() == TargetOpcode::LIFETIME_END) 996 continue; 997 998 // Update the MachineMemOperand to use the new alloca. 999 for (MachineMemOperand *MMO : I.memoperands()) { 1000 // We've replaced IR-level uses of the remapped allocas, so we only 1001 // need to replace direct uses here. 1002 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(MMO->getValue()); 1003 if (!AI) 1004 continue; 1005 1006 if (!Allocas.count(AI)) 1007 continue; 1008 1009 MMO->setValue(Allocas[AI]); 1010 FixedMemOp++; 1011 } 1012 1013 // Update all of the machine instruction operands. 1014 for (MachineOperand &MO : I.operands()) { 1015 if (!MO.isFI()) 1016 continue; 1017 int FromSlot = MO.getIndex(); 1018 1019 // Don't touch arguments. 1020 if (FromSlot<0) 1021 continue; 1022 1023 // Only look at mapped slots. 1024 if (!SlotRemap.count(FromSlot)) 1025 continue; 1026 1027 // In a debug build, check that the instruction that we are modifying is 1028 // inside the expected live range. If the instruction is not inside 1029 // the calculated range then it means that the alloca usage moved 1030 // outside of the lifetime markers, or that the user has a bug. 1031 // NOTE: Alloca address calculations which happen outside the lifetime 1032 // zone are okay, despite the fact that we don't have a good way 1033 // for validating all of the usages of the calculation. 1034 #ifndef NDEBUG 1035 bool TouchesMemory = I.mayLoadOrStore(); 1036 // If we *don't* protect the user from escaped allocas, don't bother 1037 // validating the instructions. 1038 if (!I.isDebugInstr() && TouchesMemory && ProtectFromEscapedAllocas) { 1039 SlotIndex Index = Indexes->getInstructionIndex(I); 1040 const LiveInterval *Interval = &*Intervals[FromSlot]; 1041 assert(Interval->find(Index) != Interval->end() && 1042 "Found instruction usage outside of live range."); 1043 } 1044 #endif 1045 1046 // Fix the machine instructions. 1047 int ToSlot = SlotRemap[FromSlot]; 1048 MO.setIndex(ToSlot); 1049 FixedInstr++; 1050 } 1051 1052 // We adjust AliasAnalysis information for merged stack slots. 1053 SmallVector<MachineMemOperand *, 2> NewMMOs; 1054 bool ReplaceMemOps = false; 1055 for (MachineMemOperand *MMO : I.memoperands()) { 1056 // Collect MachineMemOperands which reference 1057 // FixedStackPseudoSourceValues with old frame indices. 1058 if (const auto *FSV = dyn_cast_or_null<FixedStackPseudoSourceValue>( 1059 MMO->getPseudoValue())) { 1060 int FI = FSV->getFrameIndex(); 1061 auto To = SlotRemap.find(FI); 1062 if (To != SlotRemap.end()) 1063 SSRefs[FI].push_back(MMO); 1064 } 1065 1066 // If this memory location can be a slot remapped here, 1067 // we remove AA information. 1068 bool MayHaveConflictingAAMD = false; 1069 if (MMO->getAAInfo()) { 1070 if (const Value *MMOV = MMO->getValue()) { 1071 SmallVector<Value *, 4> Objs; 1072 getUnderlyingObjectsForCodeGen(MMOV, Objs); 1073 1074 if (Objs.empty()) 1075 MayHaveConflictingAAMD = true; 1076 else 1077 for (Value *V : Objs) { 1078 // If this memory location comes from a known stack slot 1079 // that is not remapped, we continue checking. 1080 // Otherwise, we need to invalidate AA infomation. 1081 const AllocaInst *AI = dyn_cast_or_null<AllocaInst>(V); 1082 if (AI && MergedAllocas.count(AI)) { 1083 MayHaveConflictingAAMD = true; 1084 break; 1085 } 1086 } 1087 } 1088 } 1089 if (MayHaveConflictingAAMD) { 1090 NewMMOs.push_back(MF->getMachineMemOperand(MMO, AAMDNodes())); 1091 ReplaceMemOps = true; 1092 } else { 1093 NewMMOs.push_back(MMO); 1094 } 1095 } 1096 1097 // If any memory operand is updated, set memory references of 1098 // this instruction. 1099 if (ReplaceMemOps) 1100 I.setMemRefs(*MF, NewMMOs); 1101 } 1102 1103 // Rewrite MachineMemOperands that reference old frame indices. 1104 for (auto E : enumerate(SSRefs)) 1105 if (!E.value().empty()) { 1106 const PseudoSourceValue *NewSV = 1107 MF->getPSVManager().getFixedStack(SlotRemap.find(E.index())->second); 1108 for (MachineMemOperand *Ref : E.value()) 1109 Ref->setValue(NewSV); 1110 } 1111 1112 // Update the location of C++ catch objects for the MSVC personality routine. 1113 if (WinEHFuncInfo *EHInfo = MF->getWinEHFuncInfo()) 1114 for (WinEHTryBlockMapEntry &TBME : EHInfo->TryBlockMap) 1115 for (WinEHHandlerType &H : TBME.HandlerArray) 1116 if (H.CatchObj.FrameIndex != std::numeric_limits<int>::max() && 1117 SlotRemap.count(H.CatchObj.FrameIndex)) 1118 H.CatchObj.FrameIndex = SlotRemap[H.CatchObj.FrameIndex]; 1119 1120 LLVM_DEBUG(dbgs() << "Fixed " << FixedMemOp << " machine memory operands.\n"); 1121 LLVM_DEBUG(dbgs() << "Fixed " << FixedDbg << " debug locations.\n"); 1122 LLVM_DEBUG(dbgs() << "Fixed " << FixedInstr << " machine instructions.\n"); 1123 (void) FixedMemOp; 1124 (void) FixedDbg; 1125 (void) FixedInstr; 1126 } 1127 1128 void StackColoring::removeInvalidSlotRanges() { 1129 for (MachineBasicBlock &BB : *MF) 1130 for (MachineInstr &I : BB) { 1131 if (I.getOpcode() == TargetOpcode::LIFETIME_START || 1132 I.getOpcode() == TargetOpcode::LIFETIME_END || I.isDebugInstr()) 1133 continue; 1134 1135 // Some intervals are suspicious! In some cases we find address 1136 // calculations outside of the lifetime zone, but not actual memory 1137 // read or write. Memory accesses outside of the lifetime zone are a clear 1138 // violation, but address calculations are okay. This can happen when 1139 // GEPs are hoisted outside of the lifetime zone. 1140 // So, in here we only check instructions which can read or write memory. 1141 if (!I.mayLoad() && !I.mayStore()) 1142 continue; 1143 1144 // Check all of the machine operands. 1145 for (const MachineOperand &MO : I.operands()) { 1146 if (!MO.isFI()) 1147 continue; 1148 1149 int Slot = MO.getIndex(); 1150 1151 if (Slot<0) 1152 continue; 1153 1154 if (Intervals[Slot]->empty()) 1155 continue; 1156 1157 // Check that the used slot is inside the calculated lifetime range. 1158 // If it is not, warn about it and invalidate the range. 1159 LiveInterval *Interval = &*Intervals[Slot]; 1160 SlotIndex Index = Indexes->getInstructionIndex(I); 1161 if (Interval->find(Index) == Interval->end()) { 1162 Interval->clear(); 1163 LLVM_DEBUG(dbgs() << "Invalidating range #" << Slot << "\n"); 1164 EscapedAllocas++; 1165 } 1166 } 1167 } 1168 } 1169 1170 void StackColoring::expungeSlotMap(DenseMap<int, int> &SlotRemap, 1171 unsigned NumSlots) { 1172 // Expunge slot remap map. 1173 for (unsigned i=0; i < NumSlots; ++i) { 1174 // If we are remapping i 1175 if (SlotRemap.count(i)) { 1176 int Target = SlotRemap[i]; 1177 // As long as our target is mapped to something else, follow it. 1178 while (SlotRemap.count(Target)) { 1179 Target = SlotRemap[Target]; 1180 SlotRemap[i] = Target; 1181 } 1182 } 1183 } 1184 } 1185 1186 bool StackColoringLegacy::runOnMachineFunction(MachineFunction &MF) { 1187 if (skipFunction(MF.getFunction())) 1188 return false; 1189 1190 StackColoring SC(&getAnalysis<SlotIndexesWrapperPass>().getSI()); 1191 return SC.run(MF); 1192 } 1193 1194 PreservedAnalyses StackColoringPass::run(MachineFunction &MF, 1195 MachineFunctionAnalysisManager &MFAM) { 1196 StackColoring SC(&MFAM.getResult<SlotIndexesAnalysis>(MF)); 1197 if (SC.run(MF)) 1198 return PreservedAnalyses::none(); 1199 return PreservedAnalyses::all(); 1200 } 1201 1202 bool StackColoring::run(MachineFunction &Func) { 1203 LLVM_DEBUG(dbgs() << "********** Stack Coloring **********\n" 1204 << "********** Function: " << Func.getName() << '\n'); 1205 MF = &Func; 1206 MFI = &MF->getFrameInfo(); 1207 BlockLiveness.clear(); 1208 BasicBlocks.clear(); 1209 BasicBlockNumbering.clear(); 1210 Markers.clear(); 1211 Intervals.clear(); 1212 LiveStarts.clear(); 1213 VNInfoAllocator.Reset(); 1214 1215 unsigned NumSlots = MFI->getObjectIndexEnd(); 1216 1217 // If there are no stack slots then there are no markers to remove. 1218 if (!NumSlots) 1219 return false; 1220 1221 SmallVector<int, 8> SortedSlots; 1222 SortedSlots.reserve(NumSlots); 1223 Intervals.reserve(NumSlots); 1224 LiveStarts.resize(NumSlots); 1225 1226 unsigned NumMarkers = collectMarkers(NumSlots); 1227 1228 unsigned TotalSize = 0; 1229 LLVM_DEBUG(dbgs() << "Found " << NumMarkers << " markers and " << NumSlots 1230 << " slots\n"); 1231 LLVM_DEBUG(dbgs() << "Slot structure:\n"); 1232 1233 for (int i=0; i < MFI->getObjectIndexEnd(); ++i) { 1234 LLVM_DEBUG(dbgs() << "Slot #" << i << " - " << MFI->getObjectSize(i) 1235 << " bytes.\n"); 1236 TotalSize += MFI->getObjectSize(i); 1237 } 1238 1239 LLVM_DEBUG(dbgs() << "Total Stack size: " << TotalSize << " bytes\n\n"); 1240 1241 // Don't continue because there are not enough lifetime markers, or the 1242 // stack is too small, or we are told not to optimize the slots. 1243 if (NumMarkers < 2 || TotalSize < 16 || DisableColoring) { 1244 LLVM_DEBUG(dbgs() << "Will not try to merge slots.\n"); 1245 return removeAllMarkers(); 1246 } 1247 1248 for (unsigned i=0; i < NumSlots; ++i) { 1249 std::unique_ptr<LiveInterval> LI(new LiveInterval(i, 0)); 1250 LI->getNextValue(Indexes->getZeroIndex(), VNInfoAllocator); 1251 Intervals.push_back(std::move(LI)); 1252 SortedSlots.push_back(i); 1253 } 1254 1255 // Calculate the liveness of each block. 1256 calculateLocalLiveness(); 1257 LLVM_DEBUG(dbgs() << "Dataflow iterations: " << NumIterations << "\n"); 1258 LLVM_DEBUG(dump()); 1259 1260 // Propagate the liveness information. 1261 calculateLiveIntervals(NumSlots); 1262 LLVM_DEBUG(dumpIntervals()); 1263 1264 // Search for allocas which are used outside of the declared lifetime 1265 // markers. 1266 if (ProtectFromEscapedAllocas) 1267 removeInvalidSlotRanges(); 1268 1269 // Maps old slots to new slots. 1270 DenseMap<int, int> SlotRemap; 1271 unsigned RemovedSlots = 0; 1272 unsigned ReducedSize = 0; 1273 1274 // Do not bother looking at empty intervals. 1275 for (unsigned I = 0; I < NumSlots; ++I) { 1276 if (Intervals[SortedSlots[I]]->empty()) 1277 SortedSlots[I] = -1; 1278 } 1279 1280 // This is a simple greedy algorithm for merging allocas. First, sort the 1281 // slots, placing the largest slots first. Next, perform an n^2 scan and look 1282 // for disjoint slots. When you find disjoint slots, merge the smaller one 1283 // into the bigger one and update the live interval. Remove the small alloca 1284 // and continue. 1285 1286 // Sort the slots according to their size. Place unused slots at the end. 1287 // Use stable sort to guarantee deterministic code generation. 1288 llvm::stable_sort(SortedSlots, [this](int LHS, int RHS) { 1289 // We use -1 to denote a uninteresting slot. Place these slots at the end. 1290 if (LHS == -1) 1291 return false; 1292 if (RHS == -1) 1293 return true; 1294 // Sort according to size. 1295 return MFI->getObjectSize(LHS) > MFI->getObjectSize(RHS); 1296 }); 1297 1298 for (auto &s : LiveStarts) 1299 llvm::sort(s); 1300 1301 bool Changed = true; 1302 while (Changed) { 1303 Changed = false; 1304 for (unsigned I = 0; I < NumSlots; ++I) { 1305 if (SortedSlots[I] == -1) 1306 continue; 1307 1308 for (unsigned J=I+1; J < NumSlots; ++J) { 1309 if (SortedSlots[J] == -1) 1310 continue; 1311 1312 int FirstSlot = SortedSlots[I]; 1313 int SecondSlot = SortedSlots[J]; 1314 1315 // Objects with different stack IDs cannot be merged. 1316 if (MFI->getStackID(FirstSlot) != MFI->getStackID(SecondSlot)) 1317 continue; 1318 1319 LiveInterval *First = &*Intervals[FirstSlot]; 1320 LiveInterval *Second = &*Intervals[SecondSlot]; 1321 auto &FirstS = LiveStarts[FirstSlot]; 1322 auto &SecondS = LiveStarts[SecondSlot]; 1323 assert(!First->empty() && !Second->empty() && "Found an empty range"); 1324 1325 // Merge disjoint slots. This is a little bit tricky - see the 1326 // Implementation Notes section for an explanation. 1327 if (!First->isLiveAtIndexes(SecondS) && 1328 !Second->isLiveAtIndexes(FirstS)) { 1329 Changed = true; 1330 First->MergeSegmentsInAsValue(*Second, First->getValNumInfo(0)); 1331 1332 int OldSize = FirstS.size(); 1333 FirstS.append(SecondS.begin(), SecondS.end()); 1334 auto Mid = FirstS.begin() + OldSize; 1335 std::inplace_merge(FirstS.begin(), Mid, FirstS.end()); 1336 1337 SlotRemap[SecondSlot] = FirstSlot; 1338 SortedSlots[J] = -1; 1339 LLVM_DEBUG(dbgs() << "Merging #" << FirstSlot << " and slots #" 1340 << SecondSlot << " together.\n"); 1341 Align MaxAlignment = std::max(MFI->getObjectAlign(FirstSlot), 1342 MFI->getObjectAlign(SecondSlot)); 1343 1344 assert(MFI->getObjectSize(FirstSlot) >= 1345 MFI->getObjectSize(SecondSlot) && 1346 "Merging a small object into a larger one"); 1347 1348 RemovedSlots+=1; 1349 ReducedSize += MFI->getObjectSize(SecondSlot); 1350 MFI->setObjectAlignment(FirstSlot, MaxAlignment); 1351 MFI->RemoveStackObject(SecondSlot); 1352 } 1353 } 1354 } 1355 }// While changed. 1356 1357 // Record statistics. 1358 StackSpaceSaved += ReducedSize; 1359 StackSlotMerged += RemovedSlots; 1360 LLVM_DEBUG(dbgs() << "Merge " << RemovedSlots << " slots. Saved " 1361 << ReducedSize << " bytes\n"); 1362 1363 // Scan the entire function and update all machine operands that use frame 1364 // indices to use the remapped frame index. 1365 if (!SlotRemap.empty()) { 1366 expungeSlotMap(SlotRemap, NumSlots); 1367 remapInstructions(SlotRemap); 1368 } 1369 1370 return removeAllMarkers(); 1371 } 1372