xref: /llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp (revision 3469996d0d057d99a33ec34ee3c80e5d4fa3afcb)
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SetVector.h"
15 #include "llvm/ADT/SmallVector.h"
16 #include "llvm/ADT/Statistic.h"
17 #include "llvm/Analysis/BlockFrequencyInfo.h"
18 #include "llvm/Analysis/BranchProbabilityInfo.h"
19 #include "llvm/Analysis/LoopInfo.h"
20 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
21 #include "llvm/Analysis/ProfileSummaryInfo.h"
22 #include "llvm/Analysis/TargetTransformInfo.h"
23 #include "llvm/CodeGen/Passes.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetPassConfig.h"
26 #include "llvm/CodeGen/TargetSchedule.h"
27 #include "llvm/CodeGen/TargetSubtargetInfo.h"
28 #include "llvm/IR/BasicBlock.h"
29 #include "llvm/IR/Dominators.h"
30 #include "llvm/IR/Function.h"
31 #include "llvm/IR/IRBuilder.h"
32 #include "llvm/IR/Instruction.h"
33 #include "llvm/IR/PatternMatch.h"
34 #include "llvm/IR/ProfDataUtils.h"
35 #include "llvm/InitializePasses.h"
36 #include "llvm/Pass.h"
37 #include "llvm/Support/ScaledNumber.h"
38 #include "llvm/Target/TargetMachine.h"
39 #include "llvm/Transforms/Utils/SizeOpts.h"
40 #include <algorithm>
41 #include <queue>
42 #include <stack>
43 
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "select-optimize"
48 
49 STATISTIC(NumSelectOptAnalyzed,
50           "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52           "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54           "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56           "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58           "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60           "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
62 
63 static cl::opt<unsigned> ColdOperandThreshold(
64     "cold-operand-threshold",
65     cl::desc("Maximum frequency of path for an operand to be considered cold."),
66     cl::init(20), cl::Hidden);
67 
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69     "cold-operand-max-cost-multiplier",
70     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71              "slice of a cold operand to be considered inexpensive."),
72     cl::init(1), cl::Hidden);
73 
74 static cl::opt<unsigned>
75     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76                           cl::desc("Gradient gain threshold (%)."),
77                           cl::init(25), cl::Hidden);
78 
79 static cl::opt<unsigned>
80     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81                        cl::desc("Minimum gain per loop (in cycles) threshold."),
82                        cl::init(4), cl::Hidden);
83 
84 static cl::opt<unsigned> GainRelativeThreshold(
85     "select-opti-loop-relative-gain-threshold",
86     cl::desc(
87         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88     cl::init(8), cl::Hidden);
89 
90 static cl::opt<unsigned> MispredictDefaultRate(
91     "mispredict-default-rate", cl::Hidden, cl::init(25),
92     cl::desc("Default mispredict rate (initialized to 25%)."));
93 
94 static cl::opt<bool>
95     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96                                cl::init(false),
97                                cl::desc("Disable loop-level heuristics."));
98 
99 namespace {
100 
101 class SelectOptimizeImpl {
102   const TargetMachine *TM = nullptr;
103   const TargetSubtargetInfo *TSI = nullptr;
104   const TargetLowering *TLI = nullptr;
105   const TargetTransformInfo *TTI = nullptr;
106   const LoopInfo *LI = nullptr;
107   BlockFrequencyInfo *BFI;
108   ProfileSummaryInfo *PSI = nullptr;
109   OptimizationRemarkEmitter *ORE = nullptr;
110   TargetSchedModel TSchedModel;
111 
112 public:
113   SelectOptimizeImpl() = default;
114   SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116   bool runOnFunction(Function &F, Pass &P);
117 
118   using Scaled64 = ScaledNumber<uint64_t>;
119 
120   struct CostInfo {
121     /// Predicated cost (with selects as conditional moves).
122     Scaled64 PredCost;
123     /// Non-predicated cost (with selects converted to branches).
124     Scaled64 NonPredCost;
125   };
126 
127   /// SelectLike is an abstraction over SelectInst and other operations that can
128   /// act like selects. For example Or(Zext(icmp), X) can be treated like
129   /// select(icmp, X|1, X).
130   class SelectLike {
131     /// The select (/or) instruction.
132     Instruction *I;
133     /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
134     /// opposed to the original condition.
135     bool Inverted = false;
136 
137     /// The index of the operand that depends on condition. Only for select-like
138     /// instruction such as Or/Add.
139     unsigned CondIdx;
140 
141   public:
142     SelectLike(Instruction *I, bool Inverted = false, unsigned CondIdx = 0)
143         : I(I), Inverted(Inverted), CondIdx(CondIdx) {}
144 
145     Instruction *getI() { return I; }
146     const Instruction *getI() const { return I; }
147 
148     Type *getType() const { return I->getType(); }
149 
150     unsigned getConditionOpIndex() { return CondIdx; };
151 
152     /// Return the true value for the SelectLike instruction. Note this may not
153     /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
154     /// the true value would be `or(x,1)`. As this value does not exist, nullptr
155     /// is returned.
156     Value *getTrueValue(bool HonorInverts = true) const {
157       if (Inverted && HonorInverts)
158         return getFalseValue(/*HonorInverts=*/false);
159       if (auto *Sel = dyn_cast<SelectInst>(I))
160         return Sel->getTrueValue();
161       // Or(zext) case - The true value is Or(X), so return nullptr as the value
162       // does not yet exist.
163       if (isa<BinaryOperator>(I))
164         return nullptr;
165 
166       llvm_unreachable("Unhandled case in getTrueValue");
167     }
168 
169     /// Return the false value for the SelectLike instruction. For example the
170     /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
171     /// `select(c, x|1, x)`)
172     Value *getFalseValue(bool HonorInverts = true) const {
173       if (Inverted && HonorInverts)
174         return getTrueValue(/*HonorInverts=*/false);
175       if (auto *Sel = dyn_cast<SelectInst>(I))
176         return Sel->getFalseValue();
177       // We are on the branch where the condition is zero, which means BinOp
178       // does not perform any computation, and we can simply return the operand
179       // that is not related to the condition
180       if (auto *BO = dyn_cast<BinaryOperator>(I))
181         return BO->getOperand(1 - CondIdx);
182 
183       llvm_unreachable("Unhandled case in getFalseValue");
184     }
185 
186     /// Return the NonPredCost cost of the op on \p isTrue branch, given the
187     /// costs in \p InstCostMap. This may need to be generated for select-like
188     /// instructions.
189     Scaled64 getOpCostOnBranch(
190         bool IsTrue, const DenseMap<const Instruction *, CostInfo> &InstCostMap,
191         const TargetTransformInfo *TTI) {
192       auto *V = IsTrue ? getTrueValue() : getFalseValue();
193       if (V) {
194         if (auto *IV = dyn_cast<Instruction>(V)) {
195           auto It = InstCostMap.find(IV);
196           return It != InstCostMap.end() ? It->second.NonPredCost
197                                          : Scaled64::getZero();
198         }
199         return Scaled64::getZero();
200       }
201       // If getTrue(False)Value() return nullptr, it means we are dealing with
202       // select-like instructions on the branch where the actual computation is
203       // happening. In that case the cost is equal to the cost of computation +
204       // cost of non-dependant on condition operand
205       InstructionCost Cost = TTI->getArithmeticInstrCost(
206           getI()->getOpcode(), I->getType(), TargetTransformInfo::TCK_Latency,
207           {TargetTransformInfo::OK_AnyValue, TargetTransformInfo::OP_None},
208           {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
209       auto TotalCost = Scaled64::get(*Cost.getValue());
210       if (auto *OpI = dyn_cast<Instruction>(I->getOperand(1 - CondIdx))) {
211         auto It = InstCostMap.find(OpI);
212         if (It != InstCostMap.end())
213           TotalCost += It->second.NonPredCost;
214       }
215       return TotalCost;
216     }
217   };
218 
219 private:
220   // Select groups consist of consecutive select-like instructions with the same
221   // condition. Between select-likes could be any number of auxiliary
222   // instructions related to the condition like not, zext, ashr/lshr
223   struct SelectGroup {
224     Value *Condition;
225     SmallVector<SelectLike, 2> Selects;
226   };
227   using SelectGroups = SmallVector<SelectGroup, 2>;
228 
229   // Converts select instructions of a function to conditional jumps when deemed
230   // profitable. Returns true if at least one select was converted.
231   bool optimizeSelects(Function &F);
232 
233   // Heuristics for determining which select instructions can be profitably
234   // conveted to branches. Separate heuristics for selects in inner-most loops
235   // and the rest of code regions (base heuristics for non-inner-most loop
236   // regions).
237   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
238   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
239 
240   // Converts to branches the select groups that were deemed
241   // profitable-to-convert.
242   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
243 
244   // Splits selects of a given basic block into select groups.
245   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
246 
247   // Determines for which select groups it is profitable converting to branches
248   // (base and inner-most-loop heuristics).
249   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
250                                   SelectGroups &ProfSIGroups);
251   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
252                                         SelectGroups &ProfSIGroups);
253 
254   // Determines if a select group should be converted to a branch (base
255   // heuristics).
256   bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
257 
258   // Returns true if there are expensive instructions in the cold value
259   // operand's (if any) dependence slice of any of the selects of the given
260   // group.
261   bool hasExpensiveColdOperand(const SelectGroup &ASI);
262 
263   // For a given source instruction, collect its backwards dependence slice
264   // consisting of instructions exclusively computed for producing the operands
265   // of the source instruction.
266   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
267                              Instruction *SI, bool ForSinking = false);
268 
269   // Returns true if the condition of the select is highly predictable.
270   bool isSelectHighlyPredictable(const SelectLike SI);
271 
272   // Loop-level checks to determine if a non-predicated version (with branches)
273   // of the given loop is more profitable than its predicated version.
274   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
275 
276   // Computes instruction and loop-critical-path costs for both the predicated
277   // and non-predicated version of the given loop.
278   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
279                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
280                         CostInfo *LoopCost);
281 
282   // Returns a set of all the select instructions in the given select groups.
283   SmallDenseMap<const Instruction *, SelectLike, 2>
284   getSImap(const SelectGroups &SIGroups);
285 
286   // Returns a map from select-like instructions to the corresponding select
287   // group.
288   SmallDenseMap<const Instruction *, const SelectGroup *, 2>
289   getSGmap(const SelectGroups &SIGroups);
290 
291   // Returns the latency cost of a given instruction.
292   std::optional<uint64_t> computeInstCost(const Instruction *I);
293 
294   // Returns the misprediction cost of a given select when converted to branch.
295   Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
296 
297   // Returns the cost of a branch when the prediction is correct.
298   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
299                                 const SelectLike SI);
300 
301   // Returns true if the target architecture supports lowering a given select.
302   bool isSelectKindSupported(const SelectLike SI);
303 };
304 
305 class SelectOptimize : public FunctionPass {
306   SelectOptimizeImpl Impl;
307 
308 public:
309   static char ID;
310 
311   SelectOptimize() : FunctionPass(ID) {
312     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
313   }
314 
315   bool runOnFunction(Function &F) override {
316     return Impl.runOnFunction(F, *this);
317   }
318 
319   void getAnalysisUsage(AnalysisUsage &AU) const override {
320     AU.addRequired<ProfileSummaryInfoWrapperPass>();
321     AU.addRequired<TargetPassConfig>();
322     AU.addRequired<TargetTransformInfoWrapperPass>();
323     AU.addRequired<LoopInfoWrapperPass>();
324     AU.addRequired<BlockFrequencyInfoWrapperPass>();
325     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
326   }
327 };
328 
329 } // namespace
330 
331 PreservedAnalyses SelectOptimizePass::run(Function &F,
332                                           FunctionAnalysisManager &FAM) {
333   SelectOptimizeImpl Impl(TM);
334   return Impl.run(F, FAM);
335 }
336 
337 char SelectOptimize::ID = 0;
338 
339 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
340                       false)
341 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
342 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
343 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
344 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
345 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
346 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
347 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
348                     false)
349 
350 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
351 
352 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
353                                           FunctionAnalysisManager &FAM) {
354   TSI = TM->getSubtargetImpl(F);
355   TLI = TSI->getTargetLowering();
356 
357   // If none of the select types are supported then skip this pass.
358   // This is an optimization pass. Legality issues will be handled by
359   // instruction selection.
360   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
361       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
362       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
363     return PreservedAnalyses::all();
364 
365   TTI = &FAM.getResult<TargetIRAnalysis>(F);
366   if (!TTI->enableSelectOptimize())
367     return PreservedAnalyses::all();
368 
369   PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
370             .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
371   assert(PSI && "This pass requires module analysis pass `profile-summary`!");
372   BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
373 
374   // When optimizing for size, selects are preferable over branches.
375   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
376     return PreservedAnalyses::all();
377 
378   LI = &FAM.getResult<LoopAnalysis>(F);
379   ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
380   TSchedModel.init(TSI);
381 
382   bool Changed = optimizeSelects(F);
383   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
384 }
385 
386 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
387   TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
388   TSI = TM->getSubtargetImpl(F);
389   TLI = TSI->getTargetLowering();
390 
391   // If none of the select types are supported then skip this pass.
392   // This is an optimization pass. Legality issues will be handled by
393   // instruction selection.
394   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
395       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
396       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
397     return false;
398 
399   TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
400 
401   if (!TTI->enableSelectOptimize())
402     return false;
403 
404   LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
405   BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
406   PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
407   ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
408   TSchedModel.init(TSI);
409 
410   // When optimizing for size, selects are preferable over branches.
411   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
412     return false;
413 
414   return optimizeSelects(F);
415 }
416 
417 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
418   // Determine for which select groups it is profitable converting to branches.
419   SelectGroups ProfSIGroups;
420   // Base heuristics apply only to non-loops and outer loops.
421   optimizeSelectsBase(F, ProfSIGroups);
422   // Separate heuristics for inner-most loops.
423   optimizeSelectsInnerLoops(F, ProfSIGroups);
424 
425   // Convert to branches the select groups that were deemed
426   // profitable-to-convert.
427   convertProfitableSIGroups(ProfSIGroups);
428 
429   // Code modified if at least one select group was converted.
430   return !ProfSIGroups.empty();
431 }
432 
433 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
434                                              SelectGroups &ProfSIGroups) {
435   // Collect all the select groups.
436   SelectGroups SIGroups;
437   for (BasicBlock &BB : F) {
438     // Base heuristics apply only to non-loops and outer loops.
439     Loop *L = LI->getLoopFor(&BB);
440     if (L && L->isInnermost())
441       continue;
442     collectSelectGroups(BB, SIGroups);
443   }
444 
445   // Determine for which select groups it is profitable converting to branches.
446   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
447 }
448 
449 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
450                                                    SelectGroups &ProfSIGroups) {
451   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
452   // Need to check size on each iteration as we accumulate child loops.
453   for (unsigned long i = 0; i < Loops.size(); ++i)
454     for (Loop *ChildL : Loops[i]->getSubLoops())
455       Loops.push_back(ChildL);
456 
457   for (Loop *L : Loops) {
458     if (!L->isInnermost())
459       continue;
460 
461     SelectGroups SIGroups;
462     for (BasicBlock *BB : L->getBlocks())
463       collectSelectGroups(*BB, SIGroups);
464 
465     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
466   }
467 }
468 
469 /// Returns optimised value on \p IsTrue branch. For SelectInst that would be
470 /// either True or False value. For (BinaryOperator) instructions, where the
471 /// condition may be skipped, the operation will use a non-conditional operand.
472 /// For example, for `or(V,zext(cond))` this function would return V.
473 /// However, if the conditional operand on \p IsTrue branch matters, we create a
474 /// clone of instruction at the end of that branch \p B and replace the
475 /// condition operand with a constant.
476 ///
477 /// Also /p OptSelects contains previously optimised select-like instructions.
478 /// If the current value uses one of the optimised values, we can optimise it
479 /// further by replacing it with the corresponding value on the given branch
480 static Value *getTrueOrFalseValue(
481     SelectOptimizeImpl::SelectLike &SI, bool isTrue,
482     SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> &OptSelects,
483     BasicBlock *B) {
484   Value *V = isTrue ? SI.getTrueValue() : SI.getFalseValue();
485   if (V) {
486     auto *IV = dyn_cast<Instruction>(V);
487     if (IV && OptSelects.count(IV))
488       return isTrue ? OptSelects[IV].first : OptSelects[IV].second;
489     return V;
490   }
491 
492   auto *BO = cast<BinaryOperator>(SI.getI());
493   assert((BO->getOpcode() == Instruction::Add ||
494           BO->getOpcode() == Instruction::Or ||
495           BO->getOpcode() == Instruction::Sub) &&
496          "Only currently handling Add, Or and Sub binary operators.");
497 
498   auto *CBO = BO->clone();
499   auto CondIdx = SI.getConditionOpIndex();
500   auto *AuxI = cast<Instruction>(CBO->getOperand(CondIdx));
501   if (isa<ZExtInst>(AuxI) || isa<LShrOperator>(AuxI)) {
502     CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), 1));
503   } else {
504     assert((isa<AShrOperator>(AuxI) || isa<SExtInst>(AuxI)) &&
505            "Unexpected opcode");
506     CBO->setOperand(CondIdx, ConstantInt::get(CBO->getType(), -1));
507   }
508 
509   unsigned OtherIdx = 1 - CondIdx;
510   if (auto *IV = dyn_cast<Instruction>(CBO->getOperand(OtherIdx))) {
511     if (OptSelects.count(IV))
512       CBO->setOperand(OtherIdx,
513                       isTrue ? OptSelects[IV].first : OptSelects[IV].second);
514   }
515   CBO->insertBefore(B->getTerminator());
516   return CBO;
517 }
518 
519 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
520   for (SelectGroup &ASI : ProfSIGroups) {
521     // The code transformation here is a modified version of the sinking
522     // transformation in CodeGenPrepare::optimizeSelectInst with a more
523     // aggressive strategy of which instructions to sink.
524     //
525     // TODO: eliminate the redundancy of logic transforming selects to branches
526     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
527     // selects for all cases (with and without profile information).
528 
529     // Transform a sequence like this:
530     //    start:
531     //       %cmp = cmp uge i32 %a, %b
532     //       %sel = select i1 %cmp, i32 %c, i32 %d
533     //
534     // Into:
535     //    start:
536     //       %cmp = cmp uge i32 %a, %b
537     //       %cmp.frozen = freeze %cmp
538     //       br i1 %cmp.frozen, label %select.true, label %select.false
539     //    select.true:
540     //       br label %select.end
541     //    select.false:
542     //       br label %select.end
543     //    select.end:
544     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
545     //
546     // %cmp should be frozen, otherwise it may introduce undefined behavior.
547     // In addition, we may sink instructions that produce %c or %d into the
548     // destination(s) of the new branch.
549     // If the true or false blocks do not contain a sunken instruction, that
550     // block and its branch may be optimized away. In that case, one side of the
551     // first branch will point directly to select.end, and the corresponding PHI
552     // predecessor block will be the start block.
553 
554     // Find all the instructions that can be soundly sunk to the true/false
555     // blocks. These are instructions that are computed solely for producing the
556     // operands of the select instructions in the group and can be sunk without
557     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
558     // with side effects).
559     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
560     typedef std::stack<Instruction *>::size_type StackSizeType;
561     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
562     for (SelectLike &SI : ASI.Selects) {
563       if (!isa<SelectInst>(SI.getI()))
564         continue;
565       // For each select, compute the sinkable dependence chains of the true and
566       // false operands.
567       if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
568         std::stack<Instruction *> TrueSlice;
569         getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
570         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
571         TrueSlices.push_back(TrueSlice);
572       }
573       if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
574         if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
575           std::stack<Instruction *> FalseSlice;
576           getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
577           maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
578           FalseSlices.push_back(FalseSlice);
579         }
580       }
581     }
582     // In the case of multiple select instructions in the same group, the order
583     // of non-dependent instructions (instructions of different dependence
584     // slices) in the true/false blocks appears to affect performance.
585     // Interleaving the slices seems to experimentally be the optimal approach.
586     // This interleaving scheduling allows for more ILP (with a natural downside
587     // of increasing a bit register pressure) compared to a simple ordering of
588     // one whole chain after another. One would expect that this ordering would
589     // not matter since the scheduling in the backend of the compiler  would
590     // take care of it, but apparently the scheduler fails to deliver optimal
591     // ILP with a naive ordering here.
592     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
593     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
594       for (auto &S : TrueSlices) {
595         if (!S.empty()) {
596           TrueSlicesInterleaved.push_back(S.top());
597           S.pop();
598         }
599       }
600     }
601     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
602       for (auto &S : FalseSlices) {
603         if (!S.empty()) {
604           FalseSlicesInterleaved.push_back(S.top());
605           S.pop();
606         }
607       }
608     }
609 
610     // We split the block containing the select(s) into two blocks.
611     SelectLike &SI = ASI.Selects.front();
612     SelectLike &LastSI = ASI.Selects.back();
613     BasicBlock *StartBlock = SI.getI()->getParent();
614     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
615     // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
616     // RemoveDIs turned on, SplitPt would instead point to the next
617     // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
618     // tell splitBasicBlock that we want to include any DbgVariableRecords
619     // attached to SplitPt in the splice.
620     SplitPt.setHeadBit(true);
621     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
622     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
623     // Delete the unconditional branch that was just created by the split.
624     StartBlock->getTerminator()->eraseFromParent();
625 
626     // Move any debug/pseudo and auxiliary instructions that were in-between the
627     // select group to the newly-created end block.
628     SmallVector<Instruction *, 2> SinkInstrs;
629     auto DIt = SI.getI()->getIterator();
630     auto NIt = ASI.Selects.begin();
631     while (&*DIt != LastSI.getI()) {
632       if (NIt != ASI.Selects.end() && &*DIt == NIt->getI())
633         ++NIt;
634       else
635         SinkInstrs.push_back(&*DIt);
636       DIt++;
637     }
638     auto InsertionPoint = EndBlock->getFirstInsertionPt();
639     for (auto *DI : SinkInstrs)
640       DI->moveBeforePreserving(&*InsertionPoint);
641 
642     // Duplicate implementation for DbgRecords, the non-instruction debug-info
643     // format. Helper lambda for moving DbgRecords to the end block.
644     auto TransferDbgRecords = [&](Instruction &I) {
645       for (auto &DbgRecord :
646            llvm::make_early_inc_range(I.getDbgRecordRange())) {
647         DbgRecord.removeFromParent();
648         EndBlock->insertDbgRecordBefore(&DbgRecord,
649                                         EndBlock->getFirstInsertionPt());
650       }
651     };
652 
653     // Iterate over all instructions in between SI and LastSI, not including
654     // SI itself. These are all the variable assignments that happen "in the
655     // middle" of the select group.
656     auto R = make_range(std::next(SI.getI()->getIterator()),
657                         std::next(LastSI.getI()->getIterator()));
658     llvm::for_each(R, TransferDbgRecords);
659 
660     // These are the new basic blocks for the conditional branch.
661     // At least one will become an actual new basic block.
662     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
663     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
664     // Checks if select-like instruction would materialise on the given branch
665     auto HasSelectLike = [](SelectGroup &SG, bool IsTrue) {
666       for (auto &SL : SG.Selects) {
667         if ((IsTrue ? SL.getTrueValue() : SL.getFalseValue()) == nullptr)
668           return true;
669       }
670       return false;
671     };
672     if (!TrueSlicesInterleaved.empty() || HasSelectLike(ASI, true)) {
673       TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
674                                      EndBlock->getParent(), EndBlock);
675       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
676       TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
677       for (Instruction *TrueInst : TrueSlicesInterleaved)
678         TrueInst->moveBefore(TrueBranch);
679     }
680     if (!FalseSlicesInterleaved.empty() || HasSelectLike(ASI, false)) {
681       FalseBlock =
682           BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
683                              EndBlock->getParent(), EndBlock);
684       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
685       FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
686       for (Instruction *FalseInst : FalseSlicesInterleaved)
687         FalseInst->moveBefore(FalseBranch);
688     }
689     // If there was nothing to sink, then arbitrarily choose the 'false' side
690     // for a new input value to the PHI.
691     if (TrueBlock == FalseBlock) {
692       assert(TrueBlock == nullptr &&
693              "Unexpected basic block transform while optimizing select");
694 
695       FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
696                                       EndBlock->getParent(), EndBlock);
697       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
698       FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
699     }
700 
701     // Insert the real conditional branch based on the original condition.
702     // If we did not create a new block for one of the 'true' or 'false' paths
703     // of the condition, it means that side of the branch goes to the end block
704     // directly and the path originates from the start block from the point of
705     // view of the new PHI.
706     BasicBlock *TT, *FT;
707     if (TrueBlock == nullptr) {
708       TT = EndBlock;
709       FT = FalseBlock;
710       TrueBlock = StartBlock;
711     } else if (FalseBlock == nullptr) {
712       TT = TrueBlock;
713       FT = EndBlock;
714       FalseBlock = StartBlock;
715     } else {
716       TT = TrueBlock;
717       FT = FalseBlock;
718     }
719     IRBuilder<> IB(SI.getI());
720     auto *CondFr =
721         IB.CreateFreeze(ASI.Condition, ASI.Condition->getName() + ".frozen");
722 
723     SmallDenseMap<Instruction *, std::pair<Value *, Value *>, 2> INS;
724 
725     // Use reverse iterator because later select may use the value of the
726     // earlier select, and we need to propagate value through earlier select
727     // to get the PHI operand.
728     InsertionPoint = EndBlock->begin();
729     for (SelectLike &SI : ASI.Selects) {
730       // The select itself is replaced with a PHI Node.
731       PHINode *PN = PHINode::Create(SI.getType(), 2, "");
732       PN->insertBefore(InsertionPoint);
733       PN->takeName(SI.getI());
734       // Current instruction might be a condition of some other group, so we
735       // need to replace it there to avoid dangling pointer
736       if (PN->getType()->isIntegerTy(1)) {
737         for (auto &SG : ProfSIGroups) {
738           if (SG.Condition == SI.getI())
739             SG.Condition = PN;
740         }
741       }
742       SI.getI()->replaceAllUsesWith(PN);
743       auto *TV = getTrueOrFalseValue(SI, true, INS, TrueBlock);
744       auto *FV = getTrueOrFalseValue(SI, false, INS, FalseBlock);
745       INS[PN] = {TV, FV};
746       PN->addIncoming(TV, TrueBlock);
747       PN->addIncoming(FV, FalseBlock);
748       PN->setDebugLoc(SI.getI()->getDebugLoc());
749       ++NumSelectsConverted;
750     }
751     IB.CreateCondBr(CondFr, TT, FT, SI.getI());
752 
753     // Remove the old select instructions, now that they are not longer used.
754     for (SelectLike &SI : ASI.Selects)
755       SI.getI()->eraseFromParent();
756   }
757 }
758 
759 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
760                                              SelectGroups &SIGroups) {
761   // Represents something that can be considered as select instruction.
762   // Auxiliary instruction are instructions that depends on a condition and have
763   // zero or some constant value on True/False branch, such as:
764   // * ZExt(1bit)
765   // * SExt(1bit)
766   // * Not(1bit)
767   // * A(L)Shr(Val), ValBitSize - 1, where there is a condition like `Val <= 0`
768   // earlier in the BB. For conditions that check the sign of the Val compiler
769   // may generate shifts instead of ZExt/SExt.
770   struct SelectLikeInfo {
771     Value *Cond;
772     bool IsAuxiliary;
773     bool IsInverted;
774     unsigned ConditionIdx;
775   };
776 
777   DenseMap<Value *, SelectLikeInfo> SelectInfo;
778   // Keeps visited comparisons to help identify AShr/LShr variants of auxiliary
779   // instructions.
780   SmallSetVector<CmpInst *, 4> SeenCmp;
781 
782   // Check if the instruction is SelectLike or might be part of SelectLike
783   // expression, put information into SelectInfo and return the iterator to the
784   // inserted position.
785   auto ProcessSelectInfo = [&SelectInfo, &SeenCmp](Instruction *I) {
786     if (auto *Cmp = dyn_cast<CmpInst>(I)) {
787       SeenCmp.insert(Cmp);
788       return SelectInfo.end();
789     }
790 
791     Value *Cond;
792     if (match(I, m_OneUse(m_ZExtOrSExt(m_Value(Cond)))) &&
793         Cond->getType()->isIntegerTy(1)) {
794       bool Inverted = match(Cond, m_Not(m_Value(Cond)));
795       return SelectInfo.insert({I, {Cond, true, Inverted, 0}}).first;
796     }
797 
798     if (match(I, m_Not(m_Value(Cond)))) {
799       return SelectInfo.insert({I, {Cond, true, true, 0}}).first;
800     }
801 
802     // Select instruction are what we are usually looking for.
803     if (match(I, m_Select(m_Value(Cond), m_Value(), m_Value()))) {
804       bool Inverted = match(Cond, m_Not(m_Value(Cond)));
805       return SelectInfo.insert({I, {Cond, false, Inverted, 0}}).first;
806     }
807     Value *Val;
808     ConstantInt *Shift;
809     if (match(I, m_Shr(m_Value(Val), m_ConstantInt(Shift))) &&
810         I->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1) {
811       for (auto *CmpI : SeenCmp) {
812         auto Pred = CmpI->getPredicate();
813         if (Val != CmpI->getOperand(0))
814           continue;
815         if ((Pred == CmpInst::ICMP_SGT &&
816              match(CmpI->getOperand(1), m_ConstantInt<-1>())) ||
817             (Pred == CmpInst::ICMP_SGE &&
818              match(CmpI->getOperand(1), m_Zero())) ||
819             (Pred == CmpInst::ICMP_SLT &&
820              match(CmpI->getOperand(1), m_Zero())) ||
821             (Pred == CmpInst::ICMP_SLE &&
822              match(CmpI->getOperand(1), m_ConstantInt<-1>()))) {
823           bool Inverted =
824               Pred == CmpInst::ICMP_SGT || Pred == CmpInst::ICMP_SGE;
825           return SelectInfo.insert({I, {CmpI, true, Inverted, 0}}).first;
826         }
827       }
828       return SelectInfo.end();
829     }
830 
831     // An BinOp(Aux(X), Y) can also be treated like a select, with condition X
832     // and values Y|1 and Y.
833     // `Aux` can be either `ZExt(1bit)`, `SExt(1bit)` or `XShr(Val), ValBitSize
834     // - 1` `BinOp` can be Add, Sub, Or
835     Value *X;
836     auto MatchZExtOrSExtPattern =
837         m_c_BinOp(m_Value(), m_OneUse(m_ZExtOrSExt(m_Value(X))));
838     auto MatchShiftPattern =
839         m_c_BinOp(m_Value(), m_OneUse(m_Shr(m_Value(X), m_ConstantInt(Shift))));
840 
841     // This check is unnecessary, but it prevents costly access to the
842     // SelectInfo map.
843     if ((match(I, MatchZExtOrSExtPattern) && X->getType()->isIntegerTy(1)) ||
844         (match(I, MatchShiftPattern) &&
845          X->getType()->getIntegerBitWidth() == Shift->getZExtValue() + 1)) {
846       if (I->getOpcode() != Instruction::Add &&
847           I->getOpcode() != Instruction::Sub &&
848           I->getOpcode() != Instruction::Or)
849         return SelectInfo.end();
850 
851       if (I->getOpcode() == Instruction::Or && I->getType()->isIntegerTy(1))
852         return SelectInfo.end();
853 
854       // Iterate through operands and find dependant on recognised sign
855       // extending auxiliary select-like instructions. The operand index does
856       // not matter for Add and Or. However, for Sub, we can only safely
857       // transform when the operand is second.
858       unsigned Idx = I->getOpcode() == Instruction::Sub ? 1 : 0;
859       for (; Idx < 2; Idx++) {
860         auto *Op = I->getOperand(Idx);
861         auto It = SelectInfo.find(Op);
862         if (It != SelectInfo.end() && It->second.IsAuxiliary) {
863           Cond = It->second.Cond;
864           bool Inverted = It->second.IsInverted;
865           return SelectInfo.insert({I, {Cond, false, Inverted, Idx}}).first;
866         }
867       }
868     }
869     return SelectInfo.end();
870   };
871 
872   bool AlreadyProcessed = false;
873   BasicBlock::iterator BBIt = BB.begin();
874   DenseMap<Value *, SelectLikeInfo>::iterator It;
875   while (BBIt != BB.end()) {
876     Instruction *I = &*BBIt++;
877     if (I->isDebugOrPseudoInst())
878       continue;
879 
880     if (!AlreadyProcessed)
881       It = ProcessSelectInfo(I);
882     else
883       AlreadyProcessed = false;
884 
885     if (It == SelectInfo.end() || It->second.IsAuxiliary)
886       continue;
887 
888     if (!TTI->shouldTreatInstructionLikeSelect(I))
889       continue;
890 
891     Value *Cond = It->second.Cond;
892     // Vector conditions are not supported.
893     if (!Cond->getType()->isIntegerTy(1))
894       continue;
895 
896     SelectGroup SIGroup = {Cond, {}};
897     SIGroup.Selects.emplace_back(I, It->second.IsInverted,
898                                  It->second.ConditionIdx);
899 
900     // If the select type is not supported, no point optimizing it.
901     // Instruction selection will take care of it.
902     if (!isSelectKindSupported(SIGroup.Selects.front()))
903       continue;
904 
905     while (BBIt != BB.end()) {
906       Instruction *NI = &*BBIt;
907       // Debug/pseudo instructions should be skipped and not prevent the
908       // formation of a select group.
909       if (NI->isDebugOrPseudoInst()) {
910         ++BBIt;
911         continue;
912       }
913 
914       It = ProcessSelectInfo(NI);
915       if (It == SelectInfo.end()) {
916         AlreadyProcessed = true;
917         break;
918       }
919 
920       // Auxiliary with same condition
921       auto [CurrCond, IsAux, IsRev, CondIdx] = It->second;
922       if (Cond != CurrCond) {
923         AlreadyProcessed = true;
924         break;
925       }
926 
927       if (!IsAux)
928         SIGroup.Selects.emplace_back(NI, IsRev, CondIdx);
929       ++BBIt;
930     }
931     LLVM_DEBUG({
932       dbgs() << "New Select group (" << SIGroup.Selects.size() << ") with\n";
933       for (auto &SI : SIGroup.Selects)
934         dbgs() << "  " << *SI.getI() << "\n";
935     });
936 
937     SIGroups.push_back(SIGroup);
938   }
939 }
940 
941 void SelectOptimizeImpl::findProfitableSIGroupsBase(
942     SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
943   for (SelectGroup &ASI : SIGroups) {
944     ++NumSelectOptAnalyzed;
945     if (isConvertToBranchProfitableBase(ASI))
946       ProfSIGroups.push_back(ASI);
947   }
948 }
949 
950 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
951                                DiagnosticInfoOptimizationBase &Rem) {
952   LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
953   ORE->emit(Rem);
954 }
955 
956 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
957     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
958   NumSelectOptAnalyzed += SIGroups.size();
959   // For each select group in an inner-most loop,
960   // a branch is more preferable than a select/conditional-move if:
961   // i) conversion to branches for all the select groups of the loop satisfies
962   //    loop-level heuristics including reducing the loop's critical path by
963   //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
964   // ii) the total cost of the select group is cheaper with a branch compared
965   //     to its predicated version. The cost is in terms of latency and the cost
966   //     of a select group is the cost of its most expensive select instruction
967   //     (assuming infinite resources and thus fully leveraging available ILP).
968 
969   DenseMap<const Instruction *, CostInfo> InstCostMap;
970   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
971                           {Scaled64::getZero(), Scaled64::getZero()}};
972   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
973       !checkLoopHeuristics(L, LoopCost)) {
974     return;
975   }
976 
977   for (SelectGroup &ASI : SIGroups) {
978     // Assuming infinite resources, the cost of a group of instructions is the
979     // cost of the most expensive instruction of the group.
980     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
981     for (SelectLike &SI : ASI.Selects) {
982       SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
983       BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
984     }
985     if (BranchCost < SelectCost) {
986       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti",
987                             ASI.Selects.front().getI());
988       OR << "Profitable to convert to branch (loop analysis). BranchCost="
989          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
990          << ". ";
991       EmitAndPrintRemark(ORE, OR);
992       ++NumSelectConvertedLoop;
993       ProfSIGroups.push_back(ASI);
994     } else {
995       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
996                                       ASI.Selects.front().getI());
997       ORmiss << "Select is more profitable (loop analysis). BranchCost="
998              << BranchCost.toString()
999              << ", SelectCost=" << SelectCost.toString() << ". ";
1000       EmitAndPrintRemark(ORE, ORmiss);
1001     }
1002   }
1003 }
1004 
1005 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
1006     const SelectGroup &ASI) {
1007   const SelectLike &SI = ASI.Selects.front();
1008   LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
1009                     << "\n");
1010   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
1011   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
1012 
1013   // Skip cold basic blocks. Better to optimize for size for cold blocks.
1014   if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
1015     ++NumSelectColdBB;
1016     ORmiss << "Not converted to branch because of cold basic block. ";
1017     EmitAndPrintRemark(ORE, ORmiss);
1018     return false;
1019   }
1020 
1021   // If unpredictable, branch form is less profitable.
1022   if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
1023     ++NumSelectUnPred;
1024     ORmiss << "Not converted to branch because of unpredictable branch. ";
1025     EmitAndPrintRemark(ORE, ORmiss);
1026     return false;
1027   }
1028 
1029   // If highly predictable, branch form is more profitable, unless a
1030   // predictable select is inexpensive in the target architecture.
1031   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
1032     ++NumSelectConvertedHighPred;
1033     OR << "Converted to branch because of highly predictable branch. ";
1034     EmitAndPrintRemark(ORE, OR);
1035     return true;
1036   }
1037 
1038   // Look for expensive instructions in the cold operand's (if any) dependence
1039   // slice of any of the selects in the group.
1040   if (hasExpensiveColdOperand(ASI)) {
1041     ++NumSelectConvertedExpColdOperand;
1042     OR << "Converted to branch because of expensive cold operand.";
1043     EmitAndPrintRemark(ORE, OR);
1044     return true;
1045   }
1046 
1047   // If latch has a select group with several elements, it is usually profitable
1048   // to convert it to branches. We let `optimizeSelectsInnerLoops` decide if
1049   // conversion is profitable for innermost loops.
1050   auto *BB = SI.getI()->getParent();
1051   auto *L = LI->getLoopFor(BB);
1052   if (L && !L->isInnermost() && L->getLoopLatch() == BB &&
1053       ASI.Selects.size() >= 3) {
1054     OR << "Converted to branch because select group in the latch block is big.";
1055     EmitAndPrintRemark(ORE, OR);
1056     return true;
1057   }
1058 
1059   ORmiss << "Not profitable to convert to branch (base heuristic).";
1060   EmitAndPrintRemark(ORE, ORmiss);
1061   return false;
1062 }
1063 
1064 static InstructionCost divideNearest(InstructionCost Numerator,
1065                                      uint64_t Denominator) {
1066   return (Numerator + (Denominator / 2)) / Denominator;
1067 }
1068 
1069 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
1070                                  uint64_t &TrueVal, uint64_t &FalseVal) {
1071   if (isa<SelectInst>(SI.getI()))
1072     return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
1073   return false;
1074 }
1075 
1076 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
1077   bool ColdOperand = false;
1078   uint64_t TrueWeight, FalseWeight, TotalWeight;
1079   if (extractBranchWeights(ASI.Selects.front(), TrueWeight, FalseWeight)) {
1080     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
1081     TotalWeight = TrueWeight + FalseWeight;
1082     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
1083     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
1084   } else if (PSI->hasProfileSummary()) {
1085     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
1086                                     ASI.Selects.front().getI());
1087     ORmiss << "Profile data available but missing branch-weights metadata for "
1088               "select instruction. ";
1089     EmitAndPrintRemark(ORE, ORmiss);
1090   }
1091   if (!ColdOperand)
1092     return false;
1093   // Check if the cold path's dependence slice is expensive for any of the
1094   // selects of the group.
1095   for (SelectLike SI : ASI.Selects) {
1096     Instruction *ColdI = nullptr;
1097     uint64_t HotWeight;
1098     if (TrueWeight < FalseWeight) {
1099       ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
1100       HotWeight = FalseWeight;
1101     } else {
1102       ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
1103       HotWeight = TrueWeight;
1104     }
1105     if (ColdI) {
1106       std::stack<Instruction *> ColdSlice;
1107       getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
1108       InstructionCost SliceCost = 0;
1109       while (!ColdSlice.empty()) {
1110         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
1111                                              TargetTransformInfo::TCK_Latency);
1112         ColdSlice.pop();
1113       }
1114       // The colder the cold value operand of the select is the more expensive
1115       // the cmov becomes for computing the cold value operand every time. Thus,
1116       // the colder the cold operand is the more its cost counts.
1117       // Get nearest integer cost adjusted for coldness.
1118       InstructionCost AdjSliceCost =
1119           divideNearest(SliceCost * HotWeight, TotalWeight);
1120       if (AdjSliceCost >=
1121           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
1122         return true;
1123     }
1124   }
1125   return false;
1126 }
1127 
1128 // Check if it is safe to move LoadI next to the SI.
1129 // Conservatively assume it is safe only if there is no instruction
1130 // modifying memory in-between the load and the select instruction.
1131 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
1132   // Assume loads from different basic blocks are unsafe to move.
1133   if (LoadI->getParent() != SI->getParent())
1134     return false;
1135   auto It = LoadI->getIterator();
1136   while (&*It != SI) {
1137     if (It->mayWriteToMemory())
1138       return false;
1139     It++;
1140   }
1141   return true;
1142 }
1143 
1144 // For a given source instruction, collect its backwards dependence slice
1145 // consisting of instructions exclusively computed for the purpose of producing
1146 // the operands of the source instruction. As an approximation
1147 // (sufficiently-accurate in practice), we populate this set with the
1148 // instructions of the backwards dependence slice that only have one-use and
1149 // form an one-use chain that leads to the source instruction.
1150 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
1151                                                std::stack<Instruction *> &Slice,
1152                                                Instruction *SI,
1153                                                bool ForSinking) {
1154   SmallPtrSet<Instruction *, 2> Visited;
1155   std::queue<Instruction *> Worklist;
1156   Worklist.push(I);
1157   while (!Worklist.empty()) {
1158     Instruction *II = Worklist.front();
1159     Worklist.pop();
1160 
1161     // Avoid cycles.
1162     if (!Visited.insert(II).second)
1163       continue;
1164 
1165     if (!II->hasOneUse())
1166       continue;
1167 
1168     // Cannot soundly sink instructions with side-effects.
1169     // Terminator or phi instructions cannot be sunk.
1170     // Avoid sinking other select instructions (should be handled separetely).
1171     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1172                        isa<SelectInst>(II) || isa<PHINode>(II)))
1173       continue;
1174 
1175     // Avoid sinking loads in order not to skip state-modifying instructions,
1176     // that may alias with the loaded address.
1177     // Only allow sinking of loads within the same basic block that are
1178     // conservatively proven to be safe.
1179     if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1180       continue;
1181 
1182     // Avoid considering instructions with less frequency than the source
1183     // instruction (i.e., avoid colder code regions of the dependence slice).
1184     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1185       continue;
1186 
1187     // Eligible one-use instruction added to the dependence slice.
1188     Slice.push(II);
1189 
1190     // Explore all the operands of the current instruction to expand the slice.
1191     for (Value *Op : II->operand_values())
1192       if (auto *OpI = dyn_cast<Instruction>(Op))
1193         Worklist.push(OpI);
1194   }
1195 }
1196 
1197 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1198   uint64_t TrueWeight, FalseWeight;
1199   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1200     uint64_t Max = std::max(TrueWeight, FalseWeight);
1201     uint64_t Sum = TrueWeight + FalseWeight;
1202     if (Sum != 0) {
1203       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1204       if (Probability > TTI->getPredictableBranchThreshold())
1205         return true;
1206     }
1207   }
1208   return false;
1209 }
1210 
1211 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1212                                              const CostInfo LoopCost[2]) {
1213   // Loop-level checks to determine if a non-predicated version (with branches)
1214   // of the loop is more profitable than its predicated version.
1215 
1216   if (DisableLoopLevelHeuristics)
1217     return true;
1218 
1219   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1220                                    L->getHeader()->getFirstNonPHI());
1221 
1222   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1223       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1224     ORmissL << "No select conversion in the loop due to no reduction of loop's "
1225                "critical path. ";
1226     EmitAndPrintRemark(ORE, ORmissL);
1227     return false;
1228   }
1229 
1230   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1231                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1232 
1233   // Profitably converting to branches need to reduce the loop's critical path
1234   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1235   // relative gain of 12.5%).
1236   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1237       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1238     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1239     ORmissL << "No select conversion in the loop due to small reduction of "
1240                "loop's critical path. Gain="
1241             << Gain[1].toString()
1242             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1243     EmitAndPrintRemark(ORE, ORmissL);
1244     return false;
1245   }
1246 
1247   // If the loop's critical path involves loop-carried dependences, the gradient
1248   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1249   // This check ensures that the latency reduction for the loop's critical path
1250   // keeps decreasing with sufficient rate beyond the two analyzed loop
1251   // iterations.
1252   if (Gain[1] > Gain[0]) {
1253     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1254                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
1255     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1256       ORmissL << "No select conversion in the loop due to small gradient gain. "
1257                  "GradientGain="
1258               << GradientGain.toString() << "%. ";
1259       EmitAndPrintRemark(ORE, ORmissL);
1260       return false;
1261     }
1262   }
1263   // If the gain decreases it is not profitable to convert.
1264   else if (Gain[1] < Gain[0]) {
1265     ORmissL
1266         << "No select conversion in the loop due to negative gradient gain. ";
1267     EmitAndPrintRemark(ORE, ORmissL);
1268     return false;
1269   }
1270 
1271   // Non-predicated version of the loop is more profitable than its
1272   // predicated version.
1273   return true;
1274 }
1275 
1276 // Computes instruction and loop-critical-path costs for both the predicated
1277 // and non-predicated version of the given loop.
1278 // Returns false if unable to compute these costs due to invalid cost of loop
1279 // instruction(s).
1280 bool SelectOptimizeImpl::computeLoopCosts(
1281     const Loop *L, const SelectGroups &SIGroups,
1282     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1283   LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1284                     << L->getHeader()->getName() << "\n");
1285   const auto SImap = getSImap(SIGroups);
1286   const auto SGmap = getSGmap(SIGroups);
1287   // Compute instruction and loop-critical-path costs across two iterations for
1288   // both predicated and non-predicated version.
1289   const unsigned Iterations = 2;
1290   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1291     // Cost of the loop's critical path.
1292     CostInfo &MaxCost = LoopCost[Iter];
1293     for (BasicBlock *BB : L->getBlocks()) {
1294       for (const Instruction &I : *BB) {
1295         if (I.isDebugOrPseudoInst())
1296           continue;
1297         // Compute the predicated and non-predicated cost of the instruction.
1298         Scaled64 IPredCost = Scaled64::getZero(),
1299                  INonPredCost = Scaled64::getZero();
1300 
1301         // Assume infinite resources that allow to fully exploit the available
1302         // instruction-level parallelism.
1303         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1304         for (const Use &U : I.operands()) {
1305           auto UI = dyn_cast<Instruction>(U.get());
1306           if (!UI)
1307             continue;
1308           if (InstCostMap.count(UI)) {
1309             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
1310             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
1311           }
1312         }
1313         auto ILatency = computeInstCost(&I);
1314         if (!ILatency) {
1315           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1316           ORmissL << "Invalid instruction cost preventing analysis and "
1317                      "optimization of the inner-most loop containing this "
1318                      "instruction. ";
1319           EmitAndPrintRemark(ORE, ORmissL);
1320           return false;
1321         }
1322         IPredCost += Scaled64::get(*ILatency);
1323         INonPredCost += Scaled64::get(*ILatency);
1324 
1325         // For a select that can be converted to branch,
1326         // compute its cost as a branch (non-predicated cost).
1327         //
1328         // BranchCost = PredictedPathCost + MispredictCost
1329         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1330         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1331         if (SImap.contains(&I)) {
1332           auto SI = SImap.at(&I);
1333           const auto *SG = SGmap.at(&I);
1334           Scaled64 TrueOpCost = SI.getOpCostOnBranch(true, InstCostMap, TTI);
1335           Scaled64 FalseOpCost = SI.getOpCostOnBranch(false, InstCostMap, TTI);
1336           Scaled64 PredictedPathCost =
1337               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1338 
1339           Scaled64 CondCost = Scaled64::getZero();
1340           if (auto *CI = dyn_cast<Instruction>(SG->Condition))
1341             if (InstCostMap.count(CI))
1342               CondCost = InstCostMap[CI].NonPredCost;
1343           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1344 
1345           INonPredCost = PredictedPathCost + MispredictCost;
1346         }
1347         LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1348                           << INonPredCost << " for " << I << "\n");
1349 
1350         InstCostMap[&I] = {IPredCost, INonPredCost};
1351         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1352         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1353       }
1354     }
1355     LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1356                       << " MaxCost = " << MaxCost.PredCost << " "
1357                       << MaxCost.NonPredCost << "\n");
1358   }
1359   return true;
1360 }
1361 
1362 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
1363 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1364   SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1365   for (const SelectGroup &ASI : SIGroups)
1366     for (const SelectLike &SI : ASI.Selects)
1367       SImap.try_emplace(SI.getI(), SI);
1368   return SImap;
1369 }
1370 
1371 SmallDenseMap<const Instruction *, const SelectOptimizeImpl::SelectGroup *, 2>
1372 SelectOptimizeImpl::getSGmap(const SelectGroups &SIGroups) {
1373   SmallDenseMap<const Instruction *, const SelectGroup *, 2> SImap;
1374   for (const SelectGroup &ASI : SIGroups)
1375     for (const SelectLike &SI : ASI.Selects)
1376       SImap.try_emplace(SI.getI(), &ASI);
1377   return SImap;
1378 }
1379 
1380 std::optional<uint64_t>
1381 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1382   InstructionCost ICost =
1383       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1384   if (auto OC = ICost.getValue())
1385     return std::optional<uint64_t>(*OC);
1386   return std::nullopt;
1387 }
1388 
1389 ScaledNumber<uint64_t>
1390 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1391                                          const Scaled64 CondCost) {
1392   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1393 
1394   // Account for the default misprediction rate when using a branch
1395   // (conservatively set to 25% by default).
1396   uint64_t MispredictRate = MispredictDefaultRate;
1397   // If the select condition is obviously predictable, then the misprediction
1398   // rate is zero.
1399   if (isSelectHighlyPredictable(SI))
1400     MispredictRate = 0;
1401 
1402   // CondCost is included to account for cases where the computation of the
1403   // condition is part of a long dependence chain (potentially loop-carried)
1404   // that would delay detection of a misprediction and increase its cost.
1405   Scaled64 MispredictCost =
1406       std::max(Scaled64::get(MispredictPenalty), CondCost) *
1407       Scaled64::get(MispredictRate);
1408   MispredictCost /= Scaled64::get(100);
1409 
1410   return MispredictCost;
1411 }
1412 
1413 // Returns the cost of a branch when the prediction is correct.
1414 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1415 ScaledNumber<uint64_t>
1416 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1417                                          const SelectLike SI) {
1418   Scaled64 PredPathCost;
1419   uint64_t TrueWeight, FalseWeight;
1420   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1421     uint64_t SumWeight = TrueWeight + FalseWeight;
1422     if (SumWeight != 0) {
1423       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1424                      FalseCost * Scaled64::get(FalseWeight);
1425       PredPathCost /= Scaled64::get(SumWeight);
1426       return PredPathCost;
1427     }
1428   }
1429   // Without branch weight metadata, we assume 75% for the one path and 25% for
1430   // the other, and pick the result with the biggest cost.
1431   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1432                           FalseCost * Scaled64::get(3) + TrueCost);
1433   PredPathCost /= Scaled64::get(4);
1434   return PredPathCost;
1435 }
1436 
1437 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1438   TargetLowering::SelectSupportKind SelectKind;
1439   if (SI.getType()->isVectorTy())
1440     SelectKind = TargetLowering::ScalarCondVectorVal;
1441   else
1442     SelectKind = TargetLowering::ScalarValSelect;
1443   return TLI->isSelectSupported(SelectKind);
1444 }
1445