1 //===- SplitKit.cpp - Toolkit for splitting live ranges -------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This file contains the SplitAnalysis class as well as mutator functions for 10 // live range splitting. 11 // 12 //===----------------------------------------------------------------------===// 13 14 #include "SplitKit.h" 15 #include "llvm/ADT/None.h" 16 #include "llvm/ADT/STLExtras.h" 17 #include "llvm/ADT/Statistic.h" 18 #include "llvm/Analysis/AliasAnalysis.h" 19 #include "llvm/CodeGen/LiveRangeEdit.h" 20 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 21 #include "llvm/CodeGen/MachineDominators.h" 22 #include "llvm/CodeGen/MachineInstr.h" 23 #include "llvm/CodeGen/MachineInstrBuilder.h" 24 #include "llvm/CodeGen/MachineLoopInfo.h" 25 #include "llvm/CodeGen/MachineOperand.h" 26 #include "llvm/CodeGen/MachineRegisterInfo.h" 27 #include "llvm/CodeGen/TargetInstrInfo.h" 28 #include "llvm/CodeGen/TargetOpcodes.h" 29 #include "llvm/CodeGen/TargetRegisterInfo.h" 30 #include "llvm/CodeGen/TargetSubtargetInfo.h" 31 #include "llvm/CodeGen/VirtRegMap.h" 32 #include "llvm/Config/llvm-config.h" 33 #include "llvm/IR/DebugLoc.h" 34 #include "llvm/Support/Allocator.h" 35 #include "llvm/Support/BlockFrequency.h" 36 #include "llvm/Support/Debug.h" 37 #include "llvm/Support/ErrorHandling.h" 38 #include "llvm/Support/raw_ostream.h" 39 #include <algorithm> 40 #include <cassert> 41 #include <iterator> 42 #include <limits> 43 #include <tuple> 44 45 using namespace llvm; 46 47 #define DEBUG_TYPE "regalloc" 48 49 STATISTIC(NumFinished, "Number of splits finished"); 50 STATISTIC(NumSimple, "Number of splits that were simple"); 51 STATISTIC(NumCopies, "Number of copies inserted for splitting"); 52 STATISTIC(NumRemats, "Number of rematerialized defs for splitting"); 53 STATISTIC(NumRepairs, "Number of invalid live ranges repaired"); 54 55 //===----------------------------------------------------------------------===// 56 // Last Insert Point Analysis 57 //===----------------------------------------------------------------------===// 58 59 InsertPointAnalysis::InsertPointAnalysis(const LiveIntervals &lis, 60 unsigned BBNum) 61 : LIS(lis), LastInsertPoint(BBNum) {} 62 63 SlotIndex 64 InsertPointAnalysis::computeLastInsertPoint(const LiveInterval &CurLI, 65 const MachineBasicBlock &MBB) { 66 unsigned Num = MBB.getNumber(); 67 std::pair<SlotIndex, SlotIndex> &LIP = LastInsertPoint[Num]; 68 SlotIndex MBBEnd = LIS.getMBBEndIdx(&MBB); 69 70 SmallVector<const MachineBasicBlock *, 1> ExceptionalSuccessors; 71 bool EHPadSuccessor = false; 72 for (const MachineBasicBlock *SMBB : MBB.successors()) { 73 if (SMBB->isEHPad()) { 74 ExceptionalSuccessors.push_back(SMBB); 75 EHPadSuccessor = true; 76 } else if (SMBB->isInlineAsmBrIndirectTarget()) 77 ExceptionalSuccessors.push_back(SMBB); 78 } 79 80 // Compute insert points on the first call. The pair is independent of the 81 // current live interval. 82 if (!LIP.first.isValid()) { 83 MachineBasicBlock::const_iterator FirstTerm = MBB.getFirstTerminator(); 84 if (FirstTerm == MBB.end()) 85 LIP.first = MBBEnd; 86 else 87 LIP.first = LIS.getInstructionIndex(*FirstTerm); 88 89 // If there is a landing pad or inlineasm_br successor, also find the 90 // instruction. If there is no such instruction, we don't need to do 91 // anything special. We assume there cannot be multiple instructions that 92 // are Calls with EHPad successors or INLINEASM_BR in a block. Further, we 93 // assume that if there are any, they will be after any other call 94 // instructions in the block. 95 if (ExceptionalSuccessors.empty()) 96 return LIP.first; 97 for (const MachineInstr &MI : llvm::reverse(MBB)) { 98 if ((EHPadSuccessor && MI.isCall()) || 99 MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 100 LIP.second = LIS.getInstructionIndex(MI); 101 break; 102 } 103 } 104 } 105 106 // If CurLI is live into a landing pad successor, move the last insert point 107 // back to the call that may throw. 108 if (!LIP.second) 109 return LIP.first; 110 111 if (none_of(ExceptionalSuccessors, [&](const MachineBasicBlock *EHPad) { 112 return LIS.isLiveInToMBB(CurLI, EHPad); 113 })) 114 return LIP.first; 115 116 // Find the value leaving MBB. 117 const VNInfo *VNI = CurLI.getVNInfoBefore(MBBEnd); 118 if (!VNI) 119 return LIP.first; 120 121 // If the value leaving MBB was defined after the call in MBB, it can't 122 // really be live-in to the landing pad. This can happen if the landing pad 123 // has a PHI, and this register is undef on the exceptional edge. 124 // <rdar://problem/10664933> 125 if (!SlotIndex::isEarlierInstr(VNI->def, LIP.second) && VNI->def < MBBEnd) 126 return LIP.first; 127 128 // Value is properly live-in to the landing pad. 129 // Only allow inserts before the call. 130 return LIP.second; 131 } 132 133 MachineBasicBlock::iterator 134 InsertPointAnalysis::getLastInsertPointIter(const LiveInterval &CurLI, 135 MachineBasicBlock &MBB) { 136 SlotIndex LIP = getLastInsertPoint(CurLI, MBB); 137 if (LIP == LIS.getMBBEndIdx(&MBB)) 138 return MBB.end(); 139 return LIS.getInstructionFromIndex(LIP); 140 } 141 142 //===----------------------------------------------------------------------===// 143 // Split Analysis 144 //===----------------------------------------------------------------------===// 145 146 SplitAnalysis::SplitAnalysis(const VirtRegMap &vrm, const LiveIntervals &lis, 147 const MachineLoopInfo &mli) 148 : MF(vrm.getMachineFunction()), VRM(vrm), LIS(lis), Loops(mli), 149 TII(*MF.getSubtarget().getInstrInfo()), IPA(lis, MF.getNumBlockIDs()) {} 150 151 void SplitAnalysis::clear() { 152 UseSlots.clear(); 153 UseBlocks.clear(); 154 ThroughBlocks.clear(); 155 CurLI = nullptr; 156 DidRepairRange = false; 157 } 158 159 /// analyzeUses - Count instructions, basic blocks, and loops using CurLI. 160 void SplitAnalysis::analyzeUses() { 161 assert(UseSlots.empty() && "Call clear first"); 162 163 // First get all the defs from the interval values. This provides the correct 164 // slots for early clobbers. 165 for (const VNInfo *VNI : CurLI->valnos) 166 if (!VNI->isPHIDef() && !VNI->isUnused()) 167 UseSlots.push_back(VNI->def); 168 169 // Get use slots form the use-def chain. 170 const MachineRegisterInfo &MRI = MF.getRegInfo(); 171 for (MachineOperand &MO : MRI.use_nodbg_operands(CurLI->reg())) 172 if (!MO.isUndef()) 173 UseSlots.push_back(LIS.getInstructionIndex(*MO.getParent()).getRegSlot()); 174 175 array_pod_sort(UseSlots.begin(), UseSlots.end()); 176 177 // Remove duplicates, keeping the smaller slot for each instruction. 178 // That is what we want for early clobbers. 179 UseSlots.erase(std::unique(UseSlots.begin(), UseSlots.end(), 180 SlotIndex::isSameInstr), 181 UseSlots.end()); 182 183 // Compute per-live block info. 184 if (!calcLiveBlockInfo()) { 185 // FIXME: calcLiveBlockInfo found inconsistencies in the live range. 186 // I am looking at you, RegisterCoalescer! 187 DidRepairRange = true; 188 ++NumRepairs; 189 LLVM_DEBUG(dbgs() << "*** Fixing inconsistent live interval! ***\n"); 190 const_cast<LiveIntervals&>(LIS) 191 .shrinkToUses(const_cast<LiveInterval*>(CurLI)); 192 UseBlocks.clear(); 193 ThroughBlocks.clear(); 194 bool fixed = calcLiveBlockInfo(); 195 (void)fixed; 196 assert(fixed && "Couldn't fix broken live interval"); 197 } 198 199 LLVM_DEBUG(dbgs() << "Analyze counted " << UseSlots.size() << " instrs in " 200 << UseBlocks.size() << " blocks, through " 201 << NumThroughBlocks << " blocks.\n"); 202 } 203 204 /// calcLiveBlockInfo - Fill the LiveBlocks array with information about blocks 205 /// where CurLI is live. 206 bool SplitAnalysis::calcLiveBlockInfo() { 207 ThroughBlocks.resize(MF.getNumBlockIDs()); 208 NumThroughBlocks = NumGapBlocks = 0; 209 if (CurLI->empty()) 210 return true; 211 212 LiveInterval::const_iterator LVI = CurLI->begin(); 213 LiveInterval::const_iterator LVE = CurLI->end(); 214 215 SmallVectorImpl<SlotIndex>::const_iterator UseI, UseE; 216 UseI = UseSlots.begin(); 217 UseE = UseSlots.end(); 218 219 // Loop over basic blocks where CurLI is live. 220 MachineFunction::iterator MFI = 221 LIS.getMBBFromIndex(LVI->start)->getIterator(); 222 while (true) { 223 BlockInfo BI; 224 BI.MBB = &*MFI; 225 SlotIndex Start, Stop; 226 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 227 228 // If the block contains no uses, the range must be live through. At one 229 // point, RegisterCoalescer could create dangling ranges that ended 230 // mid-block. 231 if (UseI == UseE || *UseI >= Stop) { 232 ++NumThroughBlocks; 233 ThroughBlocks.set(BI.MBB->getNumber()); 234 // The range shouldn't end mid-block if there are no uses. This shouldn't 235 // happen. 236 if (LVI->end < Stop) 237 return false; 238 } else { 239 // This block has uses. Find the first and last uses in the block. 240 BI.FirstInstr = *UseI; 241 assert(BI.FirstInstr >= Start); 242 do ++UseI; 243 while (UseI != UseE && *UseI < Stop); 244 BI.LastInstr = UseI[-1]; 245 assert(BI.LastInstr < Stop); 246 247 // LVI is the first live segment overlapping MBB. 248 BI.LiveIn = LVI->start <= Start; 249 250 // When not live in, the first use should be a def. 251 if (!BI.LiveIn) { 252 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 253 assert(LVI->start == BI.FirstInstr && "First instr should be a def"); 254 BI.FirstDef = BI.FirstInstr; 255 } 256 257 // Look for gaps in the live range. 258 BI.LiveOut = true; 259 while (LVI->end < Stop) { 260 SlotIndex LastStop = LVI->end; 261 if (++LVI == LVE || LVI->start >= Stop) { 262 BI.LiveOut = false; 263 BI.LastInstr = LastStop; 264 break; 265 } 266 267 if (LastStop < LVI->start) { 268 // There is a gap in the live range. Create duplicate entries for the 269 // live-in snippet and the live-out snippet. 270 ++NumGapBlocks; 271 272 // Push the Live-in part. 273 BI.LiveOut = false; 274 UseBlocks.push_back(BI); 275 UseBlocks.back().LastInstr = LastStop; 276 277 // Set up BI for the live-out part. 278 BI.LiveIn = false; 279 BI.LiveOut = true; 280 BI.FirstInstr = BI.FirstDef = LVI->start; 281 } 282 283 // A Segment that starts in the middle of the block must be a def. 284 assert(LVI->start == LVI->valno->def && "Dangling Segment start"); 285 if (!BI.FirstDef) 286 BI.FirstDef = LVI->start; 287 } 288 289 UseBlocks.push_back(BI); 290 291 // LVI is now at LVE or LVI->end >= Stop. 292 if (LVI == LVE) 293 break; 294 } 295 296 // Live segment ends exactly at Stop. Move to the next segment. 297 if (LVI->end == Stop && ++LVI == LVE) 298 break; 299 300 // Pick the next basic block. 301 if (LVI->start < Stop) 302 ++MFI; 303 else 304 MFI = LIS.getMBBFromIndex(LVI->start)->getIterator(); 305 } 306 307 assert(getNumLiveBlocks() == countLiveBlocks(CurLI) && "Bad block count"); 308 return true; 309 } 310 311 unsigned SplitAnalysis::countLiveBlocks(const LiveInterval *cli) const { 312 if (cli->empty()) 313 return 0; 314 LiveInterval *li = const_cast<LiveInterval*>(cli); 315 LiveInterval::iterator LVI = li->begin(); 316 LiveInterval::iterator LVE = li->end(); 317 unsigned Count = 0; 318 319 // Loop over basic blocks where li is live. 320 MachineFunction::const_iterator MFI = 321 LIS.getMBBFromIndex(LVI->start)->getIterator(); 322 SlotIndex Stop = LIS.getMBBEndIdx(&*MFI); 323 while (true) { 324 ++Count; 325 LVI = li->advanceTo(LVI, Stop); 326 if (LVI == LVE) 327 return Count; 328 do { 329 ++MFI; 330 Stop = LIS.getMBBEndIdx(&*MFI); 331 } while (Stop <= LVI->start); 332 } 333 } 334 335 bool SplitAnalysis::isOriginalEndpoint(SlotIndex Idx) const { 336 unsigned OrigReg = VRM.getOriginal(CurLI->reg()); 337 const LiveInterval &Orig = LIS.getInterval(OrigReg); 338 assert(!Orig.empty() && "Splitting empty interval?"); 339 LiveInterval::const_iterator I = Orig.find(Idx); 340 341 // Range containing Idx should begin at Idx. 342 if (I != Orig.end() && I->start <= Idx) 343 return I->start == Idx; 344 345 // Range does not contain Idx, previous must end at Idx. 346 return I != Orig.begin() && (--I)->end == Idx; 347 } 348 349 void SplitAnalysis::analyze(const LiveInterval *li) { 350 clear(); 351 CurLI = li; 352 analyzeUses(); 353 } 354 355 //===----------------------------------------------------------------------===// 356 // Split Editor 357 //===----------------------------------------------------------------------===// 358 359 /// Create a new SplitEditor for editing the LiveInterval analyzed by SA. 360 SplitEditor::SplitEditor(SplitAnalysis &SA, AliasAnalysis &AA, 361 LiveIntervals &LIS, VirtRegMap &VRM, 362 MachineDominatorTree &MDT, 363 MachineBlockFrequencyInfo &MBFI, VirtRegAuxInfo &VRAI) 364 : SA(SA), AA(AA), LIS(LIS), VRM(VRM), 365 MRI(VRM.getMachineFunction().getRegInfo()), MDT(MDT), 366 TII(*VRM.getMachineFunction().getSubtarget().getInstrInfo()), 367 TRI(*VRM.getMachineFunction().getSubtarget().getRegisterInfo()), 368 MBFI(MBFI), VRAI(VRAI), RegAssign(Allocator) {} 369 370 void SplitEditor::reset(LiveRangeEdit &LRE, ComplementSpillMode SM) { 371 Edit = &LRE; 372 SpillMode = SM; 373 OpenIdx = 0; 374 RegAssign.clear(); 375 Values.clear(); 376 377 // Reset the LiveIntervalCalc instances needed for this spill mode. 378 LICalc[0].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 379 &LIS.getVNInfoAllocator()); 380 if (SpillMode) 381 LICalc[1].reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 382 &LIS.getVNInfoAllocator()); 383 384 // We don't need an AliasAnalysis since we will only be performing 385 // cheap-as-a-copy remats anyway. 386 Edit->anyRematerializable(nullptr); 387 } 388 389 #if !defined(NDEBUG) || defined(LLVM_ENABLE_DUMP) 390 LLVM_DUMP_METHOD void SplitEditor::dump() const { 391 if (RegAssign.empty()) { 392 dbgs() << " empty\n"; 393 return; 394 } 395 396 for (RegAssignMap::const_iterator I = RegAssign.begin(); I.valid(); ++I) 397 dbgs() << " [" << I.start() << ';' << I.stop() << "):" << I.value(); 398 dbgs() << '\n'; 399 } 400 #endif 401 402 LiveInterval::SubRange &SplitEditor::getSubRangeForMaskExact(LaneBitmask LM, 403 LiveInterval &LI) { 404 for (LiveInterval::SubRange &S : LI.subranges()) 405 if (S.LaneMask == LM) 406 return S; 407 llvm_unreachable("SubRange for this mask not found"); 408 } 409 410 LiveInterval::SubRange &SplitEditor::getSubRangeForMask(LaneBitmask LM, 411 LiveInterval &LI) { 412 for (LiveInterval::SubRange &S : LI.subranges()) 413 if ((S.LaneMask & LM) == LM) 414 return S; 415 llvm_unreachable("SubRange for this mask not found"); 416 } 417 418 void SplitEditor::addDeadDef(LiveInterval &LI, VNInfo *VNI, bool Original) { 419 if (!LI.hasSubRanges()) { 420 LI.createDeadDef(VNI); 421 return; 422 } 423 424 SlotIndex Def = VNI->def; 425 if (Original) { 426 // If we are transferring a def from the original interval, make sure 427 // to only update the subranges for which the original subranges had 428 // a def at this location. 429 for (LiveInterval::SubRange &S : LI.subranges()) { 430 auto &PS = getSubRangeForMask(S.LaneMask, Edit->getParent()); 431 VNInfo *PV = PS.getVNInfoAt(Def); 432 if (PV != nullptr && PV->def == Def) 433 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 434 } 435 } else { 436 // This is a new def: either from rematerialization, or from an inserted 437 // copy. Since rematerialization can regenerate a definition of a sub- 438 // register, we need to check which subranges need to be updated. 439 const MachineInstr *DefMI = LIS.getInstructionFromIndex(Def); 440 assert(DefMI != nullptr); 441 LaneBitmask LM; 442 for (const MachineOperand &DefOp : DefMI->defs()) { 443 Register R = DefOp.getReg(); 444 if (R != LI.reg()) 445 continue; 446 if (unsigned SR = DefOp.getSubReg()) 447 LM |= TRI.getSubRegIndexLaneMask(SR); 448 else { 449 LM = MRI.getMaxLaneMaskForVReg(R); 450 break; 451 } 452 } 453 for (LiveInterval::SubRange &S : LI.subranges()) 454 if ((S.LaneMask & LM).any()) 455 S.createDeadDef(Def, LIS.getVNInfoAllocator()); 456 } 457 } 458 459 VNInfo *SplitEditor::defValue(unsigned RegIdx, 460 const VNInfo *ParentVNI, 461 SlotIndex Idx, 462 bool Original) { 463 assert(ParentVNI && "Mapping NULL value"); 464 assert(Idx.isValid() && "Invalid SlotIndex"); 465 assert(Edit->getParent().getVNInfoAt(Idx) == ParentVNI && "Bad Parent VNI"); 466 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 467 468 // Create a new value. 469 VNInfo *VNI = LI->getNextValue(Idx, LIS.getVNInfoAllocator()); 470 471 bool Force = LI->hasSubRanges(); 472 ValueForcePair FP(Force ? nullptr : VNI, Force); 473 // Use insert for lookup, so we can add missing values with a second lookup. 474 std::pair<ValueMap::iterator, bool> InsP = 475 Values.insert(std::make_pair(std::make_pair(RegIdx, ParentVNI->id), FP)); 476 477 // This was the first time (RegIdx, ParentVNI) was mapped, and it is not 478 // forced. Keep it as a simple def without any liveness. 479 if (!Force && InsP.second) 480 return VNI; 481 482 // If the previous value was a simple mapping, add liveness for it now. 483 if (VNInfo *OldVNI = InsP.first->second.getPointer()) { 484 addDeadDef(*LI, OldVNI, Original); 485 486 // No longer a simple mapping. Switch to a complex mapping. If the 487 // interval has subranges, make it a forced mapping. 488 InsP.first->second = ValueForcePair(nullptr, Force); 489 } 490 491 // This is a complex mapping, add liveness for VNI 492 addDeadDef(*LI, VNI, Original); 493 return VNI; 494 } 495 496 void SplitEditor::forceRecompute(unsigned RegIdx, const VNInfo &ParentVNI) { 497 ValueForcePair &VFP = Values[std::make_pair(RegIdx, ParentVNI.id)]; 498 VNInfo *VNI = VFP.getPointer(); 499 500 // ParentVNI was either unmapped or already complex mapped. Either way, just 501 // set the force bit. 502 if (!VNI) { 503 VFP.setInt(true); 504 return; 505 } 506 507 // This was previously a single mapping. Make sure the old def is represented 508 // by a trivial live range. 509 addDeadDef(LIS.getInterval(Edit->get(RegIdx)), VNI, false); 510 511 // Mark as complex mapped, forced. 512 VFP = ValueForcePair(nullptr, true); 513 } 514 515 SlotIndex SplitEditor::buildSingleSubRegCopy(Register FromReg, Register ToReg, 516 MachineBasicBlock &MBB, MachineBasicBlock::iterator InsertBefore, 517 unsigned SubIdx, LiveInterval &DestLI, bool Late, SlotIndex Def) { 518 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 519 bool FirstCopy = !Def.isValid(); 520 MachineInstr *CopyMI = BuildMI(MBB, InsertBefore, DebugLoc(), Desc) 521 .addReg(ToReg, RegState::Define | getUndefRegState(FirstCopy) 522 | getInternalReadRegState(!FirstCopy), SubIdx) 523 .addReg(FromReg, 0, SubIdx); 524 525 BumpPtrAllocator &Allocator = LIS.getVNInfoAllocator(); 526 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 527 if (FirstCopy) { 528 Def = Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 529 } else { 530 CopyMI->bundleWithPred(); 531 } 532 LaneBitmask LaneMask = TRI.getSubRegIndexLaneMask(SubIdx); 533 DestLI.refineSubRanges(Allocator, LaneMask, 534 [Def, &Allocator](LiveInterval::SubRange &SR) { 535 SR.createDeadDef(Def, Allocator); 536 }, 537 Indexes, TRI); 538 return Def; 539 } 540 541 SlotIndex SplitEditor::buildCopy(Register FromReg, Register ToReg, 542 LaneBitmask LaneMask, MachineBasicBlock &MBB, 543 MachineBasicBlock::iterator InsertBefore, bool Late, unsigned RegIdx) { 544 const MCInstrDesc &Desc = TII.get(TargetOpcode::COPY); 545 if (LaneMask.all() || LaneMask == MRI.getMaxLaneMaskForVReg(FromReg)) { 546 // The full vreg is copied. 547 MachineInstr *CopyMI = 548 BuildMI(MBB, InsertBefore, DebugLoc(), Desc, ToReg).addReg(FromReg); 549 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 550 return Indexes.insertMachineInstrInMaps(*CopyMI, Late).getRegSlot(); 551 } 552 553 // Only a subset of lanes needs to be copied. The following is a simple 554 // heuristic to construct a sequence of COPYs. We could add a target 555 // specific callback if this turns out to be suboptimal. 556 LiveInterval &DestLI = LIS.getInterval(Edit->get(RegIdx)); 557 558 // First pass: Try to find a perfectly matching subregister index. If none 559 // exists find the one covering the most lanemask bits. 560 const TargetRegisterClass *RC = MRI.getRegClass(FromReg); 561 assert(RC == MRI.getRegClass(ToReg) && "Should have same reg class"); 562 563 SmallVector<unsigned, 8> Indexes; 564 565 // Abort if we cannot possibly implement the COPY with the given indexes. 566 if (!TRI.getCoveringSubRegIndexes(MRI, RC, LaneMask, Indexes)) 567 report_fatal_error("Impossible to implement partial COPY"); 568 569 SlotIndex Def; 570 for (unsigned BestIdx : Indexes) { 571 Def = buildSingleSubRegCopy(FromReg, ToReg, MBB, InsertBefore, BestIdx, 572 DestLI, Late, Def); 573 } 574 575 return Def; 576 } 577 578 VNInfo *SplitEditor::defFromParent(unsigned RegIdx, 579 VNInfo *ParentVNI, 580 SlotIndex UseIdx, 581 MachineBasicBlock &MBB, 582 MachineBasicBlock::iterator I) { 583 SlotIndex Def; 584 LiveInterval *LI = &LIS.getInterval(Edit->get(RegIdx)); 585 586 // We may be trying to avoid interference that ends at a deleted instruction, 587 // so always begin RegIdx 0 early and all others late. 588 bool Late = RegIdx != 0; 589 590 // Attempt cheap-as-a-copy rematerialization. 591 unsigned Original = VRM.getOriginal(Edit->get(RegIdx)); 592 LiveInterval &OrigLI = LIS.getInterval(Original); 593 VNInfo *OrigVNI = OrigLI.getVNInfoAt(UseIdx); 594 595 Register Reg = LI->reg(); 596 bool DidRemat = false; 597 if (OrigVNI) { 598 LiveRangeEdit::Remat RM(ParentVNI); 599 RM.OrigMI = LIS.getInstructionFromIndex(OrigVNI->def); 600 if (Edit->canRematerializeAt(RM, OrigVNI, UseIdx, true)) { 601 Def = Edit->rematerializeAt(MBB, I, Reg, RM, TRI, Late); 602 ++NumRemats; 603 DidRemat = true; 604 } 605 } 606 if (!DidRemat) { 607 LaneBitmask LaneMask; 608 if (OrigLI.hasSubRanges()) { 609 LaneMask = LaneBitmask::getNone(); 610 for (LiveInterval::SubRange &S : OrigLI.subranges()) { 611 if (S.liveAt(UseIdx)) 612 LaneMask |= S.LaneMask; 613 } 614 } else { 615 LaneMask = LaneBitmask::getAll(); 616 } 617 618 if (LaneMask.none()) { 619 const MCInstrDesc &Desc = TII.get(TargetOpcode::IMPLICIT_DEF); 620 MachineInstr *ImplicitDef = BuildMI(MBB, I, DebugLoc(), Desc, Reg); 621 SlotIndexes &Indexes = *LIS.getSlotIndexes(); 622 Def = Indexes.insertMachineInstrInMaps(*ImplicitDef, Late).getRegSlot(); 623 } else { 624 ++NumCopies; 625 Def = buildCopy(Edit->getReg(), Reg, LaneMask, MBB, I, Late, RegIdx); 626 } 627 } 628 629 // Define the value in Reg. 630 return defValue(RegIdx, ParentVNI, Def, false); 631 } 632 633 /// Create a new virtual register and live interval. 634 unsigned SplitEditor::openIntv() { 635 // Create the complement as index 0. 636 if (Edit->empty()) 637 Edit->createEmptyInterval(); 638 639 // Create the open interval. 640 OpenIdx = Edit->size(); 641 Edit->createEmptyInterval(); 642 return OpenIdx; 643 } 644 645 void SplitEditor::selectIntv(unsigned Idx) { 646 assert(Idx != 0 && "Cannot select the complement interval"); 647 assert(Idx < Edit->size() && "Can only select previously opened interval"); 648 LLVM_DEBUG(dbgs() << " selectIntv " << OpenIdx << " -> " << Idx << '\n'); 649 OpenIdx = Idx; 650 } 651 652 SlotIndex SplitEditor::enterIntvBefore(SlotIndex Idx) { 653 assert(OpenIdx && "openIntv not called before enterIntvBefore"); 654 LLVM_DEBUG(dbgs() << " enterIntvBefore " << Idx); 655 Idx = Idx.getBaseIndex(); 656 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 657 if (!ParentVNI) { 658 LLVM_DEBUG(dbgs() << ": not live\n"); 659 return Idx; 660 } 661 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 662 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 663 assert(MI && "enterIntvBefore called with invalid index"); 664 665 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), MI); 666 return VNI->def; 667 } 668 669 SlotIndex SplitEditor::enterIntvAfter(SlotIndex Idx) { 670 assert(OpenIdx && "openIntv not called before enterIntvAfter"); 671 LLVM_DEBUG(dbgs() << " enterIntvAfter " << Idx); 672 Idx = Idx.getBoundaryIndex(); 673 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 674 if (!ParentVNI) { 675 LLVM_DEBUG(dbgs() << ": not live\n"); 676 return Idx; 677 } 678 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 679 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 680 assert(MI && "enterIntvAfter called with invalid index"); 681 682 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Idx, *MI->getParent(), 683 std::next(MachineBasicBlock::iterator(MI))); 684 return VNI->def; 685 } 686 687 SlotIndex SplitEditor::enterIntvAtEnd(MachineBasicBlock &MBB) { 688 assert(OpenIdx && "openIntv not called before enterIntvAtEnd"); 689 SlotIndex End = LIS.getMBBEndIdx(&MBB); 690 SlotIndex Last = End.getPrevSlot(); 691 LLVM_DEBUG(dbgs() << " enterIntvAtEnd " << printMBBReference(MBB) << ", " 692 << Last); 693 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Last); 694 if (!ParentVNI) { 695 LLVM_DEBUG(dbgs() << ": not live\n"); 696 return End; 697 } 698 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id); 699 VNInfo *VNI = defFromParent(OpenIdx, ParentVNI, Last, MBB, 700 SA.getLastSplitPointIter(&MBB)); 701 RegAssign.insert(VNI->def, End, OpenIdx); 702 LLVM_DEBUG(dump()); 703 return VNI->def; 704 } 705 706 /// useIntv - indicate that all instructions in MBB should use OpenLI. 707 void SplitEditor::useIntv(const MachineBasicBlock &MBB) { 708 useIntv(LIS.getMBBStartIdx(&MBB), LIS.getMBBEndIdx(&MBB)); 709 } 710 711 void SplitEditor::useIntv(SlotIndex Start, SlotIndex End) { 712 assert(OpenIdx && "openIntv not called before useIntv"); 713 LLVM_DEBUG(dbgs() << " useIntv [" << Start << ';' << End << "):"); 714 RegAssign.insert(Start, End, OpenIdx); 715 LLVM_DEBUG(dump()); 716 } 717 718 SlotIndex SplitEditor::leaveIntvAfter(SlotIndex Idx) { 719 assert(OpenIdx && "openIntv not called before leaveIntvAfter"); 720 LLVM_DEBUG(dbgs() << " leaveIntvAfter " << Idx); 721 722 // The interval must be live beyond the instruction at Idx. 723 SlotIndex Boundary = Idx.getBoundaryIndex(); 724 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Boundary); 725 if (!ParentVNI) { 726 LLVM_DEBUG(dbgs() << ": not live\n"); 727 return Boundary.getNextSlot(); 728 } 729 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 730 MachineInstr *MI = LIS.getInstructionFromIndex(Boundary); 731 assert(MI && "No instruction at index"); 732 733 // In spill mode, make live ranges as short as possible by inserting the copy 734 // before MI. This is only possible if that instruction doesn't redefine the 735 // value. The inserted COPY is not a kill, and we don't need to recompute 736 // the source live range. The spiller also won't try to hoist this copy. 737 if (SpillMode && !SlotIndex::isSameInstr(ParentVNI->def, Idx) && 738 MI->readsVirtualRegister(Edit->getReg())) { 739 forceRecompute(0, *ParentVNI); 740 defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 741 return Idx; 742 } 743 744 VNInfo *VNI = defFromParent(0, ParentVNI, Boundary, *MI->getParent(), 745 std::next(MachineBasicBlock::iterator(MI))); 746 return VNI->def; 747 } 748 749 SlotIndex SplitEditor::leaveIntvBefore(SlotIndex Idx) { 750 assert(OpenIdx && "openIntv not called before leaveIntvBefore"); 751 LLVM_DEBUG(dbgs() << " leaveIntvBefore " << Idx); 752 753 // The interval must be live into the instruction at Idx. 754 Idx = Idx.getBaseIndex(); 755 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Idx); 756 if (!ParentVNI) { 757 LLVM_DEBUG(dbgs() << ": not live\n"); 758 return Idx.getNextSlot(); 759 } 760 LLVM_DEBUG(dbgs() << ": valno " << ParentVNI->id << '\n'); 761 762 MachineInstr *MI = LIS.getInstructionFromIndex(Idx); 763 assert(MI && "No instruction at index"); 764 VNInfo *VNI = defFromParent(0, ParentVNI, Idx, *MI->getParent(), MI); 765 return VNI->def; 766 } 767 768 SlotIndex SplitEditor::leaveIntvAtTop(MachineBasicBlock &MBB) { 769 assert(OpenIdx && "openIntv not called before leaveIntvAtTop"); 770 SlotIndex Start = LIS.getMBBStartIdx(&MBB); 771 LLVM_DEBUG(dbgs() << " leaveIntvAtTop " << printMBBReference(MBB) << ", " 772 << Start); 773 774 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 775 if (!ParentVNI) { 776 LLVM_DEBUG(dbgs() << ": not live\n"); 777 return Start; 778 } 779 780 VNInfo *VNI = defFromParent(0, ParentVNI, Start, MBB, 781 MBB.SkipPHIsLabelsAndDebug(MBB.begin())); 782 RegAssign.insert(Start, VNI->def, OpenIdx); 783 LLVM_DEBUG(dump()); 784 return VNI->def; 785 } 786 787 void SplitEditor::overlapIntv(SlotIndex Start, SlotIndex End) { 788 assert(OpenIdx && "openIntv not called before overlapIntv"); 789 const VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(Start); 790 assert(ParentVNI == Edit->getParent().getVNInfoBefore(End) && 791 "Parent changes value in extended range"); 792 assert(LIS.getMBBFromIndex(Start) == LIS.getMBBFromIndex(End) && 793 "Range cannot span basic blocks"); 794 795 // The complement interval will be extended as needed by LICalc.extend(). 796 if (ParentVNI) 797 forceRecompute(0, *ParentVNI); 798 LLVM_DEBUG(dbgs() << " overlapIntv [" << Start << ';' << End << "):"); 799 RegAssign.insert(Start, End, OpenIdx); 800 LLVM_DEBUG(dump()); 801 } 802 803 //===----------------------------------------------------------------------===// 804 // Spill modes 805 //===----------------------------------------------------------------------===// 806 807 void SplitEditor::removeBackCopies(SmallVectorImpl<VNInfo*> &Copies) { 808 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 809 LLVM_DEBUG(dbgs() << "Removing " << Copies.size() << " back-copies.\n"); 810 RegAssignMap::iterator AssignI; 811 AssignI.setMap(RegAssign); 812 813 for (const VNInfo *C : Copies) { 814 SlotIndex Def = C->def; 815 MachineInstr *MI = LIS.getInstructionFromIndex(Def); 816 assert(MI && "No instruction for back-copy"); 817 818 MachineBasicBlock *MBB = MI->getParent(); 819 MachineBasicBlock::iterator MBBI(MI); 820 bool AtBegin; 821 do AtBegin = MBBI == MBB->begin(); 822 while (!AtBegin && (--MBBI)->isDebugOrPseudoInstr()); 823 824 LLVM_DEBUG(dbgs() << "Removing " << Def << '\t' << *MI); 825 LIS.removeVRegDefAt(*LI, Def); 826 LIS.RemoveMachineInstrFromMaps(*MI); 827 MI->eraseFromParent(); 828 829 // Adjust RegAssign if a register assignment is killed at Def. We want to 830 // avoid calculating the live range of the source register if possible. 831 AssignI.find(Def.getPrevSlot()); 832 if (!AssignI.valid() || AssignI.start() >= Def) 833 continue; 834 // If MI doesn't kill the assigned register, just leave it. 835 if (AssignI.stop() != Def) 836 continue; 837 unsigned RegIdx = AssignI.value(); 838 if (AtBegin || !MBBI->readsVirtualRegister(Edit->getReg())) { 839 LLVM_DEBUG(dbgs() << " cannot find simple kill of RegIdx " << RegIdx 840 << '\n'); 841 forceRecompute(RegIdx, *Edit->getParent().getVNInfoAt(Def)); 842 } else { 843 SlotIndex Kill = LIS.getInstructionIndex(*MBBI).getRegSlot(); 844 LLVM_DEBUG(dbgs() << " move kill to " << Kill << '\t' << *MBBI); 845 AssignI.setStop(Kill); 846 } 847 } 848 } 849 850 MachineBasicBlock* 851 SplitEditor::findShallowDominator(MachineBasicBlock *MBB, 852 MachineBasicBlock *DefMBB) { 853 if (MBB == DefMBB) 854 return MBB; 855 assert(MDT.dominates(DefMBB, MBB) && "MBB must be dominated by the def."); 856 857 const MachineLoopInfo &Loops = SA.Loops; 858 const MachineLoop *DefLoop = Loops.getLoopFor(DefMBB); 859 MachineDomTreeNode *DefDomNode = MDT[DefMBB]; 860 861 // Best candidate so far. 862 MachineBasicBlock *BestMBB = MBB; 863 unsigned BestDepth = std::numeric_limits<unsigned>::max(); 864 865 while (true) { 866 const MachineLoop *Loop = Loops.getLoopFor(MBB); 867 868 // MBB isn't in a loop, it doesn't get any better. All dominators have a 869 // higher frequency by definition. 870 if (!Loop) { 871 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 872 << " dominates " << printMBBReference(*MBB) 873 << " at depth 0\n"); 874 return MBB; 875 } 876 877 // We'll never be able to exit the DefLoop. 878 if (Loop == DefLoop) { 879 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 880 << " dominates " << printMBBReference(*MBB) 881 << " in the same loop\n"); 882 return MBB; 883 } 884 885 // Least busy dominator seen so far. 886 unsigned Depth = Loop->getLoopDepth(); 887 if (Depth < BestDepth) { 888 BestMBB = MBB; 889 BestDepth = Depth; 890 LLVM_DEBUG(dbgs() << "Def in " << printMBBReference(*DefMBB) 891 << " dominates " << printMBBReference(*MBB) 892 << " at depth " << Depth << '\n'); 893 } 894 895 // Leave loop by going to the immediate dominator of the loop header. 896 // This is a bigger stride than simply walking up the dominator tree. 897 MachineDomTreeNode *IDom = MDT[Loop->getHeader()]->getIDom(); 898 899 // Too far up the dominator tree? 900 if (!IDom || !MDT.dominates(DefDomNode, IDom)) 901 return BestMBB; 902 903 MBB = IDom->getBlock(); 904 } 905 } 906 907 void SplitEditor::computeRedundantBackCopies( 908 DenseSet<unsigned> &NotToHoistSet, SmallVectorImpl<VNInfo *> &BackCopies) { 909 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 910 LiveInterval *Parent = &Edit->getParent(); 911 SmallVector<SmallPtrSet<VNInfo *, 8>, 8> EqualVNs(Parent->getNumValNums()); 912 SmallPtrSet<VNInfo *, 8> DominatedVNIs; 913 914 // Aggregate VNIs having the same value as ParentVNI. 915 for (VNInfo *VNI : LI->valnos) { 916 if (VNI->isUnused()) 917 continue; 918 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 919 EqualVNs[ParentVNI->id].insert(VNI); 920 } 921 922 // For VNI aggregation of each ParentVNI, collect dominated, i.e., 923 // redundant VNIs to BackCopies. 924 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 925 VNInfo *ParentVNI = Parent->getValNumInfo(i); 926 if (!NotToHoistSet.count(ParentVNI->id)) 927 continue; 928 SmallPtrSetIterator<VNInfo *> It1 = EqualVNs[ParentVNI->id].begin(); 929 SmallPtrSetIterator<VNInfo *> It2 = It1; 930 for (; It1 != EqualVNs[ParentVNI->id].end(); ++It1) { 931 It2 = It1; 932 for (++It2; It2 != EqualVNs[ParentVNI->id].end(); ++It2) { 933 if (DominatedVNIs.count(*It1) || DominatedVNIs.count(*It2)) 934 continue; 935 936 MachineBasicBlock *MBB1 = LIS.getMBBFromIndex((*It1)->def); 937 MachineBasicBlock *MBB2 = LIS.getMBBFromIndex((*It2)->def); 938 if (MBB1 == MBB2) { 939 DominatedVNIs.insert((*It1)->def < (*It2)->def ? (*It2) : (*It1)); 940 } else if (MDT.dominates(MBB1, MBB2)) { 941 DominatedVNIs.insert(*It2); 942 } else if (MDT.dominates(MBB2, MBB1)) { 943 DominatedVNIs.insert(*It1); 944 } 945 } 946 } 947 if (!DominatedVNIs.empty()) { 948 forceRecompute(0, *ParentVNI); 949 append_range(BackCopies, DominatedVNIs); 950 DominatedVNIs.clear(); 951 } 952 } 953 } 954 955 /// For SM_Size mode, find a common dominator for all the back-copies for 956 /// the same ParentVNI and hoist the backcopies to the dominator BB. 957 /// For SM_Speed mode, if the common dominator is hot and it is not beneficial 958 /// to do the hoisting, simply remove the dominated backcopies for the same 959 /// ParentVNI. 960 void SplitEditor::hoistCopies() { 961 // Get the complement interval, always RegIdx 0. 962 LiveInterval *LI = &LIS.getInterval(Edit->get(0)); 963 LiveInterval *Parent = &Edit->getParent(); 964 965 // Track the nearest common dominator for all back-copies for each ParentVNI, 966 // indexed by ParentVNI->id. 967 using DomPair = std::pair<MachineBasicBlock *, SlotIndex>; 968 SmallVector<DomPair, 8> NearestDom(Parent->getNumValNums()); 969 // The total cost of all the back-copies for each ParentVNI. 970 SmallVector<BlockFrequency, 8> Costs(Parent->getNumValNums()); 971 // The ParentVNI->id set for which hoisting back-copies are not beneficial 972 // for Speed. 973 DenseSet<unsigned> NotToHoistSet; 974 975 // Find the nearest common dominator for parent values with multiple 976 // back-copies. If a single back-copy dominates, put it in DomPair.second. 977 for (VNInfo *VNI : LI->valnos) { 978 if (VNI->isUnused()) 979 continue; 980 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 981 assert(ParentVNI && "Parent not live at complement def"); 982 983 // Don't hoist remats. The complement is probably going to disappear 984 // completely anyway. 985 if (Edit->didRematerialize(ParentVNI)) 986 continue; 987 988 MachineBasicBlock *ValMBB = LIS.getMBBFromIndex(VNI->def); 989 990 DomPair &Dom = NearestDom[ParentVNI->id]; 991 992 // Keep directly defined parent values. This is either a PHI or an 993 // instruction in the complement range. All other copies of ParentVNI 994 // should be eliminated. 995 if (VNI->def == ParentVNI->def) { 996 LLVM_DEBUG(dbgs() << "Direct complement def at " << VNI->def << '\n'); 997 Dom = DomPair(ValMBB, VNI->def); 998 continue; 999 } 1000 // Skip the singly mapped values. There is nothing to gain from hoisting a 1001 // single back-copy. 1002 if (Values.lookup(std::make_pair(0, ParentVNI->id)).getPointer()) { 1003 LLVM_DEBUG(dbgs() << "Single complement def at " << VNI->def << '\n'); 1004 continue; 1005 } 1006 1007 if (!Dom.first) { 1008 // First time we see ParentVNI. VNI dominates itself. 1009 Dom = DomPair(ValMBB, VNI->def); 1010 } else if (Dom.first == ValMBB) { 1011 // Two defs in the same block. Pick the earlier def. 1012 if (!Dom.second.isValid() || VNI->def < Dom.second) 1013 Dom.second = VNI->def; 1014 } else { 1015 // Different basic blocks. Check if one dominates. 1016 MachineBasicBlock *Near = 1017 MDT.findNearestCommonDominator(Dom.first, ValMBB); 1018 if (Near == ValMBB) 1019 // Def ValMBB dominates. 1020 Dom = DomPair(ValMBB, VNI->def); 1021 else if (Near != Dom.first) 1022 // None dominate. Hoist to common dominator, need new def. 1023 Dom = DomPair(Near, SlotIndex()); 1024 Costs[ParentVNI->id] += MBFI.getBlockFreq(ValMBB); 1025 } 1026 1027 LLVM_DEBUG(dbgs() << "Multi-mapped complement " << VNI->id << '@' 1028 << VNI->def << " for parent " << ParentVNI->id << '@' 1029 << ParentVNI->def << " hoist to " 1030 << printMBBReference(*Dom.first) << ' ' << Dom.second 1031 << '\n'); 1032 } 1033 1034 // Insert the hoisted copies. 1035 for (unsigned i = 0, e = Parent->getNumValNums(); i != e; ++i) { 1036 DomPair &Dom = NearestDom[i]; 1037 if (!Dom.first || Dom.second.isValid()) 1038 continue; 1039 // This value needs a hoisted copy inserted at the end of Dom.first. 1040 VNInfo *ParentVNI = Parent->getValNumInfo(i); 1041 MachineBasicBlock *DefMBB = LIS.getMBBFromIndex(ParentVNI->def); 1042 // Get a less loopy dominator than Dom.first. 1043 Dom.first = findShallowDominator(Dom.first, DefMBB); 1044 if (SpillMode == SM_Speed && 1045 MBFI.getBlockFreq(Dom.first) > Costs[ParentVNI->id]) { 1046 NotToHoistSet.insert(ParentVNI->id); 1047 continue; 1048 } 1049 SlotIndex Last = LIS.getMBBEndIdx(Dom.first).getPrevSlot(); 1050 Dom.second = 1051 defFromParent(0, ParentVNI, Last, *Dom.first, 1052 SA.getLastSplitPointIter(Dom.first))->def; 1053 } 1054 1055 // Remove redundant back-copies that are now known to be dominated by another 1056 // def with the same value. 1057 SmallVector<VNInfo*, 8> BackCopies; 1058 for (VNInfo *VNI : LI->valnos) { 1059 if (VNI->isUnused()) 1060 continue; 1061 VNInfo *ParentVNI = Edit->getParent().getVNInfoAt(VNI->def); 1062 const DomPair &Dom = NearestDom[ParentVNI->id]; 1063 if (!Dom.first || Dom.second == VNI->def || 1064 NotToHoistSet.count(ParentVNI->id)) 1065 continue; 1066 BackCopies.push_back(VNI); 1067 forceRecompute(0, *ParentVNI); 1068 } 1069 1070 // If it is not beneficial to hoist all the BackCopies, simply remove 1071 // redundant BackCopies in speed mode. 1072 if (SpillMode == SM_Speed && !NotToHoistSet.empty()) 1073 computeRedundantBackCopies(NotToHoistSet, BackCopies); 1074 1075 removeBackCopies(BackCopies); 1076 } 1077 1078 /// transferValues - Transfer all possible values to the new live ranges. 1079 /// Values that were rematerialized are left alone, they need LICalc.extend(). 1080 bool SplitEditor::transferValues() { 1081 bool Skipped = false; 1082 RegAssignMap::const_iterator AssignI = RegAssign.begin(); 1083 for (const LiveRange::Segment &S : Edit->getParent()) { 1084 LLVM_DEBUG(dbgs() << " blit " << S << ':'); 1085 VNInfo *ParentVNI = S.valno; 1086 // RegAssign has holes where RegIdx 0 should be used. 1087 SlotIndex Start = S.start; 1088 AssignI.advanceTo(Start); 1089 do { 1090 unsigned RegIdx; 1091 SlotIndex End = S.end; 1092 if (!AssignI.valid()) { 1093 RegIdx = 0; 1094 } else if (AssignI.start() <= Start) { 1095 RegIdx = AssignI.value(); 1096 if (AssignI.stop() < End) { 1097 End = AssignI.stop(); 1098 ++AssignI; 1099 } 1100 } else { 1101 RegIdx = 0; 1102 End = std::min(End, AssignI.start()); 1103 } 1104 1105 // The interval [Start;End) is continuously mapped to RegIdx, ParentVNI. 1106 LLVM_DEBUG(dbgs() << " [" << Start << ';' << End << ")=" << RegIdx << '(' 1107 << printReg(Edit->get(RegIdx)) << ')'); 1108 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1109 1110 // Check for a simply defined value that can be blitted directly. 1111 ValueForcePair VFP = Values.lookup(std::make_pair(RegIdx, ParentVNI->id)); 1112 if (VNInfo *VNI = VFP.getPointer()) { 1113 LLVM_DEBUG(dbgs() << ':' << VNI->id); 1114 LI.addSegment(LiveInterval::Segment(Start, End, VNI)); 1115 Start = End; 1116 continue; 1117 } 1118 1119 // Skip values with forced recomputation. 1120 if (VFP.getInt()) { 1121 LLVM_DEBUG(dbgs() << "(recalc)"); 1122 Skipped = true; 1123 Start = End; 1124 continue; 1125 } 1126 1127 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1128 1129 // This value has multiple defs in RegIdx, but it wasn't rematerialized, 1130 // so the live range is accurate. Add live-in blocks in [Start;End) to the 1131 // LiveInBlocks. 1132 MachineFunction::iterator MBB = LIS.getMBBFromIndex(Start)->getIterator(); 1133 SlotIndex BlockStart, BlockEnd; 1134 std::tie(BlockStart, BlockEnd) = LIS.getSlotIndexes()->getMBBRange(&*MBB); 1135 1136 // The first block may be live-in, or it may have its own def. 1137 if (Start != BlockStart) { 1138 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1139 assert(VNI && "Missing def for complex mapped value"); 1140 LLVM_DEBUG(dbgs() << ':' << VNI->id << "*" << printMBBReference(*MBB)); 1141 // MBB has its own def. Is it also live-out? 1142 if (BlockEnd <= End) 1143 LIC.setLiveOutValue(&*MBB, VNI); 1144 1145 // Skip to the next block for live-in. 1146 ++MBB; 1147 BlockStart = BlockEnd; 1148 } 1149 1150 // Handle the live-in blocks covered by [Start;End). 1151 assert(Start <= BlockStart && "Expected live-in block"); 1152 while (BlockStart < End) { 1153 LLVM_DEBUG(dbgs() << ">" << printMBBReference(*MBB)); 1154 BlockEnd = LIS.getMBBEndIdx(&*MBB); 1155 if (BlockStart == ParentVNI->def) { 1156 // This block has the def of a parent PHI, so it isn't live-in. 1157 assert(ParentVNI->isPHIDef() && "Non-phi defined at block start?"); 1158 VNInfo *VNI = LI.extendInBlock(BlockStart, std::min(BlockEnd, End)); 1159 assert(VNI && "Missing def for complex mapped parent PHI"); 1160 if (End >= BlockEnd) 1161 LIC.setLiveOutValue(&*MBB, VNI); // Live-out as well. 1162 } else { 1163 // This block needs a live-in value. The last block covered may not 1164 // be live-out. 1165 if (End < BlockEnd) 1166 LIC.addLiveInBlock(LI, MDT[&*MBB], End); 1167 else { 1168 // Live-through, and we don't know the value. 1169 LIC.addLiveInBlock(LI, MDT[&*MBB]); 1170 LIC.setLiveOutValue(&*MBB, nullptr); 1171 } 1172 } 1173 BlockStart = BlockEnd; 1174 ++MBB; 1175 } 1176 Start = End; 1177 } while (Start != S.end); 1178 LLVM_DEBUG(dbgs() << '\n'); 1179 } 1180 1181 LICalc[0].calculateValues(); 1182 if (SpillMode) 1183 LICalc[1].calculateValues(); 1184 1185 return Skipped; 1186 } 1187 1188 static bool removeDeadSegment(SlotIndex Def, LiveRange &LR) { 1189 const LiveRange::Segment *Seg = LR.getSegmentContaining(Def); 1190 if (Seg == nullptr) 1191 return true; 1192 if (Seg->end != Def.getDeadSlot()) 1193 return false; 1194 // This is a dead PHI. Remove it. 1195 LR.removeSegment(*Seg, true); 1196 return true; 1197 } 1198 1199 void SplitEditor::extendPHIRange(MachineBasicBlock &B, LiveIntervalCalc &LIC, 1200 LiveRange &LR, LaneBitmask LM, 1201 ArrayRef<SlotIndex> Undefs) { 1202 for (MachineBasicBlock *P : B.predecessors()) { 1203 SlotIndex End = LIS.getMBBEndIdx(P); 1204 SlotIndex LastUse = End.getPrevSlot(); 1205 // The predecessor may not have a live-out value. That is OK, like an 1206 // undef PHI operand. 1207 LiveInterval &PLI = Edit->getParent(); 1208 // Need the cast because the inputs to ?: would otherwise be deemed 1209 // "incompatible": SubRange vs LiveInterval. 1210 LiveRange &PSR = !LM.all() ? getSubRangeForMaskExact(LM, PLI) 1211 : static_cast<LiveRange &>(PLI); 1212 if (PSR.liveAt(LastUse)) 1213 LIC.extend(LR, End, /*PhysReg=*/0, Undefs); 1214 } 1215 } 1216 1217 void SplitEditor::extendPHIKillRanges() { 1218 // Extend live ranges to be live-out for successor PHI values. 1219 1220 // Visit each PHI def slot in the parent live interval. If the def is dead, 1221 // remove it. Otherwise, extend the live interval to reach the end indexes 1222 // of all predecessor blocks. 1223 1224 LiveInterval &ParentLI = Edit->getParent(); 1225 for (const VNInfo *V : ParentLI.valnos) { 1226 if (V->isUnused() || !V->isPHIDef()) 1227 continue; 1228 1229 unsigned RegIdx = RegAssign.lookup(V->def); 1230 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1231 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1232 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1233 if (!removeDeadSegment(V->def, LI)) 1234 extendPHIRange(B, LIC, LI, LaneBitmask::getAll(), /*Undefs=*/{}); 1235 } 1236 1237 SmallVector<SlotIndex, 4> Undefs; 1238 LiveIntervalCalc SubLIC; 1239 1240 for (LiveInterval::SubRange &PS : ParentLI.subranges()) { 1241 for (const VNInfo *V : PS.valnos) { 1242 if (V->isUnused() || !V->isPHIDef()) 1243 continue; 1244 unsigned RegIdx = RegAssign.lookup(V->def); 1245 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1246 LiveInterval::SubRange &S = getSubRangeForMaskExact(PS.LaneMask, LI); 1247 if (removeDeadSegment(V->def, S)) 1248 continue; 1249 1250 MachineBasicBlock &B = *LIS.getMBBFromIndex(V->def); 1251 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1252 &LIS.getVNInfoAllocator()); 1253 Undefs.clear(); 1254 LI.computeSubRangeUndefs(Undefs, PS.LaneMask, MRI, *LIS.getSlotIndexes()); 1255 extendPHIRange(B, SubLIC, S, PS.LaneMask, Undefs); 1256 } 1257 } 1258 } 1259 1260 /// rewriteAssigned - Rewrite all uses of Edit->getReg(). 1261 void SplitEditor::rewriteAssigned(bool ExtendRanges) { 1262 struct ExtPoint { 1263 ExtPoint(const MachineOperand &O, unsigned R, SlotIndex N) 1264 : MO(O), RegIdx(R), Next(N) {} 1265 1266 MachineOperand MO; 1267 unsigned RegIdx; 1268 SlotIndex Next; 1269 }; 1270 1271 SmallVector<ExtPoint,4> ExtPoints; 1272 1273 for (MachineOperand &MO : 1274 llvm::make_early_inc_range(MRI.reg_operands(Edit->getReg()))) { 1275 MachineInstr *MI = MO.getParent(); 1276 // LiveDebugVariables should have handled all DBG_VALUE instructions. 1277 if (MI->isDebugValue()) { 1278 LLVM_DEBUG(dbgs() << "Zapping " << *MI); 1279 MO.setReg(0); 1280 continue; 1281 } 1282 1283 // <undef> operands don't really read the register, so it doesn't matter 1284 // which register we choose. When the use operand is tied to a def, we must 1285 // use the same register as the def, so just do that always. 1286 SlotIndex Idx = LIS.getInstructionIndex(*MI); 1287 if (MO.isDef() || MO.isUndef()) 1288 Idx = Idx.getRegSlot(MO.isEarlyClobber()); 1289 1290 // Rewrite to the mapped register at Idx. 1291 unsigned RegIdx = RegAssign.lookup(Idx); 1292 LiveInterval &LI = LIS.getInterval(Edit->get(RegIdx)); 1293 MO.setReg(LI.reg()); 1294 LLVM_DEBUG(dbgs() << " rewr " << printMBBReference(*MI->getParent()) 1295 << '\t' << Idx << ':' << RegIdx << '\t' << *MI); 1296 1297 // Extend liveness to Idx if the instruction reads reg. 1298 if (!ExtendRanges || MO.isUndef()) 1299 continue; 1300 1301 // Skip instructions that don't read Reg. 1302 if (MO.isDef()) { 1303 if (!MO.getSubReg() && !MO.isEarlyClobber()) 1304 continue; 1305 // We may want to extend a live range for a partial redef, or for a use 1306 // tied to an early clobber. 1307 Idx = Idx.getPrevSlot(); 1308 if (!Edit->getParent().liveAt(Idx)) 1309 continue; 1310 } else 1311 Idx = Idx.getRegSlot(true); 1312 1313 SlotIndex Next = Idx.getNextSlot(); 1314 if (LI.hasSubRanges()) { 1315 // We have to delay extending subranges until we have seen all operands 1316 // defining the register. This is because a <def,read-undef> operand 1317 // will create an "undef" point, and we cannot extend any subranges 1318 // until all of them have been accounted for. 1319 if (MO.isUse()) 1320 ExtPoints.push_back(ExtPoint(MO, RegIdx, Next)); 1321 } else { 1322 LiveIntervalCalc &LIC = getLICalc(RegIdx); 1323 LIC.extend(LI, Next, 0, ArrayRef<SlotIndex>()); 1324 } 1325 } 1326 1327 for (ExtPoint &EP : ExtPoints) { 1328 LiveInterval &LI = LIS.getInterval(Edit->get(EP.RegIdx)); 1329 assert(LI.hasSubRanges()); 1330 1331 LiveIntervalCalc SubLIC; 1332 Register Reg = EP.MO.getReg(), Sub = EP.MO.getSubReg(); 1333 LaneBitmask LM = Sub != 0 ? TRI.getSubRegIndexLaneMask(Sub) 1334 : MRI.getMaxLaneMaskForVReg(Reg); 1335 for (LiveInterval::SubRange &S : LI.subranges()) { 1336 if ((S.LaneMask & LM).none()) 1337 continue; 1338 // The problem here can be that the new register may have been created 1339 // for a partially defined original register. For example: 1340 // %0:subreg_hireg<def,read-undef> = ... 1341 // ... 1342 // %1 = COPY %0 1343 if (S.empty()) 1344 continue; 1345 SubLIC.reset(&VRM.getMachineFunction(), LIS.getSlotIndexes(), &MDT, 1346 &LIS.getVNInfoAllocator()); 1347 SmallVector<SlotIndex, 4> Undefs; 1348 LI.computeSubRangeUndefs(Undefs, S.LaneMask, MRI, *LIS.getSlotIndexes()); 1349 SubLIC.extend(S, EP.Next, 0, Undefs); 1350 } 1351 } 1352 1353 for (Register R : *Edit) { 1354 LiveInterval &LI = LIS.getInterval(R); 1355 if (!LI.hasSubRanges()) 1356 continue; 1357 LI.clear(); 1358 LI.removeEmptySubRanges(); 1359 LIS.constructMainRangeFromSubranges(LI); 1360 } 1361 } 1362 1363 void SplitEditor::deleteRematVictims() { 1364 SmallVector<MachineInstr*, 8> Dead; 1365 for (const Register &R : *Edit) { 1366 LiveInterval *LI = &LIS.getInterval(R); 1367 for (const LiveRange::Segment &S : LI->segments) { 1368 // Dead defs end at the dead slot. 1369 if (S.end != S.valno->def.getDeadSlot()) 1370 continue; 1371 if (S.valno->isPHIDef()) 1372 continue; 1373 MachineInstr *MI = LIS.getInstructionFromIndex(S.valno->def); 1374 assert(MI && "Missing instruction for dead def"); 1375 MI->addRegisterDead(LI->reg(), &TRI); 1376 1377 if (!MI->allDefsAreDead()) 1378 continue; 1379 1380 LLVM_DEBUG(dbgs() << "All defs dead: " << *MI); 1381 Dead.push_back(MI); 1382 } 1383 } 1384 1385 if (Dead.empty()) 1386 return; 1387 1388 Edit->eliminateDeadDefs(Dead, None, &AA); 1389 } 1390 1391 void SplitEditor::forceRecomputeVNI(const VNInfo &ParentVNI) { 1392 // Fast-path for common case. 1393 if (!ParentVNI.isPHIDef()) { 1394 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1395 forceRecompute(I, ParentVNI); 1396 return; 1397 } 1398 1399 // Trace value through phis. 1400 SmallPtrSet<const VNInfo *, 8> Visited; ///< whether VNI was/is in worklist. 1401 SmallVector<const VNInfo *, 4> WorkList; 1402 Visited.insert(&ParentVNI); 1403 WorkList.push_back(&ParentVNI); 1404 1405 const LiveInterval &ParentLI = Edit->getParent(); 1406 const SlotIndexes &Indexes = *LIS.getSlotIndexes(); 1407 do { 1408 const VNInfo &VNI = *WorkList.back(); 1409 WorkList.pop_back(); 1410 for (unsigned I = 0, E = Edit->size(); I != E; ++I) 1411 forceRecompute(I, VNI); 1412 if (!VNI.isPHIDef()) 1413 continue; 1414 1415 MachineBasicBlock &MBB = *Indexes.getMBBFromIndex(VNI.def); 1416 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 1417 SlotIndex PredEnd = Indexes.getMBBEndIdx(Pred); 1418 VNInfo *PredVNI = ParentLI.getVNInfoBefore(PredEnd); 1419 assert(PredVNI && "Value available in PhiVNI predecessor"); 1420 if (Visited.insert(PredVNI).second) 1421 WorkList.push_back(PredVNI); 1422 } 1423 } while(!WorkList.empty()); 1424 } 1425 1426 void SplitEditor::finish(SmallVectorImpl<unsigned> *LRMap) { 1427 ++NumFinished; 1428 1429 // At this point, the live intervals in Edit contain VNInfos corresponding to 1430 // the inserted copies. 1431 1432 // Add the original defs from the parent interval. 1433 for (const VNInfo *ParentVNI : Edit->getParent().valnos) { 1434 if (ParentVNI->isUnused()) 1435 continue; 1436 unsigned RegIdx = RegAssign.lookup(ParentVNI->def); 1437 defValue(RegIdx, ParentVNI, ParentVNI->def, true); 1438 1439 // Force rematted values to be recomputed everywhere. 1440 // The new live ranges may be truncated. 1441 if (Edit->didRematerialize(ParentVNI)) 1442 forceRecomputeVNI(*ParentVNI); 1443 } 1444 1445 // Hoist back-copies to the complement interval when in spill mode. 1446 switch (SpillMode) { 1447 case SM_Partition: 1448 // Leave all back-copies as is. 1449 break; 1450 case SM_Size: 1451 case SM_Speed: 1452 // hoistCopies will behave differently between size and speed. 1453 hoistCopies(); 1454 } 1455 1456 // Transfer the simply mapped values, check if any are skipped. 1457 bool Skipped = transferValues(); 1458 1459 // Rewrite virtual registers, possibly extending ranges. 1460 rewriteAssigned(Skipped); 1461 1462 if (Skipped) 1463 extendPHIKillRanges(); 1464 else 1465 ++NumSimple; 1466 1467 // Delete defs that were rematted everywhere. 1468 if (Skipped) 1469 deleteRematVictims(); 1470 1471 // Get rid of unused values and set phi-kill flags. 1472 for (Register Reg : *Edit) { 1473 LiveInterval &LI = LIS.getInterval(Reg); 1474 LI.removeEmptySubRanges(); 1475 LI.RenumberValues(); 1476 } 1477 1478 // Provide a reverse mapping from original indices to Edit ranges. 1479 if (LRMap) { 1480 LRMap->clear(); 1481 for (unsigned i = 0, e = Edit->size(); i != e; ++i) 1482 LRMap->push_back(i); 1483 } 1484 1485 // Now check if any registers were separated into multiple components. 1486 ConnectedVNInfoEqClasses ConEQ(LIS); 1487 for (unsigned i = 0, e = Edit->size(); i != e; ++i) { 1488 // Don't use iterators, they are invalidated by create() below. 1489 Register VReg = Edit->get(i); 1490 LiveInterval &LI = LIS.getInterval(VReg); 1491 SmallVector<LiveInterval*, 8> SplitLIs; 1492 LIS.splitSeparateComponents(LI, SplitLIs); 1493 Register Original = VRM.getOriginal(VReg); 1494 for (LiveInterval *SplitLI : SplitLIs) 1495 VRM.setIsSplitFromReg(SplitLI->reg(), Original); 1496 1497 // The new intervals all map back to i. 1498 if (LRMap) 1499 LRMap->resize(Edit->size(), i); 1500 } 1501 1502 // Calculate spill weight and allocation hints for new intervals. 1503 Edit->calculateRegClassAndHint(VRM.getMachineFunction(), VRAI); 1504 1505 assert(!LRMap || LRMap->size() == Edit->size()); 1506 } 1507 1508 //===----------------------------------------------------------------------===// 1509 // Single Block Splitting 1510 //===----------------------------------------------------------------------===// 1511 1512 bool SplitAnalysis::shouldSplitSingleBlock(const BlockInfo &BI, 1513 bool SingleInstrs) const { 1514 // Always split for multiple instructions. 1515 if (!BI.isOneInstr()) 1516 return true; 1517 // Don't split for single instructions unless explicitly requested. 1518 if (!SingleInstrs) 1519 return false; 1520 // Splitting a live-through range always makes progress. 1521 if (BI.LiveIn && BI.LiveOut) 1522 return true; 1523 // No point in isolating a copy. It has no register class constraints. 1524 if (LIS.getInstructionFromIndex(BI.FirstInstr)->isCopyLike()) 1525 return false; 1526 // Finally, don't isolate an end point that was created by earlier splits. 1527 return isOriginalEndpoint(BI.FirstInstr); 1528 } 1529 1530 void SplitEditor::splitSingleBlock(const SplitAnalysis::BlockInfo &BI) { 1531 openIntv(); 1532 SlotIndex LastSplitPoint = SA.getLastSplitPoint(BI.MBB); 1533 SlotIndex SegStart = enterIntvBefore(std::min(BI.FirstInstr, 1534 LastSplitPoint)); 1535 if (!BI.LiveOut || BI.LastInstr < LastSplitPoint) { 1536 useIntv(SegStart, leaveIntvAfter(BI.LastInstr)); 1537 } else { 1538 // The last use is after the last valid split point. 1539 SlotIndex SegStop = leaveIntvBefore(LastSplitPoint); 1540 useIntv(SegStart, SegStop); 1541 overlapIntv(SegStop, BI.LastInstr); 1542 } 1543 } 1544 1545 //===----------------------------------------------------------------------===// 1546 // Global Live Range Splitting Support 1547 //===----------------------------------------------------------------------===// 1548 1549 // These methods support a method of global live range splitting that uses a 1550 // global algorithm to decide intervals for CFG edges. They will insert split 1551 // points and color intervals in basic blocks while avoiding interference. 1552 // 1553 // Note that splitSingleBlock is also useful for blocks where both CFG edges 1554 // are on the stack. 1555 1556 void SplitEditor::splitLiveThroughBlock(unsigned MBBNum, 1557 unsigned IntvIn, SlotIndex LeaveBefore, 1558 unsigned IntvOut, SlotIndex EnterAfter){ 1559 SlotIndex Start, Stop; 1560 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(MBBNum); 1561 1562 LLVM_DEBUG(dbgs() << "%bb." << MBBNum << " [" << Start << ';' << Stop 1563 << ") intf " << LeaveBefore << '-' << EnterAfter 1564 << ", live-through " << IntvIn << " -> " << IntvOut); 1565 1566 assert((IntvIn || IntvOut) && "Use splitSingleBlock for isolated blocks"); 1567 1568 assert((!LeaveBefore || LeaveBefore < Stop) && "Interference after block"); 1569 assert((!IntvIn || !LeaveBefore || LeaveBefore > Start) && "Impossible intf"); 1570 assert((!EnterAfter || EnterAfter >= Start) && "Interference before block"); 1571 1572 MachineBasicBlock *MBB = VRM.getMachineFunction().getBlockNumbered(MBBNum); 1573 1574 if (!IntvOut) { 1575 LLVM_DEBUG(dbgs() << ", spill on entry.\n"); 1576 // 1577 // <<<<<<<<< Possible LeaveBefore interference. 1578 // |-----------| Live through. 1579 // -____________ Spill on entry. 1580 // 1581 selectIntv(IntvIn); 1582 SlotIndex Idx = leaveIntvAtTop(*MBB); 1583 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1584 (void)Idx; 1585 return; 1586 } 1587 1588 if (!IntvIn) { 1589 LLVM_DEBUG(dbgs() << ", reload on exit.\n"); 1590 // 1591 // >>>>>>> Possible EnterAfter interference. 1592 // |-----------| Live through. 1593 // ___________-- Reload on exit. 1594 // 1595 selectIntv(IntvOut); 1596 SlotIndex Idx = enterIntvAtEnd(*MBB); 1597 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1598 (void)Idx; 1599 return; 1600 } 1601 1602 if (IntvIn == IntvOut && !LeaveBefore && !EnterAfter) { 1603 LLVM_DEBUG(dbgs() << ", straight through.\n"); 1604 // 1605 // |-----------| Live through. 1606 // ------------- Straight through, same intv, no interference. 1607 // 1608 selectIntv(IntvOut); 1609 useIntv(Start, Stop); 1610 return; 1611 } 1612 1613 // We cannot legally insert splits after LSP. 1614 SlotIndex LSP = SA.getLastSplitPoint(MBBNum); 1615 assert((!IntvOut || !EnterAfter || EnterAfter < LSP) && "Impossible intf"); 1616 1617 if (IntvIn != IntvOut && (!LeaveBefore || !EnterAfter || 1618 LeaveBefore.getBaseIndex() > EnterAfter.getBoundaryIndex())) { 1619 LLVM_DEBUG(dbgs() << ", switch avoiding interference.\n"); 1620 // 1621 // >>>> <<<< Non-overlapping EnterAfter/LeaveBefore interference. 1622 // |-----------| Live through. 1623 // ------======= Switch intervals between interference. 1624 // 1625 selectIntv(IntvOut); 1626 SlotIndex Idx; 1627 if (LeaveBefore && LeaveBefore < LSP) { 1628 Idx = enterIntvBefore(LeaveBefore); 1629 useIntv(Idx, Stop); 1630 } else { 1631 Idx = enterIntvAtEnd(*MBB); 1632 } 1633 selectIntv(IntvIn); 1634 useIntv(Start, Idx); 1635 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1636 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1637 return; 1638 } 1639 1640 LLVM_DEBUG(dbgs() << ", create local intv for interference.\n"); 1641 // 1642 // >>><><><><<<< Overlapping EnterAfter/LeaveBefore interference. 1643 // |-----------| Live through. 1644 // ==---------== Switch intervals before/after interference. 1645 // 1646 assert(LeaveBefore <= EnterAfter && "Missed case"); 1647 1648 selectIntv(IntvOut); 1649 SlotIndex Idx = enterIntvAfter(EnterAfter); 1650 useIntv(Idx, Stop); 1651 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1652 1653 selectIntv(IntvIn); 1654 Idx = leaveIntvBefore(LeaveBefore); 1655 useIntv(Start, Idx); 1656 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1657 } 1658 1659 void SplitEditor::splitRegInBlock(const SplitAnalysis::BlockInfo &BI, 1660 unsigned IntvIn, SlotIndex LeaveBefore) { 1661 SlotIndex Start, Stop; 1662 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1663 1664 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1665 << Stop << "), uses " << BI.FirstInstr << '-' 1666 << BI.LastInstr << ", reg-in " << IntvIn 1667 << ", leave before " << LeaveBefore 1668 << (BI.LiveOut ? ", stack-out" : ", killed in block")); 1669 1670 assert(IntvIn && "Must have register in"); 1671 assert(BI.LiveIn && "Must be live-in"); 1672 assert((!LeaveBefore || LeaveBefore > Start) && "Bad interference"); 1673 1674 if (!BI.LiveOut && (!LeaveBefore || LeaveBefore >= BI.LastInstr)) { 1675 LLVM_DEBUG(dbgs() << " before interference.\n"); 1676 // 1677 // <<< Interference after kill. 1678 // |---o---x | Killed in block. 1679 // ========= Use IntvIn everywhere. 1680 // 1681 selectIntv(IntvIn); 1682 useIntv(Start, BI.LastInstr); 1683 return; 1684 } 1685 1686 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1687 1688 if (!LeaveBefore || LeaveBefore > BI.LastInstr.getBoundaryIndex()) { 1689 // 1690 // <<< Possible interference after last use. 1691 // |---o---o---| Live-out on stack. 1692 // =========____ Leave IntvIn after last use. 1693 // 1694 // < Interference after last use. 1695 // |---o---o--o| Live-out on stack, late last use. 1696 // ============ Copy to stack after LSP, overlap IntvIn. 1697 // \_____ Stack interval is live-out. 1698 // 1699 if (BI.LastInstr < LSP) { 1700 LLVM_DEBUG(dbgs() << ", spill after last use before interference.\n"); 1701 selectIntv(IntvIn); 1702 SlotIndex Idx = leaveIntvAfter(BI.LastInstr); 1703 useIntv(Start, Idx); 1704 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1705 } else { 1706 LLVM_DEBUG(dbgs() << ", spill before last split point.\n"); 1707 selectIntv(IntvIn); 1708 SlotIndex Idx = leaveIntvBefore(LSP); 1709 overlapIntv(Idx, BI.LastInstr); 1710 useIntv(Start, Idx); 1711 assert((!LeaveBefore || Idx <= LeaveBefore) && "Interference"); 1712 } 1713 return; 1714 } 1715 1716 // The interference is overlapping somewhere we wanted to use IntvIn. That 1717 // means we need to create a local interval that can be allocated a 1718 // different register. 1719 unsigned LocalIntv = openIntv(); 1720 (void)LocalIntv; 1721 LLVM_DEBUG(dbgs() << ", creating local interval " << LocalIntv << ".\n"); 1722 1723 if (!BI.LiveOut || BI.LastInstr < LSP) { 1724 // 1725 // <<<<<<< Interference overlapping uses. 1726 // |---o---o---| Live-out on stack. 1727 // =====----____ Leave IntvIn before interference, then spill. 1728 // 1729 SlotIndex To = leaveIntvAfter(BI.LastInstr); 1730 SlotIndex From = enterIntvBefore(LeaveBefore); 1731 useIntv(From, To); 1732 selectIntv(IntvIn); 1733 useIntv(Start, From); 1734 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1735 return; 1736 } 1737 1738 // <<<<<<< Interference overlapping uses. 1739 // |---o---o--o| Live-out on stack, late last use. 1740 // =====------- Copy to stack before LSP, overlap LocalIntv. 1741 // \_____ Stack interval is live-out. 1742 // 1743 SlotIndex To = leaveIntvBefore(LSP); 1744 overlapIntv(To, BI.LastInstr); 1745 SlotIndex From = enterIntvBefore(std::min(To, LeaveBefore)); 1746 useIntv(From, To); 1747 selectIntv(IntvIn); 1748 useIntv(Start, From); 1749 assert((!LeaveBefore || From <= LeaveBefore) && "Interference"); 1750 } 1751 1752 void SplitEditor::splitRegOutBlock(const SplitAnalysis::BlockInfo &BI, 1753 unsigned IntvOut, SlotIndex EnterAfter) { 1754 SlotIndex Start, Stop; 1755 std::tie(Start, Stop) = LIS.getSlotIndexes()->getMBBRange(BI.MBB); 1756 1757 LLVM_DEBUG(dbgs() << printMBBReference(*BI.MBB) << " [" << Start << ';' 1758 << Stop << "), uses " << BI.FirstInstr << '-' 1759 << BI.LastInstr << ", reg-out " << IntvOut 1760 << ", enter after " << EnterAfter 1761 << (BI.LiveIn ? ", stack-in" : ", defined in block")); 1762 1763 SlotIndex LSP = SA.getLastSplitPoint(BI.MBB); 1764 1765 assert(IntvOut && "Must have register out"); 1766 assert(BI.LiveOut && "Must be live-out"); 1767 assert((!EnterAfter || EnterAfter < LSP) && "Bad interference"); 1768 1769 if (!BI.LiveIn && (!EnterAfter || EnterAfter <= BI.FirstInstr)) { 1770 LLVM_DEBUG(dbgs() << " after interference.\n"); 1771 // 1772 // >>>> Interference before def. 1773 // | o---o---| Defined in block. 1774 // ========= Use IntvOut everywhere. 1775 // 1776 selectIntv(IntvOut); 1777 useIntv(BI.FirstInstr, Stop); 1778 return; 1779 } 1780 1781 if (!EnterAfter || EnterAfter < BI.FirstInstr.getBaseIndex()) { 1782 LLVM_DEBUG(dbgs() << ", reload after interference.\n"); 1783 // 1784 // >>>> Interference before def. 1785 // |---o---o---| Live-through, stack-in. 1786 // ____========= Enter IntvOut before first use. 1787 // 1788 selectIntv(IntvOut); 1789 SlotIndex Idx = enterIntvBefore(std::min(LSP, BI.FirstInstr)); 1790 useIntv(Idx, Stop); 1791 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1792 return; 1793 } 1794 1795 // The interference is overlapping somewhere we wanted to use IntvOut. That 1796 // means we need to create a local interval that can be allocated a 1797 // different register. 1798 LLVM_DEBUG(dbgs() << ", interference overlaps uses.\n"); 1799 // 1800 // >>>>>>> Interference overlapping uses. 1801 // |---o---o---| Live-through, stack-in. 1802 // ____---====== Create local interval for interference range. 1803 // 1804 selectIntv(IntvOut); 1805 SlotIndex Idx = enterIntvAfter(EnterAfter); 1806 useIntv(Idx, Stop); 1807 assert((!EnterAfter || Idx >= EnterAfter) && "Interference"); 1808 1809 openIntv(); 1810 SlotIndex From = enterIntvBefore(std::min(Idx, BI.FirstInstr)); 1811 useIntv(From, Idx); 1812 } 1813 1814 void SplitAnalysis::BlockInfo::print(raw_ostream &OS) const { 1815 OS << "{" << printMBBReference(*MBB) << ", " 1816 << "uses " << FirstInstr << " to " << LastInstr << ", " 1817 << "1st def " << FirstDef << ", " 1818 << (LiveIn ? "live in" : "dead in") << ", " 1819 << (LiveOut ? "live out" : "dead out") << "}"; 1820 } 1821 1822 void SplitAnalysis::BlockInfo::dump() const { 1823 print(dbgs()); 1824 dbgs() << "\n"; 1825 } 1826