1 //===- ResourcePriorityQueue.cpp - A DFA-oriented priority queue -*- C++ -*-==// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file implements the ResourcePriorityQueue class, which is a 11 // SchedulingPriorityQueue that prioritizes instructions using DFA state to 12 // reduce the length of the critical path through the basic block 13 // on VLIW platforms. 14 // The scheduler is basically a top-down adaptable list scheduler with DFA 15 // resource tracking added to the cost function. 16 // DFA is queried as a state machine to model "packets/bundles" during 17 // schedule. Currently packets/bundles are discarded at the end of 18 // scheduling, affecting only order of instructions. 19 // 20 //===----------------------------------------------------------------------===// 21 22 #include "llvm/CodeGen/ResourcePriorityQueue.h" 23 #include "llvm/CodeGen/MachineInstr.h" 24 #include "llvm/CodeGen/SelectionDAGNodes.h" 25 #include "llvm/CodeGen/TargetLowering.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/Support/CommandLine.h" 28 #include "llvm/Support/Debug.h" 29 #include "llvm/Support/raw_ostream.h" 30 #include "llvm/Target/TargetMachine.h" 31 32 using namespace llvm; 33 34 #define DEBUG_TYPE "scheduler" 35 36 static cl::opt<bool> DisableDFASched("disable-dfa-sched", cl::Hidden, 37 cl::ZeroOrMore, cl::init(false), 38 cl::desc("Disable use of DFA during scheduling")); 39 40 static cl::opt<int> RegPressureThreshold( 41 "dfa-sched-reg-pressure-threshold", cl::Hidden, cl::ZeroOrMore, cl::init(5), 42 cl::desc("Track reg pressure and switch priority to in-depth")); 43 44 ResourcePriorityQueue::ResourcePriorityQueue(SelectionDAGISel *IS) 45 : Picker(this), InstrItins(IS->MF->getSubtarget().getInstrItineraryData()) { 46 const TargetSubtargetInfo &STI = IS->MF->getSubtarget(); 47 TRI = STI.getRegisterInfo(); 48 TLI = IS->TLI; 49 TII = STI.getInstrInfo(); 50 ResourcesModel.reset(TII->CreateTargetScheduleState(STI)); 51 // This hard requirement could be relaxed, but for now 52 // do not let it proceed. 53 assert(ResourcesModel && "Unimplemented CreateTargetScheduleState."); 54 55 unsigned NumRC = TRI->getNumRegClasses(); 56 RegLimit.resize(NumRC); 57 RegPressure.resize(NumRC); 58 std::fill(RegLimit.begin(), RegLimit.end(), 0); 59 std::fill(RegPressure.begin(), RegPressure.end(), 0); 60 for (const TargetRegisterClass *RC : TRI->regclasses()) 61 RegLimit[RC->getID()] = TRI->getRegPressureLimit(RC, *IS->MF); 62 63 ParallelLiveRanges = 0; 64 HorizontalVerticalBalance = 0; 65 } 66 67 unsigned 68 ResourcePriorityQueue::numberRCValPredInSU(SUnit *SU, unsigned RCId) { 69 unsigned NumberDeps = 0; 70 for (SDep &Pred : SU->Preds) { 71 if (Pred.isCtrl()) 72 continue; 73 74 SUnit *PredSU = Pred.getSUnit(); 75 const SDNode *ScegN = PredSU->getNode(); 76 77 if (!ScegN) 78 continue; 79 80 // If value is passed to CopyToReg, it is probably 81 // live outside BB. 82 switch (ScegN->getOpcode()) { 83 default: break; 84 case ISD::TokenFactor: break; 85 case ISD::CopyFromReg: NumberDeps++; break; 86 case ISD::CopyToReg: break; 87 case ISD::INLINEASM: break; 88 } 89 if (!ScegN->isMachineOpcode()) 90 continue; 91 92 for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { 93 MVT VT = ScegN->getSimpleValueType(i); 94 if (TLI->isTypeLegal(VT) 95 && (TLI->getRegClassFor(VT)->getID() == RCId)) { 96 NumberDeps++; 97 break; 98 } 99 } 100 } 101 return NumberDeps; 102 } 103 104 unsigned ResourcePriorityQueue::numberRCValSuccInSU(SUnit *SU, 105 unsigned RCId) { 106 unsigned NumberDeps = 0; 107 for (const SDep &Succ : SU->Succs) { 108 if (Succ.isCtrl()) 109 continue; 110 111 SUnit *SuccSU = Succ.getSUnit(); 112 const SDNode *ScegN = SuccSU->getNode(); 113 if (!ScegN) 114 continue; 115 116 // If value is passed to CopyToReg, it is probably 117 // live outside BB. 118 switch (ScegN->getOpcode()) { 119 default: break; 120 case ISD::TokenFactor: break; 121 case ISD::CopyFromReg: break; 122 case ISD::CopyToReg: NumberDeps++; break; 123 case ISD::INLINEASM: break; 124 } 125 if (!ScegN->isMachineOpcode()) 126 continue; 127 128 for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { 129 const SDValue &Op = ScegN->getOperand(i); 130 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 131 if (TLI->isTypeLegal(VT) 132 && (TLI->getRegClassFor(VT)->getID() == RCId)) { 133 NumberDeps++; 134 break; 135 } 136 } 137 } 138 return NumberDeps; 139 } 140 141 static unsigned numberCtrlDepsInSU(SUnit *SU) { 142 unsigned NumberDeps = 0; 143 for (const SDep &Succ : SU->Succs) 144 if (Succ.isCtrl()) 145 NumberDeps++; 146 147 return NumberDeps; 148 } 149 150 static unsigned numberCtrlPredInSU(SUnit *SU) { 151 unsigned NumberDeps = 0; 152 for (SDep &Pred : SU->Preds) 153 if (Pred.isCtrl()) 154 NumberDeps++; 155 156 return NumberDeps; 157 } 158 159 /// 160 /// Initialize nodes. 161 /// 162 void ResourcePriorityQueue::initNodes(std::vector<SUnit> &sunits) { 163 SUnits = &sunits; 164 NumNodesSolelyBlocking.resize(SUnits->size(), 0); 165 166 for (unsigned i = 0, e = SUnits->size(); i != e; ++i) { 167 SUnit *SU = &(*SUnits)[i]; 168 initNumRegDefsLeft(SU); 169 SU->NodeQueueId = 0; 170 } 171 } 172 173 /// This heuristic is used if DFA scheduling is not desired 174 /// for some VLIW platform. 175 bool resource_sort::operator()(const SUnit *LHS, const SUnit *RHS) const { 176 // The isScheduleHigh flag allows nodes with wraparound dependencies that 177 // cannot easily be modeled as edges with latencies to be scheduled as 178 // soon as possible in a top-down schedule. 179 if (LHS->isScheduleHigh && !RHS->isScheduleHigh) 180 return false; 181 182 if (!LHS->isScheduleHigh && RHS->isScheduleHigh) 183 return true; 184 185 unsigned LHSNum = LHS->NodeNum; 186 unsigned RHSNum = RHS->NodeNum; 187 188 // The most important heuristic is scheduling the critical path. 189 unsigned LHSLatency = PQ->getLatency(LHSNum); 190 unsigned RHSLatency = PQ->getLatency(RHSNum); 191 if (LHSLatency < RHSLatency) return true; 192 if (LHSLatency > RHSLatency) return false; 193 194 // After that, if two nodes have identical latencies, look to see if one will 195 // unblock more other nodes than the other. 196 unsigned LHSBlocked = PQ->getNumSolelyBlockNodes(LHSNum); 197 unsigned RHSBlocked = PQ->getNumSolelyBlockNodes(RHSNum); 198 if (LHSBlocked < RHSBlocked) return true; 199 if (LHSBlocked > RHSBlocked) return false; 200 201 // Finally, just to provide a stable ordering, use the node number as a 202 // deciding factor. 203 return LHSNum < RHSNum; 204 } 205 206 207 /// getSingleUnscheduledPred - If there is exactly one unscheduled predecessor 208 /// of SU, return it, otherwise return null. 209 SUnit *ResourcePriorityQueue::getSingleUnscheduledPred(SUnit *SU) { 210 SUnit *OnlyAvailablePred = nullptr; 211 for (const SDep &Pred : SU->Preds) { 212 SUnit &PredSU = *Pred.getSUnit(); 213 if (!PredSU.isScheduled) { 214 // We found an available, but not scheduled, predecessor. If it's the 215 // only one we have found, keep track of it... otherwise give up. 216 if (OnlyAvailablePred && OnlyAvailablePred != &PredSU) 217 return nullptr; 218 OnlyAvailablePred = &PredSU; 219 } 220 } 221 return OnlyAvailablePred; 222 } 223 224 void ResourcePriorityQueue::push(SUnit *SU) { 225 // Look at all of the successors of this node. Count the number of nodes that 226 // this node is the sole unscheduled node for. 227 unsigned NumNodesBlocking = 0; 228 for (const SDep &Succ : SU->Succs) 229 if (getSingleUnscheduledPred(Succ.getSUnit()) == SU) 230 ++NumNodesBlocking; 231 232 NumNodesSolelyBlocking[SU->NodeNum] = NumNodesBlocking; 233 Queue.push_back(SU); 234 } 235 236 /// Check if scheduling of this SU is possible 237 /// in the current packet. 238 bool ResourcePriorityQueue::isResourceAvailable(SUnit *SU) { 239 if (!SU || !SU->getNode()) 240 return false; 241 242 // If this is a compound instruction, 243 // it is likely to be a call. Do not delay it. 244 if (SU->getNode()->getGluedNode()) 245 return true; 246 247 // First see if the pipeline could receive this instruction 248 // in the current cycle. 249 if (SU->getNode()->isMachineOpcode()) 250 switch (SU->getNode()->getMachineOpcode()) { 251 default: 252 if (!ResourcesModel->canReserveResources(&TII->get( 253 SU->getNode()->getMachineOpcode()))) 254 return false; 255 case TargetOpcode::EXTRACT_SUBREG: 256 case TargetOpcode::INSERT_SUBREG: 257 case TargetOpcode::SUBREG_TO_REG: 258 case TargetOpcode::REG_SEQUENCE: 259 case TargetOpcode::IMPLICIT_DEF: 260 break; 261 } 262 263 // Now see if there are no other dependencies 264 // to instructions already in the packet. 265 for (unsigned i = 0, e = Packet.size(); i != e; ++i) 266 for (const SDep &Succ : Packet[i]->Succs) { 267 // Since we do not add pseudos to packets, might as well 268 // ignore order deps. 269 if (Succ.isCtrl()) 270 continue; 271 272 if (Succ.getSUnit() == SU) 273 return false; 274 } 275 276 return true; 277 } 278 279 /// Keep track of available resources. 280 void ResourcePriorityQueue::reserveResources(SUnit *SU) { 281 // If this SU does not fit in the packet 282 // start a new one. 283 if (!isResourceAvailable(SU) || SU->getNode()->getGluedNode()) { 284 ResourcesModel->clearResources(); 285 Packet.clear(); 286 } 287 288 if (SU->getNode() && SU->getNode()->isMachineOpcode()) { 289 switch (SU->getNode()->getMachineOpcode()) { 290 default: 291 ResourcesModel->reserveResources(&TII->get( 292 SU->getNode()->getMachineOpcode())); 293 break; 294 case TargetOpcode::EXTRACT_SUBREG: 295 case TargetOpcode::INSERT_SUBREG: 296 case TargetOpcode::SUBREG_TO_REG: 297 case TargetOpcode::REG_SEQUENCE: 298 case TargetOpcode::IMPLICIT_DEF: 299 break; 300 } 301 Packet.push_back(SU); 302 } 303 // Forcefully end packet for PseudoOps. 304 else { 305 ResourcesModel->clearResources(); 306 Packet.clear(); 307 } 308 309 // If packet is now full, reset the state so in the next cycle 310 // we start fresh. 311 if (Packet.size() >= InstrItins->SchedModel.IssueWidth) { 312 ResourcesModel->clearResources(); 313 Packet.clear(); 314 } 315 } 316 317 int ResourcePriorityQueue::rawRegPressureDelta(SUnit *SU, unsigned RCId) { 318 int RegBalance = 0; 319 320 if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) 321 return RegBalance; 322 323 // Gen estimate. 324 for (unsigned i = 0, e = SU->getNode()->getNumValues(); i != e; ++i) { 325 MVT VT = SU->getNode()->getSimpleValueType(i); 326 if (TLI->isTypeLegal(VT) 327 && TLI->getRegClassFor(VT) 328 && TLI->getRegClassFor(VT)->getID() == RCId) 329 RegBalance += numberRCValSuccInSU(SU, RCId); 330 } 331 // Kill estimate. 332 for (unsigned i = 0, e = SU->getNode()->getNumOperands(); i != e; ++i) { 333 const SDValue &Op = SU->getNode()->getOperand(i); 334 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 335 if (isa<ConstantSDNode>(Op.getNode())) 336 continue; 337 338 if (TLI->isTypeLegal(VT) && TLI->getRegClassFor(VT) 339 && TLI->getRegClassFor(VT)->getID() == RCId) 340 RegBalance -= numberRCValPredInSU(SU, RCId); 341 } 342 return RegBalance; 343 } 344 345 /// Estimates change in reg pressure from this SU. 346 /// It is achieved by trivial tracking of defined 347 /// and used vregs in dependent instructions. 348 /// The RawPressure flag makes this function to ignore 349 /// existing reg file sizes, and report raw def/use 350 /// balance. 351 int ResourcePriorityQueue::regPressureDelta(SUnit *SU, bool RawPressure) { 352 int RegBalance = 0; 353 354 if (!SU || !SU->getNode() || !SU->getNode()->isMachineOpcode()) 355 return RegBalance; 356 357 if (RawPressure) { 358 for (const TargetRegisterClass *RC : TRI->regclasses()) 359 RegBalance += rawRegPressureDelta(SU, RC->getID()); 360 } 361 else { 362 for (const TargetRegisterClass *RC : TRI->regclasses()) { 363 if ((RegPressure[RC->getID()] + 364 rawRegPressureDelta(SU, RC->getID()) > 0) && 365 (RegPressure[RC->getID()] + 366 rawRegPressureDelta(SU, RC->getID()) >= RegLimit[RC->getID()])) 367 RegBalance += rawRegPressureDelta(SU, RC->getID()); 368 } 369 } 370 371 return RegBalance; 372 } 373 374 // Constants used to denote relative importance of 375 // heuristic components for cost computation. 376 static const unsigned PriorityOne = 200; 377 static const unsigned PriorityTwo = 50; 378 static const unsigned PriorityThree = 15; 379 static const unsigned PriorityFour = 5; 380 static const unsigned ScaleOne = 20; 381 static const unsigned ScaleTwo = 10; 382 static const unsigned ScaleThree = 5; 383 static const unsigned FactorOne = 2; 384 385 /// Returns single number reflecting benefit of scheduling SU 386 /// in the current cycle. 387 int ResourcePriorityQueue::SUSchedulingCost(SUnit *SU) { 388 // Initial trivial priority. 389 int ResCount = 1; 390 391 // Do not waste time on a node that is already scheduled. 392 if (SU->isScheduled) 393 return ResCount; 394 395 // Forced priority is high. 396 if (SU->isScheduleHigh) 397 ResCount += PriorityOne; 398 399 // Adaptable scheduling 400 // A small, but very parallel 401 // region, where reg pressure is an issue. 402 if (HorizontalVerticalBalance > RegPressureThreshold) { 403 // Critical path first 404 ResCount += (SU->getHeight() * ScaleTwo); 405 // If resources are available for it, multiply the 406 // chance of scheduling. 407 if (isResourceAvailable(SU)) 408 ResCount <<= FactorOne; 409 410 // Consider change to reg pressure from scheduling 411 // this SU. 412 ResCount -= (regPressureDelta(SU,true) * ScaleOne); 413 } 414 // Default heuristic, greeady and 415 // critical path driven. 416 else { 417 // Critical path first. 418 ResCount += (SU->getHeight() * ScaleTwo); 419 // Now see how many instructions is blocked by this SU. 420 ResCount += (NumNodesSolelyBlocking[SU->NodeNum] * ScaleTwo); 421 // If resources are available for it, multiply the 422 // chance of scheduling. 423 if (isResourceAvailable(SU)) 424 ResCount <<= FactorOne; 425 426 ResCount -= (regPressureDelta(SU) * ScaleTwo); 427 } 428 429 // These are platform-specific things. 430 // Will need to go into the back end 431 // and accessed from here via a hook. 432 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) { 433 if (N->isMachineOpcode()) { 434 const MCInstrDesc &TID = TII->get(N->getMachineOpcode()); 435 if (TID.isCall()) 436 ResCount += (PriorityTwo + (ScaleThree*N->getNumValues())); 437 } 438 else 439 switch (N->getOpcode()) { 440 default: break; 441 case ISD::TokenFactor: 442 case ISD::CopyFromReg: 443 case ISD::CopyToReg: 444 ResCount += PriorityFour; 445 break; 446 447 case ISD::INLINEASM: 448 ResCount += PriorityThree; 449 break; 450 } 451 } 452 return ResCount; 453 } 454 455 456 /// Main resource tracking point. 457 void ResourcePriorityQueue::scheduledNode(SUnit *SU) { 458 // Use NULL entry as an event marker to reset 459 // the DFA state. 460 if (!SU) { 461 ResourcesModel->clearResources(); 462 Packet.clear(); 463 return; 464 } 465 466 const SDNode *ScegN = SU->getNode(); 467 // Update reg pressure tracking. 468 // First update current node. 469 if (ScegN->isMachineOpcode()) { 470 // Estimate generated regs. 471 for (unsigned i = 0, e = ScegN->getNumValues(); i != e; ++i) { 472 MVT VT = ScegN->getSimpleValueType(i); 473 474 if (TLI->isTypeLegal(VT)) { 475 const TargetRegisterClass *RC = TLI->getRegClassFor(VT); 476 if (RC) 477 RegPressure[RC->getID()] += numberRCValSuccInSU(SU, RC->getID()); 478 } 479 } 480 // Estimate killed regs. 481 for (unsigned i = 0, e = ScegN->getNumOperands(); i != e; ++i) { 482 const SDValue &Op = ScegN->getOperand(i); 483 MVT VT = Op.getNode()->getSimpleValueType(Op.getResNo()); 484 485 if (TLI->isTypeLegal(VT)) { 486 const TargetRegisterClass *RC = TLI->getRegClassFor(VT); 487 if (RC) { 488 if (RegPressure[RC->getID()] > 489 (numberRCValPredInSU(SU, RC->getID()))) 490 RegPressure[RC->getID()] -= numberRCValPredInSU(SU, RC->getID()); 491 else RegPressure[RC->getID()] = 0; 492 } 493 } 494 } 495 for (SDep &Pred : SU->Preds) { 496 if (Pred.isCtrl() || (Pred.getSUnit()->NumRegDefsLeft == 0)) 497 continue; 498 --Pred.getSUnit()->NumRegDefsLeft; 499 } 500 } 501 502 // Reserve resources for this SU. 503 reserveResources(SU); 504 505 // Adjust number of parallel live ranges. 506 // Heuristic is simple - node with no data successors reduces 507 // number of live ranges. All others, increase it. 508 unsigned NumberNonControlDeps = 0; 509 510 for (const SDep &Succ : SU->Succs) { 511 adjustPriorityOfUnscheduledPreds(Succ.getSUnit()); 512 if (!Succ.isCtrl()) 513 NumberNonControlDeps++; 514 } 515 516 if (!NumberNonControlDeps) { 517 if (ParallelLiveRanges >= SU->NumPreds) 518 ParallelLiveRanges -= SU->NumPreds; 519 else 520 ParallelLiveRanges = 0; 521 522 } 523 else 524 ParallelLiveRanges += SU->NumRegDefsLeft; 525 526 // Track parallel live chains. 527 HorizontalVerticalBalance += (SU->Succs.size() - numberCtrlDepsInSU(SU)); 528 HorizontalVerticalBalance -= (SU->Preds.size() - numberCtrlPredInSU(SU)); 529 } 530 531 void ResourcePriorityQueue::initNumRegDefsLeft(SUnit *SU) { 532 unsigned NodeNumDefs = 0; 533 for (SDNode *N = SU->getNode(); N; N = N->getGluedNode()) 534 if (N->isMachineOpcode()) { 535 const MCInstrDesc &TID = TII->get(N->getMachineOpcode()); 536 // No register need be allocated for this. 537 if (N->getMachineOpcode() == TargetOpcode::IMPLICIT_DEF) { 538 NodeNumDefs = 0; 539 break; 540 } 541 NodeNumDefs = std::min(N->getNumValues(), TID.getNumDefs()); 542 } 543 else 544 switch(N->getOpcode()) { 545 default: break; 546 case ISD::CopyFromReg: 547 NodeNumDefs++; 548 break; 549 case ISD::INLINEASM: 550 NodeNumDefs++; 551 break; 552 } 553 554 SU->NumRegDefsLeft = NodeNumDefs; 555 } 556 557 /// adjustPriorityOfUnscheduledPreds - One of the predecessors of SU was just 558 /// scheduled. If SU is not itself available, then there is at least one 559 /// predecessor node that has not been scheduled yet. If SU has exactly ONE 560 /// unscheduled predecessor, we want to increase its priority: it getting 561 /// scheduled will make this node available, so it is better than some other 562 /// node of the same priority that will not make a node available. 563 void ResourcePriorityQueue::adjustPriorityOfUnscheduledPreds(SUnit *SU) { 564 if (SU->isAvailable) return; // All preds scheduled. 565 566 SUnit *OnlyAvailablePred = getSingleUnscheduledPred(SU); 567 if (!OnlyAvailablePred || !OnlyAvailablePred->isAvailable) 568 return; 569 570 // Okay, we found a single predecessor that is available, but not scheduled. 571 // Since it is available, it must be in the priority queue. First remove it. 572 remove(OnlyAvailablePred); 573 574 // Reinsert the node into the priority queue, which recomputes its 575 // NumNodesSolelyBlocking value. 576 push(OnlyAvailablePred); 577 } 578 579 580 /// Main access point - returns next instructions 581 /// to be placed in scheduling sequence. 582 SUnit *ResourcePriorityQueue::pop() { 583 if (empty()) 584 return nullptr; 585 586 std::vector<SUnit *>::iterator Best = Queue.begin(); 587 if (!DisableDFASched) { 588 int BestCost = SUSchedulingCost(*Best); 589 for (auto I = std::next(Queue.begin()), E = Queue.end(); I != E; ++I) { 590 591 if (SUSchedulingCost(*I) > BestCost) { 592 BestCost = SUSchedulingCost(*I); 593 Best = I; 594 } 595 } 596 } 597 // Use default TD scheduling mechanism. 598 else { 599 for (auto I = std::next(Queue.begin()), E = Queue.end(); I != E; ++I) 600 if (Picker(*Best, *I)) 601 Best = I; 602 } 603 604 SUnit *V = *Best; 605 if (Best != std::prev(Queue.end())) 606 std::swap(*Best, Queue.back()); 607 608 Queue.pop_back(); 609 610 return V; 611 } 612 613 614 void ResourcePriorityQueue::remove(SUnit *SU) { 615 assert(!Queue.empty() && "Queue is empty!"); 616 std::vector<SUnit *>::iterator I = find(Queue, SU); 617 if (I != std::prev(Queue.end())) 618 std::swap(*I, Queue.back()); 619 620 Queue.pop_back(); 621 } 622