xref: /llvm-project/llvm/lib/CodeGen/SelectOptimize.cpp (revision 186dc9a4dfd8ab667c601c76b741e0e4551ad138)
1 //===--- SelectOptimize.cpp - Convert select to branches if profitable ---===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass converts selects to conditional jumps when profitable.
10 //
11 //===----------------------------------------------------------------------===//
12 
13 #include "llvm/CodeGen/SelectOptimize.h"
14 #include "llvm/ADT/SmallVector.h"
15 #include "llvm/ADT/Statistic.h"
16 #include "llvm/Analysis/BlockFrequencyInfo.h"
17 #include "llvm/Analysis/BranchProbabilityInfo.h"
18 #include "llvm/Analysis/LoopInfo.h"
19 #include "llvm/Analysis/OptimizationRemarkEmitter.h"
20 #include "llvm/Analysis/ProfileSummaryInfo.h"
21 #include "llvm/Analysis/TargetTransformInfo.h"
22 #include "llvm/CodeGen/Passes.h"
23 #include "llvm/CodeGen/TargetLowering.h"
24 #include "llvm/CodeGen/TargetPassConfig.h"
25 #include "llvm/CodeGen/TargetSchedule.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/BasicBlock.h"
28 #include "llvm/IR/Dominators.h"
29 #include "llvm/IR/Function.h"
30 #include "llvm/IR/IRBuilder.h"
31 #include "llvm/IR/Instruction.h"
32 #include "llvm/IR/PatternMatch.h"
33 #include "llvm/IR/ProfDataUtils.h"
34 #include "llvm/InitializePasses.h"
35 #include "llvm/Pass.h"
36 #include "llvm/Support/ScaledNumber.h"
37 #include "llvm/Target/TargetMachine.h"
38 #include "llvm/Transforms/Utils/SizeOpts.h"
39 #include <algorithm>
40 #include <memory>
41 #include <queue>
42 #include <stack>
43 
44 using namespace llvm;
45 using namespace llvm::PatternMatch;
46 
47 #define DEBUG_TYPE "select-optimize"
48 
49 STATISTIC(NumSelectOptAnalyzed,
50           "Number of select groups considered for conversion to branch");
51 STATISTIC(NumSelectConvertedExpColdOperand,
52           "Number of select groups converted due to expensive cold operand");
53 STATISTIC(NumSelectConvertedHighPred,
54           "Number of select groups converted due to high-predictability");
55 STATISTIC(NumSelectUnPred,
56           "Number of select groups not converted due to unpredictability");
57 STATISTIC(NumSelectColdBB,
58           "Number of select groups not converted due to cold basic block");
59 STATISTIC(NumSelectConvertedLoop,
60           "Number of select groups converted due to loop-level analysis");
61 STATISTIC(NumSelectsConverted, "Number of selects converted");
62 
63 static cl::opt<unsigned> ColdOperandThreshold(
64     "cold-operand-threshold",
65     cl::desc("Maximum frequency of path for an operand to be considered cold."),
66     cl::init(20), cl::Hidden);
67 
68 static cl::opt<unsigned> ColdOperandMaxCostMultiplier(
69     "cold-operand-max-cost-multiplier",
70     cl::desc("Maximum cost multiplier of TCC_expensive for the dependence "
71              "slice of a cold operand to be considered inexpensive."),
72     cl::init(1), cl::Hidden);
73 
74 static cl::opt<unsigned>
75     GainGradientThreshold("select-opti-loop-gradient-gain-threshold",
76                           cl::desc("Gradient gain threshold (%)."),
77                           cl::init(25), cl::Hidden);
78 
79 static cl::opt<unsigned>
80     GainCycleThreshold("select-opti-loop-cycle-gain-threshold",
81                        cl::desc("Minimum gain per loop (in cycles) threshold."),
82                        cl::init(4), cl::Hidden);
83 
84 static cl::opt<unsigned> GainRelativeThreshold(
85     "select-opti-loop-relative-gain-threshold",
86     cl::desc(
87         "Minimum relative gain per loop threshold (1/X). Defaults to 12.5%"),
88     cl::init(8), cl::Hidden);
89 
90 static cl::opt<unsigned> MispredictDefaultRate(
91     "mispredict-default-rate", cl::Hidden, cl::init(25),
92     cl::desc("Default mispredict rate (initialized to 25%)."));
93 
94 static cl::opt<bool>
95     DisableLoopLevelHeuristics("disable-loop-level-heuristics", cl::Hidden,
96                                cl::init(false),
97                                cl::desc("Disable loop-level heuristics."));
98 
99 namespace {
100 
101 class SelectOptimizeImpl {
102   const TargetMachine *TM = nullptr;
103   const TargetSubtargetInfo *TSI = nullptr;
104   const TargetLowering *TLI = nullptr;
105   const TargetTransformInfo *TTI = nullptr;
106   const LoopInfo *LI = nullptr;
107   BlockFrequencyInfo *BFI;
108   ProfileSummaryInfo *PSI = nullptr;
109   OptimizationRemarkEmitter *ORE = nullptr;
110   TargetSchedModel TSchedModel;
111 
112 public:
113   SelectOptimizeImpl() = default;
114   SelectOptimizeImpl(const TargetMachine *TM) : TM(TM){};
115   PreservedAnalyses run(Function &F, FunctionAnalysisManager &FAM);
116   bool runOnFunction(Function &F, Pass &P);
117 
118   using Scaled64 = ScaledNumber<uint64_t>;
119 
120   struct CostInfo {
121     /// Predicated cost (with selects as conditional moves).
122     Scaled64 PredCost;
123     /// Non-predicated cost (with selects converted to branches).
124     Scaled64 NonPredCost;
125   };
126 
127   /// SelectLike is an abstraction over SelectInst and other operations that can
128   /// act like selects. For example Or(Zext(icmp), X) can be treated like
129   /// select(icmp, X|1, X).
130   class SelectLike {
131     SelectLike(Instruction *I) : I(I) {}
132 
133     /// The select (/or) instruction.
134     Instruction *I;
135     /// Whether this select is inverted, "not(cond), FalseVal, TrueVal", as
136     /// opposed to the original condition.
137     bool Inverted = false;
138 
139   public:
140     /// Match a select or select-like instruction, returning a SelectLike.
141     static SelectLike match(Instruction *I) {
142       // Select instruction are what we are usually looking for.
143       if (isa<SelectInst>(I))
144         return SelectLike(I);
145 
146       // An Or(zext(i1 X), Y) can also be treated like a select, with condition
147       // C and values Y|1 and Y.
148       Value *X;
149       if (PatternMatch::match(
150               I, m_c_Or(m_OneUse(m_ZExt(m_Value(X))), m_Value())) &&
151           X->getType()->isIntegerTy(1))
152         return SelectLike(I);
153 
154       return SelectLike(nullptr);
155     }
156 
157     bool isValid() { return I; }
158     operator bool() { return isValid(); }
159 
160     /// Invert the select by inverting the condition and switching the operands.
161     void setInverted() {
162       assert(!Inverted && "Trying to invert an inverted SelectLike");
163       assert(isa<Instruction>(getCondition()) &&
164              cast<Instruction>(getCondition())->getOpcode() ==
165                  Instruction::Xor);
166       Inverted = true;
167     }
168     bool isInverted() const { return Inverted; }
169 
170     Instruction *getI() { return I; }
171     const Instruction *getI() const { return I; }
172 
173     Type *getType() const { return I->getType(); }
174 
175     Value *getNonInvertedCondition() const {
176       if (auto *Sel = dyn_cast<SelectInst>(I))
177         return Sel->getCondition();
178       // Or(zext) case
179       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
180         Value *X;
181         if (PatternMatch::match(BO->getOperand(0),
182                                 m_OneUse(m_ZExt(m_Value(X)))))
183           return X;
184         if (PatternMatch::match(BO->getOperand(1),
185                                 m_OneUse(m_ZExt(m_Value(X)))))
186           return X;
187       }
188 
189       llvm_unreachable("Unhandled case in getCondition");
190     }
191 
192     /// Return the condition for the SelectLike instruction. For example the
193     /// condition of a select or c in `or(zext(c), x)`
194     Value *getCondition() const {
195       Value *CC = getNonInvertedCondition();
196       // For inverted conditions the CC is checked when created to be a not
197       // (xor) instruction.
198       if (Inverted)
199         return cast<Instruction>(CC)->getOperand(0);
200       return CC;
201     }
202 
203     /// Return the true value for the SelectLike instruction. Note this may not
204     /// exist for all SelectLike instructions. For example, for `or(zext(c), x)`
205     /// the true value would be `or(x,1)`. As this value does not exist, nullptr
206     /// is returned.
207     Value *getTrueValue(bool HonorInverts = true) const {
208       if (Inverted && HonorInverts)
209         return getFalseValue(/*HonorInverts=*/false);
210       if (auto *Sel = dyn_cast<SelectInst>(I))
211         return Sel->getTrueValue();
212       // Or(zext) case - The true value is Or(X), so return nullptr as the value
213       // does not yet exist.
214       if (isa<BinaryOperator>(I))
215         return nullptr;
216 
217       llvm_unreachable("Unhandled case in getTrueValue");
218     }
219 
220     /// Return the false value for the SelectLike instruction. For example the
221     /// getFalseValue of a select or `x` in `or(zext(c), x)` (which is
222     /// `select(c, x|1, x)`)
223     Value *getFalseValue(bool HonorInverts = true) const {
224       if (Inverted && HonorInverts)
225         return getTrueValue(/*HonorInverts=*/false);
226       if (auto *Sel = dyn_cast<SelectInst>(I))
227         return Sel->getFalseValue();
228       // Or(zext) case - return the operand which is not the zext.
229       if (auto *BO = dyn_cast<BinaryOperator>(I)) {
230         Value *X;
231         if (PatternMatch::match(BO->getOperand(0),
232                                 m_OneUse(m_ZExt(m_Value(X)))))
233           return BO->getOperand(1);
234         if (PatternMatch::match(BO->getOperand(1),
235                                 m_OneUse(m_ZExt(m_Value(X)))))
236           return BO->getOperand(0);
237       }
238 
239       llvm_unreachable("Unhandled case in getFalseValue");
240     }
241 
242     /// Return the NonPredCost cost of the true op, given the costs in
243     /// InstCostMap. This may need to be generated for select-like instructions.
244     Scaled64 getTrueOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
245                            const TargetTransformInfo *TTI) {
246       if (isa<SelectInst>(I))
247         if (auto *I = dyn_cast<Instruction>(getTrueValue())) {
248           auto It = InstCostMap.find(I);
249           return It != InstCostMap.end() ? It->second.NonPredCost
250                                          : Scaled64::getZero();
251         }
252 
253       // Or case - add the cost of an extra Or to the cost of the False case.
254       if (isa<BinaryOperator>(I))
255         if (auto I = dyn_cast<Instruction>(getFalseValue())) {
256           auto It = InstCostMap.find(I);
257           if (It != InstCostMap.end()) {
258             InstructionCost OrCost = TTI->getArithmeticInstrCost(
259                 Instruction::Or, I->getType(), TargetTransformInfo::TCK_Latency,
260                 {TargetTransformInfo::OK_AnyValue,
261                  TargetTransformInfo::OP_None},
262                 {TTI::OK_UniformConstantValue, TTI::OP_PowerOf2});
263             return It->second.NonPredCost + Scaled64::get(*OrCost.getValue());
264           }
265         }
266 
267       return Scaled64::getZero();
268     }
269 
270     /// Return the NonPredCost cost of the false op, given the costs in
271     /// InstCostMap. This may need to be generated for select-like instructions.
272     Scaled64
273     getFalseOpCost(DenseMap<const Instruction *, CostInfo> &InstCostMap,
274                    const TargetTransformInfo *TTI) {
275       if (isa<SelectInst>(I))
276         if (auto *I = dyn_cast<Instruction>(getFalseValue())) {
277           auto It = InstCostMap.find(I);
278           return It != InstCostMap.end() ? It->second.NonPredCost
279                                          : Scaled64::getZero();
280         }
281 
282       // Or case - return the cost of the false case
283       if (isa<BinaryOperator>(I))
284         if (auto I = dyn_cast<Instruction>(getFalseValue()))
285           if (auto It = InstCostMap.find(I); It != InstCostMap.end())
286             return It->second.NonPredCost;
287 
288       return Scaled64::getZero();
289     }
290   };
291 
292 private:
293   // Select groups consist of consecutive select instructions with the same
294   // condition.
295   using SelectGroup = SmallVector<SelectLike, 2>;
296   using SelectGroups = SmallVector<SelectGroup, 2>;
297 
298   // Converts select instructions of a function to conditional jumps when deemed
299   // profitable. Returns true if at least one select was converted.
300   bool optimizeSelects(Function &F);
301 
302   // Heuristics for determining which select instructions can be profitably
303   // conveted to branches. Separate heuristics for selects in inner-most loops
304   // and the rest of code regions (base heuristics for non-inner-most loop
305   // regions).
306   void optimizeSelectsBase(Function &F, SelectGroups &ProfSIGroups);
307   void optimizeSelectsInnerLoops(Function &F, SelectGroups &ProfSIGroups);
308 
309   // Converts to branches the select groups that were deemed
310   // profitable-to-convert.
311   void convertProfitableSIGroups(SelectGroups &ProfSIGroups);
312 
313   // Splits selects of a given basic block into select groups.
314   void collectSelectGroups(BasicBlock &BB, SelectGroups &SIGroups);
315 
316   // Determines for which select groups it is profitable converting to branches
317   // (base and inner-most-loop heuristics).
318   void findProfitableSIGroupsBase(SelectGroups &SIGroups,
319                                   SelectGroups &ProfSIGroups);
320   void findProfitableSIGroupsInnerLoops(const Loop *L, SelectGroups &SIGroups,
321                                         SelectGroups &ProfSIGroups);
322 
323   // Determines if a select group should be converted to a branch (base
324   // heuristics).
325   bool isConvertToBranchProfitableBase(const SelectGroup &ASI);
326 
327   // Returns true if there are expensive instructions in the cold value
328   // operand's (if any) dependence slice of any of the selects of the given
329   // group.
330   bool hasExpensiveColdOperand(const SelectGroup &ASI);
331 
332   // For a given source instruction, collect its backwards dependence slice
333   // consisting of instructions exclusively computed for producing the operands
334   // of the source instruction.
335   void getExclBackwardsSlice(Instruction *I, std::stack<Instruction *> &Slice,
336                              Instruction *SI, bool ForSinking = false);
337 
338   // Returns true if the condition of the select is highly predictable.
339   bool isSelectHighlyPredictable(const SelectLike SI);
340 
341   // Loop-level checks to determine if a non-predicated version (with branches)
342   // of the given loop is more profitable than its predicated version.
343   bool checkLoopHeuristics(const Loop *L, const CostInfo LoopDepth[2]);
344 
345   // Computes instruction and loop-critical-path costs for both the predicated
346   // and non-predicated version of the given loop.
347   bool computeLoopCosts(const Loop *L, const SelectGroups &SIGroups,
348                         DenseMap<const Instruction *, CostInfo> &InstCostMap,
349                         CostInfo *LoopCost);
350 
351   // Returns a set of all the select instructions in the given select groups.
352   SmallDenseMap<const Instruction *, SelectLike, 2>
353   getSImap(const SelectGroups &SIGroups);
354 
355   // Returns the latency cost of a given instruction.
356   std::optional<uint64_t> computeInstCost(const Instruction *I);
357 
358   // Returns the misprediction cost of a given select when converted to branch.
359   Scaled64 getMispredictionCost(const SelectLike SI, const Scaled64 CondCost);
360 
361   // Returns the cost of a branch when the prediction is correct.
362   Scaled64 getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
363                                 const SelectLike SI);
364 
365   // Returns true if the target architecture supports lowering a given select.
366   bool isSelectKindSupported(const SelectLike SI);
367 };
368 
369 class SelectOptimize : public FunctionPass {
370   SelectOptimizeImpl Impl;
371 
372 public:
373   static char ID;
374 
375   SelectOptimize() : FunctionPass(ID) {
376     initializeSelectOptimizePass(*PassRegistry::getPassRegistry());
377   }
378 
379   bool runOnFunction(Function &F) override {
380     return Impl.runOnFunction(F, *this);
381   }
382 
383   void getAnalysisUsage(AnalysisUsage &AU) const override {
384     AU.addRequired<ProfileSummaryInfoWrapperPass>();
385     AU.addRequired<TargetPassConfig>();
386     AU.addRequired<TargetTransformInfoWrapperPass>();
387     AU.addRequired<LoopInfoWrapperPass>();
388     AU.addRequired<BlockFrequencyInfoWrapperPass>();
389     AU.addRequired<OptimizationRemarkEmitterWrapperPass>();
390   }
391 };
392 
393 } // namespace
394 
395 PreservedAnalyses SelectOptimizePass::run(Function &F,
396                                           FunctionAnalysisManager &FAM) {
397   SelectOptimizeImpl Impl(TM);
398   return Impl.run(F, FAM);
399 }
400 
401 char SelectOptimize::ID = 0;
402 
403 INITIALIZE_PASS_BEGIN(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
404                       false)
405 INITIALIZE_PASS_DEPENDENCY(LoopInfoWrapperPass)
406 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass)
407 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
408 INITIALIZE_PASS_DEPENDENCY(TargetTransformInfoWrapperPass)
409 INITIALIZE_PASS_DEPENDENCY(BlockFrequencyInfoWrapperPass)
410 INITIALIZE_PASS_DEPENDENCY(OptimizationRemarkEmitterWrapperPass)
411 INITIALIZE_PASS_END(SelectOptimize, DEBUG_TYPE, "Optimize selects", false,
412                     false)
413 
414 FunctionPass *llvm::createSelectOptimizePass() { return new SelectOptimize(); }
415 
416 PreservedAnalyses SelectOptimizeImpl::run(Function &F,
417                                           FunctionAnalysisManager &FAM) {
418   TSI = TM->getSubtargetImpl(F);
419   TLI = TSI->getTargetLowering();
420 
421   // If none of the select types are supported then skip this pass.
422   // This is an optimization pass. Legality issues will be handled by
423   // instruction selection.
424   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
425       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
426       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
427     return PreservedAnalyses::all();
428 
429   TTI = &FAM.getResult<TargetIRAnalysis>(F);
430   if (!TTI->enableSelectOptimize())
431     return PreservedAnalyses::all();
432 
433   PSI = FAM.getResult<ModuleAnalysisManagerFunctionProxy>(F)
434             .getCachedResult<ProfileSummaryAnalysis>(*F.getParent());
435   assert(PSI && "This pass requires module analysis pass `profile-summary`!");
436   BFI = &FAM.getResult<BlockFrequencyAnalysis>(F);
437 
438   // When optimizing for size, selects are preferable over branches.
439   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
440     return PreservedAnalyses::all();
441 
442   LI = &FAM.getResult<LoopAnalysis>(F);
443   ORE = &FAM.getResult<OptimizationRemarkEmitterAnalysis>(F);
444   TSchedModel.init(TSI);
445 
446   bool Changed = optimizeSelects(F);
447   return Changed ? PreservedAnalyses::none() : PreservedAnalyses::all();
448 }
449 
450 bool SelectOptimizeImpl::runOnFunction(Function &F, Pass &P) {
451   TM = &P.getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
452   TSI = TM->getSubtargetImpl(F);
453   TLI = TSI->getTargetLowering();
454 
455   // If none of the select types are supported then skip this pass.
456   // This is an optimization pass. Legality issues will be handled by
457   // instruction selection.
458   if (!TLI->isSelectSupported(TargetLowering::ScalarValSelect) &&
459       !TLI->isSelectSupported(TargetLowering::ScalarCondVectorVal) &&
460       !TLI->isSelectSupported(TargetLowering::VectorMaskSelect))
461     return false;
462 
463   TTI = &P.getAnalysis<TargetTransformInfoWrapperPass>().getTTI(F);
464 
465   if (!TTI->enableSelectOptimize())
466     return false;
467 
468   LI = &P.getAnalysis<LoopInfoWrapperPass>().getLoopInfo();
469   BFI = &P.getAnalysis<BlockFrequencyInfoWrapperPass>().getBFI();
470   PSI = &P.getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI();
471   ORE = &P.getAnalysis<OptimizationRemarkEmitterWrapperPass>().getORE();
472   TSchedModel.init(TSI);
473 
474   // When optimizing for size, selects are preferable over branches.
475   if (llvm::shouldOptimizeForSize(&F, PSI, BFI))
476     return false;
477 
478   return optimizeSelects(F);
479 }
480 
481 bool SelectOptimizeImpl::optimizeSelects(Function &F) {
482   // Determine for which select groups it is profitable converting to branches.
483   SelectGroups ProfSIGroups;
484   // Base heuristics apply only to non-loops and outer loops.
485   optimizeSelectsBase(F, ProfSIGroups);
486   // Separate heuristics for inner-most loops.
487   optimizeSelectsInnerLoops(F, ProfSIGroups);
488 
489   // Convert to branches the select groups that were deemed
490   // profitable-to-convert.
491   convertProfitableSIGroups(ProfSIGroups);
492 
493   // Code modified if at least one select group was converted.
494   return !ProfSIGroups.empty();
495 }
496 
497 void SelectOptimizeImpl::optimizeSelectsBase(Function &F,
498                                              SelectGroups &ProfSIGroups) {
499   // Collect all the select groups.
500   SelectGroups SIGroups;
501   for (BasicBlock &BB : F) {
502     // Base heuristics apply only to non-loops and outer loops.
503     Loop *L = LI->getLoopFor(&BB);
504     if (L && L->isInnermost())
505       continue;
506     collectSelectGroups(BB, SIGroups);
507   }
508 
509   // Determine for which select groups it is profitable converting to branches.
510   findProfitableSIGroupsBase(SIGroups, ProfSIGroups);
511 }
512 
513 void SelectOptimizeImpl::optimizeSelectsInnerLoops(Function &F,
514                                                    SelectGroups &ProfSIGroups) {
515   SmallVector<Loop *, 4> Loops(LI->begin(), LI->end());
516   // Need to check size on each iteration as we accumulate child loops.
517   for (unsigned long i = 0; i < Loops.size(); ++i)
518     for (Loop *ChildL : Loops[i]->getSubLoops())
519       Loops.push_back(ChildL);
520 
521   for (Loop *L : Loops) {
522     if (!L->isInnermost())
523       continue;
524 
525     SelectGroups SIGroups;
526     for (BasicBlock *BB : L->getBlocks())
527       collectSelectGroups(*BB, SIGroups);
528 
529     findProfitableSIGroupsInnerLoops(L, SIGroups, ProfSIGroups);
530   }
531 }
532 
533 /// If \p isTrue is true, return the true value of \p SI, otherwise return
534 /// false value of \p SI. If the true/false value of \p SI is defined by any
535 /// select instructions in \p Selects, look through the defining select
536 /// instruction until the true/false value is not defined in \p Selects.
537 static Value *
538 getTrueOrFalseValue(SelectOptimizeImpl::SelectLike SI, bool isTrue,
539                     const SmallPtrSet<const Instruction *, 2> &Selects,
540                     IRBuilder<> &IB) {
541   Value *V = nullptr;
542   for (SelectInst *DefSI = dyn_cast<SelectInst>(SI.getI());
543        DefSI != nullptr && Selects.count(DefSI);
544        DefSI = dyn_cast<SelectInst>(V)) {
545     if (DefSI->getCondition() == SI.getCondition())
546       V = (isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
547     else // Handle inverted SI
548       V = (!isTrue ? DefSI->getTrueValue() : DefSI->getFalseValue());
549   }
550 
551   if (isa<BinaryOperator>(SI.getI())) {
552     assert(SI.getI()->getOpcode() == Instruction::Or &&
553            "Only currently handling Or instructions.");
554     V = SI.getFalseValue();
555     if (isTrue)
556       V = IB.CreateOr(V, ConstantInt::get(V->getType(), 1));
557   }
558 
559   assert(V && "Failed to get select true/false value");
560   return V;
561 }
562 
563 void SelectOptimizeImpl::convertProfitableSIGroups(SelectGroups &ProfSIGroups) {
564   for (SelectGroup &ASI : ProfSIGroups) {
565     // The code transformation here is a modified version of the sinking
566     // transformation in CodeGenPrepare::optimizeSelectInst with a more
567     // aggressive strategy of which instructions to sink.
568     //
569     // TODO: eliminate the redundancy of logic transforming selects to branches
570     // by removing CodeGenPrepare::optimizeSelectInst and optimizing here
571     // selects for all cases (with and without profile information).
572 
573     // Transform a sequence like this:
574     //    start:
575     //       %cmp = cmp uge i32 %a, %b
576     //       %sel = select i1 %cmp, i32 %c, i32 %d
577     //
578     // Into:
579     //    start:
580     //       %cmp = cmp uge i32 %a, %b
581     //       %cmp.frozen = freeze %cmp
582     //       br i1 %cmp.frozen, label %select.true, label %select.false
583     //    select.true:
584     //       br label %select.end
585     //    select.false:
586     //       br label %select.end
587     //    select.end:
588     //       %sel = phi i32 [ %c, %select.true ], [ %d, %select.false ]
589     //
590     // %cmp should be frozen, otherwise it may introduce undefined behavior.
591     // In addition, we may sink instructions that produce %c or %d into the
592     // destination(s) of the new branch.
593     // If the true or false blocks do not contain a sunken instruction, that
594     // block and its branch may be optimized away. In that case, one side of the
595     // first branch will point directly to select.end, and the corresponding PHI
596     // predecessor block will be the start block.
597 
598     // Find all the instructions that can be soundly sunk to the true/false
599     // blocks. These are instructions that are computed solely for producing the
600     // operands of the select instructions in the group and can be sunk without
601     // breaking the semantics of the LLVM IR (e.g., cannot sink instructions
602     // with side effects).
603     SmallVector<std::stack<Instruction *>, 2> TrueSlices, FalseSlices;
604     typedef std::stack<Instruction *>::size_type StackSizeType;
605     StackSizeType maxTrueSliceLen = 0, maxFalseSliceLen = 0;
606     for (SelectLike SI : ASI) {
607       // For each select, compute the sinkable dependence chains of the true and
608       // false operands.
609       if (auto *TI = dyn_cast_or_null<Instruction>(SI.getTrueValue())) {
610         std::stack<Instruction *> TrueSlice;
611         getExclBackwardsSlice(TI, TrueSlice, SI.getI(), true);
612         maxTrueSliceLen = std::max(maxTrueSliceLen, TrueSlice.size());
613         TrueSlices.push_back(TrueSlice);
614       }
615       if (auto *FI = dyn_cast_or_null<Instruction>(SI.getFalseValue())) {
616         if (isa<SelectInst>(SI.getI()) || !FI->hasOneUse()) {
617           std::stack<Instruction *> FalseSlice;
618           getExclBackwardsSlice(FI, FalseSlice, SI.getI(), true);
619           maxFalseSliceLen = std::max(maxFalseSliceLen, FalseSlice.size());
620           FalseSlices.push_back(FalseSlice);
621         }
622       }
623     }
624     // In the case of multiple select instructions in the same group, the order
625     // of non-dependent instructions (instructions of different dependence
626     // slices) in the true/false blocks appears to affect performance.
627     // Interleaving the slices seems to experimentally be the optimal approach.
628     // This interleaving scheduling allows for more ILP (with a natural downside
629     // of increasing a bit register pressure) compared to a simple ordering of
630     // one whole chain after another. One would expect that this ordering would
631     // not matter since the scheduling in the backend of the compiler  would
632     // take care of it, but apparently the scheduler fails to deliver optimal
633     // ILP with a naive ordering here.
634     SmallVector<Instruction *, 2> TrueSlicesInterleaved, FalseSlicesInterleaved;
635     for (StackSizeType IS = 0; IS < maxTrueSliceLen; ++IS) {
636       for (auto &S : TrueSlices) {
637         if (!S.empty()) {
638           TrueSlicesInterleaved.push_back(S.top());
639           S.pop();
640         }
641       }
642     }
643     for (StackSizeType IS = 0; IS < maxFalseSliceLen; ++IS) {
644       for (auto &S : FalseSlices) {
645         if (!S.empty()) {
646           FalseSlicesInterleaved.push_back(S.top());
647           S.pop();
648         }
649       }
650     }
651 
652     // We split the block containing the select(s) into two blocks.
653     SelectLike SI = ASI.front();
654     SelectLike LastSI = ASI.back();
655     BasicBlock *StartBlock = SI.getI()->getParent();
656     BasicBlock::iterator SplitPt = ++(BasicBlock::iterator(LastSI.getI()));
657     // With RemoveDIs turned off, SplitPt can be a dbg.* intrinsic. With
658     // RemoveDIs turned on, SplitPt would instead point to the next
659     // instruction. To match existing dbg.* intrinsic behaviour with RemoveDIs,
660     // tell splitBasicBlock that we want to include any DbgVariableRecords
661     // attached to SplitPt in the splice.
662     SplitPt.setHeadBit(true);
663     BasicBlock *EndBlock = StartBlock->splitBasicBlock(SplitPt, "select.end");
664     BFI->setBlockFreq(EndBlock, BFI->getBlockFreq(StartBlock));
665     // Delete the unconditional branch that was just created by the split.
666     StartBlock->getTerminator()->eraseFromParent();
667 
668     // Move any debug/pseudo instructions and not's that were in-between the
669     // select group to the newly-created end block.
670     SmallVector<Instruction *, 2> SinkInstrs;
671     auto DIt = SI.getI()->getIterator();
672     while (&*DIt != LastSI.getI()) {
673       if (DIt->isDebugOrPseudoInst())
674         SinkInstrs.push_back(&*DIt);
675       if (match(&*DIt, m_Not(m_Specific(SI.getCondition()))))
676         SinkInstrs.push_back(&*DIt);
677       DIt++;
678     }
679     for (auto *DI : SinkInstrs)
680       DI->moveBeforePreserving(&*EndBlock->getFirstInsertionPt());
681 
682     // Duplicate implementation for DbgRecords, the non-instruction debug-info
683     // format. Helper lambda for moving DbgRecords to the end block.
684     auto TransferDbgRecords = [&](Instruction &I) {
685       for (auto &DbgRecord :
686            llvm::make_early_inc_range(I.getDbgRecordRange())) {
687         DbgRecord.removeFromParent();
688         EndBlock->insertDbgRecordBefore(&DbgRecord,
689                                         EndBlock->getFirstInsertionPt());
690       }
691     };
692 
693     // Iterate over all instructions in between SI and LastSI, not including
694     // SI itself. These are all the variable assignments that happen "in the
695     // middle" of the select group.
696     auto R = make_range(std::next(SI.getI()->getIterator()),
697                         std::next(LastSI.getI()->getIterator()));
698     llvm::for_each(R, TransferDbgRecords);
699 
700     // These are the new basic blocks for the conditional branch.
701     // At least one will become an actual new basic block.
702     BasicBlock *TrueBlock = nullptr, *FalseBlock = nullptr;
703     BranchInst *TrueBranch = nullptr, *FalseBranch = nullptr;
704     if (!TrueSlicesInterleaved.empty()) {
705       TrueBlock = BasicBlock::Create(EndBlock->getContext(), "select.true.sink",
706                                      EndBlock->getParent(), EndBlock);
707       TrueBranch = BranchInst::Create(EndBlock, TrueBlock);
708       TrueBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
709       for (Instruction *TrueInst : TrueSlicesInterleaved)
710         TrueInst->moveBefore(TrueBranch);
711     }
712     if (!FalseSlicesInterleaved.empty()) {
713       FalseBlock =
714           BasicBlock::Create(EndBlock->getContext(), "select.false.sink",
715                              EndBlock->getParent(), EndBlock);
716       FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
717       FalseBranch->setDebugLoc(LastSI.getI()->getDebugLoc());
718       for (Instruction *FalseInst : FalseSlicesInterleaved)
719         FalseInst->moveBefore(FalseBranch);
720     }
721     // If there was nothing to sink, then arbitrarily choose the 'false' side
722     // for a new input value to the PHI.
723     if (TrueBlock == FalseBlock) {
724       assert(TrueBlock == nullptr &&
725              "Unexpected basic block transform while optimizing select");
726 
727       FalseBlock = BasicBlock::Create(StartBlock->getContext(), "select.false",
728                                       EndBlock->getParent(), EndBlock);
729       auto *FalseBranch = BranchInst::Create(EndBlock, FalseBlock);
730       FalseBranch->setDebugLoc(SI.getI()->getDebugLoc());
731     }
732 
733     // Insert the real conditional branch based on the original condition.
734     // If we did not create a new block for one of the 'true' or 'false' paths
735     // of the condition, it means that side of the branch goes to the end block
736     // directly and the path originates from the start block from the point of
737     // view of the new PHI.
738     BasicBlock *TT, *FT;
739     if (TrueBlock == nullptr) {
740       TT = EndBlock;
741       FT = FalseBlock;
742       TrueBlock = StartBlock;
743     } else if (FalseBlock == nullptr) {
744       TT = TrueBlock;
745       FT = EndBlock;
746       FalseBlock = StartBlock;
747     } else {
748       TT = TrueBlock;
749       FT = FalseBlock;
750     }
751     IRBuilder<> IB(SI.getI());
752     auto *CondFr = IB.CreateFreeze(SI.getCondition(),
753                                    SI.getCondition()->getName() + ".frozen");
754 
755     SmallPtrSet<const Instruction *, 2> INS;
756     for (auto SI : ASI)
757       INS.insert(SI.getI());
758 
759     // Use reverse iterator because later select may use the value of the
760     // earlier select, and we need to propagate value through earlier select
761     // to get the PHI operand.
762     for (auto It = ASI.rbegin(); It != ASI.rend(); ++It) {
763       SelectLike SI = *It;
764       // The select itself is replaced with a PHI Node.
765       PHINode *PN = PHINode::Create(SI.getType(), 2, "");
766       PN->insertBefore(EndBlock->begin());
767       PN->takeName(SI.getI());
768       PN->addIncoming(getTrueOrFalseValue(SI, true, INS, IB), TrueBlock);
769       PN->addIncoming(getTrueOrFalseValue(SI, false, INS, IB), FalseBlock);
770       PN->setDebugLoc(SI.getI()->getDebugLoc());
771       SI.getI()->replaceAllUsesWith(PN);
772       INS.erase(SI.getI());
773       ++NumSelectsConverted;
774     }
775     IB.CreateCondBr(CondFr, TT, FT, SI.getI());
776 
777     // Remove the old select instructions, now that they are not longer used.
778     for (auto SI : ASI)
779       SI.getI()->eraseFromParent();
780   }
781 }
782 
783 void SelectOptimizeImpl::collectSelectGroups(BasicBlock &BB,
784                                              SelectGroups &SIGroups) {
785   BasicBlock::iterator BBIt = BB.begin();
786   while (BBIt != BB.end()) {
787     Instruction *I = &*BBIt++;
788     if (SelectLike SI = SelectLike::match(I)) {
789       if (!TTI->shouldTreatInstructionLikeSelect(I))
790         continue;
791 
792       SelectGroup SIGroup;
793       SIGroup.push_back(SI);
794       while (BBIt != BB.end()) {
795         Instruction *NI = &*BBIt;
796         // Debug/pseudo instructions should be skipped and not prevent the
797         // formation of a select group.
798         if (NI->isDebugOrPseudoInst()) {
799           ++BBIt;
800           continue;
801         }
802 
803         // Skip not(select(..)), if the not is part of the same select group
804         if (match(NI, m_Not(m_Specific(SI.getCondition())))) {
805           ++BBIt;
806           continue;
807         }
808 
809         // We only allow selects in the same group, not other select-like
810         // instructions.
811         if (!isa<SelectInst>(NI))
812           break;
813 
814         SelectLike NSI = SelectLike::match(NI);
815         if (NSI && SI.getCondition() == NSI.getCondition()) {
816           SIGroup.push_back(NSI);
817         } else if (NSI && match(NSI.getCondition(),
818                                 m_Not(m_Specific(SI.getCondition())))) {
819           NSI.setInverted();
820           SIGroup.push_back(NSI);
821         } else
822           break;
823         ++BBIt;
824       }
825 
826       // If the select type is not supported, no point optimizing it.
827       // Instruction selection will take care of it.
828       if (!isSelectKindSupported(SI))
829         continue;
830 
831       LLVM_DEBUG({
832         dbgs() << "New Select group with\n";
833         for (auto SI : SIGroup)
834           dbgs() << "  " << *SI.getI() << "\n";
835       });
836 
837       SIGroups.push_back(SIGroup);
838     }
839   }
840 }
841 
842 void SelectOptimizeImpl::findProfitableSIGroupsBase(
843     SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
844   for (SelectGroup &ASI : SIGroups) {
845     ++NumSelectOptAnalyzed;
846     if (isConvertToBranchProfitableBase(ASI))
847       ProfSIGroups.push_back(ASI);
848   }
849 }
850 
851 static void EmitAndPrintRemark(OptimizationRemarkEmitter *ORE,
852                                DiagnosticInfoOptimizationBase &Rem) {
853   LLVM_DEBUG(dbgs() << Rem.getMsg() << "\n");
854   ORE->emit(Rem);
855 }
856 
857 void SelectOptimizeImpl::findProfitableSIGroupsInnerLoops(
858     const Loop *L, SelectGroups &SIGroups, SelectGroups &ProfSIGroups) {
859   NumSelectOptAnalyzed += SIGroups.size();
860   // For each select group in an inner-most loop,
861   // a branch is more preferable than a select/conditional-move if:
862   // i) conversion to branches for all the select groups of the loop satisfies
863   //    loop-level heuristics including reducing the loop's critical path by
864   //    some threshold (see SelectOptimizeImpl::checkLoopHeuristics); and
865   // ii) the total cost of the select group is cheaper with a branch compared
866   //     to its predicated version. The cost is in terms of latency and the cost
867   //     of a select group is the cost of its most expensive select instruction
868   //     (assuming infinite resources and thus fully leveraging available ILP).
869 
870   DenseMap<const Instruction *, CostInfo> InstCostMap;
871   CostInfo LoopCost[2] = {{Scaled64::getZero(), Scaled64::getZero()},
872                           {Scaled64::getZero(), Scaled64::getZero()}};
873   if (!computeLoopCosts(L, SIGroups, InstCostMap, LoopCost) ||
874       !checkLoopHeuristics(L, LoopCost)) {
875     return;
876   }
877 
878   for (SelectGroup &ASI : SIGroups) {
879     // Assuming infinite resources, the cost of a group of instructions is the
880     // cost of the most expensive instruction of the group.
881     Scaled64 SelectCost = Scaled64::getZero(), BranchCost = Scaled64::getZero();
882     for (SelectLike SI : ASI) {
883       SelectCost = std::max(SelectCost, InstCostMap[SI.getI()].PredCost);
884       BranchCost = std::max(BranchCost, InstCostMap[SI.getI()].NonPredCost);
885     }
886     if (BranchCost < SelectCost) {
887       OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", ASI.front().getI());
888       OR << "Profitable to convert to branch (loop analysis). BranchCost="
889          << BranchCost.toString() << ", SelectCost=" << SelectCost.toString()
890          << ". ";
891       EmitAndPrintRemark(ORE, OR);
892       ++NumSelectConvertedLoop;
893       ProfSIGroups.push_back(ASI);
894     } else {
895       OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
896                                       ASI.front().getI());
897       ORmiss << "Select is more profitable (loop analysis). BranchCost="
898              << BranchCost.toString()
899              << ", SelectCost=" << SelectCost.toString() << ". ";
900       EmitAndPrintRemark(ORE, ORmiss);
901     }
902   }
903 }
904 
905 bool SelectOptimizeImpl::isConvertToBranchProfitableBase(
906     const SelectGroup &ASI) {
907   SelectLike SI = ASI.front();
908   LLVM_DEBUG(dbgs() << "Analyzing select group containing " << *SI.getI()
909                     << "\n");
910   OptimizationRemark OR(DEBUG_TYPE, "SelectOpti", SI.getI());
911   OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti", SI.getI());
912 
913   // Skip cold basic blocks. Better to optimize for size for cold blocks.
914   if (PSI->isColdBlock(SI.getI()->getParent(), BFI)) {
915     ++NumSelectColdBB;
916     ORmiss << "Not converted to branch because of cold basic block. ";
917     EmitAndPrintRemark(ORE, ORmiss);
918     return false;
919   }
920 
921   // If unpredictable, branch form is less profitable.
922   if (SI.getI()->getMetadata(LLVMContext::MD_unpredictable)) {
923     ++NumSelectUnPred;
924     ORmiss << "Not converted to branch because of unpredictable branch. ";
925     EmitAndPrintRemark(ORE, ORmiss);
926     return false;
927   }
928 
929   // If highly predictable, branch form is more profitable, unless a
930   // predictable select is inexpensive in the target architecture.
931   if (isSelectHighlyPredictable(SI) && TLI->isPredictableSelectExpensive()) {
932     ++NumSelectConvertedHighPred;
933     OR << "Converted to branch because of highly predictable branch. ";
934     EmitAndPrintRemark(ORE, OR);
935     return true;
936   }
937 
938   // Look for expensive instructions in the cold operand's (if any) dependence
939   // slice of any of the selects in the group.
940   if (hasExpensiveColdOperand(ASI)) {
941     ++NumSelectConvertedExpColdOperand;
942     OR << "Converted to branch because of expensive cold operand.";
943     EmitAndPrintRemark(ORE, OR);
944     return true;
945   }
946 
947   ORmiss << "Not profitable to convert to branch (base heuristic).";
948   EmitAndPrintRemark(ORE, ORmiss);
949   return false;
950 }
951 
952 static InstructionCost divideNearest(InstructionCost Numerator,
953                                      uint64_t Denominator) {
954   return (Numerator + (Denominator / 2)) / Denominator;
955 }
956 
957 static bool extractBranchWeights(const SelectOptimizeImpl::SelectLike SI,
958                                  uint64_t &TrueVal, uint64_t &FalseVal) {
959   if (isa<SelectInst>(SI.getI()))
960     return extractBranchWeights(*SI.getI(), TrueVal, FalseVal);
961   return false;
962 }
963 
964 bool SelectOptimizeImpl::hasExpensiveColdOperand(const SelectGroup &ASI) {
965   bool ColdOperand = false;
966   uint64_t TrueWeight, FalseWeight, TotalWeight;
967   if (extractBranchWeights(ASI.front(), TrueWeight, FalseWeight)) {
968     uint64_t MinWeight = std::min(TrueWeight, FalseWeight);
969     TotalWeight = TrueWeight + FalseWeight;
970     // Is there a path with frequency <ColdOperandThreshold% (default:20%) ?
971     ColdOperand = TotalWeight * ColdOperandThreshold > 100 * MinWeight;
972   } else if (PSI->hasProfileSummary()) {
973     OptimizationRemarkMissed ORmiss(DEBUG_TYPE, "SelectOpti",
974                                     ASI.front().getI());
975     ORmiss << "Profile data available but missing branch-weights metadata for "
976               "select instruction. ";
977     EmitAndPrintRemark(ORE, ORmiss);
978   }
979   if (!ColdOperand)
980     return false;
981   // Check if the cold path's dependence slice is expensive for any of the
982   // selects of the group.
983   for (SelectLike SI : ASI) {
984     Instruction *ColdI = nullptr;
985     uint64_t HotWeight;
986     if (TrueWeight < FalseWeight) {
987       ColdI = dyn_cast_or_null<Instruction>(SI.getTrueValue());
988       HotWeight = FalseWeight;
989     } else {
990       ColdI = dyn_cast_or_null<Instruction>(SI.getFalseValue());
991       HotWeight = TrueWeight;
992     }
993     if (ColdI) {
994       std::stack<Instruction *> ColdSlice;
995       getExclBackwardsSlice(ColdI, ColdSlice, SI.getI());
996       InstructionCost SliceCost = 0;
997       while (!ColdSlice.empty()) {
998         SliceCost += TTI->getInstructionCost(ColdSlice.top(),
999                                              TargetTransformInfo::TCK_Latency);
1000         ColdSlice.pop();
1001       }
1002       // The colder the cold value operand of the select is the more expensive
1003       // the cmov becomes for computing the cold value operand every time. Thus,
1004       // the colder the cold operand is the more its cost counts.
1005       // Get nearest integer cost adjusted for coldness.
1006       InstructionCost AdjSliceCost =
1007           divideNearest(SliceCost * HotWeight, TotalWeight);
1008       if (AdjSliceCost >=
1009           ColdOperandMaxCostMultiplier * TargetTransformInfo::TCC_Expensive)
1010         return true;
1011     }
1012   }
1013   return false;
1014 }
1015 
1016 // Check if it is safe to move LoadI next to the SI.
1017 // Conservatively assume it is safe only if there is no instruction
1018 // modifying memory in-between the load and the select instruction.
1019 static bool isSafeToSinkLoad(Instruction *LoadI, Instruction *SI) {
1020   // Assume loads from different basic blocks are unsafe to move.
1021   if (LoadI->getParent() != SI->getParent())
1022     return false;
1023   auto It = LoadI->getIterator();
1024   while (&*It != SI) {
1025     if (It->mayWriteToMemory())
1026       return false;
1027     It++;
1028   }
1029   return true;
1030 }
1031 
1032 // For a given source instruction, collect its backwards dependence slice
1033 // consisting of instructions exclusively computed for the purpose of producing
1034 // the operands of the source instruction. As an approximation
1035 // (sufficiently-accurate in practice), we populate this set with the
1036 // instructions of the backwards dependence slice that only have one-use and
1037 // form an one-use chain that leads to the source instruction.
1038 void SelectOptimizeImpl::getExclBackwardsSlice(Instruction *I,
1039                                                std::stack<Instruction *> &Slice,
1040                                                Instruction *SI,
1041                                                bool ForSinking) {
1042   SmallPtrSet<Instruction *, 2> Visited;
1043   std::queue<Instruction *> Worklist;
1044   Worklist.push(I);
1045   while (!Worklist.empty()) {
1046     Instruction *II = Worklist.front();
1047     Worklist.pop();
1048 
1049     // Avoid cycles.
1050     if (!Visited.insert(II).second)
1051       continue;
1052 
1053     if (!II->hasOneUse())
1054       continue;
1055 
1056     // Cannot soundly sink instructions with side-effects.
1057     // Terminator or phi instructions cannot be sunk.
1058     // Avoid sinking other select instructions (should be handled separetely).
1059     if (ForSinking && (II->isTerminator() || II->mayHaveSideEffects() ||
1060                        isa<SelectInst>(II) || isa<PHINode>(II)))
1061       continue;
1062 
1063     // Avoid sinking loads in order not to skip state-modifying instructions,
1064     // that may alias with the loaded address.
1065     // Only allow sinking of loads within the same basic block that are
1066     // conservatively proven to be safe.
1067     if (ForSinking && II->mayReadFromMemory() && !isSafeToSinkLoad(II, SI))
1068       continue;
1069 
1070     // Avoid considering instructions with less frequency than the source
1071     // instruction (i.e., avoid colder code regions of the dependence slice).
1072     if (BFI->getBlockFreq(II->getParent()) < BFI->getBlockFreq(I->getParent()))
1073       continue;
1074 
1075     // Eligible one-use instruction added to the dependence slice.
1076     Slice.push(II);
1077 
1078     // Explore all the operands of the current instruction to expand the slice.
1079     for (Value *Op : II->operand_values())
1080       if (auto *OpI = dyn_cast<Instruction>(Op))
1081         Worklist.push(OpI);
1082   }
1083 }
1084 
1085 bool SelectOptimizeImpl::isSelectHighlyPredictable(const SelectLike SI) {
1086   uint64_t TrueWeight, FalseWeight;
1087   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1088     uint64_t Max = std::max(TrueWeight, FalseWeight);
1089     uint64_t Sum = TrueWeight + FalseWeight;
1090     if (Sum != 0) {
1091       auto Probability = BranchProbability::getBranchProbability(Max, Sum);
1092       if (Probability > TTI->getPredictableBranchThreshold())
1093         return true;
1094     }
1095   }
1096   return false;
1097 }
1098 
1099 bool SelectOptimizeImpl::checkLoopHeuristics(const Loop *L,
1100                                              const CostInfo LoopCost[2]) {
1101   // Loop-level checks to determine if a non-predicated version (with branches)
1102   // of the loop is more profitable than its predicated version.
1103 
1104   if (DisableLoopLevelHeuristics)
1105     return true;
1106 
1107   OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti",
1108                                    L->getHeader()->getFirstNonPHI());
1109 
1110   if (LoopCost[0].NonPredCost > LoopCost[0].PredCost ||
1111       LoopCost[1].NonPredCost >= LoopCost[1].PredCost) {
1112     ORmissL << "No select conversion in the loop due to no reduction of loop's "
1113                "critical path. ";
1114     EmitAndPrintRemark(ORE, ORmissL);
1115     return false;
1116   }
1117 
1118   Scaled64 Gain[2] = {LoopCost[0].PredCost - LoopCost[0].NonPredCost,
1119                       LoopCost[1].PredCost - LoopCost[1].NonPredCost};
1120 
1121   // Profitably converting to branches need to reduce the loop's critical path
1122   // by at least some threshold (absolute gain of GainCycleThreshold cycles and
1123   // relative gain of 12.5%).
1124   if (Gain[1] < Scaled64::get(GainCycleThreshold) ||
1125       Gain[1] * Scaled64::get(GainRelativeThreshold) < LoopCost[1].PredCost) {
1126     Scaled64 RelativeGain = Scaled64::get(100) * Gain[1] / LoopCost[1].PredCost;
1127     ORmissL << "No select conversion in the loop due to small reduction of "
1128                "loop's critical path. Gain="
1129             << Gain[1].toString()
1130             << ", RelativeGain=" << RelativeGain.toString() << "%. ";
1131     EmitAndPrintRemark(ORE, ORmissL);
1132     return false;
1133   }
1134 
1135   // If the loop's critical path involves loop-carried dependences, the gradient
1136   // of the gain needs to be at least GainGradientThreshold% (defaults to 25%).
1137   // This check ensures that the latency reduction for the loop's critical path
1138   // keeps decreasing with sufficient rate beyond the two analyzed loop
1139   // iterations.
1140   if (Gain[1] > Gain[0]) {
1141     Scaled64 GradientGain = Scaled64::get(100) * (Gain[1] - Gain[0]) /
1142                             (LoopCost[1].PredCost - LoopCost[0].PredCost);
1143     if (GradientGain < Scaled64::get(GainGradientThreshold)) {
1144       ORmissL << "No select conversion in the loop due to small gradient gain. "
1145                  "GradientGain="
1146               << GradientGain.toString() << "%. ";
1147       EmitAndPrintRemark(ORE, ORmissL);
1148       return false;
1149     }
1150   }
1151   // If the gain decreases it is not profitable to convert.
1152   else if (Gain[1] < Gain[0]) {
1153     ORmissL
1154         << "No select conversion in the loop due to negative gradient gain. ";
1155     EmitAndPrintRemark(ORE, ORmissL);
1156     return false;
1157   }
1158 
1159   // Non-predicated version of the loop is more profitable than its
1160   // predicated version.
1161   return true;
1162 }
1163 
1164 // Computes instruction and loop-critical-path costs for both the predicated
1165 // and non-predicated version of the given loop.
1166 // Returns false if unable to compute these costs due to invalid cost of loop
1167 // instruction(s).
1168 bool SelectOptimizeImpl::computeLoopCosts(
1169     const Loop *L, const SelectGroups &SIGroups,
1170     DenseMap<const Instruction *, CostInfo> &InstCostMap, CostInfo *LoopCost) {
1171   LLVM_DEBUG(dbgs() << "Calculating Latency / IPredCost / INonPredCost of loop "
1172                     << L->getHeader()->getName() << "\n");
1173   const auto &SImap = getSImap(SIGroups);
1174   // Compute instruction and loop-critical-path costs across two iterations for
1175   // both predicated and non-predicated version.
1176   const unsigned Iterations = 2;
1177   for (unsigned Iter = 0; Iter < Iterations; ++Iter) {
1178     // Cost of the loop's critical path.
1179     CostInfo &MaxCost = LoopCost[Iter];
1180     for (BasicBlock *BB : L->getBlocks()) {
1181       for (const Instruction &I : *BB) {
1182         if (I.isDebugOrPseudoInst())
1183           continue;
1184         // Compute the predicated and non-predicated cost of the instruction.
1185         Scaled64 IPredCost = Scaled64::getZero(),
1186                  INonPredCost = Scaled64::getZero();
1187 
1188         // Assume infinite resources that allow to fully exploit the available
1189         // instruction-level parallelism.
1190         // InstCost = InstLatency + max(Op1Cost, Op2Cost, … OpNCost)
1191         for (const Use &U : I.operands()) {
1192           auto UI = dyn_cast<Instruction>(U.get());
1193           if (!UI)
1194             continue;
1195           if (InstCostMap.count(UI)) {
1196             IPredCost = std::max(IPredCost, InstCostMap[UI].PredCost);
1197             INonPredCost = std::max(INonPredCost, InstCostMap[UI].NonPredCost);
1198           }
1199         }
1200         auto ILatency = computeInstCost(&I);
1201         if (!ILatency) {
1202           OptimizationRemarkMissed ORmissL(DEBUG_TYPE, "SelectOpti", &I);
1203           ORmissL << "Invalid instruction cost preventing analysis and "
1204                      "optimization of the inner-most loop containing this "
1205                      "instruction. ";
1206           EmitAndPrintRemark(ORE, ORmissL);
1207           return false;
1208         }
1209         IPredCost += Scaled64::get(*ILatency);
1210         INonPredCost += Scaled64::get(*ILatency);
1211 
1212         // For a select that can be converted to branch,
1213         // compute its cost as a branch (non-predicated cost).
1214         //
1215         // BranchCost = PredictedPathCost + MispredictCost
1216         // PredictedPathCost = TrueOpCost * TrueProb + FalseOpCost * FalseProb
1217         // MispredictCost = max(MispredictPenalty, CondCost) * MispredictRate
1218         if (SImap.contains(&I)) {
1219           auto SI = SImap.at(&I);
1220           Scaled64 TrueOpCost = SI.getTrueOpCost(InstCostMap, TTI);
1221           Scaled64 FalseOpCost = SI.getFalseOpCost(InstCostMap, TTI);
1222           Scaled64 PredictedPathCost =
1223               getPredictedPathCost(TrueOpCost, FalseOpCost, SI);
1224 
1225           Scaled64 CondCost = Scaled64::getZero();
1226           if (auto *CI = dyn_cast<Instruction>(SI.getCondition()))
1227             if (InstCostMap.count(CI))
1228               CondCost = InstCostMap[CI].NonPredCost;
1229           Scaled64 MispredictCost = getMispredictionCost(SI, CondCost);
1230 
1231           INonPredCost = PredictedPathCost + MispredictCost;
1232         }
1233         LLVM_DEBUG(dbgs() << " " << ILatency << "/" << IPredCost << "/"
1234                           << INonPredCost << " for " << I << "\n");
1235 
1236         InstCostMap[&I] = {IPredCost, INonPredCost};
1237         MaxCost.PredCost = std::max(MaxCost.PredCost, IPredCost);
1238         MaxCost.NonPredCost = std::max(MaxCost.NonPredCost, INonPredCost);
1239       }
1240     }
1241     LLVM_DEBUG(dbgs() << "Iteration " << Iter + 1
1242                       << " MaxCost = " << MaxCost.PredCost << " "
1243                       << MaxCost.NonPredCost << "\n");
1244   }
1245   return true;
1246 }
1247 
1248 SmallDenseMap<const Instruction *, SelectOptimizeImpl::SelectLike, 2>
1249 SelectOptimizeImpl::getSImap(const SelectGroups &SIGroups) {
1250   SmallDenseMap<const Instruction *, SelectLike, 2> SImap;
1251   for (const SelectGroup &ASI : SIGroups)
1252     for (SelectLike SI : ASI)
1253       SImap.try_emplace(SI.getI(), SI);
1254   return SImap;
1255 }
1256 
1257 std::optional<uint64_t>
1258 SelectOptimizeImpl::computeInstCost(const Instruction *I) {
1259   InstructionCost ICost =
1260       TTI->getInstructionCost(I, TargetTransformInfo::TCK_Latency);
1261   if (auto OC = ICost.getValue())
1262     return std::optional<uint64_t>(*OC);
1263   return std::nullopt;
1264 }
1265 
1266 ScaledNumber<uint64_t>
1267 SelectOptimizeImpl::getMispredictionCost(const SelectLike SI,
1268                                          const Scaled64 CondCost) {
1269   uint64_t MispredictPenalty = TSchedModel.getMCSchedModel()->MispredictPenalty;
1270 
1271   // Account for the default misprediction rate when using a branch
1272   // (conservatively set to 25% by default).
1273   uint64_t MispredictRate = MispredictDefaultRate;
1274   // If the select condition is obviously predictable, then the misprediction
1275   // rate is zero.
1276   if (isSelectHighlyPredictable(SI))
1277     MispredictRate = 0;
1278 
1279   // CondCost is included to account for cases where the computation of the
1280   // condition is part of a long dependence chain (potentially loop-carried)
1281   // that would delay detection of a misprediction and increase its cost.
1282   Scaled64 MispredictCost =
1283       std::max(Scaled64::get(MispredictPenalty), CondCost) *
1284       Scaled64::get(MispredictRate);
1285   MispredictCost /= Scaled64::get(100);
1286 
1287   return MispredictCost;
1288 }
1289 
1290 // Returns the cost of a branch when the prediction is correct.
1291 // TrueCost * TrueProbability + FalseCost * FalseProbability.
1292 ScaledNumber<uint64_t>
1293 SelectOptimizeImpl::getPredictedPathCost(Scaled64 TrueCost, Scaled64 FalseCost,
1294                                          const SelectLike SI) {
1295   Scaled64 PredPathCost;
1296   uint64_t TrueWeight, FalseWeight;
1297   if (extractBranchWeights(SI, TrueWeight, FalseWeight)) {
1298     uint64_t SumWeight = TrueWeight + FalseWeight;
1299     if (SumWeight != 0) {
1300       PredPathCost = TrueCost * Scaled64::get(TrueWeight) +
1301                      FalseCost * Scaled64::get(FalseWeight);
1302       PredPathCost /= Scaled64::get(SumWeight);
1303       return PredPathCost;
1304     }
1305   }
1306   // Without branch weight metadata, we assume 75% for the one path and 25% for
1307   // the other, and pick the result with the biggest cost.
1308   PredPathCost = std::max(TrueCost * Scaled64::get(3) + FalseCost,
1309                           FalseCost * Scaled64::get(3) + TrueCost);
1310   PredPathCost /= Scaled64::get(4);
1311   return PredPathCost;
1312 }
1313 
1314 bool SelectOptimizeImpl::isSelectKindSupported(const SelectLike SI) {
1315   bool VectorCond = !SI.getCondition()->getType()->isIntegerTy(1);
1316   if (VectorCond)
1317     return false;
1318   TargetLowering::SelectSupportKind SelectKind;
1319   if (SI.getType()->isVectorTy())
1320     SelectKind = TargetLowering::ScalarCondVectorVal;
1321   else
1322     SelectKind = TargetLowering::ScalarValSelect;
1323   return TLI->isSelectSupported(SelectKind);
1324 }
1325