xref: /llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp (revision 6942c64e8128e4ccd891b813d0240f574f80f59e)
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/ADT/SmallVector.h"
14 #include "llvm/ADT/Statistic.h"
15 #include "llvm/Analysis/BlockFrequencyInfo.h"
16 #include "llvm/Analysis/BranchProbabilityInfo.h"
17 #include "llvm/Analysis/LoopInfo.h"
18 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
19 #include "llvm/Analysis/ProfileSummaryInfo.h"
20 #include "llvm/Analysis/TargetTransformInfo.h"
21 #include "llvm/CodeGen/Passes.h"
22 #include "llvm/CodeGen/TargetLowering.h"
23 #include "llvm/CodeGen/TargetPassConfig.h"
24 #include "llvm/CodeGen/TargetSchedule.h"
25 #include "llvm/CodeGen/TargetSubtargetInfo.h"
26 #include "llvm/IR/BasicBlock.h"
27 #include "llvm/IR/Dominators.h"
28 #include "llvm/IR/Function.h"
29 #include "llvm/IR/IRBuilder.h"
30 #include "llvm/IR/Instruction.h"
31 #include "llvm/IR/PatternMatch.h"
32 #include "llvm/IR/ProfDataUtils.h"
33 #include "llvm/InitializePasses.h"
34 #include "llvm/Pass.h"
35 #include "llvm/Support/ScaledNumber.h"
36 #include "llvm/Target/TargetMachine.h"
37 #include "llvm/Transforms/Utils/SizeOpts.h"
38 #include <algorithm>
39 #include <memory>
40 #include <queue>
41 #include <stack>
42 #include <string>
43 
44 using namespace llvm;
45 
46 #define DEBUG_TYPE "select-optimize"
47 
48 STATISTIC(NumSelectOptAnalyzed,
49           "Number of select groups considered for conversion to branch");
50 STATISTIC(NumSelectConvertedExpColdOperand,
51           "Number of select groups converted due to expensive cold operand");
52 STATISTIC(NumSelectConvertedHighPred,
53           "Number of select groups converted due to high-predictability");
54 STATISTIC(NumSelectUnPred,
55           "Number of select groups not converted due to unpredictability");
56 STATISTIC(NumSelectColdBB,
57           "Number of select groups not converted due to cold basic block");
58 STATISTIC(NumSelectConvertedLoop,
59           "Number of select groups converted due to loop-level analysis");
60 STATISTIC(NumSelectsConverted, "Number of selects converted");
61 
62 static cl::opt<unsigned> ColdOperandThreshold(
63     "cold-operand-threshold",
64     cl::desc("Maximum frequency of path for an operand to be considered cold."),
65     cl::init(20), cl::Hidden);
66 
67 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
68     "cold-operand-max-cost-multiplier",
69     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
70              "slice of a cold operand to be considered inexpensive."),
71     cl::init(1), cl::Hidden);
72 
73 static cl::opt<unsigned>
74     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
75                           cl::desc("Gradient gain threshold (%)."),
76                           cl::init(25), cl::Hidden);
77 
78 static cl::opt<unsigned>
79     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
80                        cl::desc("Minimum gain per loop (in cycles) threshold."),
81                        cl::init(4), cl::Hidden);
82 
83 static cl::opt<unsigned> GainRelativeThreshold(
84     "select-opti-loop-relative-gain-threshold",
85     cl::desc(
86         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
87     cl::init(8), cl::Hidden);
88 
89 static cl::opt<unsigned> MispredictDefaultRate(
90     "mispredict-default-rate", cl::Hidden, cl::init(25),
91     cl::desc("Default mispredict rate (initialized to 25%)."));
92 
93 static cl::opt<bool>
94     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
95                                cl::init(false),
96                                cl::desc("Disable loop-level heuristics."));
97 
98 namespace {
99 
100 class SelectOptimize : public FunctionPass {
101   const TargetMachine *TM = nullptr;
102   const TargetSubtargetInfo *TSI = nullptr;
103   const TargetLowering *TLI = nullptr;
104   const TargetTransformInfo *TTI = nullptr;
105   const LoopInfo *LI = nullptr;
106   DominatorTree *DT = nullptr;
107   std::unique_ptr<BlockFrequencyInfo> BFI;
108   std::unique_ptr<BranchProbabilityInfo> BPI;
109   ProfileSummaryInfo *PSI = nullptr;
110   OptimizationRemarkEmitter *ORE = nullptr;
111   TargetSchedModel TSchedModel;
112 
113 public:
114   static char ID;
115 
116   SelectOptimize() : FunctionPass(ID) {
117     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
118   }
119 
120   bool runOnFunction(Function &F) override;
121 
122   void getAnalysisUsage(AnalysisUsage &AU) const override {
123     AU.addRequired<ProfileSummaryInfoWrapperPass>();
124     AU.addRequired<TargetPassConfig>();
125     AU.addRequired<TargetTransformInfoWrapperPass>();
126     AU.addRequired<DominatorTreeWrapperPass>();
127     AU.addRequired<LoopInfoWrapperPass>();
128     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
129   }
130 
131 private:
132   // Select groups consist of consecutive select instructions with the same
133   // condition.
134   using SelectGroup = SmallVector<SelectInst *, 2>;
135   using SelectGroups = SmallVector<SelectGroup, 2>;
136 
137   using Scaled64 = ScaledNumber<uint64_t>;
138 
139   struct CostInfo {
140     /// Predicated cost (with selects as conditional moves).
141     Scaled64 PredCost;
142     /// Non-predicated cost (with selects converted to branches).
143     Scaled64 NonPredCost;
144   };
145 
146   // Converts select instructions of a function to conditional jumps when deemed
147   // profitable. Returns true if at least one select was converted.
148   bool optimizeSelects(Function &F);
149 
150   // Heuristics for determining which select instructions can be profitably
151   // conveted to branches. Separate heuristics for selects in inner-most loops
152   // and the rest of code regions (base heuristics for non-inner-most loop
153   // regions).
154   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
155   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
156 
157   // Converts to branches the select groups that were deemed
158   // profitable-to-convert.
159   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
160 
161   // Splits selects of a given basic block into select groups.
162   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
163 
164   // Determines for which select groups it is profitable converting to branches
165   // (base and inner-most-loop heuristics).
166   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
167                                   SelectGroups &ProfSIGroups);
168   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
169                                         SelectGroups &ProfSIGroups);
170 
171   // Determines if a select group should be converted to a branch (base
172   // heuristics).
173   bool isConvertToBranchProfitableBase(const SmallVector<SelectInst *, 2> &ASI);
174 
175   // Returns true if there are expensive instructions in the cold value
176   // operand's (if any) dependence slice of any of the selects of the given
177   // group.
178   bool hasExpensiveColdOperand(const SmallVector<SelectInst *, 2> &ASI);
179 
180   // For a given source instruction, collect its backwards dependence slice
181   // consisting of instructions exclusively computed for producing the operands
182   // of the source instruction.
183   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
184                              Instruction *SI, bool ForSinking = false);
185 
186   // Returns true if the condition of the select is highly predictable.
187   bool isSelectHighlyPredictable(const SelectInst *SI);
188 
189   // Loop-level checks to determine if a non-predicated version (with branches)
190   // of the given loop is more profitable than its predicated version.
191   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
192 
193   // Computes instruction and loop-critical-path costs for both the predicated
194   // and non-predicated version of the given loop.
195   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
196                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
197                         CostInfo *LoopCost);
198 
199   // Returns a set of all the select instructions in the given select groups.
200   SmallPtrSet<const Instruction *, 2> getSIset(const SelectGroups &SIGroups);
201 
202   // Returns the latency cost of a given instruction.
203   std::optional<uint64_t> computeInstCost(const Instruction *I);
204 
205   // Returns the misprediction cost of a given select when converted to branch.
206   Scaled64 getMispredictionCost(const SelectInst *SI, const Scaled64 CondCost);
207 
208   // Returns the cost of a branch when the prediction is correct.
209   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
210                                 const SelectInst *SI);
211 
212   // Returns true if the target architecture supports lowering a given select.
213   bool isSelectKindSupported(SelectInst *SI);
214 };
215 } // namespace
216 
217 char SelectOptimize::ID = 0;
218 
219 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
220                       false)
221 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
222 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
223 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
224 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
225 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
226 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
227 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
228                     false)
229 
230 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
231 
232 bool SelectOptimize::runOnFunction(Function &F) {
233   TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
234   TSI = TM->getSubtargetImpl(F);
235   TLI = TSI->getTargetLowering();
236 
237   // If none of the select types is supported then skip this pass.
238   // This is an optimization pass. Legality issues will be handled by
239   // instruction selection.
240   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
241       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
242       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
243     return false;
244 
245   TTI = &getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
246 
247   if (!TTI->enableSelectOptimize())
248     return false;
249 
250   DT = &getAnalysis<DominatorTreeWrapperPass>().getDomTree();
251   LI = &getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
252   BPI.reset(new BranchProbabilityInfo(F, *LI));
253   BFI.reset(new BlockFrequencyInfo(F, *BPI, *LI));
254   PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
255   ORE = &getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
256   TSchedModel.init(TSI);
257 
258   // When optimizing for size, selects are preferable over branches.
259   if (F.hasOptSize() || llvm::shouldOptimizeForSize(&F, PSI, BFI.get()))
260     return false;
261 
262   return optimizeSelects(F);
263 }
264 
265 bool SelectOptimize::optimizeSelects(Function &F) {
266   // Determine for which select groups it is profitable converting to branches.
267   SelectGroups ProfSIGroups;
268   // Base heuristics apply only to non-loops and outer loops.
269   optimizeSelectsBase(F, ProfSIGroups);
270   // Separate heuristics for inner-most loops.
271   optimizeSelectsInnerLoops(F, ProfSIGroups);
272 
273   // Convert to branches the select groups that were deemed
274   // profitable-to-convert.
275   convertProfitableSIGroups(ProfSIGroups);
276 
277   // Code modified if at least one select group was converted.
278   return !ProfSIGroups.empty();
279 }
280 
281 void SelectOptimize::optimizeSelectsBase(Function &F,
282                                          SelectGroups &ProfSIGroups) {
283   // Collect all the select groups.
284   SelectGroups SIGroups;
285   for (BasicBlock &BB : F) {
286     // Base heuristics apply only to non-loops and outer loops.
287     Loop *L = LI->getLoopFor(&BB);
288     if (L && L->isInnermost())
289       continue;
290     collectSelectGroups(BB, SIGroups);
291   }
292 
293   // Determine for which select groups it is profitable converting to branches.
294   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
295 }
296 
297 void SelectOptimize::optimizeSelectsInnerLoops(Function &F,
298                                                SelectGroups &ProfSIGroups) {
299   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
300   // Need to check size on each iteration as we accumulate child loops.
301   for (unsigned long i = 0; i < Loops.size(); ++i)
302     for (Loop *ChildL : Loops[i]->getSubLoops())
303       Loops.push_back(ChildL);
304 
305   for (Loop *L : Loops) {
306     if (!L->isInnermost())
307       continue;
308 
309     SelectGroups SIGroups;
310     for (BasicBlock *BB : L->getBlocks())
311       collectSelectGroups(*BB, SIGroups);
312 
313     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
314   }
315 }
316 
317 /// If \p isTrue is true, return the true value of \p SI, otherwise return
318 /// false value of \p SI. If the true/false value of \p SI is defined by any
319 /// select instructions in \p Selects, look through the defining select
320 /// instruction until the true/false value is not defined in \p Selects.
321 static Value *
322 getTrueOrFalseValue(SelectInst *SI, bool isTrue,
323                     const SmallPtrSet<const Instruction *, 2> &Selects) {
324   Value *V = nullptr;
325   for (SelectInst *DefSI = SI; DefSI != nullptr && Selects.count(DefSI);
326        DefSI = dyn_cast<SelectInst>(V)) {
327     assert(DefSI->getCondition() == SI->getCondition() &&
328            "The condition of DefSI does not match with SI");
329     V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
330   }
331   assert(V && "Failed to get select true/false value");
332   return V;
333 }
334 
335 void SelectOptimize::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
336   for (SelectGroup &ASI : ProfSIGroups) {
337     // The code transformation here is a modified version of the sinking
338     // transformation in CodeGenPrepare::optimizeSelectInst with a more
339     // aggressive strategy of which instructions to sink.
340     //
341     // TODO: eliminate the redundancy of logic transforming selects to branches
342     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
343     // selects for all cases (with and without profile information).
344 
345     // Transform a sequence like this:
346     //    start:
347     //       %cmp = cmp uge i32 %a, %b
348     //       %sel = select i1 %cmp, i32 %c, i32 %d
349     //
350     // Into:
351     //    start:
352     //       %cmp = cmp uge i32 %a, %b
353     //       %cmp.frozen = freeze %cmp
354     //       br i1 %cmp.frozen, label %select.true, label %select.false
355     //    select.true:
356     //       br label %select.end
357     //    select.false:
358     //       br label %select.end
359     //    select.end:
360     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
361     //
362     // %cmp should be frozen, otherwise it may introduce undefined behavior.
363     // In addition, we may sink instructions that produce %c or %d into the
364     // destination(s) of the new branch.
365     // If the true or false blocks do not contain a sunken instruction, that
366     // block and its branch may be optimized away. In that case, one side of the
367     // first branch will point directly to select.end, and the corresponding PHI
368     // predecessor block will be the start block.
369 
370     // Find all the instructions that can be soundly sunk to the true/false
371     // blocks. These are instructions that are computed solely for producing the
372     // operands of the select instructions in the group and can be sunk without
373     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
374     // with side effects).
375     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
376     typedef std::stack<Instruction *>::size_type StackSizeType;
377     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
378     for (SelectInst *SI : ASI) {
379       // For each select, compute the sinkable dependence chains of the true and
380       // false operands.
381       if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue())) {
382         std::stack<Instruction *> TrueSlice;
383         getExclBackwardsSlice(TI, TrueSlice, SI, true);
384         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
385         TrueSlices.push_back(TrueSlice);
386       }
387       if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue())) {
388         std::stack<Instruction *> FalseSlice;
389         getExclBackwardsSlice(FI, FalseSlice, SI, true);
390         maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
391         FalseSlices.push_back(FalseSlice);
392       }
393     }
394     // In the case of multiple select instructions in the same group, the order
395     // of non-dependent instructions (instructions of different dependence
396     // slices) in the true/false blocks appears to affect performance.
397     // Interleaving the slices seems to experimentally be the optimal approach.
398     // This interleaving scheduling allows for more ILP (with a natural downside
399     // of increasing a bit register pressure) compared to a simple ordering of
400     // one whole chain after another. One would expect that this ordering would
401     // not matter since the scheduling in the backend of the compiler  would
402     // take care of it, but apparently the scheduler fails to deliver optimal
403     // ILP with a naive ordering here.
404     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
405     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
406       for (auto &S : TrueSlices) {
407         if (!S.empty()) {
408           TrueSlicesInterleaved.push_back(S.top());
409           S.pop();
410         }
411       }
412     }
413     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
414       for (auto &S : FalseSlices) {
415         if (!S.empty()) {
416           FalseSlicesInterleaved.push_back(S.top());
417           S.pop();
418         }
419       }
420     }
421 
422     // We split the block containing the select(s) into two blocks.
423     SelectInst *SI = ASI.front();
424     SelectInst *LastSI = ASI.back();
425     BasicBlock *StartBlock = SI->getParent();
426     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI));
427     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
428     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock).getFrequency());
429     // Delete the unconditional branch that was just created by the split.
430     StartBlock->getTerminator()->eraseFromParent();
431 
432     // Move any debug/pseudo instructions that were in-between the select
433     // group to the newly-created end block.
434     SmallVector<Instruction *, 2> DebugPseudoINS;
435     auto DIt = SI->getIterator();
436     while (&*DIt != LastSI) {
437       if (DIt->isDebugOrPseudoInst())
438         DebugPseudoINS.push_back(&*DIt);
439       DIt++;
440     }
441     for (auto *DI : DebugPseudoINS) {
442       DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
443     }
444 
445     // These are the new basic blocks for the conditional branch.
446     // At least one will become an actual new basic block.
447     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
448     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
449     if (!TrueSlicesInterleaved.empty()) {
450       TrueBlock = BasicBlock::Create(LastSI->getContext(), "select.true.sink",
451                                      EndBlock->getParent(), EndBlock);
452       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
453       TrueBranch->setDebugLoc(LastSI->getDebugLoc());
454       for (Instruction *TrueInst : TrueSlicesInterleaved)
455         TrueInst->moveBefore(TrueBranch);
456     }
457     if (!FalseSlicesInterleaved.empty()) {
458       FalseBlock = BasicBlock::Create(LastSI->getContext(), "select.false.sink",
459                                       EndBlock->getParent(), EndBlock);
460       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
461       FalseBranch->setDebugLoc(LastSI->getDebugLoc());
462       for (Instruction *FalseInst : FalseSlicesInterleaved)
463         FalseInst->moveBefore(FalseBranch);
464     }
465     // If there was nothing to sink, then arbitrarily choose the 'false' side
466     // for a new input value to the PHI.
467     if (TrueBlock == FalseBlock) {
468       assert(TrueBlock == nullptr &&
469              "Unexpected basic block transform while optimizing select");
470 
471       FalseBlock = BasicBlock::Create(SI->getContext(), "select.false",
472                                       EndBlock->getParent(), EndBlock);
473       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
474       FalseBranch->setDebugLoc(SI->getDebugLoc());
475     }
476 
477     // Insert the real conditional branch based on the original condition.
478     // If we did not create a new block for one of the 'true' or 'false' paths
479     // of the condition, it means that side of the branch goes to the end block
480     // directly and the path originates from the start block from the point of
481     // view of the new PHI.
482     BasicBlock *TT, *FT;
483     if (TrueBlock == nullptr) {
484       TT = EndBlock;
485       FT = FalseBlock;
486       TrueBlock = StartBlock;
487     } else if (FalseBlock == nullptr) {
488       TT = TrueBlock;
489       FT = EndBlock;
490       FalseBlock = StartBlock;
491     } else {
492       TT = TrueBlock;
493       FT = FalseBlock;
494     }
495     IRBuilder<> IB(SI);
496     auto *CondFr =
497         IB.CreateFreeze(SI->getCondition(), SI->getName() + ".frozen");
498     IB.CreateCondBr(CondFr, TT, FT, SI);
499 
500     SmallPtrSet<const Instruction *, 2> INS;
501     INS.insert(ASI.begin(), ASI.end());
502     // Use reverse iterator because later select may use the value of the
503     // earlier select, and we need to propagate value through earlier select
504     // to get the PHI operand.
505     for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
506       SelectInst *SI = *It;
507       // The select itself is replaced with a PHI Node.
508       PHINode *PN = PHINode::Create(SI->getType(), 2, "");
509       PN->insertBefore(EndBlock->begin());
510       PN->takeName(SI);
511       PN->addIncoming(getTrueOrFalseValue(SI, true, INS), TrueBlock);
512       PN->addIncoming(getTrueOrFalseValue(SI, false, INS), FalseBlock);
513       PN->setDebugLoc(SI->getDebugLoc());
514 
515       SI->replaceAllUsesWith(PN);
516       SI->eraseFromParent();
517       INS.erase(SI);
518       ++NumSelectsConverted;
519     }
520   }
521 }
522 
523 static bool isSpecialSelect(SelectInst *SI) {
524   using namespace llvm::PatternMatch;
525 
526   // If the select is a logical-and/logical-or then it is better treated as a
527   // and/or by the backend.
528   if (match(SI, m_CombineOr(m_LogicalAnd(m_Value(), m_Value()),
529                             m_LogicalOr(m_Value(), m_Value()))))
530     return true;
531 
532   return false;
533 }
534 
535 void SelectOptimize::collectSelectGroups(BasicBlock &BB,
536                                          SelectGroups &SIGroups) {
537   BasicBlock::iterator BBIt = BB.begin();
538   while (BBIt != BB.end()) {
539     Instruction *I = &*BBIt++;
540     if (SelectInst *SI = dyn_cast<SelectInst>(I)) {
541       if (isSpecialSelect(SI))
542         continue;
543 
544       SelectGroup SIGroup;
545       SIGroup.push_back(SI);
546       while (BBIt != BB.end()) {
547         Instruction *NI = &*BBIt;
548         SelectInst *NSI = dyn_cast<SelectInst>(NI);
549         if (NSI && SI->getCondition() == NSI->getCondition()) {
550           SIGroup.push_back(NSI);
551         } else if (!NI->isDebugOrPseudoInst()) {
552           // Debug/pseudo instructions should be skipped and not prevent the
553           // formation of a select group.
554           break;
555         }
556         ++BBIt;
557       }
558 
559       // If the select type is not supported, no point optimizing it.
560       // Instruction selection will take care of it.
561       if (!isSelectKindSupported(SI))
562         continue;
563 
564       SIGroups.push_back(SIGroup);
565     }
566   }
567 }
568 
569 void SelectOptimize::findProfitableSIGroupsBase(SelectGroups &SIGroups,
570                                                 SelectGroups &ProfSIGroups) {
571   for (SelectGroup &ASI : SIGroups) {
572     ++NumSelectOptAnalyzed;
573     if (isConvertToBranchProfitableBase(ASI))
574       ProfSIGroups.push_back(ASI);
575   }
576 }
577 
578 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
579                                DiagnosticInfoOptimizationBase &Rem) {
580   LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
581   ORE->emit(Rem);
582 }
583 
584 void SelectOptimize::findProfitableSIGroupsInnerLoops(
585     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
586   NumSelectOptAnalyzed += SIGroups.size();
587   // For each select group in an inner-most loop,
588   // a branch is more preferable than a select/conditional-move if:
589   // i) conversion to branches for all the select groups of the loop satisfies
590   //    loop-level heuristics including reducing the loop's critical path by
591   //    some threshold (see SelectOptimize::checkLoopHeuristics); and
592   // ii) the total cost of the select group is cheaper with a branch compared
593   //     to its predicated version. The cost is in terms of latency and the cost
594   //     of a select group is the cost of its most expensive select instruction
595   //     (assuming infinite resources and thus fully leveraging available ILP).
596 
597   DenseMap<const Instruction *, CostInfo> InstCostMap;
598   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
599                           {Scaled64::getZero(), Scaled64::getZero()}};
600   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
601       !checkLoopHeuristics(L, LoopCost)) {
602     return;
603   }
604 
605   for (SelectGroup &ASI : SIGroups) {
606     // Assuming infinite resources, the cost of a group of instructions is the
607     // cost of the most expensive instruction of the group.
608     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
609     for (SelectInst *SI : ASI) {
610       SelectCost = std::max(SelectCost, InstCostMap[SI].PredCost);
611       BranchCost = std::max(BranchCost, InstCostMap[SI].NonPredCost);
612     }
613     if (BranchCost < SelectCost) {
614       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front());
615       OR << "Profitable to convert to branch (loop analysis). BranchCost="
616          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
617          << ". ";
618       EmitAndPrintRemark(ORE, OR);
619       ++NumSelectConvertedLoop;
620       ProfSIGroups.push_back(ASI);
621     } else {
622       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
623       ORmiss << "Select is more profitable (loop analysis). BranchCost="
624              << BranchCost.toString()
625              << ", SelectCost=" << SelectCost.toString() << ". ";
626       EmitAndPrintRemark(ORE, ORmiss);
627     }
628   }
629 }
630 
631 bool SelectOptimize::isConvertToBranchProfitableBase(
632     const SmallVector<SelectInst *, 2> &ASI) {
633   SelectInst *SI = ASI.front();
634   LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI << "\n");
635   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI);
636   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI);
637 
638   // Skip cold basic blocks. Better to optimize for size for cold blocks.
639   if (PSI->isColdBlock(SI->getParent(), BFI.get())) {
640     ++NumSelectColdBB;
641     ORmiss << "Not converted to branch because of cold basic block. ";
642     EmitAndPrintRemark(ORE, ORmiss);
643     return false;
644   }
645 
646   // If unpredictable, branch form is less profitable.
647   if (SI->getMetadata(LLVMContext::MD_unpredictable)) {
648     ++NumSelectUnPred;
649     ORmiss << "Not converted to branch because of unpredictable branch. ";
650     EmitAndPrintRemark(ORE, ORmiss);
651     return false;
652   }
653 
654   // If highly predictable, branch form is more profitable, unless a
655   // predictable select is inexpensive in the target architecture.
656   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
657     ++NumSelectConvertedHighPred;
658     OR << "Converted to branch because of highly predictable branch. ";
659     EmitAndPrintRemark(ORE, OR);
660     return true;
661   }
662 
663   // Look for expensive instructions in the cold operand's (if any) dependence
664   // slice of any of the selects in the group.
665   if (hasExpensiveColdOperand(ASI)) {
666     ++NumSelectConvertedExpColdOperand;
667     OR << "Converted to branch because of expensive cold operand.";
668     EmitAndPrintRemark(ORE, OR);
669     return true;
670   }
671 
672   ORmiss << "Not profitable to convert to branch (base heuristic).";
673   EmitAndPrintRemark(ORE, ORmiss);
674   return false;
675 }
676 
677 static InstructionCost divideNearest(InstructionCost Numerator,
678                                      uint64_t Denominator) {
679   return (Numerator + (Denominator / 2)) / Denominator;
680 }
681 
682 bool SelectOptimize::hasExpensiveColdOperand(
683     const SmallVector<SelectInst *, 2> &ASI) {
684   bool ColdOperand = false;
685   uint64_t TrueWeight, FalseWeight, TotalWeight;
686   if (extractBranchWeights(*ASI.front(), TrueWeight, FalseWeight)) {
687     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
688     TotalWeight = TrueWeight + FalseWeight;
689     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
690     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
691   } else if (PSI->hasProfileSummary()) {
692     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", ASI.front());
693     ORmiss << "Profile data available but missing branch-weights metadata for "
694               "select instruction. ";
695     EmitAndPrintRemark(ORE, ORmiss);
696   }
697   if (!ColdOperand)
698     return false;
699   // Check if the cold path's dependence slice is expensive for any of the
700   // selects of the group.
701   for (SelectInst *SI : ASI) {
702     Instruction *ColdI = nullptr;
703     uint64_t HotWeight;
704     if (TrueWeight < FalseWeight) {
705       ColdI = dyn_cast<Instruction>(SI->getTrueValue());
706       HotWeight = FalseWeight;
707     } else {
708       ColdI = dyn_cast<Instruction>(SI->getFalseValue());
709       HotWeight = TrueWeight;
710     }
711     if (ColdI) {
712       std::stack<Instruction *> ColdSlice;
713       getExclBackwardsSlice(ColdI, ColdSlice, SI);
714       InstructionCost SliceCost = 0;
715       while (!ColdSlice.empty()) {
716         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
717                                              TargetTransformInfo::TCK_Latency);
718         ColdSlice.pop();
719       }
720       // The colder the cold value operand of the select is the more expensive
721       // the cmov becomes for computing the cold value operand every time. Thus,
722       // the colder the cold operand is the more its cost counts.
723       // Get nearest integer cost adjusted for coldness.
724       InstructionCost AdjSliceCost =
725           divideNearest(SliceCost * HotWeight, TotalWeight);
726       if (AdjSliceCost >=
727           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
728         return true;
729     }
730   }
731   return false;
732 }
733 
734 // Check if it is safe to move LoadI next to the SI.
735 // Conservatively assume it is safe only if there is no instruction
736 // modifying memory in-between the load and the select instruction.
737 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
738   // Assume loads from different basic blocks are unsafe to move.
739   if (LoadI->getParent() != SI->getParent())
740     return false;
741   auto It = LoadI->getIterator();
742   while (&*It != SI) {
743     if (It->mayWriteToMemory())
744       return false;
745     It++;
746   }
747   return true;
748 }
749 
750 // For a given source instruction, collect its backwards dependence slice
751 // consisting of instructions exclusively computed for the purpose of producing
752 // the operands of the source instruction. As an approximation
753 // (sufficiently-accurate in practice), we populate this set with the
754 // instructions of the backwards dependence slice that only have one-use and
755 // form an one-use chain that leads to the source instruction.
756 void SelectOptimize::getExclBackwardsSlice(Instruction *I,
757                                            std::stack<Instruction *> &Slice,
758                                            Instruction *SI, bool ForSinking) {
759   SmallPtrSet<Instruction *, 2> Visited;
760   std::queue<Instruction *> Worklist;
761   Worklist.push(I);
762   while (!Worklist.empty()) {
763     Instruction *II = Worklist.front();
764     Worklist.pop();
765 
766     // Avoid cycles.
767     if (!Visited.insert(II).second)
768       continue;
769 
770     if (!II->hasOneUse())
771       continue;
772 
773     // Cannot soundly sink instructions with side-effects.
774     // Terminator or phi instructions cannot be sunk.
775     // Avoid sinking other select instructions (should be handled separetely).
776     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
777                        isa<SelectInst>(II) || isa<PHINode>(II)))
778       continue;
779 
780     // Avoid sinking loads in order not to skip state-modifying instructions,
781     // that may alias with the loaded address.
782     // Only allow sinking of loads within the same basic block that are
783     // conservatively proven to be safe.
784     if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
785       continue;
786 
787     // Avoid considering instructions with less frequency than the source
788     // instruction (i.e., avoid colder code regions of the dependence slice).
789     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
790       continue;
791 
792     // Eligible one-use instruction added to the dependence slice.
793     Slice.push(II);
794 
795     // Explore all the operands of the current instruction to expand the slice.
796     for (unsigned k = 0; k < II->getNumOperands(); ++k)
797       if (auto *OpI = dyn_cast<Instruction>(II->getOperand(k)))
798         Worklist.push(OpI);
799   }
800 }
801 
802 bool SelectOptimize::isSelectHighlyPredictable(const SelectInst *SI) {
803   uint64_t TrueWeight, FalseWeight;
804   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
805     uint64_t Max = std::max(TrueWeight, FalseWeight);
806     uint64_t Sum = TrueWeight + FalseWeight;
807     if (Sum != 0) {
808       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
809       if (Probability > TTI->getPredictableBranchThreshold())
810         return true;
811     }
812   }
813   return false;
814 }
815 
816 bool SelectOptimize::checkLoopHeuristics(const Loop *L,
817                                          const CostInfo LoopCost[2]) {
818   // Loop-level checks to determine if a non-predicated version (with branches)
819   // of the loop is more profitable than its predicated version.
820 
821   if (DisableLoopLevelHeuristics)
822     return true;
823 
824   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
825                                    L->getHeader()->getFirstNonPHI());
826 
827   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
828       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
829     ORmissL << "No select conversion in the loop due to no reduction of loop's "
830                "critical path. ";
831     EmitAndPrintRemark(ORE, ORmissL);
832     return false;
833   }
834 
835   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
836                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
837 
838   // Profitably converting to branches need to reduce the loop's critical path
839   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
840   // relative gain of 12.5%).
841   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
842       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
843     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
844     ORmissL << "No select conversion in the loop due to small reduction of "
845                "loop's critical path. Gain="
846             << Gain[1].toString()
847             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
848     EmitAndPrintRemark(ORE, ORmissL);
849     return false;
850   }
851 
852   // If the loop's critical path involves loop-carried dependences, the gradient
853   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
854   // This check ensures that the latency reduction for the loop's critical path
855   // keeps decreasing with sufficient rate beyond the two analyzed loop
856   // iterations.
857   if (Gain[1] > Gain[0]) {
858     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
859                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
860     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
861       ORmissL << "No select conversion in the loop due to small gradient gain. "
862                  "GradientGain="
863               << GradientGain.toString() << "%. ";
864       EmitAndPrintRemark(ORE, ORmissL);
865       return false;
866     }
867   }
868   // If the gain decreases it is not profitable to convert.
869   else if (Gain[1] < Gain[0]) {
870     ORmissL
871         << "No select conversion in the loop due to negative gradient gain. ";
872     EmitAndPrintRemark(ORE, ORmissL);
873     return false;
874   }
875 
876   // Non-predicated version of the loop is more profitable than its
877   // predicated version.
878   return true;
879 }
880 
881 // Computes instruction and loop-critical-path costs for both the predicated
882 // and non-predicated version of the given loop.
883 // Returns false if unable to compute these costs due to invalid cost of loop
884 // instruction(s).
885 bool SelectOptimize::computeLoopCosts(
886     const Loop *L, const SelectGroups &SIGroups,
887     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
888   LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
889                     << L->getHeader()->getName() << "\n");
890   const auto &SIset = getSIset(SIGroups);
891   // Compute instruction and loop-critical-path costs across two iterations for
892   // both predicated and non-predicated version.
893   const unsigned Iterations = 2;
894   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
895     // Cost of the loop's critical path.
896     CostInfo &MaxCost = LoopCost[Iter];
897     for (BasicBlock *BB : L->getBlocks()) {
898       for (const Instruction &I : *BB) {
899         if (I.isDebugOrPseudoInst())
900           continue;
901         // Compute the predicated and non-predicated cost of the instruction.
902         Scaled64 IPredCost = Scaled64::getZero(),
903                  INonPredCost = Scaled64::getZero();
904 
905         // Assume infinite resources that allow to fully exploit the available
906         // instruction-level parallelism.
907         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
908         for (const Use &U : I.operands()) {
909           auto UI = dyn_cast<Instruction>(U.get());
910           if (!UI)
911             continue;
912           if (InstCostMap.count(UI)) {
913             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
914             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
915           }
916         }
917         auto ILatency = computeInstCost(&I);
918         if (!ILatency) {
919           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
920           ORmissL << "Invalid instruction cost preventing analysis and "
921                      "optimization of the inner-most loop containing this "
922                      "instruction. ";
923           EmitAndPrintRemark(ORE, ORmissL);
924           return false;
925         }
926         IPredCost += Scaled64::get(*ILatency);
927         INonPredCost += Scaled64::get(*ILatency);
928 
929         // For a select that can be converted to branch,
930         // compute its cost as a branch (non-predicated cost).
931         //
932         // BranchCost = PredictedPathCost + MispredictCost
933         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
934         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
935         if (SIset.contains(&I)) {
936           auto SI = cast<SelectInst>(&I);
937 
938           Scaled64 TrueOpCost = Scaled64::getZero(),
939                    FalseOpCost = Scaled64::getZero();
940           if (auto *TI = dyn_cast<Instruction>(SI->getTrueValue()))
941             if (InstCostMap.count(TI))
942               TrueOpCost = InstCostMap[TI].NonPredCost;
943           if (auto *FI = dyn_cast<Instruction>(SI->getFalseValue()))
944             if (InstCostMap.count(FI))
945               FalseOpCost = InstCostMap[FI].NonPredCost;
946           Scaled64 PredictedPathCost =
947               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
948 
949           Scaled64 CondCost = Scaled64::getZero();
950           if (auto *CI = dyn_cast<Instruction>(SI->getCondition()))
951             if (InstCostMap.count(CI))
952               CondCost = InstCostMap[CI].NonPredCost;
953           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
954 
955           INonPredCost = PredictedPathCost + MispredictCost;
956         }
957         LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
958                           << INonPredCost << " for " << I << "\n");
959 
960         InstCostMap[&I] = {IPredCost, INonPredCost};
961         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
962         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
963       }
964     }
965     LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
966                       << " MaxCost = " << MaxCost.PredCost << " "
967                       << MaxCost.NonPredCost << "\n");
968   }
969   return true;
970 }
971 
972 SmallPtrSet<const Instruction *, 2>
973 SelectOptimize::getSIset(const SelectGroups &SIGroups) {
974   SmallPtrSet<const Instruction *, 2> SIset;
975   for (const SelectGroup &ASI : SIGroups)
976     for (const SelectInst *SI : ASI)
977       SIset.insert(SI);
978   return SIset;
979 }
980 
981 std::optional<uint64_t> SelectOptimize::computeInstCost(const Instruction *I) {
982   InstructionCost ICost =
983       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
984   if (auto OC = ICost.getValue())
985     return std::optional<uint64_t>(*OC);
986   return std::nullopt;
987 }
988 
989 ScaledNumber<uint64_t>
990 SelectOptimize::getMispredictionCost(const SelectInst *SI,
991                                      const Scaled64 CondCost) {
992   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
993 
994   // Account for the default misprediction rate when using a branch
995   // (conservatively set to 25% by default).
996   uint64_t MispredictRate = MispredictDefaultRate;
997   // If the select condition is obviously predictable, then the misprediction
998   // rate is zero.
999   if (isSelectHighlyPredictable(SI))
1000     MispredictRate = 0;
1001 
1002   // CondCost is included to account for cases where the computation of the
1003   // condition is part of a long dependence chain (potentially loop-carried)
1004   // that would delay detection of a misprediction and increase its cost.
1005   Scaled64 MispredictCost =
1006       std::max(Scaled64::get(MispredictPenalty), CondCost) *
1007       Scaled64::get(MispredictRate);
1008   MispredictCost /= Scaled64::get(100);
1009 
1010   return MispredictCost;
1011 }
1012 
1013 // Returns the cost of a branch when the prediction is correct.
1014 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1015 ScaledNumber<uint64_t>
1016 SelectOptimize::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1017                                      const SelectInst *SI) {
1018   Scaled64 PredPathCost;
1019   uint64_t TrueWeight, FalseWeight;
1020   if (extractBranchWeights(*SI, TrueWeight, FalseWeight)) {
1021     uint64_t SumWeight = TrueWeight + FalseWeight;
1022     if (SumWeight != 0) {
1023       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1024                      FalseCost * Scaled64::get(FalseWeight);
1025       PredPathCost /= Scaled64::get(SumWeight);
1026       return PredPathCost;
1027     }
1028   }
1029   // Without branch weight metadata, we assume 75% for the one path and 25% for
1030   // the other, and pick the result with the biggest cost.
1031   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1032                           FalseCost * Scaled64::get(3) + TrueCost);
1033   PredPathCost /= Scaled64::get(4);
1034   return PredPathCost;
1035 }
1036 
1037 bool SelectOptimize::isSelectKindSupported(SelectInst *SI) {
1038   bool VectorCond = !SI->getCondition()->getType()->isIntegerTy(1);
1039   if (VectorCond)
1040     return false;
1041   TargetLowering::SelectSupportKind SelectKind;
1042   if (SI->getType()->isVectorTy())
1043     SelectKind = TargetLowering::ScalarCondVectorVal;
1044   else
1045     SelectKind = TargetLowering::ScalarValSelect;
1046   return TLI->isSelectSupported(SelectKind);
1047 }
1048