xref: /llvm-project/llvm/lib/CodeGen/SafeStack.cpp (revision a278250b0f85949d4f98e641786e5eb2b540c6b0)
1 //===- SafeStack.cpp - Safe Stack Insertion -------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass splits the stack into the safe stack (kept as-is for LLVM backend)
10 // and the unsafe stack (explicitly allocated and managed through the runtime
11 // support library).
12 //
13 // http://clang.llvm.org/docs/SafeStack.html
14 //
15 //===----------------------------------------------------------------------===//
16 
17 #include "SafeStackLayout.h"
18 #include "llvm/ADT/APInt.h"
19 #include "llvm/ADT/ArrayRef.h"
20 #include "llvm/ADT/BitVector.h"
21 #include "llvm/ADT/SmallPtrSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AssumptionCache.h"
25 #include "llvm/Analysis/BranchProbabilityInfo.h"
26 #include "llvm/Analysis/DomTreeUpdater.h"
27 #include "llvm/Analysis/InlineCost.h"
28 #include "llvm/Analysis/LoopInfo.h"
29 #include "llvm/Analysis/ScalarEvolution.h"
30 #include "llvm/Analysis/ScalarEvolutionExpressions.h"
31 #include "llvm/Analysis/StackLifetime.h"
32 #include "llvm/Analysis/TargetLibraryInfo.h"
33 #include "llvm/CodeGen/TargetLowering.h"
34 #include "llvm/CodeGen/TargetPassConfig.h"
35 #include "llvm/CodeGen/TargetSubtargetInfo.h"
36 #include "llvm/IR/Argument.h"
37 #include "llvm/IR/Attributes.h"
38 #include "llvm/IR/ConstantRange.h"
39 #include "llvm/IR/Constants.h"
40 #include "llvm/IR/DIBuilder.h"
41 #include "llvm/IR/DataLayout.h"
42 #include "llvm/IR/DerivedTypes.h"
43 #include "llvm/IR/Dominators.h"
44 #include "llvm/IR/Function.h"
45 #include "llvm/IR/IRBuilder.h"
46 #include "llvm/IR/InstIterator.h"
47 #include "llvm/IR/Instruction.h"
48 #include "llvm/IR/Instructions.h"
49 #include "llvm/IR/IntrinsicInst.h"
50 #include "llvm/IR/Intrinsics.h"
51 #include "llvm/IR/MDBuilder.h"
52 #include "llvm/IR/Module.h"
53 #include "llvm/IR/Type.h"
54 #include "llvm/IR/Use.h"
55 #include "llvm/IR/User.h"
56 #include "llvm/IR/Value.h"
57 #include "llvm/InitializePasses.h"
58 #include "llvm/Pass.h"
59 #include "llvm/Support/Casting.h"
60 #include "llvm/Support/Debug.h"
61 #include "llvm/Support/ErrorHandling.h"
62 #include "llvm/Support/MathExtras.h"
63 #include "llvm/Support/raw_ostream.h"
64 #include "llvm/Target/TargetMachine.h"
65 #include "llvm/Transforms/Utils/BasicBlockUtils.h"
66 #include "llvm/Transforms/Utils/Cloning.h"
67 #include "llvm/Transforms/Utils/Local.h"
68 #include <algorithm>
69 #include <cassert>
70 #include <cstdint>
71 #include <string>
72 #include <utility>
73 
74 using namespace llvm;
75 using namespace llvm::safestack;
76 
77 #define DEBUG_TYPE "safe-stack"
78 
79 namespace llvm {
80 
81 STATISTIC(NumFunctions, "Total number of functions");
82 STATISTIC(NumUnsafeStackFunctions, "Number of functions with unsafe stack");
83 STATISTIC(NumUnsafeStackRestorePointsFunctions,
84           "Number of functions that use setjmp or exceptions");
85 
86 STATISTIC(NumAllocas, "Total number of allocas");
87 STATISTIC(NumUnsafeStaticAllocas, "Number of unsafe static allocas");
88 STATISTIC(NumUnsafeDynamicAllocas, "Number of unsafe dynamic allocas");
89 STATISTIC(NumUnsafeByValArguments, "Number of unsafe byval arguments");
90 STATISTIC(NumUnsafeStackRestorePoints, "Number of setjmps and landingpads");
91 
92 } // namespace llvm
93 
94 /// Use __safestack_pointer_address even if the platform has a faster way of
95 /// access safe stack pointer.
96 static cl::opt<bool>
97     SafeStackUsePointerAddress("safestack-use-pointer-address",
98                                   cl::init(false), cl::Hidden);
99 
100 static cl::opt<bool> ClColoring("safe-stack-coloring",
101                                 cl::desc("enable safe stack coloring"),
102                                 cl::Hidden, cl::init(true));
103 
104 namespace {
105 
106 /// Rewrite an SCEV expression for a memory access address to an expression that
107 /// represents offset from the given alloca.
108 ///
109 /// The implementation simply replaces all mentions of the alloca with zero.
110 class AllocaOffsetRewriter : public SCEVRewriteVisitor<AllocaOffsetRewriter> {
111   const Value *AllocaPtr;
112 
113 public:
114   AllocaOffsetRewriter(ScalarEvolution &SE, const Value *AllocaPtr)
115       : SCEVRewriteVisitor(SE), AllocaPtr(AllocaPtr) {}
116 
117   const SCEV *visitUnknown(const SCEVUnknown *Expr) {
118     if (Expr->getValue() == AllocaPtr)
119       return SE.getZero(Expr->getType());
120     return Expr;
121   }
122 };
123 
124 /// The SafeStack pass splits the stack of each function into the safe
125 /// stack, which is only accessed through memory safe dereferences (as
126 /// determined statically), and the unsafe stack, which contains all
127 /// local variables that are accessed in ways that we can't prove to
128 /// be safe.
129 class SafeStack {
130   Function &F;
131   const TargetLoweringBase &TL;
132   const DataLayout &DL;
133   DomTreeUpdater *DTU;
134   ScalarEvolution &SE;
135 
136   Type *StackPtrTy;
137   Type *IntPtrTy;
138   Type *Int32Ty;
139   Type *Int8Ty;
140 
141   Value *UnsafeStackPtr = nullptr;
142 
143   /// Unsafe stack alignment. Each stack frame must ensure that the stack is
144   /// aligned to this value. We need to re-align the unsafe stack if the
145   /// alignment of any object on the stack exceeds this value.
146   ///
147   /// 16 seems like a reasonable upper bound on the alignment of objects that we
148   /// might expect to appear on the stack on most common targets.
149   static constexpr uint64_t StackAlignment = 16;
150 
151   /// Return the value of the stack canary.
152   Value *getStackGuard(IRBuilder<> &IRB, Function &F);
153 
154   /// Load stack guard from the frame and check if it has changed.
155   void checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
156                        AllocaInst *StackGuardSlot, Value *StackGuard);
157 
158   /// Find all static allocas, dynamic allocas, return instructions and
159   /// stack restore points (exception unwind blocks and setjmp calls) in the
160   /// given function and append them to the respective vectors.
161   void findInsts(Function &F, SmallVectorImpl<AllocaInst *> &StaticAllocas,
162                  SmallVectorImpl<AllocaInst *> &DynamicAllocas,
163                  SmallVectorImpl<Argument *> &ByValArguments,
164                  SmallVectorImpl<Instruction *> &Returns,
165                  SmallVectorImpl<Instruction *> &StackRestorePoints);
166 
167   /// Calculate the allocation size of a given alloca. Returns 0 if the
168   /// size can not be statically determined.
169   uint64_t getStaticAllocaAllocationSize(const AllocaInst* AI);
170 
171   /// Allocate space for all static allocas in \p StaticAllocas,
172   /// replace allocas with pointers into the unsafe stack.
173   ///
174   /// \returns A pointer to the top of the unsafe stack after all unsafe static
175   /// allocas are allocated.
176   Value *moveStaticAllocasToUnsafeStack(IRBuilder<> &IRB, Function &F,
177                                         ArrayRef<AllocaInst *> StaticAllocas,
178                                         ArrayRef<Argument *> ByValArguments,
179                                         Instruction *BasePointer,
180                                         AllocaInst *StackGuardSlot);
181 
182   /// Generate code to restore the stack after all stack restore points
183   /// in \p StackRestorePoints.
184   ///
185   /// \returns A local variable in which to maintain the dynamic top of the
186   /// unsafe stack if needed.
187   AllocaInst *
188   createStackRestorePoints(IRBuilder<> &IRB, Function &F,
189                            ArrayRef<Instruction *> StackRestorePoints,
190                            Value *StaticTop, bool NeedDynamicTop);
191 
192   /// Replace all allocas in \p DynamicAllocas with code to allocate
193   /// space dynamically on the unsafe stack and store the dynamic unsafe stack
194   /// top to \p DynamicTop if non-null.
195   void moveDynamicAllocasToUnsafeStack(Function &F, Value *UnsafeStackPtr,
196                                        AllocaInst *DynamicTop,
197                                        ArrayRef<AllocaInst *> DynamicAllocas);
198 
199   bool IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize);
200 
201   bool IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
202                           const Value *AllocaPtr, uint64_t AllocaSize);
203   bool IsAccessSafe(Value *Addr, uint64_t Size, const Value *AllocaPtr,
204                     uint64_t AllocaSize);
205 
206   bool ShouldInlinePointerAddress(CallInst &CI);
207   void TryInlinePointerAddress();
208 
209 public:
210   SafeStack(Function &F, const TargetLoweringBase &TL, const DataLayout &DL,
211             DomTreeUpdater *DTU, ScalarEvolution &SE)
212       : F(F), TL(TL), DL(DL), DTU(DTU), SE(SE),
213         StackPtrTy(Type::getInt8PtrTy(F.getContext())),
214         IntPtrTy(DL.getIntPtrType(F.getContext())),
215         Int32Ty(Type::getInt32Ty(F.getContext())),
216         Int8Ty(Type::getInt8Ty(F.getContext())) {}
217 
218   // Run the transformation on the associated function.
219   // Returns whether the function was changed.
220   bool run();
221 };
222 
223 constexpr uint64_t SafeStack::StackAlignment;
224 
225 uint64_t SafeStack::getStaticAllocaAllocationSize(const AllocaInst* AI) {
226   uint64_t Size = DL.getTypeAllocSize(AI->getAllocatedType());
227   if (AI->isArrayAllocation()) {
228     auto C = dyn_cast<ConstantInt>(AI->getArraySize());
229     if (!C)
230       return 0;
231     Size *= C->getZExtValue();
232   }
233   return Size;
234 }
235 
236 bool SafeStack::IsAccessSafe(Value *Addr, uint64_t AccessSize,
237                              const Value *AllocaPtr, uint64_t AllocaSize) {
238   AllocaOffsetRewriter Rewriter(SE, AllocaPtr);
239   const SCEV *Expr = Rewriter.visit(SE.getSCEV(Addr));
240 
241   uint64_t BitWidth = SE.getTypeSizeInBits(Expr->getType());
242   ConstantRange AccessStartRange = SE.getUnsignedRange(Expr);
243   ConstantRange SizeRange =
244       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AccessSize));
245   ConstantRange AccessRange = AccessStartRange.add(SizeRange);
246   ConstantRange AllocaRange =
247       ConstantRange(APInt(BitWidth, 0), APInt(BitWidth, AllocaSize));
248   bool Safe = AllocaRange.contains(AccessRange);
249 
250   LLVM_DEBUG(
251       dbgs() << "[SafeStack] "
252              << (isa<AllocaInst>(AllocaPtr) ? "Alloca " : "ByValArgument ")
253              << *AllocaPtr << "\n"
254              << "            Access " << *Addr << "\n"
255              << "            SCEV " << *Expr
256              << " U: " << SE.getUnsignedRange(Expr)
257              << ", S: " << SE.getSignedRange(Expr) << "\n"
258              << "            Range " << AccessRange << "\n"
259              << "            AllocaRange " << AllocaRange << "\n"
260              << "            " << (Safe ? "safe" : "unsafe") << "\n");
261 
262   return Safe;
263 }
264 
265 bool SafeStack::IsMemIntrinsicSafe(const MemIntrinsic *MI, const Use &U,
266                                    const Value *AllocaPtr,
267                                    uint64_t AllocaSize) {
268   if (auto MTI = dyn_cast<MemTransferInst>(MI)) {
269     if (MTI->getRawSource() != U && MTI->getRawDest() != U)
270       return true;
271   } else {
272     if (MI->getRawDest() != U)
273       return true;
274   }
275 
276   const auto *Len = dyn_cast<ConstantInt>(MI->getLength());
277   // Non-constant size => unsafe. FIXME: try SCEV getRange.
278   if (!Len) return false;
279   return IsAccessSafe(U, Len->getZExtValue(), AllocaPtr, AllocaSize);
280 }
281 
282 /// Check whether a given allocation must be put on the safe
283 /// stack or not. The function analyzes all uses of AI and checks whether it is
284 /// only accessed in a memory safe way (as decided statically).
285 bool SafeStack::IsSafeStackAlloca(const Value *AllocaPtr, uint64_t AllocaSize) {
286   // Go through all uses of this alloca and check whether all accesses to the
287   // allocated object are statically known to be memory safe and, hence, the
288   // object can be placed on the safe stack.
289   SmallPtrSet<const Value *, 16> Visited;
290   SmallVector<const Value *, 8> WorkList;
291   WorkList.push_back(AllocaPtr);
292 
293   // A DFS search through all uses of the alloca in bitcasts/PHI/GEPs/etc.
294   while (!WorkList.empty()) {
295     const Value *V = WorkList.pop_back_val();
296     for (const Use &UI : V->uses()) {
297       auto I = cast<const Instruction>(UI.getUser());
298       assert(V == UI.get());
299 
300       switch (I->getOpcode()) {
301       case Instruction::Load:
302         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getType()), AllocaPtr,
303                           AllocaSize))
304           return false;
305         break;
306 
307       case Instruction::VAArg:
308         // "va-arg" from a pointer is safe.
309         break;
310       case Instruction::Store:
311         if (V == I->getOperand(0)) {
312           // Stored the pointer - conservatively assume it may be unsafe.
313           LLVM_DEBUG(dbgs()
314                      << "[SafeStack] Unsafe alloca: " << *AllocaPtr
315                      << "\n            store of address: " << *I << "\n");
316           return false;
317         }
318 
319         if (!IsAccessSafe(UI, DL.getTypeStoreSize(I->getOperand(0)->getType()),
320                           AllocaPtr, AllocaSize))
321           return false;
322         break;
323 
324       case Instruction::Ret:
325         // Information leak.
326         return false;
327 
328       case Instruction::Call:
329       case Instruction::Invoke: {
330         const CallBase &CS = *cast<CallBase>(I);
331 
332         if (I->isLifetimeStartOrEnd())
333           continue;
334 
335         if (const MemIntrinsic *MI = dyn_cast<MemIntrinsic>(I)) {
336           if (!IsMemIntrinsicSafe(MI, UI, AllocaPtr, AllocaSize)) {
337             LLVM_DEBUG(dbgs()
338                        << "[SafeStack] Unsafe alloca: " << *AllocaPtr
339                        << "\n            unsafe memintrinsic: " << *I << "\n");
340             return false;
341           }
342           continue;
343         }
344 
345         // LLVM 'nocapture' attribute is only set for arguments whose address
346         // is not stored, passed around, or used in any other non-trivial way.
347         // We assume that passing a pointer to an object as a 'nocapture
348         // readnone' argument is safe.
349         // FIXME: a more precise solution would require an interprocedural
350         // analysis here, which would look at all uses of an argument inside
351         // the function being called.
352         auto B = CS.arg_begin(), E = CS.arg_end();
353         for (auto A = B; A != E; ++A)
354           if (A->get() == V)
355             if (!(CS.doesNotCapture(A - B) && (CS.doesNotAccessMemory(A - B) ||
356                                                CS.doesNotAccessMemory()))) {
357               LLVM_DEBUG(dbgs() << "[SafeStack] Unsafe alloca: " << *AllocaPtr
358                                 << "\n            unsafe call: " << *I << "\n");
359               return false;
360             }
361         continue;
362       }
363 
364       default:
365         if (Visited.insert(I).second)
366           WorkList.push_back(cast<const Instruction>(I));
367       }
368     }
369   }
370 
371   // All uses of the alloca are safe, we can place it on the safe stack.
372   return true;
373 }
374 
375 Value *SafeStack::getStackGuard(IRBuilder<> &IRB, Function &F) {
376   Value *StackGuardVar = TL.getIRStackGuard(IRB);
377   Module *M = F.getParent();
378 
379   if (!StackGuardVar) {
380     TL.insertSSPDeclarations(*M);
381     return IRB.CreateCall(Intrinsic::getDeclaration(M, Intrinsic::stackguard));
382   }
383 
384   return IRB.CreateLoad(StackPtrTy, StackGuardVar, "StackGuard");
385 }
386 
387 void SafeStack::findInsts(Function &F,
388                           SmallVectorImpl<AllocaInst *> &StaticAllocas,
389                           SmallVectorImpl<AllocaInst *> &DynamicAllocas,
390                           SmallVectorImpl<Argument *> &ByValArguments,
391                           SmallVectorImpl<Instruction *> &Returns,
392                           SmallVectorImpl<Instruction *> &StackRestorePoints) {
393   for (Instruction &I : instructions(&F)) {
394     if (auto AI = dyn_cast<AllocaInst>(&I)) {
395       ++NumAllocas;
396 
397       uint64_t Size = getStaticAllocaAllocationSize(AI);
398       if (IsSafeStackAlloca(AI, Size))
399         continue;
400 
401       if (AI->isStaticAlloca()) {
402         ++NumUnsafeStaticAllocas;
403         StaticAllocas.push_back(AI);
404       } else {
405         ++NumUnsafeDynamicAllocas;
406         DynamicAllocas.push_back(AI);
407       }
408     } else if (auto RI = dyn_cast<ReturnInst>(&I)) {
409       if (CallInst *CI = I.getParent()->getTerminatingMustTailCall())
410         Returns.push_back(CI);
411       else
412         Returns.push_back(RI);
413     } else if (auto CI = dyn_cast<CallInst>(&I)) {
414       // setjmps require stack restore.
415       if (CI->getCalledFunction() && CI->canReturnTwice())
416         StackRestorePoints.push_back(CI);
417     } else if (auto LP = dyn_cast<LandingPadInst>(&I)) {
418       // Exception landing pads require stack restore.
419       StackRestorePoints.push_back(LP);
420     } else if (auto II = dyn_cast<IntrinsicInst>(&I)) {
421       if (II->getIntrinsicID() == Intrinsic::gcroot)
422         report_fatal_error(
423             "gcroot intrinsic not compatible with safestack attribute");
424     }
425   }
426   for (Argument &Arg : F.args()) {
427     if (!Arg.hasByValAttr())
428       continue;
429     uint64_t Size = DL.getTypeStoreSize(Arg.getParamByValType());
430     if (IsSafeStackAlloca(&Arg, Size))
431       continue;
432 
433     ++NumUnsafeByValArguments;
434     ByValArguments.push_back(&Arg);
435   }
436 }
437 
438 AllocaInst *
439 SafeStack::createStackRestorePoints(IRBuilder<> &IRB, Function &F,
440                                     ArrayRef<Instruction *> StackRestorePoints,
441                                     Value *StaticTop, bool NeedDynamicTop) {
442   assert(StaticTop && "The stack top isn't set.");
443 
444   if (StackRestorePoints.empty())
445     return nullptr;
446 
447   // We need the current value of the shadow stack pointer to restore
448   // after longjmp or exception catching.
449 
450   // FIXME: On some platforms this could be handled by the longjmp/exception
451   // runtime itself.
452 
453   AllocaInst *DynamicTop = nullptr;
454   if (NeedDynamicTop) {
455     // If we also have dynamic alloca's, the stack pointer value changes
456     // throughout the function. For now we store it in an alloca.
457     DynamicTop = IRB.CreateAlloca(StackPtrTy, /*ArraySize=*/nullptr,
458                                   "unsafe_stack_dynamic_ptr");
459     IRB.CreateStore(StaticTop, DynamicTop);
460   }
461 
462   // Restore current stack pointer after longjmp/exception catch.
463   for (Instruction *I : StackRestorePoints) {
464     ++NumUnsafeStackRestorePoints;
465 
466     IRB.SetInsertPoint(I->getNextNode());
467     Value *CurrentTop =
468         DynamicTop ? IRB.CreateLoad(StackPtrTy, DynamicTop) : StaticTop;
469     IRB.CreateStore(CurrentTop, UnsafeStackPtr);
470   }
471 
472   return DynamicTop;
473 }
474 
475 void SafeStack::checkStackGuard(IRBuilder<> &IRB, Function &F, Instruction &RI,
476                                 AllocaInst *StackGuardSlot, Value *StackGuard) {
477   Value *V = IRB.CreateLoad(StackPtrTy, StackGuardSlot);
478   Value *Cmp = IRB.CreateICmpNE(StackGuard, V);
479 
480   auto SuccessProb = BranchProbabilityInfo::getBranchProbStackProtector(true);
481   auto FailureProb = BranchProbabilityInfo::getBranchProbStackProtector(false);
482   MDNode *Weights = MDBuilder(F.getContext())
483                         .createBranchWeights(SuccessProb.getNumerator(),
484                                              FailureProb.getNumerator());
485   Instruction *CheckTerm =
486       SplitBlockAndInsertIfThen(Cmp, &RI, /* Unreachable */ true, Weights, DTU);
487   IRBuilder<> IRBFail(CheckTerm);
488   // FIXME: respect -fsanitize-trap / -ftrap-function here?
489   FunctionCallee StackChkFail =
490       F.getParent()->getOrInsertFunction("__stack_chk_fail", IRB.getVoidTy());
491   IRBFail.CreateCall(StackChkFail, {});
492 }
493 
494 /// We explicitly compute and set the unsafe stack layout for all unsafe
495 /// static alloca instructions. We save the unsafe "base pointer" in the
496 /// prologue into a local variable and restore it in the epilogue.
497 Value *SafeStack::moveStaticAllocasToUnsafeStack(
498     IRBuilder<> &IRB, Function &F, ArrayRef<AllocaInst *> StaticAllocas,
499     ArrayRef<Argument *> ByValArguments, Instruction *BasePointer,
500     AllocaInst *StackGuardSlot) {
501   if (StaticAllocas.empty() && ByValArguments.empty())
502     return BasePointer;
503 
504   DIBuilder DIB(*F.getParent());
505 
506   StackLifetime SSC(F, StaticAllocas, StackLifetime::LivenessType::May);
507   static const StackLifetime::LiveRange NoColoringRange(1, true);
508   if (ClColoring)
509     SSC.run();
510 
511   for (auto *I : SSC.getMarkers()) {
512     auto *Op = dyn_cast<Instruction>(I->getOperand(1));
513     const_cast<IntrinsicInst *>(I)->eraseFromParent();
514     // Remove the operand bitcast, too, if it has no more uses left.
515     if (Op && Op->use_empty())
516       Op->eraseFromParent();
517   }
518 
519   // Unsafe stack always grows down.
520   StackLayout SSL(StackAlignment);
521   if (StackGuardSlot) {
522     Type *Ty = StackGuardSlot->getAllocatedType();
523     Align Align = std::max(DL.getPrefTypeAlign(Ty), StackGuardSlot->getAlign());
524     SSL.addObject(StackGuardSlot, getStaticAllocaAllocationSize(StackGuardSlot),
525                   Align, SSC.getFullLiveRange());
526   }
527 
528   for (Argument *Arg : ByValArguments) {
529     Type *Ty = Arg->getParamByValType();
530     uint64_t Size = DL.getTypeStoreSize(Ty);
531     if (Size == 0)
532       Size = 1; // Don't create zero-sized stack objects.
533 
534     // Ensure the object is properly aligned.
535     Align Align = DL.getPrefTypeAlign(Ty);
536     if (auto A = Arg->getParamAlign())
537       Align = std::max(Align, *A);
538     SSL.addObject(Arg, Size, Align, SSC.getFullLiveRange());
539   }
540 
541   for (AllocaInst *AI : StaticAllocas) {
542     Type *Ty = AI->getAllocatedType();
543     uint64_t Size = getStaticAllocaAllocationSize(AI);
544     if (Size == 0)
545       Size = 1; // Don't create zero-sized stack objects.
546 
547     // Ensure the object is properly aligned.
548     Align Align = std::max(DL.getPrefTypeAlign(Ty), AI->getAlign());
549 
550     SSL.addObject(AI, Size, Align,
551                   ClColoring ? SSC.getLiveRange(AI) : NoColoringRange);
552   }
553 
554   SSL.computeLayout();
555   Align FrameAlignment = SSL.getFrameAlignment();
556 
557   // FIXME: tell SSL that we start at a less-then-MaxAlignment aligned location
558   // (AlignmentSkew).
559   if (FrameAlignment > StackAlignment) {
560     // Re-align the base pointer according to the max requested alignment.
561     IRB.SetInsertPoint(BasePointer->getNextNode());
562     BasePointer = cast<Instruction>(IRB.CreateIntToPtr(
563         IRB.CreateAnd(
564             IRB.CreatePtrToInt(BasePointer, IntPtrTy),
565             ConstantInt::get(IntPtrTy, ~(FrameAlignment.value() - 1))),
566         StackPtrTy));
567   }
568 
569   IRB.SetInsertPoint(BasePointer->getNextNode());
570 
571   if (StackGuardSlot) {
572     unsigned Offset = SSL.getObjectOffset(StackGuardSlot);
573     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
574                                ConstantInt::get(Int32Ty, -Offset));
575     Value *NewAI =
576         IRB.CreateBitCast(Off, StackGuardSlot->getType(), "StackGuardSlot");
577 
578     // Replace alloc with the new location.
579     StackGuardSlot->replaceAllUsesWith(NewAI);
580     StackGuardSlot->eraseFromParent();
581   }
582 
583   for (Argument *Arg : ByValArguments) {
584     unsigned Offset = SSL.getObjectOffset(Arg);
585     MaybeAlign Align(SSL.getObjectAlignment(Arg));
586     Type *Ty = Arg->getParamByValType();
587 
588     uint64_t Size = DL.getTypeStoreSize(Ty);
589     if (Size == 0)
590       Size = 1; // Don't create zero-sized stack objects.
591 
592     Value *Off = IRB.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
593                                ConstantInt::get(Int32Ty, -Offset));
594     Value *NewArg = IRB.CreateBitCast(Off, Arg->getType(),
595                                      Arg->getName() + ".unsafe-byval");
596 
597     // Replace alloc with the new location.
598     replaceDbgDeclare(Arg, BasePointer, DIB, DIExpression::ApplyOffset,
599                       -Offset);
600     Arg->replaceAllUsesWith(NewArg);
601     IRB.SetInsertPoint(cast<Instruction>(NewArg)->getNextNode());
602     IRB.CreateMemCpy(Off, Align, Arg, Arg->getParamAlign(), Size);
603   }
604 
605   // Allocate space for every unsafe static AllocaInst on the unsafe stack.
606   for (AllocaInst *AI : StaticAllocas) {
607     IRB.SetInsertPoint(AI);
608     unsigned Offset = SSL.getObjectOffset(AI);
609 
610     replaceDbgDeclare(AI, BasePointer, DIB, DIExpression::ApplyOffset, -Offset);
611     replaceDbgValueForAlloca(AI, BasePointer, DIB, -Offset);
612 
613     // Replace uses of the alloca with the new location.
614     // Insert address calculation close to each use to work around PR27844.
615     std::string Name = std::string(AI->getName()) + ".unsafe";
616     while (!AI->use_empty()) {
617       Use &U = *AI->use_begin();
618       Instruction *User = cast<Instruction>(U.getUser());
619 
620       Instruction *InsertBefore;
621       if (auto *PHI = dyn_cast<PHINode>(User))
622         InsertBefore = PHI->getIncomingBlock(U)->getTerminator();
623       else
624         InsertBefore = User;
625 
626       IRBuilder<> IRBUser(InsertBefore);
627       Value *Off = IRBUser.CreateGEP(Int8Ty, BasePointer, // BasePointer is i8*
628                                      ConstantInt::get(Int32Ty, -Offset));
629       Value *Replacement = IRBUser.CreateBitCast(Off, AI->getType(), Name);
630 
631       if (auto *PHI = dyn_cast<PHINode>(User))
632         // PHI nodes may have multiple incoming edges from the same BB (why??),
633         // all must be updated at once with the same incoming value.
634         PHI->setIncomingValueForBlock(PHI->getIncomingBlock(U), Replacement);
635       else
636         U.set(Replacement);
637     }
638 
639     AI->eraseFromParent();
640   }
641 
642   // Re-align BasePointer so that our callees would see it aligned as
643   // expected.
644   // FIXME: no need to update BasePointer in leaf functions.
645   unsigned FrameSize = alignTo(SSL.getFrameSize(), StackAlignment);
646 
647   // Update shadow stack pointer in the function epilogue.
648   IRB.SetInsertPoint(BasePointer->getNextNode());
649 
650   Value *StaticTop =
651       IRB.CreateGEP(Int8Ty, BasePointer, ConstantInt::get(Int32Ty, -FrameSize),
652                     "unsafe_stack_static_top");
653   IRB.CreateStore(StaticTop, UnsafeStackPtr);
654   return StaticTop;
655 }
656 
657 void SafeStack::moveDynamicAllocasToUnsafeStack(
658     Function &F, Value *UnsafeStackPtr, AllocaInst *DynamicTop,
659     ArrayRef<AllocaInst *> DynamicAllocas) {
660   DIBuilder DIB(*F.getParent());
661 
662   for (AllocaInst *AI : DynamicAllocas) {
663     IRBuilder<> IRB(AI);
664 
665     // Compute the new SP value (after AI).
666     Value *ArraySize = AI->getArraySize();
667     if (ArraySize->getType() != IntPtrTy)
668       ArraySize = IRB.CreateIntCast(ArraySize, IntPtrTy, false);
669 
670     Type *Ty = AI->getAllocatedType();
671     uint64_t TySize = DL.getTypeAllocSize(Ty);
672     Value *Size = IRB.CreateMul(ArraySize, ConstantInt::get(IntPtrTy, TySize));
673 
674     Value *SP = IRB.CreatePtrToInt(IRB.CreateLoad(StackPtrTy, UnsafeStackPtr),
675                                    IntPtrTy);
676     SP = IRB.CreateSub(SP, Size);
677 
678     // Align the SP value to satisfy the AllocaInst, type and stack alignments.
679     uint64_t Align =
680         std::max(std::max(DL.getPrefTypeAlignment(Ty), AI->getAlignment()),
681                  StackAlignment);
682 
683     assert(isPowerOf2_32(Align));
684     Value *NewTop = IRB.CreateIntToPtr(
685         IRB.CreateAnd(SP, ConstantInt::get(IntPtrTy, ~uint64_t(Align - 1))),
686         StackPtrTy);
687 
688     // Save the stack pointer.
689     IRB.CreateStore(NewTop, UnsafeStackPtr);
690     if (DynamicTop)
691       IRB.CreateStore(NewTop, DynamicTop);
692 
693     Value *NewAI = IRB.CreatePointerCast(NewTop, AI->getType());
694     if (AI->hasName() && isa<Instruction>(NewAI))
695       NewAI->takeName(AI);
696 
697     replaceDbgDeclare(AI, NewAI, DIB, DIExpression::ApplyOffset, 0);
698     AI->replaceAllUsesWith(NewAI);
699     AI->eraseFromParent();
700   }
701 
702   if (!DynamicAllocas.empty()) {
703     // Now go through the instructions again, replacing stacksave/stackrestore.
704     for (Instruction &I : llvm::make_early_inc_range(instructions(&F))) {
705       auto *II = dyn_cast<IntrinsicInst>(&I);
706       if (!II)
707         continue;
708 
709       if (II->getIntrinsicID() == Intrinsic::stacksave) {
710         IRBuilder<> IRB(II);
711         Instruction *LI = IRB.CreateLoad(StackPtrTy, UnsafeStackPtr);
712         LI->takeName(II);
713         II->replaceAllUsesWith(LI);
714         II->eraseFromParent();
715       } else if (II->getIntrinsicID() == Intrinsic::stackrestore) {
716         IRBuilder<> IRB(II);
717         Instruction *SI = IRB.CreateStore(II->getArgOperand(0), UnsafeStackPtr);
718         SI->takeName(II);
719         assert(II->use_empty());
720         II->eraseFromParent();
721       }
722     }
723   }
724 }
725 
726 bool SafeStack::ShouldInlinePointerAddress(CallInst &CI) {
727   Function *Callee = CI.getCalledFunction();
728   if (CI.hasFnAttr(Attribute::AlwaysInline) &&
729       isInlineViable(*Callee).isSuccess())
730     return true;
731   if (Callee->isInterposable() || Callee->hasFnAttribute(Attribute::NoInline) ||
732       CI.isNoInline())
733     return false;
734   return true;
735 }
736 
737 void SafeStack::TryInlinePointerAddress() {
738   auto *CI = dyn_cast<CallInst>(UnsafeStackPtr);
739   if (!CI)
740     return;
741 
742   if(F.hasOptNone())
743     return;
744 
745   Function *Callee = CI->getCalledFunction();
746   if (!Callee || Callee->isDeclaration())
747     return;
748 
749   if (!ShouldInlinePointerAddress(*CI))
750     return;
751 
752   InlineFunctionInfo IFI;
753   InlineFunction(*CI, IFI);
754 }
755 
756 bool SafeStack::run() {
757   assert(F.hasFnAttribute(Attribute::SafeStack) &&
758          "Can't run SafeStack on a function without the attribute");
759   assert(!F.isDeclaration() && "Can't run SafeStack on a function declaration");
760 
761   ++NumFunctions;
762 
763   SmallVector<AllocaInst *, 16> StaticAllocas;
764   SmallVector<AllocaInst *, 4> DynamicAllocas;
765   SmallVector<Argument *, 4> ByValArguments;
766   SmallVector<Instruction *, 4> Returns;
767 
768   // Collect all points where stack gets unwound and needs to be restored
769   // This is only necessary because the runtime (setjmp and unwind code) is
770   // not aware of the unsafe stack and won't unwind/restore it properly.
771   // To work around this problem without changing the runtime, we insert
772   // instrumentation to restore the unsafe stack pointer when necessary.
773   SmallVector<Instruction *, 4> StackRestorePoints;
774 
775   // Find all static and dynamic alloca instructions that must be moved to the
776   // unsafe stack, all return instructions and stack restore points.
777   findInsts(F, StaticAllocas, DynamicAllocas, ByValArguments, Returns,
778             StackRestorePoints);
779 
780   if (StaticAllocas.empty() && DynamicAllocas.empty() &&
781       ByValArguments.empty() && StackRestorePoints.empty())
782     return false; // Nothing to do in this function.
783 
784   if (!StaticAllocas.empty() || !DynamicAllocas.empty() ||
785       !ByValArguments.empty())
786     ++NumUnsafeStackFunctions; // This function has the unsafe stack.
787 
788   if (!StackRestorePoints.empty())
789     ++NumUnsafeStackRestorePointsFunctions;
790 
791   IRBuilder<> IRB(&F.front(), F.begin()->getFirstInsertionPt());
792   // Calls must always have a debug location, or else inlining breaks. So
793   // we explicitly set a artificial debug location here.
794   if (DISubprogram *SP = F.getSubprogram())
795     IRB.SetCurrentDebugLocation(
796         DILocation::get(SP->getContext(), SP->getScopeLine(), 0, SP));
797   if (SafeStackUsePointerAddress) {
798     FunctionCallee Fn = F.getParent()->getOrInsertFunction(
799         "__safestack_pointer_address", StackPtrTy->getPointerTo(0));
800     UnsafeStackPtr = IRB.CreateCall(Fn);
801   } else {
802     UnsafeStackPtr = TL.getSafeStackPointerLocation(IRB);
803   }
804 
805   // Load the current stack pointer (we'll also use it as a base pointer).
806   // FIXME: use a dedicated register for it ?
807   Instruction *BasePointer =
808       IRB.CreateLoad(StackPtrTy, UnsafeStackPtr, false, "unsafe_stack_ptr");
809   assert(BasePointer->getType() == StackPtrTy);
810 
811   AllocaInst *StackGuardSlot = nullptr;
812   // FIXME: implement weaker forms of stack protector.
813   if (F.hasFnAttribute(Attribute::StackProtect) ||
814       F.hasFnAttribute(Attribute::StackProtectStrong) ||
815       F.hasFnAttribute(Attribute::StackProtectReq)) {
816     Value *StackGuard = getStackGuard(IRB, F);
817     StackGuardSlot = IRB.CreateAlloca(StackPtrTy, nullptr);
818     IRB.CreateStore(StackGuard, StackGuardSlot);
819 
820     for (Instruction *RI : Returns) {
821       IRBuilder<> IRBRet(RI);
822       checkStackGuard(IRBRet, F, *RI, StackGuardSlot, StackGuard);
823     }
824   }
825 
826   // The top of the unsafe stack after all unsafe static allocas are
827   // allocated.
828   Value *StaticTop = moveStaticAllocasToUnsafeStack(
829       IRB, F, StaticAllocas, ByValArguments, BasePointer, StackGuardSlot);
830 
831   // Safe stack object that stores the current unsafe stack top. It is updated
832   // as unsafe dynamic (non-constant-sized) allocas are allocated and freed.
833   // This is only needed if we need to restore stack pointer after longjmp
834   // or exceptions, and we have dynamic allocations.
835   // FIXME: a better alternative might be to store the unsafe stack pointer
836   // before setjmp / invoke instructions.
837   AllocaInst *DynamicTop = createStackRestorePoints(
838       IRB, F, StackRestorePoints, StaticTop, !DynamicAllocas.empty());
839 
840   // Handle dynamic allocas.
841   moveDynamicAllocasToUnsafeStack(F, UnsafeStackPtr, DynamicTop,
842                                   DynamicAllocas);
843 
844   // Restore the unsafe stack pointer before each return.
845   for (Instruction *RI : Returns) {
846     IRB.SetInsertPoint(RI);
847     IRB.CreateStore(BasePointer, UnsafeStackPtr);
848   }
849 
850   TryInlinePointerAddress();
851 
852   LLVM_DEBUG(dbgs() << "[SafeStack]     safestack applied\n");
853   return true;
854 }
855 
856 class SafeStackLegacyPass : public FunctionPass {
857   const TargetMachine *TM = nullptr;
858 
859 public:
860   static char ID; // Pass identification, replacement for typeid..
861 
862   SafeStackLegacyPass() : FunctionPass(ID) {
863     initializeSafeStackLegacyPassPass(*PassRegistry::getPassRegistry());
864   }
865 
866   void getAnalysisUsage(AnalysisUsage &AU) const override {
867     AU.addRequired<TargetPassConfig>();
868     AU.addRequired<TargetLibraryInfoWrapperPass>();
869     AU.addRequired<AssumptionCacheTracker>();
870     AU.addPreserved<DominatorTreeWrapperPass>();
871   }
872 
873   bool runOnFunction(Function &F) override {
874     LLVM_DEBUG(dbgs() << "[SafeStack] Function: " << F.getName() << "\n");
875 
876     if (!F.hasFnAttribute(Attribute::SafeStack)) {
877       LLVM_DEBUG(dbgs() << "[SafeStack]     safestack is not requested"
878                            " for this function\n");
879       return false;
880     }
881 
882     if (F.isDeclaration()) {
883       LLVM_DEBUG(dbgs() << "[SafeStack]     function definition"
884                            " is not available\n");
885       return false;
886     }
887 
888     TM = &getAnalysis<TargetPassConfig>().getTM<TargetMachine>();
889     auto *TL = TM->getSubtargetImpl(F)->getTargetLowering();
890     if (!TL)
891       report_fatal_error("TargetLowering instance is required");
892 
893     auto *DL = &F.getParent()->getDataLayout();
894     auto &TLI = getAnalysis<TargetLibraryInfoWrapperPass>().getTLI(F);
895     auto &ACT = getAnalysis<AssumptionCacheTracker>().getAssumptionCache(F);
896 
897     // Compute DT and LI only for functions that have the attribute.
898     // This is only useful because the legacy pass manager doesn't let us
899     // compute analyzes lazily.
900 
901     DominatorTree *DT;
902     bool ShouldPreserveDominatorTree;
903     Optional<DominatorTree> LazilyComputedDomTree;
904 
905     // Do we already have a DominatorTree avaliable from the previous pass?
906     // Note that we should *NOT* require it, to avoid the case where we end up
907     // not needing it, but the legacy PM would have computed it for us anyways.
908     if (auto *DTWP = getAnalysisIfAvailable<DominatorTreeWrapperPass>()) {
909       DT = &DTWP->getDomTree();
910       ShouldPreserveDominatorTree = true;
911     } else {
912       // Otherwise, we need to compute it.
913       LazilyComputedDomTree.emplace(F);
914       DT = LazilyComputedDomTree.getPointer();
915       ShouldPreserveDominatorTree = false;
916     }
917 
918     // Likewise, lazily compute loop info.
919     LoopInfo LI(*DT);
920 
921     DomTreeUpdater DTU(DT, DomTreeUpdater::UpdateStrategy::Lazy);
922 
923     ScalarEvolution SE(F, TLI, ACT, *DT, LI);
924 
925     return SafeStack(F, *TL, *DL, ShouldPreserveDominatorTree ? &DTU : nullptr,
926                      SE)
927         .run();
928   }
929 };
930 
931 } // end anonymous namespace
932 
933 char SafeStackLegacyPass::ID = 0;
934 
935 INITIALIZE_PASS_BEGIN(SafeStackLegacyPass, DEBUG_TYPE,
936                       "Safe Stack instrumentation pass", false, false)
937 INITIALIZE_PASS_DEPENDENCY(TargetPassConfig)
938 INITIALIZE_PASS_DEPENDENCY(DominatorTreeWrapperPass)
939 INITIALIZE_PASS_END(SafeStackLegacyPass, DEBUG_TYPE,
940                     "Safe Stack instrumentation pass", false, false)
941 
942 FunctionPass *llvm::createSafeStackPass() { return new SafeStackLegacyPass(); }
943