xref: /llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp (revision ffd08c7759000f55332f1657a1fab64a7adc03fd)
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 #include <algorithm>
40 #include <memory>
41 #include <queue>
42 #include <stack>
43 
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "select-optimize"
48 
49 STATISTIC(NumSelectOptAnalyzed,
50           "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52           "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54           "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56           "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58           "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60           "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
62 
63 static cl::opt<unsigned> ColdOperandThreshold(
64     "cold-operand-threshold",
65     cl::desc("Maximum frequency of path for an operand to be considered cold."),
66     cl::init(20), cl::Hidden);
67 
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69     "cold-operand-max-cost-multiplier",
70     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71              "slice of a cold operand to be considered inexpensive."),
72     cl::init(1), cl::Hidden);
73 
74 static cl::opt<unsigned>
75     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76                           cl::desc("Gradient gain threshold (%)."),
77                           cl::init(25), cl::Hidden);
78 
79 static cl::opt<unsigned>
80     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81                        cl::desc("Minimum gain per loop (in cycles) threshold."),
82                        cl::init(4), cl::Hidden);
83 
84 static cl::opt<unsigned> GainRelativeThreshold(
85     "select-opti-loop-relative-gain-threshold",
86     cl::desc(
87         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88     cl::init(8), cl::Hidden);
89 
90 static cl::opt<unsigned> MispredictDefaultRate(
91     "mispredict-default-rate", cl::Hidden, cl::init(25),
92     cl::desc("Default mispredict rate (initialized to 25%)."));
93 
94 static cl::opt<bool>
95     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96                                cl::init(false),
97                                cl::desc("Disable loop-level heuristics."));
98 
99 namespace {
100 
101 class SelectOptimizeImpl {
102   const TargetMachine *TM = nullptr;
103   const TargetSubtargetInfo *TSI = nullptr;
104   const TargetLowering *TLI = nullptr;
105   const TargetTransformInfo *TTI = nullptr;
106   const LoopInfo *LI = nullptr;
107   BlockFrequencyInfo *BFI;
108   ProfileSummaryInfo *PSI = nullptr;
109   OptimizationRemarkEmitter *ORE = nullptr;
110   TargetSchedModel TSchedModel;
111 
112 public:
113   SelectOptimizeImpl() = default;
114   SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116   bool runOnFunction(Function &F, Pass &P);
117 
118   using Scaled64 = ScaledNumber<uint64_t>;
119 
120   struct CostInfo {
121     /// Predicated cost (with selects as conditional moves).
122     Scaled64 PredCost;
123     /// Non-predicated cost (with selects converted to branches).
124     Scaled64 NonPredCost;
125   };
126 
127   /// SelectLike is an abstraction over SelectInst and other operations that can
128   /// act like selects. For example Or(Zext(icmp), X) can be treated like
129   /// select(icmp, X|1, X).
130   class SelectLike {
131     SelectLike(Instruction *I) : I(I) {}
132 
133     Instruction *I;
134 
135   public:
136     /// Match a select or select-like instruction, returning a SelectLike.
137     static SelectLike match(Instruction *I) {
138       // Select instruction are what we are usually looking for.
139       if (isa<SelectInst>(I))
140         return SelectLike(I);
141 
142       // An Or(zext(i1 X), Y) can also be treated like a select, with condition
143       // C and values Y|1 and Y.
144       Value *X;
145       if (PatternMatch::match(
146               I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) &&
147           X->getType()->isIntegerTy(1))
148         return SelectLike(I);
149 
150       return SelectLike(nullptr);
151     }
152 
153     bool isValid() { return I; }
154     operator bool() { return isValid(); }
155 
156     Instruction *getI() { return I; }
157     const Instruction *getI() const { return I; }
158 
159     Type *getType() const { return I->getType(); }
160 
161     /// Return the condition for the SelectLike instruction. For example the
162     /// condition of a select or c in `or(zext(c), x)`
163     Value *getCondition() const {
164       if (auto *Sel = dyn_cast<SelectInst>(I))
165         return Sel->getCondition();
166       // Or(zext) case
167       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
168         Value *X;
169         if (PatternMatch::match(BO->getOperand(0),
170                                 m_OneUse(m_ZExt(m_Value(X)))))
171           return X;
172         if (PatternMatch::match(BO->getOperand(1),
173                                 m_OneUse(m_ZExt(m_Value(X)))))
174           return X;
175       }
176 
177       llvm_unreachable("Unhandled case in getCondition");
178     }
179 
180     /// Return the true value for the SelectLike instruction. Note this may not
181     /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
182     /// the true value would be `or(x,1)`. As this value does not exist, nullptr
183     /// is returned.
184     Value *getTrueValue() const {
185       if (auto *Sel = dyn_cast<SelectInst>(I))
186         return Sel->getTrueValue();
187       // Or(zext) case - The true value is Or(X), so return nullptr as the value
188       // does not yet exist.
189       if (isa<BinaryOperator>(I))
190         return nullptr;
191 
192       llvm_unreachable("Unhandled case in getTrueValue");
193     }
194 
195     /// Return the false value for the SelectLike instruction. For example the
196     /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
197     /// `select(c, x|1, x)`)
198     Value *getFalseValue() const {
199       if (auto *Sel = dyn_cast<SelectInst>(I))
200         return Sel->getFalseValue();
201       // Or(zext) case - return the operand which is not the zext.
202       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
203         Value *X;
204         if (PatternMatch::match(BO->getOperand(0),
205                                 m_OneUse(m_ZExt(m_Value(X)))))
206           return BO->getOperand(1);
207         if (PatternMatch::match(BO->getOperand(1),
208                                 m_OneUse(m_ZExt(m_Value(X)))))
209           return BO->getOperand(0);
210       }
211 
212       llvm_unreachable("Unhandled case in getFalseValue");
213     }
214 
215     /// Return the NonPredCost cost of the true op, given the costs in
216     /// InstCostMap. This may need to be generated for select-like instructions.
217     Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
218                            const TargetTransformInfo *TTI) {
219       if (auto *Sel = dyn_cast<SelectInst>(I))
220         if (auto *I = dyn_cast<Instruction>(Sel->getTrueValue()))
221           return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
222                                          : Scaled64::getZero();
223 
224       // Or case - add the cost of an extra Or to the cost of the False case.
225       if (isa<BinaryOperator>(I))
226         if (auto I = dyn_cast<Instruction>(getFalseValue()))
227           if (InstCostMap.contains(I)) {
228             InstructionCost OrCost = TTI->getArithmeticInstrCost(
229                 Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency,
230                 {TargetTransformInfo::OK_AnyValue,
231                  TargetTransformInfo::OP_None},
232                 {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
233             return InstCostMap[I].NonPredCost +
234                    Scaled64::get(*OrCost.getValue());
235           }
236 
237       return Scaled64::getZero();
238     }
239 
240     /// Return the NonPredCost cost of the false op, given the costs in
241     /// InstCostMap. This may need to be generated for select-like instructions.
242     Scaled64
243     getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
244                    const TargetTransformInfo *TTI) {
245       if (auto *Sel = dyn_cast<SelectInst>(I))
246         if (auto *I = dyn_cast<Instruction>(Sel->getFalseValue()))
247           return InstCostMap.contains(I) ? InstCostMap[I].NonPredCost
248                                          : Scaled64::getZero();
249 
250       // Or case - return the cost of the false case
251       if (isa<BinaryOperator>(I))
252         if (auto I = dyn_cast<Instruction>(getFalseValue()))
253           if (InstCostMap.contains(I))
254             return InstCostMap[I].NonPredCost;
255 
256       return Scaled64::getZero();
257     }
258   };
259 
260 private:
261   // Select groups consist of consecutive select instructions with the same
262   // condition.
263   using SelectGroup = SmallVector<SelectLike, 2>;
264   using SelectGroups = SmallVector<SelectGroup, 2>;
265 
266   // Converts select instructions of a function to conditional jumps when deemed
267   // profitable. Returns true if at least one select was converted.
268   bool optimizeSelects(Function &F);
269 
270   // Heuristics for determining which select instructions can be profitably
271   // conveted to branches. Separate heuristics for selects in inner-most loops
272   // and the rest of code regions (base heuristics for non-inner-most loop
273   // regions).
274   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
275   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
276 
277   // Converts to branches the select groups that were deemed
278   // profitable-to-convert.
279   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
280 
281   // Splits selects of a given basic block into select groups.
282   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
283 
284   // Determines for which select groups it is profitable converting to branches
285   // (base and inner-most-loop heuristics).
286   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
287                                   SelectGroups &ProfSIGroups);
288   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
289                                         SelectGroups &ProfSIGroups);
290 
291   // Determines if a select group should be converted to a branch (base
292   // heuristics).
293   bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
294 
295   // Returns true if there are expensive instructions in the cold value
296   // operand's (if any) dependence slice of any of the selects of the given
297   // group.
298   bool hasExpensiveColdOperand(const SelectGroup &ASI);
299 
300   // For a given source instruction, collect its backwards dependence slice
301   // consisting of instructions exclusively computed for producing the operands
302   // of the source instruction.
303   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
304                              Instruction *SI, bool ForSinking = false);
305 
306   // Returns true if the condition of the select is highly predictable.
307   bool isSelectHighlyPredictable(const SelectLike SI);
308 
309   // Loop-level checks to determine if a non-predicated version (with branches)
310   // of the given loop is more profitable than its predicated version.
311   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
312 
313   // Computes instruction and loop-critical-path costs for both the predicated
314   // and non-predicated version of the given loop.
315   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
316                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
317                         CostInfo *LoopCost);
318 
319   // Returns a set of all the select instructions in the given select groups.
320   SmallDenseMap<const Instruction *, SelectLike, 2>
321   getSImap(const SelectGroups &SIGroups);
322 
323   // Returns the latency cost of a given instruction.
324   std::optional<uint64_t> computeInstCost(const Instruction *I);
325 
326   // Returns the misprediction cost of a given select when converted to branch.
327   Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
328 
329   // Returns the cost of a branch when the prediction is correct.
330   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
331                                 const SelectLike SI);
332 
333   // Returns true if the target architecture supports lowering a given select.
334   bool isSelectKindSupported(const SelectLike SI);
335 };
336 
337 class SelectOptimize : public FunctionPass {
338   SelectOptimizeImpl Impl;
339 
340 public:
341   static char ID;
342 
343   SelectOptimize() : FunctionPass(ID) {
344     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
345   }
346 
347   bool runOnFunction(Function &F) override {
348     return Impl.runOnFunction(F, *this);
349   }
350 
351   void getAnalysisUsage(AnalysisUsage &AU) const override {
352     AU.addRequired<ProfileSummaryInfoWrapperPass>();
353     AU.addRequired<TargetPassConfig>();
354     AU.addRequired<TargetTransformInfoWrapperPass>();
355     AU.addRequired<LoopInfoWrapperPass>();
356     AU.addRequired<BlockFrequencyInfoWrapperPass>();
357     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
358   }
359 };
360 
361 } // namespace
362 
363 PreservedAnalyses SelectOptimizePass::run(Function &F,
364                                           FunctionAnalysisManager &FAM) {
365   SelectOptimizeImpl Impl(TM);
366   return Impl.run(F, FAM);
367 }
368 
369 char SelectOptimize::ID = 0;
370 
371 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
372                       false)
373 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
374 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
375 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
376 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
377 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
378 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
379 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
380                     false)
381 
382 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
383 
384 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
385                                           FunctionAnalysisManager &FAM) {
386   TSI = TM->getSubtargetImpl(F);
387   TLI = TSI->getTargetLowering();
388 
389   // If none of the select types are supported then skip this pass.
390   // This is an optimization pass. Legality issues will be handled by
391   // instruction selection.
392   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
393       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
394       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
395     return PreservedAnalyses::all();
396 
397   TTI = &FAM.getResult<TargetIRAnalysis>(F);
398   if (!TTI->enableSelectOptimize())
399     return PreservedAnalyses::all();
400 
401   PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
402             .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
403   assert(PSI && "This pass requires module analysis pass `profile-summary`!");
404   BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
405 
406   // When optimizing for size, selects are preferable over branches.
407   if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
408     return PreservedAnalyses::all();
409 
410   LI = &FAM.getResult<LoopAnalysis>(F);
411   ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
412   TSchedModel.init(TSI);
413 
414   bool Changed = optimizeSelects(F);
415   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
416 }
417 
418 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
419   TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
420   TSI = TM->getSubtargetImpl(F);
421   TLI = TSI->getTargetLowering();
422 
423   // If none of the select types are supported then skip this pass.
424   // This is an optimization pass. Legality issues will be handled by
425   // instruction selection.
426   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
427       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
428       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
429     return false;
430 
431   TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
432 
433   if (!TTI->enableSelectOptimize())
434     return false;
435 
436   LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
437   BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
438   PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
439   ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
440   TSchedModel.init(TSI);
441 
442   // When optimizing for size, selects are preferable over branches.
443   if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI))
444     return false;
445 
446   return optimizeSelects(F);
447 }
448 
449 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
450   // Determine for which select groups it is profitable converting to branches.
451   SelectGroups ProfSIGroups;
452   // Base heuristics apply only to non-loops and outer loops.
453   optimizeSelectsBase(F, ProfSIGroups);
454   // Separate heuristics for inner-most loops.
455   optimizeSelectsInnerLoops(F, ProfSIGroups);
456 
457   // Convert to branches the select groups that were deemed
458   // profitable-to-convert.
459   convertProfitableSIGroups(ProfSIGroups);
460 
461   // Code modified if at least one select group was converted.
462   return !ProfSIGroups.empty();
463 }
464 
465 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
466                                              SelectGroups &ProfSIGroups) {
467   // Collect all the select groups.
468   SelectGroups SIGroups;
469   for (BasicBlock &BB : F) {
470     // Base heuristics apply only to non-loops and outer loops.
471     Loop *L = LI->getLoopFor(&BB);
472     if (L && L->isInnermost())
473       continue;
474     collectSelectGroups(BB, SIGroups);
475   }
476 
477   // Determine for which select groups it is profitable converting to branches.
478   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
479 }
480 
481 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
482                                                    SelectGroups &ProfSIGroups) {
483   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
484   // Need to check size on each iteration as we accumulate child loops.
485   for (unsigned long i = 0; i < Loops.size(); ++i)
486     for (Loop *ChildL : Loops[i]->getSubLoops())
487       Loops.push_back(ChildL);
488 
489   for (Loop *L : Loops) {
490     if (!L->isInnermost())
491       continue;
492 
493     SelectGroups SIGroups;
494     for (BasicBlock *BB : L->getBlocks())
495       collectSelectGroups(*BB, SIGroups);
496 
497     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
498   }
499 }
500 
501 /// If \p isTrue is true, return the true value of \p SI, otherwise return
502 /// false value of \p SI. If the true/false value of \p SI is defined by any
503 /// select instructions in \p Selects, look through the defining select
504 /// instruction until the true/false value is not defined in \p Selects.
505 static Value *
506 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue,
507                     const SmallPtrSet<const Instruction *, 2> &Selects,
508                     IRBuilder<> &IB) {
509   Value *V = nullptr;
510   for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI());
511        DefSI != nullptr && Selects.count(DefSI);
512        DefSI = dyn_cast<SelectInst>(V)) {
513     assert(DefSI->getCondition() == SI.getCondition() &&
514            "The condition of DefSI does not match with SI");
515     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
516   }
517 
518   if (isa<BinaryOperator>(SI.getI())) {
519     assert(SI.getI()->getOpcode() == Instruction::Or &&
520            "Only currently handling Or instructions.");
521     V = SI.getFalseValue();
522     if (isTrue)
523       V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1));
524   }
525 
526   assert(V && "Failed to get select true/false value");
527   return V;
528 }
529 
530 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
531   for (SelectGroup &ASI : ProfSIGroups) {
532     // The code transformation here is a modified version of the sinking
533     // transformation in CodeGenPrepare::optimizeSelectInst with a more
534     // aggressive strategy of which instructions to sink.
535     //
536     // TODO: eliminate the redundancy of logic transforming selects to branches
537     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
538     // selects for all cases (with and without profile information).
539 
540     // Transform a sequence like this:
541     //    start:
542     //       %cmp = cmp uge i32 %a, %b
543     //       %sel = select i1 %cmp, i32 %c, i32 %d
544     //
545     // Into:
546     //    start:
547     //       %cmp = cmp uge i32 %a, %b
548     //       %cmp.frozen = freeze %cmp
549     //       br i1 %cmp.frozen, label %select.true, label %select.false
550     //    select.true:
551     //       br label %select.end
552     //    select.false:
553     //       br label %select.end
554     //    select.end:
555     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
556     //
557     // %cmp should be frozen, otherwise it may introduce undefined behavior.
558     // In addition, we may sink instructions that produce %c or %d into the
559     // destination(s) of the new branch.
560     // If the true or false blocks do not contain a sunken instruction, that
561     // block and its branch may be optimized away. In that case, one side of the
562     // first branch will point directly to select.end, and the corresponding PHI
563     // predecessor block will be the start block.
564 
565     // Find all the instructions that can be soundly sunk to the true/false
566     // blocks. These are instructions that are computed solely for producing the
567     // operands of the select instructions in the group and can be sunk without
568     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
569     // with side effects).
570     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
571     typedef std::stack<Instruction *>::size_type StackSizeType;
572     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
573     for (SelectLike SI : ASI) {
574       // For each select, compute the sinkable dependence chains of the true and
575       // false operands.
576       if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
577         std::stack<Instruction *> TrueSlice;
578         getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
579         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
580         TrueSlices.push_back(TrueSlice);
581       }
582       if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
583         if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
584           std::stack<Instruction *> FalseSlice;
585           getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
586           maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
587           FalseSlices.push_back(FalseSlice);
588         }
589       }
590     }
591     // In the case of multiple select instructions in the same group, the order
592     // of non-dependent instructions (instructions of different dependence
593     // slices) in the true/false blocks appears to affect performance.
594     // Interleaving the slices seems to experimentally be the optimal approach.
595     // This interleaving scheduling allows for more ILP (with a natural downside
596     // of increasing a bit register pressure) compared to a simple ordering of
597     // one whole chain after another. One would expect that this ordering would
598     // not matter since the scheduling in the backend of the compiler  would
599     // take care of it, but apparently the scheduler fails to deliver optimal
600     // ILP with a naive ordering here.
601     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
602     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
603       for (auto &S : TrueSlices) {
604         if (!S.empty()) {
605           TrueSlicesInterleaved.push_back(S.top());
606           S.pop();
607         }
608       }
609     }
610     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
611       for (auto &S : FalseSlices) {
612         if (!S.empty()) {
613           FalseSlicesInterleaved.push_back(S.top());
614           S.pop();
615         }
616       }
617     }
618 
619     // We split the block containing the select(s) into two blocks.
620     SelectLike SI = ASI.front();
621     SelectLike LastSI = ASI.back();
622     BasicBlock *StartBlock = SI.getI()->getParent();
623     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
624     // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
625     // RemoveDIs turned on, SplitPt would instead point to the next
626     // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
627     // tell splitBasicBlock that we want to include any DbgVariableRecords
628     // attached to SplitPt in the splice.
629     SplitPt.setHeadBit(true);
630     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
631     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
632     // Delete the unconditional branch that was just created by the split.
633     StartBlock->getTerminator()->eraseFromParent();
634 
635     // Move any debug/pseudo instructions that were in-between the select
636     // group to the newly-created end block.
637     SmallVector<Instruction *, 2> DebugPseudoINS;
638     auto DIt = SI.getI()->getIterator();
639     while (&*DIt != LastSI.getI()) {
640       if (DIt->isDebugOrPseudoInst())
641         DebugPseudoINS.push_back(&*DIt);
642       DIt++;
643     }
644     for (auto *DI : DebugPseudoINS) {
645       DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
646     }
647 
648     // Duplicate implementation for DbgRecords, the non-instruction debug-info
649     // format. Helper lambda for moving DbgRecords to the end block.
650     auto TransferDbgRecords = [&](Instruction &I) {
651       for (auto &DbgRecord :
652            llvm::make_early_inc_range(I.getDbgRecordRange())) {
653         DbgRecord.removeFromParent();
654         EndBlock->insertDbgRecordBefore(&DbgRecord,
655                                         EndBlock->getFirstInsertionPt());
656       }
657     };
658 
659     // Iterate over all instructions in between SI and LastSI, not including
660     // SI itself. These are all the variable assignments that happen "in the
661     // middle" of the select group.
662     auto R = make_range(std::next(SI.getI()->getIterator()),
663                         std::next(LastSI.getI()->getIterator()));
664     llvm::for_each(R, TransferDbgRecords);
665 
666     // These are the new basic blocks for the conditional branch.
667     // At least one will become an actual new basic block.
668     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
669     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
670     if (!TrueSlicesInterleaved.empty()) {
671       TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
672                                      EndBlock->getParent(), EndBlock);
673       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
674       TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
675       for (Instruction *TrueInst : TrueSlicesInterleaved)
676         TrueInst->moveBefore(TrueBranch);
677     }
678     if (!FalseSlicesInterleaved.empty()) {
679       FalseBlock =
680           BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
681                              EndBlock->getParent(), EndBlock);
682       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
683       FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
684       for (Instruction *FalseInst : FalseSlicesInterleaved)
685         FalseInst->moveBefore(FalseBranch);
686     }
687     // If there was nothing to sink, then arbitrarily choose the 'false' side
688     // for a new input value to the PHI.
689     if (TrueBlock == FalseBlock) {
690       assert(TrueBlock == nullptr &&
691              "Unexpected basic block transform while optimizing select");
692 
693       FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
694                                       EndBlock->getParent(), EndBlock);
695       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
696       FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
697     }
698 
699     // Insert the real conditional branch based on the original condition.
700     // If we did not create a new block for one of the 'true' or 'false' paths
701     // of the condition, it means that side of the branch goes to the end block
702     // directly and the path originates from the start block from the point of
703     // view of the new PHI.
704     BasicBlock *TT, *FT;
705     if (TrueBlock == nullptr) {
706       TT = EndBlock;
707       FT = FalseBlock;
708       TrueBlock = StartBlock;
709     } else if (FalseBlock == nullptr) {
710       TT = TrueBlock;
711       FT = EndBlock;
712       FalseBlock = StartBlock;
713     } else {
714       TT = TrueBlock;
715       FT = FalseBlock;
716     }
717     IRBuilder<> IB(SI.getI());
718     auto *CondFr = IB.CreateFreeze(SI.getCondition(),
719                                    SI.getCondition()->getName() + ".frozen");
720 
721     SmallPtrSet<const Instruction *, 2> INS;
722     for (auto SI : ASI)
723       INS.insert(SI.getI());
724 
725     // Use reverse iterator because later select may use the value of the
726     // earlier select, and we need to propagate value through earlier select
727     // to get the PHI operand.
728     for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
729       SelectLike SI = *It;
730       // The select itself is replaced with a PHI Node.
731       PHINode *PN = PHINode::Create(SI.getType(), 2, "");
732       PN->insertBefore(EndBlock->begin());
733       PN->takeName(SI.getI());
734       PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock);
735       PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock);
736       PN->setDebugLoc(SI.getI()->getDebugLoc());
737       SI.getI()->replaceAllUsesWith(PN);
738       INS.erase(SI.getI());
739       ++NumSelectsConverted;
740     }
741     IB.CreateCondBr(CondFr, TT, FT, SI.getI());
742 
743     // Remove the old select instructions, now that they are not longer used.
744     for (auto SI : ASI)
745       SI.getI()->eraseFromParent();
746   }
747 }
748 
749 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
750                                              SelectGroups &SIGroups) {
751   BasicBlock::iterator BBIt = BB.begin();
752   while (BBIt != BB.end()) {
753     Instruction *I = &*BBIt++;
754     if (SelectLike SI = SelectLike::match(I)) {
755       if (!TTI->shouldTreatInstructionLikeSelect(I))
756         continue;
757 
758       SelectGroup SIGroup;
759       SIGroup.push_back(SI);
760       while (BBIt != BB.end()) {
761         Instruction *NI = &*BBIt;
762         // Debug/pseudo instructions should be skipped and not prevent the
763         // formation of a select group.
764         if (NI->isDebugOrPseudoInst()) {
765           ++BBIt;
766           continue;
767         }
768         // We only allow selects in the same group, not other select-like
769         // instructions.
770         if (!isa<SelectInst>(NI))
771           break;
772 
773         SelectLike NSI = SelectLike::match(NI);
774         if (NSI && SI.getCondition() == NSI.getCondition()) {
775           SIGroup.push_back(NSI);
776         } else
777           break;
778         ++BBIt;
779       }
780 
781       // If the select type is not supported, no point optimizing it.
782       // Instruction selection will take care of it.
783       if (!isSelectKindSupported(SI))
784         continue;
785 
786       SIGroups.push_back(SIGroup);
787     }
788   }
789 }
790 
791 void SelectOptimizeImpl::findProfitableSIGroupsBase(
792     SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
793   for (SelectGroup &ASI : SIGroups) {
794     ++NumSelectOptAnalyzed;
795     if (isConvertToBranchProfitableBase(ASI))
796       ProfSIGroups.push_back(ASI);
797   }
798 }
799 
800 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
801                                DiagnosticInfoOptimizationBase &Rem) {
802   LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
803   ORE->emit(Rem);
804 }
805 
806 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
807     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
808   NumSelectOptAnalyzed += SIGroups.size();
809   // For each select group in an inner-most loop,
810   // a branch is more preferable than a select/conditional-move if:
811   // i) conversion to branches for all the select groups of the loop satisfies
812   //    loop-level heuristics including reducing the loop's critical path by
813   //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
814   // ii) the total cost of the select group is cheaper with a branch compared
815   //     to its predicated version. The cost is in terms of latency and the cost
816   //     of a select group is the cost of its most expensive select instruction
817   //     (assuming infinite resources and thus fully leveraging available ILP).
818 
819   DenseMap<const Instruction *, CostInfo> InstCostMap;
820   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
821                           {Scaled64::getZero(), Scaled64::getZero()}};
822   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
823       !checkLoopHeuristics(L, LoopCost)) {
824     return;
825   }
826 
827   for (SelectGroup &ASI : SIGroups) {
828     // Assuming infinite resources, the cost of a group of instructions is the
829     // cost of the most expensive instruction of the group.
830     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
831     for (SelectLike SI : ASI) {
832       SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
833       BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
834     }
835     if (BranchCost < SelectCost) {
836       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI());
837       OR << "Profitable to convert to branch (loop analysis). BranchCost="
838          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
839          << ". ";
840       EmitAndPrintRemark(ORE, OR);
841       ++NumSelectConvertedLoop;
842       ProfSIGroups.push_back(ASI);
843     } else {
844       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
845                                       ASI.front().getI());
846       ORmiss << "Select is more profitable (loop analysis). BranchCost="
847              << BranchCost.toString()
848              << ", SelectCost=" << SelectCost.toString() << ". ";
849       EmitAndPrintRemark(ORE, ORmiss);
850     }
851   }
852 }
853 
854 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
855     const SelectGroup &ASI) {
856   SelectLike SI = ASI.front();
857   LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
858                     << "\n");
859   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
860   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
861 
862   // Skip cold basic blocks. Better to optimize for size for cold blocks.
863   if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
864     ++NumSelectColdBB;
865     ORmiss << "Not converted to branch because of cold basic block. ";
866     EmitAndPrintRemark(ORE, ORmiss);
867     return false;
868   }
869 
870   // If unpredictable, branch form is less profitable.
871   if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
872     ++NumSelectUnPred;
873     ORmiss << "Not converted to branch because of unpredictable branch. ";
874     EmitAndPrintRemark(ORE, ORmiss);
875     return false;
876   }
877 
878   // If highly predictable, branch form is more profitable, unless a
879   // predictable select is inexpensive in the target architecture.
880   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
881     ++NumSelectConvertedHighPred;
882     OR << "Converted to branch because of highly predictable branch. ";
883     EmitAndPrintRemark(ORE, OR);
884     return true;
885   }
886 
887   // Look for expensive instructions in the cold operand's (if any) dependence
888   // slice of any of the selects in the group.
889   if (hasExpensiveColdOperand(ASI)) {
890     ++NumSelectConvertedExpColdOperand;
891     OR << "Converted to branch because of expensive cold operand.";
892     EmitAndPrintRemark(ORE, OR);
893     return true;
894   }
895 
896   ORmiss << "Not profitable to convert to branch (base heuristic).";
897   EmitAndPrintRemark(ORE, ORmiss);
898   return false;
899 }
900 
901 static InstructionCost divideNearest(InstructionCost Numerator,
902                                      uint64_t Denominator) {
903   return (Numerator + (Denominator / 2)) / Denominator;
904 }
905 
906 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
907                                  uint64_t &TrueVal, uint64_t &FalseVal) {
908   if (isa<SelectInst>(SI.getI()))
909     return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
910   return false;
911 }
912 
913 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
914   bool ColdOperand = false;
915   uint64_t TrueWeight, FalseWeight, TotalWeight;
916   if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) {
917     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
918     TotalWeight = TrueWeight + FalseWeight;
919     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
920     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
921   } else if (PSI->hasProfileSummary()) {
922     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
923                                     ASI.front().getI());
924     ORmiss << "Profile data available but missing branch-weights metadata for "
925               "select instruction. ";
926     EmitAndPrintRemark(ORE, ORmiss);
927   }
928   if (!ColdOperand)
929     return false;
930   // Check if the cold path's dependence slice is expensive for any of the
931   // selects of the group.
932   for (SelectLike SI : ASI) {
933     Instruction *ColdI = nullptr;
934     uint64_t HotWeight;
935     if (TrueWeight < FalseWeight) {
936       ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
937       HotWeight = FalseWeight;
938     } else {
939       ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
940       HotWeight = TrueWeight;
941     }
942     if (ColdI) {
943       std::stack<Instruction *> ColdSlice;
944       getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
945       InstructionCost SliceCost = 0;
946       while (!ColdSlice.empty()) {
947         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
948                                              TargetTransformInfo::TCK_Latency);
949         ColdSlice.pop();
950       }
951       // The colder the cold value operand of the select is the more expensive
952       // the cmov becomes for computing the cold value operand every time. Thus,
953       // the colder the cold operand is the more its cost counts.
954       // Get nearest integer cost adjusted for coldness.
955       InstructionCost AdjSliceCost =
956           divideNearest(SliceCost * HotWeight, TotalWeight);
957       if (AdjSliceCost >=
958           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
959         return true;
960     }
961   }
962   return false;
963 }
964 
965 // Check if it is safe to move LoadI next to the SI.
966 // Conservatively assume it is safe only if there is no instruction
967 // modifying memory in-between the load and the select instruction.
968 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
969   // Assume loads from different basic blocks are unsafe to move.
970   if (LoadI->getParent() != SI->getParent())
971     return false;
972   auto It = LoadI->getIterator();
973   while (&*It != SI) {
974     if (It->mayWriteToMemory())
975       return false;
976     It++;
977   }
978   return true;
979 }
980 
981 // For a given source instruction, collect its backwards dependence slice
982 // consisting of instructions exclusively computed for the purpose of producing
983 // the operands of the source instruction. As an approximation
984 // (sufficiently-accurate in practice), we populate this set with the
985 // instructions of the backwards dependence slice that only have one-use and
986 // form an one-use chain that leads to the source instruction.
987 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
988                                                std::stack<Instruction *> &Slice,
989                                                Instruction *SI,
990                                                bool ForSinking) {
991   SmallPtrSet<Instruction *, 2> Visited;
992   std::queue<Instruction *> Worklist;
993   Worklist.push(I);
994   while (!Worklist.empty()) {
995     Instruction *II = Worklist.front();
996     Worklist.pop();
997 
998     // Avoid cycles.
999     if (!Visited.insert(II).second)
1000       continue;
1001 
1002     if (!II->hasOneUse())
1003       continue;
1004 
1005     // Cannot soundly sink instructions with side-effects.
1006     // Terminator or phi instructions cannot be sunk.
1007     // Avoid sinking other select instructions (should be handled separetely).
1008     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1009                        isa<SelectInst>(II) || isa<PHINode>(II)))
1010       continue;
1011 
1012     // Avoid sinking loads in order not to skip state-modifying instructions,
1013     // that may alias with the loaded address.
1014     // Only allow sinking of loads within the same basic block that are
1015     // conservatively proven to be safe.
1016     if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1017       continue;
1018 
1019     // Avoid considering instructions with less frequency than the source
1020     // instruction (i.e., avoid colder code regions of the dependence slice).
1021     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1022       continue;
1023 
1024     // Eligible one-use instruction added to the dependence slice.
1025     Slice.push(II);
1026 
1027     // Explore all the operands of the current instruction to expand the slice.
1028     for (unsigned k = 0; k < II->getNumOperands(); ++k)
1029       if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
1030         Worklist.push(OpI);
1031   }
1032 }
1033 
1034 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1035   uint64_t TrueWeight, FalseWeight;
1036   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1037     uint64_t Max = std::max(TrueWeight, FalseWeight);
1038     uint64_t Sum = TrueWeight + FalseWeight;
1039     if (Sum != 0) {
1040       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1041       if (Probability > TTI->getPredictableBranchThreshold())
1042         return true;
1043     }
1044   }
1045   return false;
1046 }
1047 
1048 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1049                                              const CostInfo LoopCost[2]) {
1050   // Loop-level checks to determine if a non-predicated version (with branches)
1051   // of the loop is more profitable than its predicated version.
1052 
1053   if (DisableLoopLevelHeuristics)
1054     return true;
1055 
1056   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1057                                    L->getHeader()->getFirstNonPHI());
1058 
1059   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1060       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1061     ORmissL << "No select conversion in the loop due to no reduction of loop's "
1062                "critical path. ";
1063     EmitAndPrintRemark(ORE, ORmissL);
1064     return false;
1065   }
1066 
1067   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1068                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1069 
1070   // Profitably converting to branches need to reduce the loop's critical path
1071   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1072   // relative gain of 12.5%).
1073   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1074       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1075     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1076     ORmissL << "No select conversion in the loop due to small reduction of "
1077                "loop's critical path. Gain="
1078             << Gain[1].toString()
1079             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1080     EmitAndPrintRemark(ORE, ORmissL);
1081     return false;
1082   }
1083 
1084   // If the loop's critical path involves loop-carried dependences, the gradient
1085   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1086   // This check ensures that the latency reduction for the loop's critical path
1087   // keeps decreasing with sufficient rate beyond the two analyzed loop
1088   // iterations.
1089   if (Gain[1] > Gain[0]) {
1090     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1091                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
1092     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1093       ORmissL << "No select conversion in the loop due to small gradient gain. "
1094                  "GradientGain="
1095               << GradientGain.toString() << "%. ";
1096       EmitAndPrintRemark(ORE, ORmissL);
1097       return false;
1098     }
1099   }
1100   // If the gain decreases it is not profitable to convert.
1101   else if (Gain[1] < Gain[0]) {
1102     ORmissL
1103         << "No select conversion in the loop due to negative gradient gain. ";
1104     EmitAndPrintRemark(ORE, ORmissL);
1105     return false;
1106   }
1107 
1108   // Non-predicated version of the loop is more profitable than its
1109   // predicated version.
1110   return true;
1111 }
1112 
1113 // Computes instruction and loop-critical-path costs for both the predicated
1114 // and non-predicated version of the given loop.
1115 // Returns false if unable to compute these costs due to invalid cost of loop
1116 // instruction(s).
1117 bool SelectOptimizeImpl::computeLoopCosts(
1118     const Loop *L, const SelectGroups &SIGroups,
1119     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1120   LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1121                     << L->getHeader()->getName() << "\n");
1122   const auto &SImap = getSImap(SIGroups);
1123   // Compute instruction and loop-critical-path costs across two iterations for
1124   // both predicated and non-predicated version.
1125   const unsigned Iterations = 2;
1126   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1127     // Cost of the loop's critical path.
1128     CostInfo &MaxCost = LoopCost[Iter];
1129     for (BasicBlock *BB : L->getBlocks()) {
1130       for (const Instruction &I : *BB) {
1131         if (I.isDebugOrPseudoInst())
1132           continue;
1133         // Compute the predicated and non-predicated cost of the instruction.
1134         Scaled64 IPredCost = Scaled64::getZero(),
1135                  INonPredCost = Scaled64::getZero();
1136 
1137         // Assume infinite resources that allow to fully exploit the available
1138         // instruction-level parallelism.
1139         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1140         for (const Use &U : I.operands()) {
1141           auto UI = dyn_cast<Instruction>(U.get());
1142           if (!UI)
1143             continue;
1144           if (InstCostMap.count(UI)) {
1145             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
1146             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
1147           }
1148         }
1149         auto ILatency = computeInstCost(&I);
1150         if (!ILatency) {
1151           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1152           ORmissL << "Invalid instruction cost preventing analysis and "
1153                      "optimization of the inner-most loop containing this "
1154                      "instruction. ";
1155           EmitAndPrintRemark(ORE, ORmissL);
1156           return false;
1157         }
1158         IPredCost += Scaled64::get(*ILatency);
1159         INonPredCost += Scaled64::get(*ILatency);
1160 
1161         // For a select that can be converted to branch,
1162         // compute its cost as a branch (non-predicated cost).
1163         //
1164         // BranchCost = PredictedPathCost + MispredictCost
1165         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1166         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1167         if (SImap.contains(&I)) {
1168           auto SI = SImap.at(&I);
1169           Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI);
1170           Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI);
1171           Scaled64 PredictedPathCost =
1172               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1173 
1174           Scaled64 CondCost = Scaled64::getZero();
1175           if (auto *CI = dyn_cast<Instruction>(SI.getCondition()))
1176             if (InstCostMap.count(CI))
1177               CondCost = InstCostMap[CI].NonPredCost;
1178           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1179 
1180           INonPredCost = PredictedPathCost + MispredictCost;
1181         }
1182         LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1183                           << INonPredCost << " for " << I << "\n");
1184 
1185         InstCostMap[&I] = {IPredCost, INonPredCost};
1186         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1187         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1188       }
1189     }
1190     LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1191                       << " MaxCost = " << MaxCost.PredCost << " "
1192                       << MaxCost.NonPredCost << "\n");
1193   }
1194   return true;
1195 }
1196 
1197 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
1198 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1199   SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1200   for (const SelectGroup &ASI : SIGroups)
1201     for (SelectLike SI : ASI)
1202       SImap.try_emplace(SI.getI(), SI);
1203   return SImap;
1204 }
1205 
1206 std::optional<uint64_t>
1207 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1208   InstructionCost ICost =
1209       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1210   if (auto OC = ICost.getValue())
1211     return std::optional<uint64_t>(*OC);
1212   return std::nullopt;
1213 }
1214 
1215 ScaledNumber<uint64_t>
1216 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1217                                          const Scaled64 CondCost) {
1218   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1219 
1220   // Account for the default misprediction rate when using a branch
1221   // (conservatively set to 25% by default).
1222   uint64_t MispredictRate = MispredictDefaultRate;
1223   // If the select condition is obviously predictable, then the misprediction
1224   // rate is zero.
1225   if (isSelectHighlyPredictable(SI))
1226     MispredictRate = 0;
1227 
1228   // CondCost is included to account for cases where the computation of the
1229   // condition is part of a long dependence chain (potentially loop-carried)
1230   // that would delay detection of a misprediction and increase its cost.
1231   Scaled64 MispredictCost =
1232       std::max(Scaled64::get(MispredictPenalty), CondCost) *
1233       Scaled64::get(MispredictRate);
1234   MispredictCost /= Scaled64::get(100);
1235 
1236   return MispredictCost;
1237 }
1238 
1239 // Returns the cost of a branch when the prediction is correct.
1240 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1241 ScaledNumber<uint64_t>
1242 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1243                                          const SelectLike SI) {
1244   Scaled64 PredPathCost;
1245   uint64_t TrueWeight, FalseWeight;
1246   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1247     uint64_t SumWeight = TrueWeight + FalseWeight;
1248     if (SumWeight != 0) {
1249       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1250                      FalseCost * Scaled64::get(FalseWeight);
1251       PredPathCost /= Scaled64::get(SumWeight);
1252       return PredPathCost;
1253     }
1254   }
1255   // Without branch weight metadata, we assume 75% for the one path and 25% for
1256   // the other, and pick the result with the biggest cost.
1257   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1258                           FalseCost * Scaled64::get(3) + TrueCost);
1259   PredPathCost /= Scaled64::get(4);
1260   return PredPathCost;
1261 }
1262 
1263 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1264   bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1);
1265   if (VectorCond)
1266     return false;
1267   TargetLowering::SelectSupportKind SelectKind;
1268   if (SI.getType()->isVectorTy())
1269     SelectKind = TargetLowering::ScalarCondVectorVal;
1270   else
1271     SelectKind = TargetLowering::ScalarValSelect;
1272   return TLI->isSelectSupported(SelectKind);
1273 }
1274