xref: /llvm-project/llvm/lib/CodeGen/SplitKit.cpp (revision ce7fd498ed91344c23f0864bbd5b84d65eaae3ef)
1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This file contains the SplitAnalysis class as well as mutator functions for
10 // live range splitting.
11 //
12 //===----------------------------------------------------------------------===//
13 
14 #include "SplitKit.h"
15 #include "llvm/ADT/STLExtras.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/AliasAnalysis.h"
18 #include "llvm/CodeGen/LiveRangeEdit.h"
19 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
20 #include "llvm/CodeGen/MachineDominators.h"
21 #include "llvm/CodeGen/MachineInstr.h"
22 #include "llvm/CodeGen/MachineInstrBuilder.h"
23 #include "llvm/CodeGen/MachineLoopInfo.h"
24 #include "llvm/CodeGen/MachineOperand.h"
25 #include "llvm/CodeGen/MachineRegisterInfo.h"
26 #include "llvm/CodeGen/TargetInstrInfo.h"
27 #include "llvm/CodeGen/TargetOpcodes.h"
28 #include "llvm/CodeGen/TargetRegisterInfo.h"
29 #include "llvm/CodeGen/TargetSubtargetInfo.h"
30 #include "llvm/CodeGen/VirtRegMap.h"
31 #include "llvm/Config/llvm-config.h"
32 #include "llvm/IR/DebugLoc.h"
33 #include "llvm/Support/Allocator.h"
34 #include "llvm/Support/BlockFrequency.h"
35 #include "llvm/Support/Debug.h"
36 #include "llvm/Support/ErrorHandling.h"
37 #include "llvm/Support/raw_ostream.h"
38 #include <algorithm>
39 #include <cassert>
40 #include <iterator>
41 #include <limits>
42 #include <tuple>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "regalloc"
47 
48 STATISTIC(NumFinished, "Number of splits finished");
49 STATISTIC(NumSimple,   "Number of splits that were simple");
50 STATISTIC(NumCopies,   "Number of copies inserted for splitting");
51 STATISTIC(NumRemats,   "Number of rematerialized defs for splitting");
52 
53 //===----------------------------------------------------------------------===//
54 //                     Last Insert Point Analysis
55 //===----------------------------------------------------------------------===//
56 
57 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis,
58                                          unsigned BBNum)
59     : LIS(lis), LastInsertPoint(BBNum) {}
60 
61 SlotIndex
62 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI,
63                                             const MachineBasicBlock &MBB) {
64   unsigned Num = MBB.getNumber();
65   std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num];
66   SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB);
67 
68   SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors;
69   bool EHPadSuccessor = false;
70   for (const MachineBasicBlock *SMBB : MBB.successors()) {
71     if (SMBB->isEHPad()) {
72       ExceptionalSuccessors.push_back(SMBB);
73       EHPadSuccessor = true;
74     } else if (SMBB->isInlineAsmBrIndirectTarget())
75       ExceptionalSuccessors.push_back(SMBB);
76   }
77 
78   // Compute insert points on the first call. The pair is independent of the
79   // current live interval.
80   if (!LIP.first.isValid()) {
81     MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator();
82     if (FirstTerm == MBB.end())
83       LIP.first = MBBEnd;
84     else
85       LIP.first = LIS.getInstructionIndex(*FirstTerm);
86 
87     // If there is a landing pad or inlineasm_br successor, also find the
88     // instruction. If there is no such instruction, we don't need to do
89     // anything special.  We assume there cannot be multiple instructions that
90     // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we
91     // assume that if there are any, they will be after any other call
92     // instructions in the block.
93     if (ExceptionalSuccessors.empty())
94       return LIP.first;
95     for (const MachineInstr &MI : llvm::reverse(MBB)) {
96       if ((EHPadSuccessor && MI.isCall()) ||
97           MI.getOpcode() == TargetOpcode::INLINEASM_BR) {
98         LIP.second = LIS.getInstructionIndex(MI);
99         break;
100       }
101     }
102   }
103 
104   // If CurLI is live into a landing pad successor, move the last insert point
105   // back to the call that may throw.
106   if (!LIP.second)
107     return LIP.first;
108 
109   if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) {
110         return LIS.isLiveInToMBB(CurLI, EHPad);
111       }))
112     return LIP.first;
113 
114   // Find the value leaving MBB.
115   const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd);
116   if (!VNI)
117     return LIP.first;
118 
119   // The def of statepoint instruction is a gc relocation and it should be alive
120   // in landing pad. So we cannot split interval after statepoint instruction.
121   if (SlotIndex::isSameInstr(VNI->def, LIP.second))
122     if (auto *I = LIS.getInstructionFromIndex(LIP.second))
123       if (I->getOpcode() == TargetOpcode::STATEPOINT)
124         return LIP.second;
125 
126   // If the value leaving MBB was defined after the call in MBB, it can't
127   // really be live-in to the landing pad.  This can happen if the landing pad
128   // has a PHI, and this register is undef on the exceptional edge.
129   if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd)
130     return LIP.first;
131 
132   // Value is properly live-in to the landing pad.
133   // Only allow inserts before the call.
134   return LIP.second;
135 }
136 
137 MachineBasicBlock::iterator
138 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI,
139                                             MachineBasicBlock &MBB) {
140   SlotIndex LIP = getLastInsertPoint(CurLI, MBB);
141   if (LIP == LIS.getMBBEndIdx(&MBB))
142     return MBB.end();
143   return LIS.getInstructionFromIndex(LIP);
144 }
145 
146 //===----------------------------------------------------------------------===//
147 //                                 Split Analysis
148 //===----------------------------------------------------------------------===//
149 
150 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis,
151                              const MachineLoopInfo &mli)
152     : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli),
153       TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {}
154 
155 void SplitAnalysis::clear() {
156   UseSlots.clear();
157   UseBlocks.clear();
158   ThroughBlocks.clear();
159   CurLI = nullptr;
160 }
161 
162 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI.
163 void SplitAnalysis::analyzeUses() {
164   assert(UseSlots.empty() && "Call clear first");
165 
166   // First get all the defs from the interval values. This provides the correct
167   // slots for early clobbers.
168   for (const VNInfo *VNI : CurLI->valnos)
169     if (!VNI->isPHIDef() && !VNI->isUnused())
170       UseSlots.push_back(VNI->def);
171 
172   // Get use slots form the use-def chain.
173   const MachineRegisterInfo &MRI = MF.getRegInfo();
174   for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg()))
175     if (!MO.isUndef())
176       UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot());
177 
178   array_pod_sort(UseSlots.begin(), UseSlots.end());
179 
180   // Remove duplicates, keeping the smaller slot for each instruction.
181   // That is what we want for early clobbers.
182   UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(),
183                              SlotIndex::isSameInstr),
184                  UseSlots.end());
185 
186   // Compute per-live block info.
187   calcLiveBlockInfo();
188 
189   LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in "
190                     << UseBlocks.size() << " blocks, through "
191                     << NumThroughBlocks << " blocks.\n");
192 }
193 
194 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks
195 /// where CurLI is live.
196 void SplitAnalysis::calcLiveBlockInfo() {
197   ThroughBlocks.resize(MF.getNumBlockIDs());
198   NumThroughBlocks = NumGapBlocks = 0;
199   if (CurLI->empty())
200     return;
201 
202   LiveInterval::const_iterator LVI = CurLI->begin();
203   LiveInterval::const_iterator LVE = CurLI->end();
204 
205   SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE;
206   UseI = UseSlots.begin();
207   UseE = UseSlots.end();
208 
209   // Loop over basic blocks where CurLI is live.
210   MachineFunction::iterator MFI =
211       LIS.getMBBFromIndex(LVI->start)->getIterator();
212   while (true) {
213     BlockInfo BI;
214     BI.MBB = &*MFI;
215     SlotIndex Start, Stop;
216     std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
217 
218     // If the block contains no uses, the range must be live through. At one
219     // point, RegisterCoalescer could create dangling ranges that ended
220     // mid-block.
221     if (UseI == UseE || *UseI >= Stop) {
222       ++NumThroughBlocks;
223       ThroughBlocks.set(BI.MBB->getNumber());
224       // The range shouldn't end mid-block if there are no uses. This shouldn't
225       // happen.
226       assert(LVI->end >= Stop && "range ends mid block with no uses");
227     } else {
228       // This block has uses. Find the first and last uses in the block.
229       BI.FirstInstr = *UseI;
230       assert(BI.FirstInstr >= Start);
231       do ++UseI;
232       while (UseI != UseE && *UseI < Stop);
233       BI.LastInstr = UseI[-1];
234       assert(BI.LastInstr < Stop);
235 
236       // LVI is the first live segment overlapping MBB.
237       BI.LiveIn = LVI->start <= Start;
238 
239       // When not live in, the first use should be a def.
240       if (!BI.LiveIn) {
241         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
242         assert(LVI->start == BI.FirstInstr && "First instr should be a def");
243         BI.FirstDef = BI.FirstInstr;
244       }
245 
246       // Look for gaps in the live range.
247       BI.LiveOut = true;
248       while (LVI->end < Stop) {
249         SlotIndex LastStop = LVI->end;
250         if (++LVI == LVE || LVI->start >= Stop) {
251           BI.LiveOut = false;
252           BI.LastInstr = LastStop;
253           break;
254         }
255 
256         if (LastStop < LVI->start) {
257           // There is a gap in the live range. Create duplicate entries for the
258           // live-in snippet and the live-out snippet.
259           ++NumGapBlocks;
260 
261           // Push the Live-in part.
262           BI.LiveOut = false;
263           UseBlocks.push_back(BI);
264           UseBlocks.back().LastInstr = LastStop;
265 
266           // Set up BI for the live-out part.
267           BI.LiveIn = false;
268           BI.LiveOut = true;
269           BI.FirstInstr = BI.FirstDef = LVI->start;
270         }
271 
272         // A Segment that starts in the middle of the block must be a def.
273         assert(LVI->start == LVI->valno->def && "Dangling Segment start");
274         if (!BI.FirstDef)
275           BI.FirstDef = LVI->start;
276       }
277 
278       UseBlocks.push_back(BI);
279 
280       // LVI is now at LVE or LVI->end >= Stop.
281       if (LVI == LVE)
282         break;
283     }
284 
285     // Live segment ends exactly at Stop. Move to the next segment.
286     if (LVI->end == Stop && ++LVI == LVE)
287       break;
288 
289     // Pick the next basic block.
290     if (LVI->start < Stop)
291       ++MFI;
292     else
293       MFI = LIS.getMBBFromIndex(LVI->start)->getIterator();
294   }
295 
296   assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count");
297 }
298 
299 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const {
300   if (cli->empty())
301     return 0;
302   LiveInterval *li = const_cast<LiveInterval*>(cli);
303   LiveInterval::iterator LVI = li->begin();
304   LiveInterval::iterator LVE = li->end();
305   unsigned Count = 0;
306 
307   // Loop over basic blocks where li is live.
308   MachineFunction::const_iterator MFI =
309       LIS.getMBBFromIndex(LVI->start)->getIterator();
310   SlotIndex Stop = LIS.getMBBEndIdx(&*MFI);
311   while (true) {
312     ++Count;
313     LVI = li->advanceTo(LVI, Stop);
314     if (LVI == LVE)
315       return Count;
316     do {
317       ++MFI;
318       Stop = LIS.getMBBEndIdx(&*MFI);
319     } while (Stop <= LVI->start);
320   }
321 }
322 
323 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const {
324   Register OrigReg = VRM.getOriginal(CurLI->reg());
325   const LiveInterval &Orig = LIS.getInterval(OrigReg);
326   assert(!Orig.empty() && "Splitting empty interval?");
327   LiveInterval::const_iterator I = Orig.find(Idx);
328 
329   // Range containing Idx should begin at Idx.
330   if (I != Orig.end() && I->start <= Idx)
331     return I->start == Idx;
332 
333   // Range does not contain Idx, previous must end at Idx.
334   return I != Orig.begin() && (--I)->end == Idx;
335 }
336 
337 void SplitAnalysis::analyze(const LiveInterval *li) {
338   clear();
339   CurLI = li;
340   analyzeUses();
341 }
342 
343 //===----------------------------------------------------------------------===//
344 //                               Split Editor
345 //===----------------------------------------------------------------------===//
346 
347 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA.
348 SplitEditor::SplitEditor(SplitAnalysis &SA, LiveIntervals &LIS, VirtRegMap &VRM,
349                          MachineDominatorTree &MDT,
350                          MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI)
351     : SA(SA), LIS(LIS), VRM(VRM), MRI(VRM.getMachineFunction().getRegInfo()),
352       MDT(MDT), TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()),
353       TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()),
354       MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {}
355 
356 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) {
357   Edit = &LRE;
358   SpillMode = SM;
359   OpenIdx = 0;
360   RegAssign.clear();
361   Values.clear();
362 
363   // Reset the LiveIntervalCalc instances needed for this spill mode.
364   LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
365                   &LIS.getVNInfoAllocator());
366   if (SpillMode)
367     LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
368                     &LIS.getVNInfoAllocator());
369 
370   Edit->anyRematerializable();
371 }
372 
373 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP)
374 LLVM_DUMP_METHOD void SplitEditor::dump() const {
375   if (RegAssign.empty()) {
376     dbgs() << " empty\n";
377     return;
378   }
379 
380   for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I)
381     dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value();
382   dbgs() << '\n';
383 }
384 #endif
385 
386 /// Find a subrange corresponding to the exact lane mask @p LM in the live
387 /// interval @p LI. The interval @p LI is assumed to contain such a subrange.
388 /// This function is used to find corresponding subranges between the
389 /// original interval and the new intervals.
390 template <typename T> auto &getSubrangeImpl(LaneBitmask LM, T &LI) {
391   for (auto &S : LI.subranges())
392     if (S.LaneMask == LM)
393       return S;
394   llvm_unreachable("SubRange for this mask not found");
395 }
396 
397 LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
398                                                 LiveInterval &LI) {
399   return getSubrangeImpl(LM, LI);
400 }
401 
402 const LiveInterval::SubRange &getSubRangeForMaskExact(LaneBitmask LM,
403                                                       const LiveInterval &LI) {
404   return getSubrangeImpl(LM, LI);
405 }
406 
407 /// Find a subrange corresponding to the lane mask @p LM, or a superset of it,
408 /// in the live interval @p LI. The interval @p LI is assumed to contain such
409 /// a subrange.  This function is used to find corresponding subranges between
410 /// the original interval and the new intervals.
411 const LiveInterval::SubRange &getSubRangeForMask(LaneBitmask LM,
412                                                  const LiveInterval &LI) {
413   for (const LiveInterval::SubRange &S : LI.subranges())
414     if ((S.LaneMask & LM) == LM)
415       return S;
416   llvm_unreachable("SubRange for this mask not found");
417 }
418 
419 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) {
420   if (!LI.hasSubRanges()) {
421     LI.createDeadDef(VNI);
422     return;
423   }
424 
425   SlotIndex Def = VNI->def;
426   if (Original) {
427     // If we are transferring a def from the original interval, make sure
428     // to only update the subranges for which the original subranges had
429     // a def at this location.
430     for (LiveInterval::SubRange &S : LI.subranges()) {
431       auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent());
432       VNInfo *PV = PS.getVNInfoAt(Def);
433       if (PV != nullptr && PV->def == Def)
434         S.createDeadDef(Def, LIS.getVNInfoAllocator());
435     }
436   } else {
437     // This is a new def: either from rematerialization, or from an inserted
438     // copy. Since rematerialization can regenerate a definition of a sub-
439     // register, we need to check which subranges need to be updated.
440     const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def);
441     assert(DefMI != nullptr);
442     LaneBitmask LM;
443     for (const MachineOperand &DefOp : DefMI->defs()) {
444       Register R = DefOp.getReg();
445       if (R != LI.reg())
446         continue;
447       if (unsigned SR = DefOp.getSubReg())
448         LM |= TRI.getSubRegIndexLaneMask(SR);
449       else {
450         LM = MRI.getMaxLaneMaskForVReg(R);
451         break;
452       }
453     }
454     for (LiveInterval::SubRange &S : LI.subranges())
455       if ((S.LaneMask & LM).any())
456         S.createDeadDef(Def, LIS.getVNInfoAllocator());
457   }
458 }
459 
460 VNInfo *SplitEditor::defValue(unsigned RegIdx,
461                               const VNInfo *ParentVNI,
462                               SlotIndex Idx,
463                               bool Original) {
464   assert(ParentVNI && "Mapping  NULL value");
465   assert(Idx.isValid() && "Invalid SlotIndex");
466   assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI");
467   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
468 
469   // Create a new value.
470   VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator());
471 
472   bool Force = LI->hasSubRanges();
473   ValueForcePair FP(Force ? nullptr : VNI, Force);
474   // Use insert for lookup, so we can add missing values with a second lookup.
475   std::pair<ValueMap::iterator, bool> InsP =
476     Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP));
477 
478   // This was the first time (RegIdx, ParentVNI) was mapped, and it is not
479   // forced. Keep it as a simple def without any liveness.
480   if (!Force && InsP.second)
481     return VNI;
482 
483   // If the previous value was a simple mapping, add liveness for it now.
484   if (VNInfo *OldVNI = InsP.first->second.getPointer()) {
485     addDeadDef(*LI, OldVNI, Original);
486 
487     // No longer a simple mapping.  Switch to a complex mapping. If the
488     // interval has subranges, make it a forced mapping.
489     InsP.first->second = ValueForcePair(nullptr, Force);
490   }
491 
492   // This is a complex mapping, add liveness for VNI
493   addDeadDef(*LI, VNI, Original);
494   return VNI;
495 }
496 
497 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) {
498   ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)];
499   VNInfo *VNI = VFP.getPointer();
500 
501   // ParentVNI was either unmapped or already complex mapped. Either way, just
502   // set the force bit.
503   if (!VNI) {
504     VFP.setInt(true);
505     return;
506   }
507 
508   // This was previously a single mapping. Make sure the old def is represented
509   // by a trivial live range.
510   addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false);
511 
512   // Mark as complex mapped, forced.
513   VFP = ValueForcePair(nullptr, true);
514 }
515 
516 SlotIndex SplitEditor::buildSingleSubRegCopy(
517     Register FromReg, Register ToReg, MachineBasicBlock &MBB,
518     MachineBasicBlock::iterator InsertBefore, unsigned SubIdx,
519     LiveInterval &DestLI, bool Late, SlotIndex Def, const MCInstrDesc &Desc) {
520   bool FirstCopy = !Def.isValid();
521   MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc)
522       .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy)
523               | getInternalReadRegState(!FirstCopy), SubIdx)
524       .addReg(FromReg, 0, SubIdx);
525 
526   SlotIndexes &Indexes = *LIS.getSlotIndexes();
527   if (FirstCopy) {
528     Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
529   } else {
530     CopyMI->bundleWithPred();
531   }
532   return Def;
533 }
534 
535 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg,
536     LaneBitmask LaneMask, MachineBasicBlock &MBB,
537     MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) {
538   const MCInstrDesc &Desc =
539       TII.get(TII.getLiveRangeSplitOpcode(FromReg, *MBB.getParent()));
540   SlotIndexes &Indexes = *LIS.getSlotIndexes();
541   if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) {
542     // The full vreg is copied.
543     MachineInstr *CopyMI =
544         BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg);
545     return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot();
546   }
547 
548   // Only a subset of lanes needs to be copied. The following is a simple
549   // heuristic to construct a sequence of COPYs. We could add a target
550   // specific callback if this turns out to be suboptimal.
551   LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx));
552 
553   // First pass: Try to find a perfectly matching subregister index. If none
554   // exists find the one covering the most lanemask bits.
555   const TargetRegisterClass *RC = MRI.getRegClass(FromReg);
556   assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class");
557 
558   SmallVector<unsigned, 8> SubIndexes;
559 
560   // Abort if we cannot possibly implement the COPY with the given indexes.
561   if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, SubIndexes))
562     report_fatal_error("Impossible to implement partial COPY");
563 
564   SlotIndex Def;
565   for (unsigned BestIdx : SubIndexes) {
566     Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx,
567                                 DestLI, Late, Def, Desc);
568   }
569 
570   BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator();
571   DestLI.refineSubRanges(
572       Allocator, LaneMask,
573       [Def, &Allocator](LiveInterval::SubRange &SR) {
574         SR.createDeadDef(Def, Allocator);
575       },
576       Indexes, TRI);
577 
578   return Def;
579 }
580 
581 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, const VNInfo *ParentVNI,
582                                    SlotIndex UseIdx, MachineBasicBlock &MBB,
583                                    MachineBasicBlock::iterator I) {
584   SlotIndex Def;
585   LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx));
586 
587   // We may be trying to avoid interference that ends at a deleted instruction,
588   // so always begin RegIdx 0 early and all others late.
589   bool Late = RegIdx != 0;
590 
591   // Attempt cheap-as-a-copy rematerialization.
592   Register Original = VRM.getOriginal(Edit->get(RegIdx));
593   LiveInterval &OrigLI = LIS.getInterval(Original);
594   VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx);
595 
596   Register Reg = LI->reg();
597   bool DidRemat = false;
598   if (OrigVNI) {
599     LiveRangeEdit::Remat RM(ParentVNI);
600     RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def);
601     if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) {
602       Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late);
603       ++NumRemats;
604       DidRemat = true;
605     }
606   }
607   if (!DidRemat) {
608     LaneBitmask LaneMask;
609     if (OrigLI.hasSubRanges()) {
610       LaneMask = LaneBitmask::getNone();
611       for (LiveInterval::SubRange &S : OrigLI.subranges()) {
612         if (S.liveAt(UseIdx))
613           LaneMask |= S.LaneMask;
614       }
615     } else {
616       LaneMask = LaneBitmask::getAll();
617     }
618 
619     if (LaneMask.none()) {
620       const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF);
621       MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg);
622       SlotIndexes &Indexes = *LIS.getSlotIndexes();
623       Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot();
624     } else {
625       ++NumCopies;
626       Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx);
627     }
628   }
629 
630   // Define the value in Reg.
631   return defValue(RegIdx, ParentVNI, Def, false);
632 }
633 
634 /// Create a new virtual register and live interval.
635 unsigned SplitEditor::openIntv() {
636   // Create the complement as index 0.
637   if (Edit->empty())
638     Edit->createEmptyInterval();
639 
640   // Create the open interval.
641   OpenIdx = Edit->size();
642   Edit->createEmptyInterval();
643   return OpenIdx;
644 }
645 
646 void SplitEditor::selectIntv(unsigned Idx) {
647   assert(Idx != 0 && "Cannot select the complement interval");
648   assert(Idx < Edit->size() && "Can only select previously opened interval");
649   LLVM_DEBUG(dbgs() << "    selectIntv " << OpenIdx << " -> " << Idx << '\n');
650   OpenIdx = Idx;
651 }
652 
653 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) {
654   assert(OpenIdx && "openIntv not called before enterIntvBefore");
655   LLVM_DEBUG(dbgs() << "    enterIntvBefore " << Idx);
656   Idx = Idx.getBaseIndex();
657   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
658   if (!ParentVNI) {
659     LLVM_DEBUG(dbgs() << ": not live\n");
660     return Idx;
661   }
662   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
663   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
664   assert(MI && "enterIntvBefore called with invalid index");
665 
666   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI);
667   return VNI->def;
668 }
669 
670 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) {
671   assert(OpenIdx && "openIntv not called before enterIntvAfter");
672   LLVM_DEBUG(dbgs() << "    enterIntvAfter " << Idx);
673   Idx = Idx.getBoundaryIndex();
674   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
675   if (!ParentVNI) {
676     LLVM_DEBUG(dbgs() << ": not live\n");
677     return Idx;
678   }
679   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
680   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
681   assert(MI && "enterIntvAfter called with invalid index");
682 
683   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(),
684                               std::next(MachineBasicBlock::iterator(MI)));
685   return VNI->def;
686 }
687 
688 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) {
689   assert(OpenIdx && "openIntv not called before enterIntvAtEnd");
690   SlotIndex End = LIS.getMBBEndIdx(&MBB);
691   SlotIndex Last = End.getPrevSlot();
692   LLVM_DEBUG(dbgs() << "    enterIntvAtEnd " << printMBBReference(MBB) << ", "
693                     << Last);
694   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last);
695   if (!ParentVNI) {
696     LLVM_DEBUG(dbgs() << ": not live\n");
697     return End;
698   }
699   SlotIndex LSP = SA.getLastSplitPoint(&MBB);
700   if (LSP < Last) {
701     // It could be that the use after LSP is a def, and thus the ParentVNI
702     // just selected starts at that def.  For this case to exist, the def
703     // must be part of a tied def/use pair (as otherwise we'd have split
704     // distinct live ranges into individual live intervals), and thus we
705     // can insert the def into the VNI of the use and the tied def/use
706     // pair can live in the resulting interval.
707     Last = LSP;
708     ParentVNI = Edit->getParent().getVNInfoAt(Last);
709     if (!ParentVNI) {
710       // undef use --> undef tied def
711       LLVM_DEBUG(dbgs() << ": tied use not live\n");
712       return End;
713     }
714   }
715 
716   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id);
717   VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB,
718                               SA.getLastSplitPointIter(&MBB));
719   RegAssign.insert(VNI->def, End, OpenIdx);
720   LLVM_DEBUG(dump());
721   return VNI->def;
722 }
723 
724 /// useIntv - indicate that all instructions in MBB should use OpenLI.
725 void SplitEditor::useIntv(const MachineBasicBlock &MBB) {
726   useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB));
727 }
728 
729 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) {
730   assert(OpenIdx && "openIntv not called before useIntv");
731   LLVM_DEBUG(dbgs() << "    useIntv [" << Start << ';' << End << "):");
732   RegAssign.insert(Start, End, OpenIdx);
733   LLVM_DEBUG(dump());
734 }
735 
736 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) {
737   assert(OpenIdx && "openIntv not called before leaveIntvAfter");
738   LLVM_DEBUG(dbgs() << "    leaveIntvAfter " << Idx);
739 
740   // The interval must be live beyond the instruction at Idx.
741   SlotIndex Boundary = Idx.getBoundaryIndex();
742   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary);
743   if (!ParentVNI) {
744     LLVM_DEBUG(dbgs() << ": not live\n");
745     return Boundary.getNextSlot();
746   }
747   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
748   MachineInstr *MI = LIS.getInstructionFromIndex(Boundary);
749   assert(MI && "No instruction at index");
750 
751   // In spill mode, make live ranges as short as possible by inserting the copy
752   // before MI.  This is only possible if that instruction doesn't redefine the
753   // value.  The inserted COPY is not a kill, and we don't need to recompute
754   // the source live range.  The spiller also won't try to hoist this copy.
755   if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) &&
756       MI->readsVirtualRegister(Edit->getReg())) {
757     forceRecompute(0, *ParentVNI);
758     defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
759     return Idx;
760   }
761 
762   VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(),
763                               std::next(MachineBasicBlock::iterator(MI)));
764   return VNI->def;
765 }
766 
767 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) {
768   assert(OpenIdx && "openIntv not called before leaveIntvBefore");
769   LLVM_DEBUG(dbgs() << "    leaveIntvBefore " << Idx);
770 
771   // The interval must be live into the instruction at Idx.
772   Idx = Idx.getBaseIndex();
773   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx);
774   if (!ParentVNI) {
775     LLVM_DEBUG(dbgs() << ": not live\n");
776     return Idx.getNextSlot();
777   }
778   LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n');
779 
780   MachineInstr *MI = LIS.getInstructionFromIndex(Idx);
781   assert(MI && "No instruction at index");
782   VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI);
783   return VNI->def;
784 }
785 
786 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) {
787   assert(OpenIdx && "openIntv not called before leaveIntvAtTop");
788   SlotIndex Start = LIS.getMBBStartIdx(&MBB);
789   LLVM_DEBUG(dbgs() << "    leaveIntvAtTop " << printMBBReference(MBB) << ", "
790                     << Start);
791 
792   VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
793   if (!ParentVNI) {
794     LLVM_DEBUG(dbgs() << ": not live\n");
795     return Start;
796   }
797 
798   unsigned RegIdx = 0;
799   Register Reg = LIS.getInterval(Edit->get(RegIdx)).reg();
800   VNInfo *VNI = defFromParent(RegIdx, ParentVNI, Start, MBB,
801                               MBB.SkipPHIsLabelsAndDebug(MBB.begin(), Reg));
802   RegAssign.insert(Start, VNI->def, OpenIdx);
803   LLVM_DEBUG(dump());
804   return VNI->def;
805 }
806 
807 static bool hasTiedUseOf(MachineInstr &MI, unsigned Reg) {
808   return any_of(MI.defs(), [Reg](const MachineOperand &MO) {
809     return MO.isReg() && MO.isTied() && MO.getReg() == Reg;
810   });
811 }
812 
813 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) {
814   assert(OpenIdx && "openIntv not called before overlapIntv");
815   const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start);
816   assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) &&
817          "Parent changes value in extended range");
818   assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) &&
819          "Range cannot span basic blocks");
820 
821   // The complement interval will be extended as needed by LICalc.extend().
822   if (ParentVNI)
823     forceRecompute(0, *ParentVNI);
824 
825   // If the last use is tied to a def, we can't mark it as live for the
826   // interval which includes only the use.  That would cause the tied pair
827   // to end up in two different intervals.
828   if (auto *MI = LIS.getInstructionFromIndex(End))
829     if (hasTiedUseOf(*MI, Edit->getReg())) {
830       LLVM_DEBUG(dbgs() << "skip overlap due to tied def at end\n");
831       return;
832     }
833 
834   LLVM_DEBUG(dbgs() << "    overlapIntv [" << Start << ';' << End << "):");
835   RegAssign.insert(Start, End, OpenIdx);
836   LLVM_DEBUG(dump());
837 }
838 
839 //===----------------------------------------------------------------------===//
840 //                                  Spill modes
841 //===----------------------------------------------------------------------===//
842 
843 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) {
844   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
845   LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n");
846   RegAssignMap::iterator AssignI;
847   AssignI.setMap(RegAssign);
848 
849   for (const VNInfo *C : Copies) {
850     SlotIndex Def = C->def;
851     MachineInstr *MI = LIS.getInstructionFromIndex(Def);
852     assert(MI && "No instruction for back-copy");
853 
854     MachineBasicBlock *MBB = MI->getParent();
855     MachineBasicBlock::iterator MBBI(MI);
856     bool AtBegin;
857     do AtBegin = MBBI == MBB->begin();
858     while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr());
859 
860     LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI);
861     LIS.removeVRegDefAt(*LI, Def);
862     LIS.RemoveMachineInstrFromMaps(*MI);
863     MI->eraseFromParent();
864 
865     // Adjust RegAssign if a register assignment is killed at Def. We want to
866     // avoid calculating the live range of the source register if possible.
867     AssignI.find(Def.getPrevSlot());
868     if (!AssignI.valid() || AssignI.start() >= Def)
869       continue;
870     // If MI doesn't kill the assigned register, just leave it.
871     if (AssignI.stop() != Def)
872       continue;
873     unsigned RegIdx = AssignI.value();
874     // We could hoist back-copy right after another back-copy. As a result
875     // MMBI points to copy instruction which is actually dead now.
876     // We cannot set its stop to MBBI which will be the same as start and
877     // interval does not support that.
878     SlotIndex Kill =
879         AtBegin ? SlotIndex() : LIS.getInstructionIndex(*MBBI).getRegSlot();
880     if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg()) ||
881         Kill <= AssignI.start()) {
882       LLVM_DEBUG(dbgs() << "  cannot find simple kill of RegIdx " << RegIdx
883                         << '\n');
884       forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def));
885     } else {
886       LLVM_DEBUG(dbgs() << "  move kill to " << Kill << '\t' << *MBBI);
887       AssignI.setStop(Kill);
888     }
889   }
890 }
891 
892 MachineBasicBlock*
893 SplitEditor::findShallowDominator(MachineBasicBlock *MBB,
894                                   MachineBasicBlock *DefMBB) {
895   if (MBB == DefMBB)
896     return MBB;
897   assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def.");
898 
899   const MachineLoopInfo &Loops = SA.Loops;
900   const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB);
901   MachineDomTreeNode *DefDomNode = MDT[DefMBB];
902 
903   // Best candidate so far.
904   MachineBasicBlock *BestMBB = MBB;
905   unsigned BestDepth = std::numeric_limits<unsigned>::max();
906 
907   while (true) {
908     const MachineLoop *Loop = Loops.getLoopFor(MBB);
909 
910     // MBB isn't in a loop, it doesn't get any better.  All dominators have a
911     // higher frequency by definition.
912     if (!Loop) {
913       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
914                         << " dominates " << printMBBReference(*MBB)
915                         << " at depth 0\n");
916       return MBB;
917     }
918 
919     // We'll never be able to exit the DefLoop.
920     if (Loop == DefLoop) {
921       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
922                         << " dominates " << printMBBReference(*MBB)
923                         << " in the same loop\n");
924       return MBB;
925     }
926 
927     // Least busy dominator seen so far.
928     unsigned Depth = Loop->getLoopDepth();
929     if (Depth < BestDepth) {
930       BestMBB = MBB;
931       BestDepth = Depth;
932       LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB)
933                         << " dominates " << printMBBReference(*MBB)
934                         << " at depth " << Depth << '\n');
935     }
936 
937     // Leave loop by going to the immediate dominator of the loop header.
938     // This is a bigger stride than simply walking up the dominator tree.
939     MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom();
940 
941     // Too far up the dominator tree?
942     if (!IDom || !MDT.dominates(DefDomNode, IDom))
943       return BestMBB;
944 
945     MBB = IDom->getBlock();
946   }
947 }
948 
949 void SplitEditor::computeRedundantBackCopies(
950     DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) {
951   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
952   const LiveInterval *Parent = &Edit->getParent();
953   SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums());
954   SmallPtrSet<VNInfo *, 8> DominatedVNIs;
955 
956   // Aggregate VNIs having the same value as ParentVNI.
957   for (VNInfo *VNI : LI->valnos) {
958     if (VNI->isUnused())
959       continue;
960     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
961     EqualVNs[ParentVNI->id].insert(VNI);
962   }
963 
964   // For VNI aggregation of each ParentVNI, collect dominated, i.e.,
965   // redundant VNIs to BackCopies.
966   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
967     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
968     if (!NotToHoistSet.count(ParentVNI->id))
969       continue;
970     SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin();
971     SmallPtrSetIterator<VNInfo *> It2 = It1;
972     for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) {
973       It2 = It1;
974       for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) {
975         if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2))
976           continue;
977 
978         MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def);
979         MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def);
980         if (MBB1 == MBB2) {
981           DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1));
982         } else if (MDT.dominates(MBB1, MBB2)) {
983           DominatedVNIs.insert(*It2);
984         } else if (MDT.dominates(MBB2, MBB1)) {
985           DominatedVNIs.insert(*It1);
986         }
987       }
988     }
989     if (!DominatedVNIs.empty()) {
990       forceRecompute(0, *ParentVNI);
991       append_range(BackCopies, DominatedVNIs);
992       DominatedVNIs.clear();
993     }
994   }
995 }
996 
997 /// For SM_Size mode, find a common dominator for all the back-copies for
998 /// the same ParentVNI and hoist the backcopies to the dominator BB.
999 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial
1000 /// to do the hoisting, simply remove the dominated backcopies for the same
1001 /// ParentVNI.
1002 void SplitEditor::hoistCopies() {
1003   // Get the complement interval, always RegIdx 0.
1004   LiveInterval *LI = &LIS.getInterval(Edit->get(0));
1005   const LiveInterval *Parent = &Edit->getParent();
1006 
1007   // Track the nearest common dominator for all back-copies for each ParentVNI,
1008   // indexed by ParentVNI->id.
1009   using DomPair = std::pair<MachineBasicBlock *, SlotIndex>;
1010   SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums());
1011   // The total cost of all the back-copies for each ParentVNI.
1012   SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums());
1013   // The ParentVNI->id set for which hoisting back-copies are not beneficial
1014   // for Speed.
1015   DenseSet<unsigned> NotToHoistSet;
1016 
1017   // Find the nearest common dominator for parent values with multiple
1018   // back-copies.  If a single back-copy dominates, put it in DomPair.second.
1019   for (VNInfo *VNI : LI->valnos) {
1020     if (VNI->isUnused())
1021       continue;
1022     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1023     assert(ParentVNI && "Parent not live at complement def");
1024 
1025     // Don't hoist remats.  The complement is probably going to disappear
1026     // completely anyway.
1027     if (Edit->didRematerialize(ParentVNI))
1028       continue;
1029 
1030     MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def);
1031 
1032     DomPair &Dom = NearestDom[ParentVNI->id];
1033 
1034     // Keep directly defined parent values.  This is either a PHI or an
1035     // instruction in the complement range.  All other copies of ParentVNI
1036     // should be eliminated.
1037     if (VNI->def == ParentVNI->def) {
1038       LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n');
1039       Dom = DomPair(ValMBB, VNI->def);
1040       continue;
1041     }
1042     // Skip the singly mapped values.  There is nothing to gain from hoisting a
1043     // single back-copy.
1044     if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) {
1045       LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n');
1046       continue;
1047     }
1048 
1049     if (!Dom.first) {
1050       // First time we see ParentVNI.  VNI dominates itself.
1051       Dom = DomPair(ValMBB, VNI->def);
1052     } else if (Dom.first == ValMBB) {
1053       // Two defs in the same block.  Pick the earlier def.
1054       if (!Dom.second.isValid() || VNI->def < Dom.second)
1055         Dom.second = VNI->def;
1056     } else {
1057       // Different basic blocks. Check if one dominates.
1058       MachineBasicBlock *Near =
1059         MDT.findNearestCommonDominator(Dom.first, ValMBB);
1060       if (Near == ValMBB)
1061         // Def ValMBB dominates.
1062         Dom = DomPair(ValMBB, VNI->def);
1063       else if (Near != Dom.first)
1064         // None dominate. Hoist to common dominator, need new def.
1065         Dom = DomPair(Near, SlotIndex());
1066       Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB);
1067     }
1068 
1069     LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@'
1070                       << VNI->def << " for parent " << ParentVNI->id << '@'
1071                       << ParentVNI->def << " hoist to "
1072                       << printMBBReference(*Dom.first) << ' ' << Dom.second
1073                       << '\n');
1074   }
1075 
1076   // Insert the hoisted copies.
1077   for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) {
1078     DomPair &Dom = NearestDom[i];
1079     if (!Dom.first || Dom.second.isValid())
1080       continue;
1081     // This value needs a hoisted copy inserted at the end of Dom.first.
1082     const VNInfo *ParentVNI = Parent->getValNumInfo(i);
1083     MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def);
1084     // Get a less loopy dominator than Dom.first.
1085     Dom.first = findShallowDominator(Dom.first, DefMBB);
1086     if (SpillMode == SM_Speed &&
1087         MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) {
1088       NotToHoistSet.insert(ParentVNI->id);
1089       continue;
1090     }
1091     SlotIndex LSP = SA.getLastSplitPoint(Dom.first);
1092     if (LSP <= ParentVNI->def) {
1093       NotToHoistSet.insert(ParentVNI->id);
1094       continue;
1095     }
1096     Dom.second = defFromParent(0, ParentVNI, LSP, *Dom.first,
1097                                SA.getLastSplitPointIter(Dom.first))->def;
1098   }
1099 
1100   // Remove redundant back-copies that are now known to be dominated by another
1101   // def with the same value.
1102   SmallVector<VNInfo*, 8> BackCopies;
1103   for (VNInfo *VNI : LI->valnos) {
1104     if (VNI->isUnused())
1105       continue;
1106     VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def);
1107     const DomPair &Dom = NearestDom[ParentVNI->id];
1108     if (!Dom.first || Dom.second == VNI->def ||
1109         NotToHoistSet.count(ParentVNI->id))
1110       continue;
1111     BackCopies.push_back(VNI);
1112     forceRecompute(0, *ParentVNI);
1113   }
1114 
1115   // If it is not beneficial to hoist all the BackCopies, simply remove
1116   // redundant BackCopies in speed mode.
1117   if (SpillMode == SM_Speed && !NotToHoistSet.empty())
1118     computeRedundantBackCopies(NotToHoistSet, BackCopies);
1119 
1120   removeBackCopies(BackCopies);
1121 }
1122 
1123 /// transferValues - Transfer all possible values to the new live ranges.
1124 /// Values that were rematerialized are left alone, they need LICalc.extend().
1125 bool SplitEditor::transferValues() {
1126   bool Skipped = false;
1127   RegAssignMap::const_iterator AssignI = RegAssign.begin();
1128   for (const LiveRange::Segment &S : Edit->getParent()) {
1129     LLVM_DEBUG(dbgs() << "  blit " << S << ':');
1130     VNInfo *ParentVNI = S.valno;
1131     // RegAssign has holes where RegIdx 0 should be used.
1132     SlotIndex Start = S.start;
1133     AssignI.advanceTo(Start);
1134     do {
1135       unsigned RegIdx;
1136       SlotIndex End = S.end;
1137       if (!AssignI.valid()) {
1138         RegIdx = 0;
1139       } else if (AssignI.start() <= Start) {
1140         RegIdx = AssignI.value();
1141         if (AssignI.stop() < End) {
1142           End = AssignI.stop();
1143           ++AssignI;
1144         }
1145       } else {
1146         RegIdx = 0;
1147         End = std::min(End, AssignI.start());
1148       }
1149 
1150       // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI.
1151       LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '('
1152                         << printReg(Edit->get(RegIdx)) << ')');
1153       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1154 
1155       // Check for a simply defined value that can be blitted directly.
1156       ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id));
1157       if (VNInfo *VNI = VFP.getPointer()) {
1158         LLVM_DEBUG(dbgs() << ':' << VNI->id);
1159         LI.addSegment(LiveInterval::Segment(Start, End, VNI));
1160         Start = End;
1161         continue;
1162       }
1163 
1164       // Skip values with forced recomputation.
1165       if (VFP.getInt()) {
1166         LLVM_DEBUG(dbgs() << "(recalc)");
1167         Skipped = true;
1168         Start = End;
1169         continue;
1170       }
1171 
1172       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1173 
1174       // This value has multiple defs in RegIdx, but it wasn't rematerialized,
1175       // so the live range is accurate. Add live-in blocks in [Start;End) to the
1176       // LiveInBlocks.
1177       MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator();
1178       SlotIndex BlockStart, BlockEnd;
1179       std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB);
1180 
1181       // The first block may be live-in, or it may have its own def.
1182       if (Start != BlockStart) {
1183         VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1184         assert(VNI && "Missing def for complex mapped value");
1185         LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB));
1186         // MBB has its own def. Is it also live-out?
1187         if (BlockEnd <= End)
1188           LIC.setLiveOutValue(&*MBB, VNI);
1189 
1190         // Skip to the next block for live-in.
1191         ++MBB;
1192         BlockStart = BlockEnd;
1193       }
1194 
1195       // Handle the live-in blocks covered by [Start;End).
1196       assert(Start <= BlockStart && "Expected live-in block");
1197       while (BlockStart < End) {
1198         LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB));
1199         BlockEnd = LIS.getMBBEndIdx(&*MBB);
1200         if (BlockStart == ParentVNI->def) {
1201           // This block has the def of a parent PHI, so it isn't live-in.
1202           assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?");
1203           VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End));
1204           assert(VNI && "Missing def for complex mapped parent PHI");
1205           if (End >= BlockEnd)
1206             LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well.
1207         } else {
1208           // This block needs a live-in value.  The last block covered may not
1209           // be live-out.
1210           if (End < BlockEnd)
1211             LIC.addLiveInBlock(LI, MDT[&*MBB], End);
1212           else {
1213             // Live-through, and we don't know the value.
1214             LIC.addLiveInBlock(LI, MDT[&*MBB]);
1215             LIC.setLiveOutValue(&*MBB, nullptr);
1216           }
1217         }
1218         BlockStart = BlockEnd;
1219         ++MBB;
1220       }
1221       Start = End;
1222     } while (Start != S.end);
1223     LLVM_DEBUG(dbgs() << '\n');
1224   }
1225 
1226   LICalc[0].calculateValues();
1227   if (SpillMode)
1228     LICalc[1].calculateValues();
1229 
1230   return Skipped;
1231 }
1232 
1233 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) {
1234   const LiveRange::Segment *Seg = LR.getSegmentContaining(Def);
1235   if (Seg == nullptr)
1236     return true;
1237   if (Seg->end != Def.getDeadSlot())
1238     return false;
1239   // This is a dead PHI. Remove it.
1240   LR.removeSegment(*Seg, true);
1241   return true;
1242 }
1243 
1244 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC,
1245                                  LiveRange &LR, LaneBitmask LM,
1246                                  ArrayRef<SlotIndex> Undefs) {
1247   for (MachineBasicBlock *P : B.predecessors()) {
1248     SlotIndex End = LIS.getMBBEndIdx(P);
1249     SlotIndex LastUse = End.getPrevSlot();
1250     // The predecessor may not have a live-out value. That is OK, like an
1251     // undef PHI operand.
1252     const LiveInterval &PLI = Edit->getParent();
1253     // Need the cast because the inputs to ?: would otherwise be deemed
1254     // "incompatible": SubRange vs LiveInterval.
1255     const LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI)
1256                                      : static_cast<const LiveRange &>(PLI);
1257     if (PSR.liveAt(LastUse))
1258       LIC.extend(LR, End, /*PhysReg=*/0, Undefs);
1259   }
1260 }
1261 
1262 void SplitEditor::extendPHIKillRanges() {
1263   // Extend live ranges to be live-out for successor PHI values.
1264 
1265   // Visit each PHI def slot in the parent live interval. If the def is dead,
1266   // remove it. Otherwise, extend the live interval to reach the end indexes
1267   // of all predecessor blocks.
1268 
1269   const LiveInterval &ParentLI = Edit->getParent();
1270   for (const VNInfo *V : ParentLI.valnos) {
1271     if (V->isUnused() || !V->isPHIDef())
1272       continue;
1273 
1274     unsigned RegIdx = RegAssign.lookup(V->def);
1275     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1276     LiveIntervalCalc &LIC = getLICalc(RegIdx);
1277     MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1278     if (!removeDeadSegment(V->def, LI))
1279       extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{});
1280   }
1281 
1282   SmallVector<SlotIndex, 4> Undefs;
1283   LiveIntervalCalc SubLIC;
1284 
1285   for (const LiveInterval::SubRange &PS : ParentLI.subranges()) {
1286     for (const VNInfo *V : PS.valnos) {
1287       if (V->isUnused() || !V->isPHIDef())
1288         continue;
1289       unsigned RegIdx = RegAssign.lookup(V->def);
1290       LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1291       LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI);
1292       if (removeDeadSegment(V->def, S))
1293         continue;
1294 
1295       MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def);
1296       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1297                    &LIS.getVNInfoAllocator());
1298       Undefs.clear();
1299       LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes());
1300       extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs);
1301     }
1302   }
1303 }
1304 
1305 /// rewriteAssigned - Rewrite all uses of Edit->getReg().
1306 void SplitEditor::rewriteAssigned(bool ExtendRanges) {
1307   struct ExtPoint {
1308     ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N)
1309       : MO(O), RegIdx(R), Next(N) {}
1310 
1311     MachineOperand MO;
1312     unsigned RegIdx;
1313     SlotIndex Next;
1314   };
1315 
1316   SmallVector<ExtPoint,4> ExtPoints;
1317 
1318   for (MachineOperand &MO :
1319        llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) {
1320     MachineInstr *MI = MO.getParent();
1321     // LiveDebugVariables should have handled all DBG_VALUE instructions.
1322     if (MI->isDebugValue()) {
1323       LLVM_DEBUG(dbgs() << "Zapping " << *MI);
1324       MO.setReg(0);
1325       continue;
1326     }
1327 
1328     // <undef> operands don't really read the register, so it doesn't matter
1329     // which register we choose.  When the use operand is tied to a def, we must
1330     // use the same register as the def, so just do that always.
1331     SlotIndex Idx = LIS.getInstructionIndex(*MI);
1332     if (MO.isDef() || MO.isUndef())
1333       Idx = Idx.getRegSlot(MO.isEarlyClobber());
1334 
1335     // Rewrite to the mapped register at Idx.
1336     unsigned RegIdx = RegAssign.lookup(Idx);
1337     LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx));
1338     MO.setReg(LI.reg());
1339     LLVM_DEBUG(dbgs() << "  rewr " << printMBBReference(*MI->getParent())
1340                       << '\t' << Idx << ':' << RegIdx << '\t' << *MI);
1341 
1342     // Extend liveness to Idx if the instruction reads reg.
1343     if (!ExtendRanges || MO.isUndef())
1344       continue;
1345 
1346     // Skip instructions that don't read Reg.
1347     if (MO.isDef()) {
1348       if (!MO.getSubReg() && !MO.isEarlyClobber())
1349         continue;
1350       // We may want to extend a live range for a partial redef, or for a use
1351       // tied to an early clobber.
1352       if (!Edit->getParent().liveAt(Idx.getPrevSlot()))
1353         continue;
1354     } else {
1355       assert(MO.isUse());
1356       bool IsEarlyClobber = false;
1357       if (MO.isTied()) {
1358         // We want to extend a live range into `e` slot rather than `r` slot if
1359         // tied-def is early clobber, because the `e` slot already contained
1360         // in the live range of early-clobber tied-def operand, give an example
1361         // here:
1362         //  0  %0 = ...
1363         // 16  early-clobber %0 = Op %0 (tied-def 0), ...
1364         // 32  ... = Op %0
1365         // Before extend:
1366         //   %0 = [0r, 0d) [16e, 32d)
1367         // The point we want to extend is 0d to 16e not 16r in this case, but if
1368         // we use 16r here we will extend nothing because that already contained
1369         // in [16e, 32d).
1370         unsigned OpIdx = MO.getOperandNo();
1371         unsigned DefOpIdx = MI->findTiedOperandIdx(OpIdx);
1372         const MachineOperand &DefOp = MI->getOperand(DefOpIdx);
1373         IsEarlyClobber = DefOp.isEarlyClobber();
1374       }
1375 
1376       Idx = Idx.getRegSlot(IsEarlyClobber);
1377     }
1378 
1379     SlotIndex Next = Idx;
1380     if (LI.hasSubRanges()) {
1381       // We have to delay extending subranges until we have seen all operands
1382       // defining the register. This is because a <def,read-undef> operand
1383       // will create an "undef" point, and we cannot extend any subranges
1384       // until all of them have been accounted for.
1385       if (MO.isUse())
1386         ExtPoints.push_back(ExtPoint(MO, RegIdx, Next));
1387     } else {
1388       LiveIntervalCalc &LIC = getLICalc(RegIdx);
1389       LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>());
1390     }
1391   }
1392 
1393   for (ExtPoint &EP : ExtPoints) {
1394     LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx));
1395     assert(LI.hasSubRanges());
1396 
1397     LiveIntervalCalc SubLIC;
1398     Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg();
1399     LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub)
1400                               : MRI.getMaxLaneMaskForVReg(Reg);
1401     for (LiveInterval::SubRange &S : LI.subranges()) {
1402       if ((S.LaneMask & LM).none())
1403         continue;
1404       // The problem here can be that the new register may have been created
1405       // for a partially defined original register. For example:
1406       //   %0:subreg_hireg<def,read-undef> = ...
1407       //   ...
1408       //   %1 = COPY %0
1409       if (S.empty())
1410         continue;
1411       SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT,
1412                    &LIS.getVNInfoAllocator());
1413       SmallVector<SlotIndex, 4> Undefs;
1414       LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes());
1415       SubLIC.extend(S, EP.Next, 0, Undefs);
1416     }
1417   }
1418 
1419   for (Register R : *Edit) {
1420     LiveInterval &LI = LIS.getInterval(R);
1421     if (!LI.hasSubRanges())
1422       continue;
1423     LI.clear();
1424     LI.removeEmptySubRanges();
1425     LIS.constructMainRangeFromSubranges(LI);
1426   }
1427 }
1428 
1429 void SplitEditor::deleteRematVictims() {
1430   SmallVector<MachineInstr*, 8> Dead;
1431   for (const Register &R : *Edit) {
1432     LiveInterval *LI = &LIS.getInterval(R);
1433     for (const LiveRange::Segment &S : LI->segments) {
1434       // Dead defs end at the dead slot.
1435       if (S.end != S.valno->def.getDeadSlot())
1436         continue;
1437       if (S.valno->isPHIDef())
1438         continue;
1439       MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def);
1440       assert(MI && "Missing instruction for dead def");
1441       MI->addRegisterDead(LI->reg(), &TRI);
1442 
1443       if (!MI->allDefsAreDead())
1444         continue;
1445 
1446       LLVM_DEBUG(dbgs() << "All defs dead: " << *MI);
1447       Dead.push_back(MI);
1448     }
1449   }
1450 
1451   if (Dead.empty())
1452     return;
1453 
1454   Edit->eliminateDeadDefs(Dead, std::nullopt);
1455 }
1456 
1457 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) {
1458   // Fast-path for common case.
1459   if (!ParentVNI.isPHIDef()) {
1460     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1461       forceRecompute(I, ParentVNI);
1462     return;
1463   }
1464 
1465   // Trace value through phis.
1466   SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist.
1467   SmallVector<const VNInfo *, 4> WorkList;
1468   Visited.insert(&ParentVNI);
1469   WorkList.push_back(&ParentVNI);
1470 
1471   const LiveInterval &ParentLI = Edit->getParent();
1472   const SlotIndexes &Indexes = *LIS.getSlotIndexes();
1473   do {
1474     const VNInfo &VNI = *WorkList.back();
1475     WorkList.pop_back();
1476     for (unsigned I = 0, E = Edit->size(); I != E; ++I)
1477       forceRecompute(I, VNI);
1478     if (!VNI.isPHIDef())
1479       continue;
1480 
1481     MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def);
1482     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
1483       SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred);
1484       VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd);
1485       assert(PredVNI && "Value available in PhiVNI predecessor");
1486       if (Visited.insert(PredVNI).second)
1487         WorkList.push_back(PredVNI);
1488     }
1489   } while(!WorkList.empty());
1490 }
1491 
1492 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) {
1493   ++NumFinished;
1494 
1495   // At this point, the live intervals in Edit contain VNInfos corresponding to
1496   // the inserted copies.
1497 
1498   // Add the original defs from the parent interval.
1499   for (const VNInfo *ParentVNI : Edit->getParent().valnos) {
1500     if (ParentVNI->isUnused())
1501       continue;
1502     unsigned RegIdx = RegAssign.lookup(ParentVNI->def);
1503     defValue(RegIdx, ParentVNI, ParentVNI->def, true);
1504 
1505     // Force rematted values to be recomputed everywhere.
1506     // The new live ranges may be truncated.
1507     if (Edit->didRematerialize(ParentVNI))
1508       forceRecomputeVNI(*ParentVNI);
1509   }
1510 
1511   // Hoist back-copies to the complement interval when in spill mode.
1512   switch (SpillMode) {
1513   case SM_Partition:
1514     // Leave all back-copies as is.
1515     break;
1516   case SM_Size:
1517   case SM_Speed:
1518     // hoistCopies will behave differently between size and speed.
1519     hoistCopies();
1520   }
1521 
1522   // Transfer the simply mapped values, check if any are skipped.
1523   bool Skipped = transferValues();
1524 
1525   // Rewrite virtual registers, possibly extending ranges.
1526   rewriteAssigned(Skipped);
1527 
1528   if (Skipped)
1529     extendPHIKillRanges();
1530   else
1531     ++NumSimple;
1532 
1533   // Delete defs that were rematted everywhere.
1534   if (Skipped)
1535     deleteRematVictims();
1536 
1537   // Get rid of unused values and set phi-kill flags.
1538   for (Register Reg : *Edit) {
1539     LiveInterval &LI = LIS.getInterval(Reg);
1540     LI.removeEmptySubRanges();
1541     LI.RenumberValues();
1542   }
1543 
1544   // Provide a reverse mapping from original indices to Edit ranges.
1545   if (LRMap) {
1546     auto Seq = llvm::seq<unsigned>(0, Edit->size());
1547     LRMap->assign(Seq.begin(), Seq.end());
1548   }
1549 
1550   // Now check if any registers were separated into multiple components.
1551   ConnectedVNInfoEqClasses ConEQ(LIS);
1552   for (unsigned i = 0, e = Edit->size(); i != e; ++i) {
1553     // Don't use iterators, they are invalidated by create() below.
1554     Register VReg = Edit->get(i);
1555     LiveInterval &LI = LIS.getInterval(VReg);
1556     SmallVector<LiveInterval*, 8> SplitLIs;
1557     LIS.splitSeparateComponents(LI, SplitLIs);
1558     Register Original = VRM.getOriginal(VReg);
1559     for (LiveInterval *SplitLI : SplitLIs)
1560       VRM.setIsSplitFromReg(SplitLI->reg(), Original);
1561 
1562     // The new intervals all map back to i.
1563     if (LRMap)
1564       LRMap->resize(Edit->size(), i);
1565   }
1566 
1567   // Calculate spill weight and allocation hints for new intervals.
1568   Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI);
1569 
1570   assert(!LRMap || LRMap->size() == Edit->size());
1571 }
1572 
1573 //===----------------------------------------------------------------------===//
1574 //                            Single Block Splitting
1575 //===----------------------------------------------------------------------===//
1576 
1577 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI,
1578                                            bool SingleInstrs) const {
1579   // Always split for multiple instructions.
1580   if (!BI.isOneInstr())
1581     return true;
1582   // Don't split for single instructions unless explicitly requested.
1583   if (!SingleInstrs)
1584     return false;
1585   // Splitting a live-through range always makes progress.
1586   if (BI.LiveIn && BI.LiveOut)
1587     return true;
1588   // No point in isolating a copy. It has no register class constraints.
1589   MachineInstr *MI = LIS.getInstructionFromIndex(BI.FirstInstr);
1590   bool copyLike = TII.isCopyInstr(*MI) || MI->isSubregToReg();
1591   if (copyLike)
1592     return false;
1593   // Finally, don't isolate an end point that was created by earlier splits.
1594   return isOriginalEndpoint(BI.FirstInstr);
1595 }
1596 
1597 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) {
1598   openIntv();
1599   SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB);
1600   SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr,
1601     LastSplitPoint));
1602   if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) {
1603     useIntv(SegStart, leaveIntvAfter(BI.LastInstr));
1604   } else {
1605       // The last use is after the last valid split point.
1606     SlotIndex SegStop = leaveIntvBefore(LastSplitPoint);
1607     useIntv(SegStart, SegStop);
1608     overlapIntv(SegStop, BI.LastInstr);
1609   }
1610 }
1611 
1612 //===----------------------------------------------------------------------===//
1613 //                    Global Live Range Splitting Support
1614 //===----------------------------------------------------------------------===//
1615 
1616 // These methods support a method of global live range splitting that uses a
1617 // global algorithm to decide intervals for CFG edges. They will insert split
1618 // points and color intervals in basic blocks while avoiding interference.
1619 //
1620 // Note that splitSingleBlock is also useful for blocks where both CFG edges
1621 // are on the stack.
1622 
1623 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum,
1624                                         unsigned IntvIn, SlotIndex LeaveBefore,
1625                                         unsigned IntvOut, SlotIndex EnterAfter){
1626   SlotIndex Start, Stop;
1627   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum);
1628 
1629   LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop
1630                     << ") intf " << LeaveBefore << '-' << EnterAfter
1631                     << ", live-through " << IntvIn << " -> " << IntvOut);
1632 
1633   assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks");
1634 
1635   assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block");
1636   assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf");
1637   assert((!EnterAfter || EnterAfter >= Start) && "Interference before block");
1638 
1639   MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum);
1640 
1641   if (!IntvOut) {
1642     LLVM_DEBUG(dbgs() << ", spill on entry.\n");
1643     //
1644     //        <<<<<<<<<    Possible LeaveBefore interference.
1645     //    |-----------|    Live through.
1646     //    -____________    Spill on entry.
1647     //
1648     selectIntv(IntvIn);
1649     SlotIndex Idx = leaveIntvAtTop(*MBB);
1650     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1651     (void)Idx;
1652     return;
1653   }
1654 
1655   if (!IntvIn) {
1656     LLVM_DEBUG(dbgs() << ", reload on exit.\n");
1657     //
1658     //    >>>>>>>          Possible EnterAfter interference.
1659     //    |-----------|    Live through.
1660     //    ___________--    Reload on exit.
1661     //
1662     selectIntv(IntvOut);
1663     SlotIndex Idx = enterIntvAtEnd(*MBB);
1664     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1665     (void)Idx;
1666     return;
1667   }
1668 
1669   if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) {
1670     LLVM_DEBUG(dbgs() << ", straight through.\n");
1671     //
1672     //    |-----------|    Live through.
1673     //    -------------    Straight through, same intv, no interference.
1674     //
1675     selectIntv(IntvOut);
1676     useIntv(Start, Stop);
1677     return;
1678   }
1679 
1680   // We cannot legally insert splits after LSP.
1681   SlotIndex LSP = SA.getLastSplitPoint(MBBNum);
1682   assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf");
1683 
1684   if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter ||
1685                   LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) {
1686     LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n");
1687     //
1688     //    >>>>     <<<<    Non-overlapping EnterAfter/LeaveBefore interference.
1689     //    |-----------|    Live through.
1690     //    ------=======    Switch intervals between interference.
1691     //
1692     selectIntv(IntvOut);
1693     SlotIndex Idx;
1694     if (LeaveBefore && LeaveBefore < LSP) {
1695       Idx = enterIntvBefore(LeaveBefore);
1696       useIntv(Idx, Stop);
1697     } else {
1698       Idx = enterIntvAtEnd(*MBB);
1699     }
1700     selectIntv(IntvIn);
1701     useIntv(Start, Idx);
1702     assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1703     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1704     return;
1705   }
1706 
1707   LLVM_DEBUG(dbgs() << ", create local intv for interference.\n");
1708   //
1709   //    >>><><><><<<<    Overlapping EnterAfter/LeaveBefore interference.
1710   //    |-----------|    Live through.
1711   //    ==---------==    Switch intervals before/after interference.
1712   //
1713   assert(LeaveBefore <= EnterAfter && "Missed case");
1714 
1715   selectIntv(IntvOut);
1716   SlotIndex Idx = enterIntvAfter(EnterAfter);
1717   useIntv(Idx, Stop);
1718   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1719 
1720   selectIntv(IntvIn);
1721   Idx = leaveIntvBefore(LeaveBefore);
1722   useIntv(Start, Idx);
1723   assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1724 }
1725 
1726 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI,
1727                                   unsigned IntvIn, SlotIndex LeaveBefore) {
1728   SlotIndex Start, Stop;
1729   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1730 
1731   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1732                     << Stop << "), uses " << BI.FirstInstr << '-'
1733                     << BI.LastInstr << ", reg-in " << IntvIn
1734                     << ", leave before " << LeaveBefore
1735                     << (BI.LiveOut ? ", stack-out" : ", killed in block"));
1736 
1737   assert(IntvIn && "Must have register in");
1738   assert(BI.LiveIn && "Must be live-in");
1739   assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference");
1740 
1741   if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) {
1742     LLVM_DEBUG(dbgs() << " before interference.\n");
1743     //
1744     //               <<<    Interference after kill.
1745     //     |---o---x   |    Killed in block.
1746     //     =========        Use IntvIn everywhere.
1747     //
1748     selectIntv(IntvIn);
1749     useIntv(Start, BI.LastInstr);
1750     return;
1751   }
1752 
1753   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1754 
1755   if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) {
1756     //
1757     //               <<<    Possible interference after last use.
1758     //     |---o---o---|    Live-out on stack.
1759     //     =========____    Leave IntvIn after last use.
1760     //
1761     //                 <    Interference after last use.
1762     //     |---o---o--o|    Live-out on stack, late last use.
1763     //     ============     Copy to stack after LSP, overlap IntvIn.
1764     //            \_____    Stack interval is live-out.
1765     //
1766     if (BI.LastInstr < LSP) {
1767       LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n");
1768       selectIntv(IntvIn);
1769       SlotIndex Idx = leaveIntvAfter(BI.LastInstr);
1770       useIntv(Start, Idx);
1771       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1772     } else {
1773       LLVM_DEBUG(dbgs() << ", spill before last split point.\n");
1774       selectIntv(IntvIn);
1775       SlotIndex Idx = leaveIntvBefore(LSP);
1776       overlapIntv(Idx, BI.LastInstr);
1777       useIntv(Start, Idx);
1778       assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference");
1779     }
1780     return;
1781   }
1782 
1783   // The interference is overlapping somewhere we wanted to use IntvIn. That
1784   // means we need to create a local interval that can be allocated a
1785   // different register.
1786   unsigned LocalIntv = openIntv();
1787   (void)LocalIntv;
1788   LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n");
1789 
1790   if (!BI.LiveOut || BI.LastInstr < LSP) {
1791     //
1792     //           <<<<<<<    Interference overlapping uses.
1793     //     |---o---o---|    Live-out on stack.
1794     //     =====----____    Leave IntvIn before interference, then spill.
1795     //
1796     SlotIndex To = leaveIntvAfter(BI.LastInstr);
1797     SlotIndex From = enterIntvBefore(LeaveBefore);
1798     useIntv(From, To);
1799     selectIntv(IntvIn);
1800     useIntv(Start, From);
1801     assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1802     return;
1803   }
1804 
1805   //           <<<<<<<    Interference overlapping uses.
1806   //     |---o---o--o|    Live-out on stack, late last use.
1807   //     =====-------     Copy to stack before LSP, overlap LocalIntv.
1808   //            \_____    Stack interval is live-out.
1809   //
1810   SlotIndex To = leaveIntvBefore(LSP);
1811   overlapIntv(To, BI.LastInstr);
1812   SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore));
1813   useIntv(From, To);
1814   selectIntv(IntvIn);
1815   useIntv(Start, From);
1816   assert((!LeaveBefore || From <= LeaveBefore) && "Interference");
1817 }
1818 
1819 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI,
1820                                    unsigned IntvOut, SlotIndex EnterAfter) {
1821   SlotIndex Start, Stop;
1822   std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB);
1823 
1824   LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';'
1825                     << Stop << "), uses " << BI.FirstInstr << '-'
1826                     << BI.LastInstr << ", reg-out " << IntvOut
1827                     << ", enter after " << EnterAfter
1828                     << (BI.LiveIn ? ", stack-in" : ", defined in block"));
1829 
1830   SlotIndex LSP = SA.getLastSplitPoint(BI.MBB);
1831 
1832   assert(IntvOut && "Must have register out");
1833   assert(BI.LiveOut && "Must be live-out");
1834   assert((!EnterAfter || EnterAfter < LSP) && "Bad interference");
1835 
1836   if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) {
1837     LLVM_DEBUG(dbgs() << " after interference.\n");
1838     //
1839     //    >>>>             Interference before def.
1840     //    |   o---o---|    Defined in block.
1841     //        =========    Use IntvOut everywhere.
1842     //
1843     selectIntv(IntvOut);
1844     useIntv(BI.FirstInstr, Stop);
1845     return;
1846   }
1847 
1848   if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) {
1849     LLVM_DEBUG(dbgs() << ", reload after interference.\n");
1850     //
1851     //    >>>>             Interference before def.
1852     //    |---o---o---|    Live-through, stack-in.
1853     //    ____=========    Enter IntvOut before first use.
1854     //
1855     selectIntv(IntvOut);
1856     SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr));
1857     useIntv(Idx, Stop);
1858     assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1859     return;
1860   }
1861 
1862   // The interference is overlapping somewhere we wanted to use IntvOut. That
1863   // means we need to create a local interval that can be allocated a
1864   // different register.
1865   LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n");
1866   //
1867   //    >>>>>>>          Interference overlapping uses.
1868   //    |---o---o---|    Live-through, stack-in.
1869   //    ____---======    Create local interval for interference range.
1870   //
1871   selectIntv(IntvOut);
1872   SlotIndex Idx = enterIntvAfter(EnterAfter);
1873   useIntv(Idx, Stop);
1874   assert((!EnterAfter || Idx >= EnterAfter) && "Interference");
1875 
1876   openIntv();
1877   SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr));
1878   useIntv(From, Idx);
1879 }
1880 
1881 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const {
1882   OS << "{" << printMBBReference(*MBB) << ", "
1883      << "uses " << FirstInstr << " to " << LastInstr << ", "
1884      << "1st def " << FirstDef << ", "
1885      << (LiveIn ? "live in" : "dead in") << ", "
1886      << (LiveOut ? "live out" : "dead out") << "}";
1887 }
1888 
1889 void SplitAnalysis::BlockInfo::dump() const {
1890   print(dbgs());
1891   dbgs() << "\n";
1892 }
1893