1 //===- RegAllocFast.cpp - A fast register allocator for debug code --------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 /// \file This register allocator allocates registers to a basic block at a 10 /// time, attempting to keep values in registers and reusing registers as 11 /// appropriate. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #include "llvm/CodeGen/RegAllocFast.h" 16 #include "llvm/ADT/ArrayRef.h" 17 #include "llvm/ADT/DenseMap.h" 18 #include "llvm/ADT/IndexedMap.h" 19 #include "llvm/ADT/MapVector.h" 20 #include "llvm/ADT/SmallSet.h" 21 #include "llvm/ADT/SmallVector.h" 22 #include "llvm/ADT/SparseSet.h" 23 #include "llvm/ADT/Statistic.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineFrameInfo.h" 26 #include "llvm/CodeGen/MachineFunction.h" 27 #include "llvm/CodeGen/MachineFunctionPass.h" 28 #include "llvm/CodeGen/MachineInstr.h" 29 #include "llvm/CodeGen/MachineInstrBuilder.h" 30 #include "llvm/CodeGen/MachineOperand.h" 31 #include "llvm/CodeGen/MachineRegisterInfo.h" 32 #include "llvm/CodeGen/RegAllocCommon.h" 33 #include "llvm/CodeGen/RegAllocRegistry.h" 34 #include "llvm/CodeGen/RegisterClassInfo.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetOpcodes.h" 37 #include "llvm/CodeGen/TargetRegisterInfo.h" 38 #include "llvm/CodeGen/TargetSubtargetInfo.h" 39 #include "llvm/InitializePasses.h" 40 #include "llvm/MC/MCRegisterInfo.h" 41 #include "llvm/Pass.h" 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 #include <cassert> 46 #include <tuple> 47 #include <vector> 48 49 using namespace llvm; 50 51 #define DEBUG_TYPE "regalloc" 52 53 STATISTIC(NumStores, "Number of stores added"); 54 STATISTIC(NumLoads, "Number of loads added"); 55 STATISTIC(NumCoalesced, "Number of copies coalesced"); 56 57 // FIXME: Remove this switch when all testcases are fixed! 58 static cl::opt<bool> IgnoreMissingDefs("rafast-ignore-missing-defs", 59 cl::Hidden); 60 61 static RegisterRegAlloc fastRegAlloc("fast", "fast register allocator", 62 createFastRegisterAllocator); 63 64 namespace { 65 66 /// Assign ascending index for instructions in machine basic block. The index 67 /// can be used to determine dominance between instructions in same MBB. 68 class InstrPosIndexes { 69 public: 70 void unsetInitialized() { IsInitialized = false; } 71 72 void init(const MachineBasicBlock &MBB) { 73 CurMBB = &MBB; 74 Instr2PosIndex.clear(); 75 uint64_t LastIndex = 0; 76 for (const MachineInstr &MI : MBB) { 77 LastIndex += InstrDist; 78 Instr2PosIndex[&MI] = LastIndex; 79 } 80 } 81 82 /// Set \p Index to index of \p MI. If \p MI is new inserted, it try to assign 83 /// index without affecting existing instruction's index. Return true if all 84 /// instructions index has been reassigned. 85 bool getIndex(const MachineInstr &MI, uint64_t &Index) { 86 if (!IsInitialized) { 87 init(*MI.getParent()); 88 IsInitialized = true; 89 Index = Instr2PosIndex.at(&MI); 90 return true; 91 } 92 93 assert(MI.getParent() == CurMBB && "MI is not in CurMBB"); 94 auto It = Instr2PosIndex.find(&MI); 95 if (It != Instr2PosIndex.end()) { 96 Index = It->second; 97 return false; 98 } 99 100 // Distance is the number of consecutive unassigned instructions including 101 // MI. Start is the first instruction of them. End is the next of last 102 // instruction of them. 103 // e.g. 104 // |Instruction| A | B | C | MI | D | E | 105 // | Index | 1024 | | | | | 2048 | 106 // 107 // In this case, B, C, MI, D are unassigned. Distance is 4, Start is B, End 108 // is E. 109 unsigned Distance = 1; 110 MachineBasicBlock::const_iterator Start = MI.getIterator(), 111 End = std::next(Start); 112 while (Start != CurMBB->begin() && 113 !Instr2PosIndex.count(&*std::prev(Start))) { 114 --Start; 115 ++Distance; 116 } 117 while (End != CurMBB->end() && !Instr2PosIndex.count(&*(End))) { 118 ++End; 119 ++Distance; 120 } 121 122 // LastIndex is initialized to last used index prior to MI or zero. 123 // In previous example, LastIndex is 1024, EndIndex is 2048; 124 uint64_t LastIndex = 125 Start == CurMBB->begin() ? 0 : Instr2PosIndex.at(&*std::prev(Start)); 126 uint64_t Step; 127 if (End == CurMBB->end()) 128 Step = static_cast<uint64_t>(InstrDist); 129 else { 130 // No instruction uses index zero. 131 uint64_t EndIndex = Instr2PosIndex.at(&*End); 132 assert(EndIndex > LastIndex && "Index must be ascending order"); 133 unsigned NumAvailableIndexes = EndIndex - LastIndex - 1; 134 // We want index gap between two adjacent MI is as same as possible. Given 135 // total A available indexes, D is number of consecutive unassigned 136 // instructions, S is the step. 137 // |<- S-1 -> MI <- S-1 -> MI <- A-S*D ->| 138 // There're S-1 available indexes between unassigned instruction and its 139 // predecessor. There're A-S*D available indexes between the last 140 // unassigned instruction and its successor. 141 // Ideally, we want 142 // S-1 = A-S*D 143 // then 144 // S = (A+1)/(D+1) 145 // An valid S must be integer greater than zero, so 146 // S <= (A+1)/(D+1) 147 // => 148 // A-S*D >= 0 149 // That means we can safely use (A+1)/(D+1) as step. 150 // In previous example, Step is 204, Index of B, C, MI, D is 1228, 1432, 151 // 1636, 1840. 152 Step = (NumAvailableIndexes + 1) / (Distance + 1); 153 } 154 155 // Reassign index for all instructions if number of new inserted 156 // instructions exceed slot or all instructions are new. 157 if (LLVM_UNLIKELY(!Step || (!LastIndex && Step == InstrDist))) { 158 init(*CurMBB); 159 Index = Instr2PosIndex.at(&MI); 160 return true; 161 } 162 163 for (auto I = Start; I != End; ++I) { 164 LastIndex += Step; 165 Instr2PosIndex[&*I] = LastIndex; 166 } 167 Index = Instr2PosIndex.at(&MI); 168 return false; 169 } 170 171 private: 172 bool IsInitialized = false; 173 enum { InstrDist = 1024 }; 174 const MachineBasicBlock *CurMBB = nullptr; 175 DenseMap<const MachineInstr *, uint64_t> Instr2PosIndex; 176 }; 177 178 class RegAllocFastImpl { 179 public: 180 RegAllocFastImpl(const RegClassFilterFunc F = allocateAllRegClasses, 181 bool ClearVirtRegs_ = true) 182 : ShouldAllocateClass(F), StackSlotForVirtReg(-1), 183 ClearVirtRegs(ClearVirtRegs_) {} 184 185 private: 186 MachineFrameInfo *MFI = nullptr; 187 MachineRegisterInfo *MRI = nullptr; 188 const TargetRegisterInfo *TRI = nullptr; 189 const TargetInstrInfo *TII = nullptr; 190 RegisterClassInfo RegClassInfo; 191 const RegClassFilterFunc ShouldAllocateClass; 192 193 /// Basic block currently being allocated. 194 MachineBasicBlock *MBB = nullptr; 195 196 /// Maps virtual regs to the frame index where these values are spilled. 197 IndexedMap<int, VirtReg2IndexFunctor> StackSlotForVirtReg; 198 199 /// Everything we know about a live virtual register. 200 struct LiveReg { 201 MachineInstr *LastUse = nullptr; ///< Last instr to use reg. 202 Register VirtReg; ///< Virtual register number. 203 MCPhysReg PhysReg = 0; ///< Currently held here. 204 bool LiveOut = false; ///< Register is possibly live out. 205 bool Reloaded = false; ///< Register was reloaded. 206 bool Error = false; ///< Could not allocate. 207 208 explicit LiveReg(Register VirtReg) : VirtReg(VirtReg) {} 209 210 unsigned getSparseSetIndex() const { 211 return Register::virtReg2Index(VirtReg); 212 } 213 }; 214 215 using LiveRegMap = SparseSet<LiveReg, identity<unsigned>, uint16_t>; 216 /// This map contains entries for each virtual register that is currently 217 /// available in a physical register. 218 LiveRegMap LiveVirtRegs; 219 220 /// Stores assigned virtual registers present in the bundle MI. 221 DenseMap<Register, MCPhysReg> BundleVirtRegsMap; 222 223 DenseMap<unsigned, SmallVector<MachineOperand *, 2>> LiveDbgValueMap; 224 /// List of DBG_VALUE that we encountered without the vreg being assigned 225 /// because they were placed after the last use of the vreg. 226 DenseMap<unsigned, SmallVector<MachineInstr *, 1>> DanglingDbgValues; 227 228 /// Has a bit set for every virtual register for which it was determined 229 /// that it is alive across blocks. 230 BitVector MayLiveAcrossBlocks; 231 232 /// State of a register unit. 233 enum RegUnitState { 234 /// A free register is not currently in use and can be allocated 235 /// immediately without checking aliases. 236 regFree, 237 238 /// A pre-assigned register has been assigned before register allocation 239 /// (e.g., setting up a call parameter). 240 regPreAssigned, 241 242 /// Used temporarily in reloadAtBegin() to mark register units that are 243 /// live-in to the basic block. 244 regLiveIn, 245 246 /// A register state may also be a virtual register number, indication 247 /// that the physical register is currently allocated to a virtual 248 /// register. In that case, LiveVirtRegs contains the inverse mapping. 249 }; 250 251 /// Maps each physical register to a RegUnitState enum or virtual register. 252 std::vector<unsigned> RegUnitStates; 253 254 SmallVector<MachineInstr *, 32> Coalesced; 255 256 using RegUnitSet = SparseSet<uint16_t, identity<uint16_t>>; 257 /// Set of register units that are used in the current instruction, and so 258 /// cannot be allocated. 259 RegUnitSet UsedInInstr; 260 RegUnitSet PhysRegUses; 261 SmallVector<uint16_t, 8> DefOperandIndexes; 262 // Register masks attached to the current instruction. 263 SmallVector<const uint32_t *> RegMasks; 264 265 // Assign index for each instruction to quickly determine dominance. 266 InstrPosIndexes PosIndexes; 267 268 void setPhysRegState(MCPhysReg PhysReg, unsigned NewState); 269 bool isPhysRegFree(MCPhysReg PhysReg) const; 270 271 /// Mark a physreg as used in this instruction. 272 void markRegUsedInInstr(MCPhysReg PhysReg) { 273 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 274 UsedInInstr.insert(Unit); 275 } 276 277 // Check if physreg is clobbered by instruction's regmask(s). 278 bool isClobberedByRegMasks(MCPhysReg PhysReg) const { 279 return llvm::any_of(RegMasks, [PhysReg](const uint32_t *Mask) { 280 return MachineOperand::clobbersPhysReg(Mask, PhysReg); 281 }); 282 } 283 284 /// Check if a physreg or any of its aliases are used in this instruction. 285 bool isRegUsedInInstr(MCPhysReg PhysReg, bool LookAtPhysRegUses) const { 286 if (LookAtPhysRegUses && isClobberedByRegMasks(PhysReg)) 287 return true; 288 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 289 if (UsedInInstr.count(Unit)) 290 return true; 291 if (LookAtPhysRegUses && PhysRegUses.count(Unit)) 292 return true; 293 } 294 return false; 295 } 296 297 /// Mark physical register as being used in a register use operand. 298 /// This is only used by the special livethrough handling code. 299 void markPhysRegUsedInInstr(MCPhysReg PhysReg) { 300 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 301 PhysRegUses.insert(Unit); 302 } 303 304 /// Remove mark of physical register being used in the instruction. 305 void unmarkRegUsedInInstr(MCPhysReg PhysReg) { 306 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 307 UsedInInstr.erase(Unit); 308 } 309 310 enum : unsigned { 311 spillClean = 50, 312 spillDirty = 100, 313 spillPrefBonus = 20, 314 spillImpossible = ~0u 315 }; 316 317 public: 318 bool ClearVirtRegs; 319 320 bool runOnMachineFunction(MachineFunction &MF); 321 322 private: 323 void allocateBasicBlock(MachineBasicBlock &MBB); 324 325 void addRegClassDefCounts(std::vector<unsigned> &RegClassDefCounts, 326 Register Reg) const; 327 328 void findAndSortDefOperandIndexes(const MachineInstr &MI); 329 330 void allocateInstruction(MachineInstr &MI); 331 void handleDebugValue(MachineInstr &MI); 332 void handleBundle(MachineInstr &MI); 333 334 bool usePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 335 bool definePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 336 bool displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg); 337 void freePhysReg(MCPhysReg PhysReg); 338 339 unsigned calcSpillCost(MCPhysReg PhysReg) const; 340 341 LiveRegMap::iterator findLiveVirtReg(Register VirtReg) { 342 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 343 } 344 345 LiveRegMap::const_iterator findLiveVirtReg(Register VirtReg) const { 346 return LiveVirtRegs.find(Register::virtReg2Index(VirtReg)); 347 } 348 349 void assignVirtToPhysReg(MachineInstr &MI, LiveReg &, MCPhysReg PhysReg); 350 void allocVirtReg(MachineInstr &MI, LiveReg &LR, Register Hint, 351 bool LookAtPhysRegUses = false); 352 void allocVirtRegUndef(MachineOperand &MO); 353 void assignDanglingDebugValues(MachineInstr &Def, Register VirtReg, 354 MCPhysReg Reg); 355 bool defineLiveThroughVirtReg(MachineInstr &MI, unsigned OpNum, 356 Register VirtReg); 357 bool defineVirtReg(MachineInstr &MI, unsigned OpNum, Register VirtReg, 358 bool LookAtPhysRegUses = false); 359 bool useVirtReg(MachineInstr &MI, MachineOperand &MO, Register VirtReg); 360 361 MachineBasicBlock::iterator 362 getMBBBeginInsertionPoint(MachineBasicBlock &MBB, 363 SmallSet<Register, 2> &PrologLiveIns) const; 364 365 void reloadAtBegin(MachineBasicBlock &MBB); 366 bool setPhysReg(MachineInstr &MI, MachineOperand &MO, MCPhysReg PhysReg); 367 368 Register traceCopies(Register VirtReg) const; 369 Register traceCopyChain(Register Reg) const; 370 371 bool shouldAllocateRegister(const Register Reg) const; 372 int getStackSpaceFor(Register VirtReg); 373 void spill(MachineBasicBlock::iterator Before, Register VirtReg, 374 MCPhysReg AssignedReg, bool Kill, bool LiveOut); 375 void reload(MachineBasicBlock::iterator Before, Register VirtReg, 376 MCPhysReg PhysReg); 377 378 bool mayLiveOut(Register VirtReg); 379 bool mayLiveIn(Register VirtReg); 380 381 void dumpState() const; 382 }; 383 384 class RegAllocFast : public MachineFunctionPass { 385 RegAllocFastImpl Impl; 386 387 public: 388 static char ID; 389 390 RegAllocFast(const RegClassFilterFunc F = allocateAllRegClasses, 391 bool ClearVirtRegs_ = true) 392 : MachineFunctionPass(ID), Impl(F, ClearVirtRegs_) {} 393 394 bool runOnMachineFunction(MachineFunction &MF) override { 395 return Impl.runOnMachineFunction(MF); 396 } 397 398 StringRef getPassName() const override { return "Fast Register Allocator"; } 399 400 void getAnalysisUsage(AnalysisUsage &AU) const override { 401 AU.setPreservesCFG(); 402 MachineFunctionPass::getAnalysisUsage(AU); 403 } 404 405 MachineFunctionProperties getRequiredProperties() const override { 406 return MachineFunctionProperties().set( 407 MachineFunctionProperties::Property::NoPHIs); 408 } 409 410 MachineFunctionProperties getSetProperties() const override { 411 if (Impl.ClearVirtRegs) { 412 return MachineFunctionProperties().set( 413 MachineFunctionProperties::Property::NoVRegs); 414 } 415 416 return MachineFunctionProperties(); 417 } 418 419 MachineFunctionProperties getClearedProperties() const override { 420 return MachineFunctionProperties().set( 421 MachineFunctionProperties::Property::IsSSA); 422 } 423 }; 424 425 } // end anonymous namespace 426 427 char RegAllocFast::ID = 0; 428 429 INITIALIZE_PASS(RegAllocFast, "regallocfast", "Fast Register Allocator", false, 430 false) 431 432 bool RegAllocFastImpl::shouldAllocateRegister(const Register Reg) const { 433 assert(Reg.isVirtual()); 434 const TargetRegisterClass &RC = *MRI->getRegClass(Reg); 435 return ShouldAllocateClass(*TRI, RC); 436 } 437 438 void RegAllocFastImpl::setPhysRegState(MCPhysReg PhysReg, unsigned NewState) { 439 for (MCRegUnit Unit : TRI->regunits(PhysReg)) 440 RegUnitStates[Unit] = NewState; 441 } 442 443 bool RegAllocFastImpl::isPhysRegFree(MCPhysReg PhysReg) const { 444 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 445 if (RegUnitStates[Unit] != regFree) 446 return false; 447 } 448 return true; 449 } 450 451 /// This allocates space for the specified virtual register to be held on the 452 /// stack. 453 int RegAllocFastImpl::getStackSpaceFor(Register VirtReg) { 454 // Find the location Reg would belong... 455 int SS = StackSlotForVirtReg[VirtReg]; 456 // Already has space allocated? 457 if (SS != -1) 458 return SS; 459 460 // Allocate a new stack object for this spill location... 461 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 462 unsigned Size = TRI->getSpillSize(RC); 463 Align Alignment = TRI->getSpillAlign(RC); 464 int FrameIdx = MFI->CreateSpillStackObject(Size, Alignment); 465 466 // Assign the slot. 467 StackSlotForVirtReg[VirtReg] = FrameIdx; 468 return FrameIdx; 469 } 470 471 static bool dominates(InstrPosIndexes &PosIndexes, const MachineInstr &A, 472 const MachineInstr &B) { 473 uint64_t IndexA, IndexB; 474 PosIndexes.getIndex(A, IndexA); 475 if (LLVM_UNLIKELY(PosIndexes.getIndex(B, IndexB))) 476 PosIndexes.getIndex(A, IndexA); 477 return IndexA < IndexB; 478 } 479 480 /// Returns false if \p VirtReg is known to not live out of the current block. 481 bool RegAllocFastImpl::mayLiveOut(Register VirtReg) { 482 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) { 483 // Cannot be live-out if there are no successors. 484 return !MBB->succ_empty(); 485 } 486 487 const MachineInstr *SelfLoopDef = nullptr; 488 489 // If this block loops back to itself, it is necessary to check whether the 490 // use comes after the def. 491 if (MBB->isSuccessor(MBB)) { 492 // Find the first def in the self loop MBB. 493 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 494 if (DefInst.getParent() != MBB) { 495 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 496 return true; 497 } else { 498 if (!SelfLoopDef || dominates(PosIndexes, DefInst, *SelfLoopDef)) 499 SelfLoopDef = &DefInst; 500 } 501 } 502 if (!SelfLoopDef) { 503 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 504 return true; 505 } 506 } 507 508 // See if the first \p Limit uses of the register are all in the current 509 // block. 510 static const unsigned Limit = 8; 511 unsigned C = 0; 512 for (const MachineInstr &UseInst : MRI->use_nodbg_instructions(VirtReg)) { 513 if (UseInst.getParent() != MBB || ++C >= Limit) { 514 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 515 // Cannot be live-out if there are no successors. 516 return !MBB->succ_empty(); 517 } 518 519 if (SelfLoopDef) { 520 // Try to handle some simple cases to avoid spilling and reloading every 521 // value inside a self looping block. 522 if (SelfLoopDef == &UseInst || 523 !dominates(PosIndexes, *SelfLoopDef, UseInst)) { 524 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 525 return true; 526 } 527 } 528 } 529 530 return false; 531 } 532 533 /// Returns false if \p VirtReg is known to not be live into the current block. 534 bool RegAllocFastImpl::mayLiveIn(Register VirtReg) { 535 if (MayLiveAcrossBlocks.test(Register::virtReg2Index(VirtReg))) 536 return !MBB->pred_empty(); 537 538 // See if the first \p Limit def of the register are all in the current block. 539 static const unsigned Limit = 8; 540 unsigned C = 0; 541 for (const MachineInstr &DefInst : MRI->def_instructions(VirtReg)) { 542 if (DefInst.getParent() != MBB || ++C >= Limit) { 543 MayLiveAcrossBlocks.set(Register::virtReg2Index(VirtReg)); 544 return !MBB->pred_empty(); 545 } 546 } 547 548 return false; 549 } 550 551 /// Insert spill instruction for \p AssignedReg before \p Before. Update 552 /// DBG_VALUEs with \p VirtReg operands with the stack slot. 553 void RegAllocFastImpl::spill(MachineBasicBlock::iterator Before, 554 Register VirtReg, MCPhysReg AssignedReg, bool Kill, 555 bool LiveOut) { 556 LLVM_DEBUG(dbgs() << "Spilling " << printReg(VirtReg, TRI) << " in " 557 << printReg(AssignedReg, TRI)); 558 int FI = getStackSpaceFor(VirtReg); 559 LLVM_DEBUG(dbgs() << " to stack slot #" << FI << '\n'); 560 561 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 562 TII->storeRegToStackSlot(*MBB, Before, AssignedReg, Kill, FI, &RC, TRI, 563 VirtReg); 564 ++NumStores; 565 566 MachineBasicBlock::iterator FirstTerm = MBB->getFirstTerminator(); 567 568 // When we spill a virtual register, we will have spill instructions behind 569 // every definition of it, meaning we can switch all the DBG_VALUEs over 570 // to just reference the stack slot. 571 SmallVectorImpl<MachineOperand *> &LRIDbgOperands = LiveDbgValueMap[VirtReg]; 572 SmallMapVector<MachineInstr *, SmallVector<const MachineOperand *>, 2> 573 SpilledOperandsMap; 574 for (MachineOperand *MO : LRIDbgOperands) 575 SpilledOperandsMap[MO->getParent()].push_back(MO); 576 for (auto MISpilledOperands : SpilledOperandsMap) { 577 MachineInstr &DBG = *MISpilledOperands.first; 578 // We don't have enough support for tracking operands of DBG_VALUE_LISTs. 579 if (DBG.isDebugValueList()) 580 continue; 581 MachineInstr *NewDV = buildDbgValueForSpill( 582 *MBB, Before, *MISpilledOperands.first, FI, MISpilledOperands.second); 583 assert(NewDV->getParent() == MBB && "dangling parent pointer"); 584 (void)NewDV; 585 LLVM_DEBUG(dbgs() << "Inserting debug info due to spill:\n" << *NewDV); 586 587 if (LiveOut) { 588 // We need to insert a DBG_VALUE at the end of the block if the spill slot 589 // is live out, but there is another use of the value after the 590 // spill. This will allow LiveDebugValues to see the correct live out 591 // value to propagate to the successors. 592 MachineInstr *ClonedDV = MBB->getParent()->CloneMachineInstr(NewDV); 593 MBB->insert(FirstTerm, ClonedDV); 594 LLVM_DEBUG(dbgs() << "Cloning debug info due to live out spill\n"); 595 } 596 597 // Rewrite unassigned dbg_values to use the stack slot. 598 // TODO We can potentially do this for list debug values as well if we know 599 // how the dbg_values are getting unassigned. 600 if (DBG.isNonListDebugValue()) { 601 MachineOperand &MO = DBG.getDebugOperand(0); 602 if (MO.isReg() && MO.getReg() == 0) { 603 updateDbgValueForSpill(DBG, FI, 0); 604 } 605 } 606 } 607 // Now this register is spilled there is should not be any DBG_VALUE 608 // pointing to this register because they are all pointing to spilled value 609 // now. 610 LRIDbgOperands.clear(); 611 } 612 613 /// Insert reload instruction for \p PhysReg before \p Before. 614 void RegAllocFastImpl::reload(MachineBasicBlock::iterator Before, 615 Register VirtReg, MCPhysReg PhysReg) { 616 LLVM_DEBUG(dbgs() << "Reloading " << printReg(VirtReg, TRI) << " into " 617 << printReg(PhysReg, TRI) << '\n'); 618 int FI = getStackSpaceFor(VirtReg); 619 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 620 TII->loadRegFromStackSlot(*MBB, Before, PhysReg, FI, &RC, TRI, VirtReg); 621 ++NumLoads; 622 } 623 624 /// Get basic block begin insertion point. 625 /// This is not just MBB.begin() because surprisingly we have EH_LABEL 626 /// instructions marking the begin of a basic block. This means we must insert 627 /// new instructions after such labels... 628 MachineBasicBlock::iterator RegAllocFastImpl::getMBBBeginInsertionPoint( 629 MachineBasicBlock &MBB, SmallSet<Register, 2> &PrologLiveIns) const { 630 MachineBasicBlock::iterator I = MBB.begin(); 631 while (I != MBB.end()) { 632 if (I->isLabel()) { 633 ++I; 634 continue; 635 } 636 637 // Most reloads should be inserted after prolog instructions. 638 if (!TII->isBasicBlockPrologue(*I)) 639 break; 640 641 // However if a prolog instruction reads a register that needs to be 642 // reloaded, the reload should be inserted before the prolog. 643 for (MachineOperand &MO : I->operands()) { 644 if (MO.isReg()) 645 PrologLiveIns.insert(MO.getReg()); 646 } 647 648 ++I; 649 } 650 651 return I; 652 } 653 654 /// Reload all currently assigned virtual registers. 655 void RegAllocFastImpl::reloadAtBegin(MachineBasicBlock &MBB) { 656 if (LiveVirtRegs.empty()) 657 return; 658 659 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 660 MCPhysReg Reg = P.PhysReg; 661 // Set state to live-in. This possibly overrides mappings to virtual 662 // registers but we don't care anymore at this point. 663 setPhysRegState(Reg, regLiveIn); 664 } 665 666 SmallSet<Register, 2> PrologLiveIns; 667 668 // The LiveRegMap is keyed by an unsigned (the virtreg number), so the order 669 // of spilling here is deterministic, if arbitrary. 670 MachineBasicBlock::iterator InsertBefore = 671 getMBBBeginInsertionPoint(MBB, PrologLiveIns); 672 for (const LiveReg &LR : LiveVirtRegs) { 673 MCPhysReg PhysReg = LR.PhysReg; 674 if (PhysReg == 0) 675 continue; 676 677 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 678 if (RegUnitStates[FirstUnit] == regLiveIn) 679 continue; 680 681 assert((&MBB != &MBB.getParent()->front() || IgnoreMissingDefs) && 682 "no reload in start block. Missing vreg def?"); 683 684 if (PrologLiveIns.count(PhysReg)) { 685 // FIXME: Theoretically this should use an insert point skipping labels 686 // but I'm not sure how labels should interact with prolog instruction 687 // that need reloads. 688 reload(MBB.begin(), LR.VirtReg, PhysReg); 689 } else 690 reload(InsertBefore, LR.VirtReg, PhysReg); 691 } 692 LiveVirtRegs.clear(); 693 } 694 695 /// Handle the direct use of a physical register. Check that the register is 696 /// not used by a virtreg. Kill the physreg, marking it free. This may add 697 /// implicit kills to MO->getParent() and invalidate MO. 698 bool RegAllocFastImpl::usePhysReg(MachineInstr &MI, MCPhysReg Reg) { 699 assert(Register::isPhysicalRegister(Reg) && "expected physreg"); 700 bool displacedAny = displacePhysReg(MI, Reg); 701 setPhysRegState(Reg, regPreAssigned); 702 markRegUsedInInstr(Reg); 703 return displacedAny; 704 } 705 706 bool RegAllocFastImpl::definePhysReg(MachineInstr &MI, MCPhysReg Reg) { 707 bool displacedAny = displacePhysReg(MI, Reg); 708 setPhysRegState(Reg, regPreAssigned); 709 return displacedAny; 710 } 711 712 /// Mark PhysReg as reserved or free after spilling any virtregs. This is very 713 /// similar to defineVirtReg except the physreg is reserved instead of 714 /// allocated. 715 bool RegAllocFastImpl::displacePhysReg(MachineInstr &MI, MCPhysReg PhysReg) { 716 bool displacedAny = false; 717 718 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 719 switch (unsigned VirtReg = RegUnitStates[Unit]) { 720 default: { 721 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 722 assert(LRI != LiveVirtRegs.end() && "datastructures in sync"); 723 MachineBasicBlock::iterator ReloadBefore = 724 std::next((MachineBasicBlock::iterator)MI.getIterator()); 725 reload(ReloadBefore, VirtReg, LRI->PhysReg); 726 727 setPhysRegState(LRI->PhysReg, regFree); 728 LRI->PhysReg = 0; 729 LRI->Reloaded = true; 730 displacedAny = true; 731 break; 732 } 733 case regPreAssigned: 734 RegUnitStates[Unit] = regFree; 735 displacedAny = true; 736 break; 737 case regFree: 738 break; 739 } 740 } 741 return displacedAny; 742 } 743 744 void RegAllocFastImpl::freePhysReg(MCPhysReg PhysReg) { 745 LLVM_DEBUG(dbgs() << "Freeing " << printReg(PhysReg, TRI) << ':'); 746 747 MCRegister FirstUnit = *TRI->regunits(PhysReg).begin(); 748 switch (unsigned VirtReg = RegUnitStates[FirstUnit]) { 749 case regFree: 750 LLVM_DEBUG(dbgs() << '\n'); 751 return; 752 case regPreAssigned: 753 LLVM_DEBUG(dbgs() << '\n'); 754 setPhysRegState(PhysReg, regFree); 755 return; 756 default: { 757 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 758 assert(LRI != LiveVirtRegs.end()); 759 LLVM_DEBUG(dbgs() << ' ' << printReg(LRI->VirtReg, TRI) << '\n'); 760 setPhysRegState(LRI->PhysReg, regFree); 761 LRI->PhysReg = 0; 762 } 763 return; 764 } 765 } 766 767 /// Return the cost of spilling clearing out PhysReg and aliases so it is free 768 /// for allocation. Returns 0 when PhysReg is free or disabled with all aliases 769 /// disabled - it can be allocated directly. 770 /// \returns spillImpossible when PhysReg or an alias can't be spilled. 771 unsigned RegAllocFastImpl::calcSpillCost(MCPhysReg PhysReg) const { 772 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 773 switch (unsigned VirtReg = RegUnitStates[Unit]) { 774 case regFree: 775 break; 776 case regPreAssigned: 777 LLVM_DEBUG(dbgs() << "Cannot spill pre-assigned " 778 << printReg(PhysReg, TRI) << '\n'); 779 return spillImpossible; 780 default: { 781 bool SureSpill = StackSlotForVirtReg[VirtReg] != -1 || 782 findLiveVirtReg(VirtReg)->LiveOut; 783 return SureSpill ? spillClean : spillDirty; 784 } 785 } 786 } 787 return 0; 788 } 789 790 void RegAllocFastImpl::assignDanglingDebugValues(MachineInstr &Definition, 791 Register VirtReg, 792 MCPhysReg Reg) { 793 auto UDBGValIter = DanglingDbgValues.find(VirtReg); 794 if (UDBGValIter == DanglingDbgValues.end()) 795 return; 796 797 SmallVectorImpl<MachineInstr *> &Dangling = UDBGValIter->second; 798 for (MachineInstr *DbgValue : Dangling) { 799 assert(DbgValue->isDebugValue()); 800 if (!DbgValue->hasDebugOperandForReg(VirtReg)) 801 continue; 802 803 // Test whether the physreg survives from the definition to the DBG_VALUE. 804 MCPhysReg SetToReg = Reg; 805 unsigned Limit = 20; 806 for (MachineBasicBlock::iterator I = std::next(Definition.getIterator()), 807 E = DbgValue->getIterator(); 808 I != E; ++I) { 809 if (I->modifiesRegister(Reg, TRI) || --Limit == 0) { 810 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 811 << '\n'); 812 SetToReg = 0; 813 break; 814 } 815 } 816 for (MachineOperand &MO : DbgValue->getDebugOperandsForReg(VirtReg)) { 817 MO.setReg(SetToReg); 818 if (SetToReg != 0) 819 MO.setIsRenamable(); 820 } 821 } 822 Dangling.clear(); 823 } 824 825 /// This method updates local state so that we know that PhysReg is the 826 /// proper container for VirtReg now. The physical register must not be used 827 /// for anything else when this is called. 828 void RegAllocFastImpl::assignVirtToPhysReg(MachineInstr &AtMI, LiveReg &LR, 829 MCPhysReg PhysReg) { 830 Register VirtReg = LR.VirtReg; 831 LLVM_DEBUG(dbgs() << "Assigning " << printReg(VirtReg, TRI) << " to " 832 << printReg(PhysReg, TRI) << '\n'); 833 assert(LR.PhysReg == 0 && "Already assigned a physreg"); 834 assert(PhysReg != 0 && "Trying to assign no register"); 835 LR.PhysReg = PhysReg; 836 setPhysRegState(PhysReg, VirtReg); 837 838 assignDanglingDebugValues(AtMI, VirtReg, PhysReg); 839 } 840 841 static bool isCoalescable(const MachineInstr &MI) { return MI.isFullCopy(); } 842 843 Register RegAllocFastImpl::traceCopyChain(Register Reg) const { 844 static const unsigned ChainLengthLimit = 3; 845 unsigned C = 0; 846 do { 847 if (Reg.isPhysical()) 848 return Reg; 849 assert(Reg.isVirtual()); 850 851 MachineInstr *VRegDef = MRI->getUniqueVRegDef(Reg); 852 if (!VRegDef || !isCoalescable(*VRegDef)) 853 return 0; 854 Reg = VRegDef->getOperand(1).getReg(); 855 } while (++C <= ChainLengthLimit); 856 return 0; 857 } 858 859 /// Check if any of \p VirtReg's definitions is a copy. If it is follow the 860 /// chain of copies to check whether we reach a physical register we can 861 /// coalesce with. 862 Register RegAllocFastImpl::traceCopies(Register VirtReg) const { 863 static const unsigned DefLimit = 3; 864 unsigned C = 0; 865 for (const MachineInstr &MI : MRI->def_instructions(VirtReg)) { 866 if (isCoalescable(MI)) { 867 Register Reg = MI.getOperand(1).getReg(); 868 Reg = traceCopyChain(Reg); 869 if (Reg.isValid()) 870 return Reg; 871 } 872 873 if (++C >= DefLimit) 874 break; 875 } 876 return Register(); 877 } 878 879 /// Allocates a physical register for VirtReg. 880 void RegAllocFastImpl::allocVirtReg(MachineInstr &MI, LiveReg &LR, 881 Register Hint0, bool LookAtPhysRegUses) { 882 const Register VirtReg = LR.VirtReg; 883 assert(LR.PhysReg == 0); 884 885 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 886 LLVM_DEBUG(dbgs() << "Search register for " << printReg(VirtReg) 887 << " in class " << TRI->getRegClassName(&RC) 888 << " with hint " << printReg(Hint0, TRI) << '\n'); 889 890 // Take hint when possible. 891 if (Hint0.isPhysical() && MRI->isAllocatable(Hint0) && RC.contains(Hint0) && 892 !isRegUsedInInstr(Hint0, LookAtPhysRegUses)) { 893 // Take hint if the register is currently free. 894 if (isPhysRegFree(Hint0)) { 895 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint0, TRI) 896 << '\n'); 897 assignVirtToPhysReg(MI, LR, Hint0); 898 return; 899 } else { 900 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint0, TRI) 901 << " occupied\n"); 902 } 903 } else { 904 Hint0 = Register(); 905 } 906 907 // Try other hint. 908 Register Hint1 = traceCopies(VirtReg); 909 if (Hint1.isPhysical() && MRI->isAllocatable(Hint1) && RC.contains(Hint1) && 910 !isRegUsedInInstr(Hint1, LookAtPhysRegUses)) { 911 // Take hint if the register is currently free. 912 if (isPhysRegFree(Hint1)) { 913 LLVM_DEBUG(dbgs() << "\tPreferred Register 0: " << printReg(Hint1, TRI) 914 << '\n'); 915 assignVirtToPhysReg(MI, LR, Hint1); 916 return; 917 } else { 918 LLVM_DEBUG(dbgs() << "\tPreferred Register 1: " << printReg(Hint1, TRI) 919 << " occupied\n"); 920 } 921 } else { 922 Hint1 = Register(); 923 } 924 925 MCPhysReg BestReg = 0; 926 unsigned BestCost = spillImpossible; 927 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 928 for (MCPhysReg PhysReg : AllocationOrder) { 929 LLVM_DEBUG(dbgs() << "\tRegister: " << printReg(PhysReg, TRI) << ' '); 930 if (isRegUsedInInstr(PhysReg, LookAtPhysRegUses)) { 931 LLVM_DEBUG(dbgs() << "already used in instr.\n"); 932 continue; 933 } 934 935 unsigned Cost = calcSpillCost(PhysReg); 936 LLVM_DEBUG(dbgs() << "Cost: " << Cost << " BestCost: " << BestCost << '\n'); 937 // Immediate take a register with cost 0. 938 if (Cost == 0) { 939 assignVirtToPhysReg(MI, LR, PhysReg); 940 return; 941 } 942 943 if (PhysReg == Hint0 || PhysReg == Hint1) 944 Cost -= spillPrefBonus; 945 946 if (Cost < BestCost) { 947 BestReg = PhysReg; 948 BestCost = Cost; 949 } 950 } 951 952 if (!BestReg) { 953 // Nothing we can do: Report an error and keep going with an invalid 954 // allocation. 955 if (MI.isInlineAsm()) 956 MI.emitError("inline assembly requires more registers than available"); 957 else 958 MI.emitError("ran out of registers during register allocation"); 959 960 LR.Error = true; 961 LR.PhysReg = 0; 962 return; 963 } 964 965 displacePhysReg(MI, BestReg); 966 assignVirtToPhysReg(MI, LR, BestReg); 967 } 968 969 void RegAllocFastImpl::allocVirtRegUndef(MachineOperand &MO) { 970 assert(MO.isUndef() && "expected undef use"); 971 Register VirtReg = MO.getReg(); 972 assert(VirtReg.isVirtual() && "Expected virtreg"); 973 if (!shouldAllocateRegister(VirtReg)) 974 return; 975 976 LiveRegMap::const_iterator LRI = findLiveVirtReg(VirtReg); 977 MCPhysReg PhysReg; 978 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 979 PhysReg = LRI->PhysReg; 980 } else { 981 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 982 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 983 assert(!AllocationOrder.empty() && "Allocation order must not be empty"); 984 PhysReg = AllocationOrder[0]; 985 } 986 987 unsigned SubRegIdx = MO.getSubReg(); 988 if (SubRegIdx != 0) { 989 PhysReg = TRI->getSubReg(PhysReg, SubRegIdx); 990 MO.setSubReg(0); 991 } 992 MO.setReg(PhysReg); 993 MO.setIsRenamable(true); 994 } 995 996 /// Variation of defineVirtReg() with special handling for livethrough regs 997 /// (tied or earlyclobber) that may interfere with preassigned uses. 998 /// \return true if MI's MachineOperands were re-arranged/invalidated. 999 bool RegAllocFastImpl::defineLiveThroughVirtReg(MachineInstr &MI, 1000 unsigned OpNum, 1001 Register VirtReg) { 1002 if (!shouldAllocateRegister(VirtReg)) 1003 return false; 1004 LiveRegMap::iterator LRI = findLiveVirtReg(VirtReg); 1005 if (LRI != LiveVirtRegs.end()) { 1006 MCPhysReg PrevReg = LRI->PhysReg; 1007 if (PrevReg != 0 && isRegUsedInInstr(PrevReg, true)) { 1008 LLVM_DEBUG(dbgs() << "Need new assignment for " << printReg(PrevReg, TRI) 1009 << " (tied/earlyclobber resolution)\n"); 1010 freePhysReg(PrevReg); 1011 LRI->PhysReg = 0; 1012 allocVirtReg(MI, *LRI, 0, true); 1013 MachineBasicBlock::iterator InsertBefore = 1014 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1015 LLVM_DEBUG(dbgs() << "Copy " << printReg(LRI->PhysReg, TRI) << " to " 1016 << printReg(PrevReg, TRI) << '\n'); 1017 BuildMI(*MBB, InsertBefore, MI.getDebugLoc(), 1018 TII->get(TargetOpcode::COPY), PrevReg) 1019 .addReg(LRI->PhysReg, llvm::RegState::Kill); 1020 } 1021 MachineOperand &MO = MI.getOperand(OpNum); 1022 if (MO.getSubReg() && !MO.isUndef()) { 1023 LRI->LastUse = &MI; 1024 } 1025 } 1026 return defineVirtReg(MI, OpNum, VirtReg, true); 1027 } 1028 1029 /// Allocates a register for VirtReg definition. Typically the register is 1030 /// already assigned from a use of the virtreg, however we still need to 1031 /// perform an allocation if: 1032 /// - It is a dead definition without any uses. 1033 /// - The value is live out and all uses are in different basic blocks. 1034 /// 1035 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1036 bool RegAllocFastImpl::defineVirtReg(MachineInstr &MI, unsigned OpNum, 1037 Register VirtReg, bool LookAtPhysRegUses) { 1038 assert(VirtReg.isVirtual() && "Not a virtual register"); 1039 if (!shouldAllocateRegister(VirtReg)) 1040 return false; 1041 MachineOperand &MO = MI.getOperand(OpNum); 1042 LiveRegMap::iterator LRI; 1043 bool New; 1044 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1045 if (New) { 1046 if (!MO.isDead()) { 1047 if (mayLiveOut(VirtReg)) { 1048 LRI->LiveOut = true; 1049 } else { 1050 // It is a dead def without the dead flag; add the flag now. 1051 MO.setIsDead(true); 1052 } 1053 } 1054 } 1055 if (LRI->PhysReg == 0) { 1056 allocVirtReg(MI, *LRI, 0, LookAtPhysRegUses); 1057 // If no physical register is available for LRI, we assign one at random 1058 // and bail out of this function immediately. 1059 if (LRI->Error) { 1060 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1061 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1062 if (AllocationOrder.empty()) 1063 return setPhysReg(MI, MO, MCRegister::NoRegister); 1064 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1065 } 1066 } else { 1067 assert(!isRegUsedInInstr(LRI->PhysReg, LookAtPhysRegUses) && 1068 "TODO: preassign mismatch"); 1069 LLVM_DEBUG(dbgs() << "In def of " << printReg(VirtReg, TRI) 1070 << " use existing assignment to " 1071 << printReg(LRI->PhysReg, TRI) << '\n'); 1072 } 1073 1074 MCPhysReg PhysReg = LRI->PhysReg; 1075 if (LRI->Reloaded || LRI->LiveOut) { 1076 if (!MI.isImplicitDef()) { 1077 MachineBasicBlock::iterator SpillBefore = 1078 std::next((MachineBasicBlock::iterator)MI.getIterator()); 1079 LLVM_DEBUG(dbgs() << "Spill Reason: LO: " << LRI->LiveOut 1080 << " RL: " << LRI->Reloaded << '\n'); 1081 bool Kill = LRI->LastUse == nullptr; 1082 spill(SpillBefore, VirtReg, PhysReg, Kill, LRI->LiveOut); 1083 1084 // We need to place additional spills for each indirect destination of an 1085 // INLINEASM_BR. 1086 if (MI.getOpcode() == TargetOpcode::INLINEASM_BR) { 1087 int FI = StackSlotForVirtReg[VirtReg]; 1088 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1089 for (MachineOperand &MO : MI.operands()) { 1090 if (MO.isMBB()) { 1091 MachineBasicBlock *Succ = MO.getMBB(); 1092 TII->storeRegToStackSlot(*Succ, Succ->begin(), PhysReg, Kill, FI, 1093 &RC, TRI, VirtReg); 1094 ++NumStores; 1095 Succ->addLiveIn(PhysReg); 1096 } 1097 } 1098 } 1099 1100 LRI->LastUse = nullptr; 1101 } 1102 LRI->LiveOut = false; 1103 LRI->Reloaded = false; 1104 } 1105 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1106 BundleVirtRegsMap[VirtReg] = PhysReg; 1107 } 1108 markRegUsedInInstr(PhysReg); 1109 return setPhysReg(MI, MO, PhysReg); 1110 } 1111 1112 /// Allocates a register for a VirtReg use. 1113 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1114 bool RegAllocFastImpl::useVirtReg(MachineInstr &MI, MachineOperand &MO, 1115 Register VirtReg) { 1116 assert(VirtReg.isVirtual() && "Not a virtual register"); 1117 if (!shouldAllocateRegister(VirtReg)) 1118 return false; 1119 LiveRegMap::iterator LRI; 1120 bool New; 1121 std::tie(LRI, New) = LiveVirtRegs.insert(LiveReg(VirtReg)); 1122 if (New) { 1123 if (!MO.isKill()) { 1124 if (mayLiveOut(VirtReg)) { 1125 LRI->LiveOut = true; 1126 } else { 1127 // It is a last (killing) use without the kill flag; add the flag now. 1128 MO.setIsKill(true); 1129 } 1130 } 1131 } else { 1132 assert((!MO.isKill() || LRI->LastUse == &MI) && "Invalid kill flag"); 1133 } 1134 1135 // If necessary allocate a register. 1136 if (LRI->PhysReg == 0) { 1137 assert(!MO.isTied() && "tied op should be allocated"); 1138 Register Hint; 1139 if (MI.isCopy() && MI.getOperand(1).getSubReg() == 0) { 1140 Hint = MI.getOperand(0).getReg(); 1141 if (Hint.isVirtual()) { 1142 assert(!shouldAllocateRegister(Hint)); 1143 Hint = Register(); 1144 } else { 1145 assert(Hint.isPhysical() && 1146 "Copy destination should already be assigned"); 1147 } 1148 } 1149 allocVirtReg(MI, *LRI, Hint, false); 1150 if (LRI->Error) { 1151 const TargetRegisterClass &RC = *MRI->getRegClass(VirtReg); 1152 ArrayRef<MCPhysReg> AllocationOrder = RegClassInfo.getOrder(&RC); 1153 if (AllocationOrder.empty()) 1154 return setPhysReg(MI, MO, MCRegister::NoRegister); 1155 return setPhysReg(MI, MO, *AllocationOrder.begin()); 1156 } 1157 } 1158 1159 LRI->LastUse = &MI; 1160 1161 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1162 BundleVirtRegsMap[VirtReg] = LRI->PhysReg; 1163 } 1164 markRegUsedInInstr(LRI->PhysReg); 1165 return setPhysReg(MI, MO, LRI->PhysReg); 1166 } 1167 1168 /// Changes operand OpNum in MI the refer the PhysReg, considering subregs. 1169 /// \return true if MI's MachineOperands were re-arranged/invalidated. 1170 bool RegAllocFastImpl::setPhysReg(MachineInstr &MI, MachineOperand &MO, 1171 MCPhysReg PhysReg) { 1172 if (!MO.getSubReg()) { 1173 MO.setReg(PhysReg); 1174 MO.setIsRenamable(true); 1175 return false; 1176 } 1177 1178 // Handle subregister index. 1179 MO.setReg(PhysReg ? TRI->getSubReg(PhysReg, MO.getSubReg()) : MCRegister()); 1180 MO.setIsRenamable(true); 1181 // Note: We leave the subreg number around a little longer in case of defs. 1182 // This is so that the register freeing logic in allocateInstruction can still 1183 // recognize this as subregister defs. The code there will clear the number. 1184 if (!MO.isDef()) 1185 MO.setSubReg(0); 1186 1187 // A kill flag implies killing the full register. Add corresponding super 1188 // register kill. 1189 if (MO.isKill()) { 1190 MI.addRegisterKilled(PhysReg, TRI, true); 1191 // Conservatively assume implicit MOs were re-arranged 1192 return true; 1193 } 1194 1195 // A <def,read-undef> of a sub-register requires an implicit def of the full 1196 // register. 1197 if (MO.isDef() && MO.isUndef()) { 1198 if (MO.isDead()) 1199 MI.addRegisterDead(PhysReg, TRI, true); 1200 else 1201 MI.addRegisterDefined(PhysReg, TRI); 1202 // Conservatively assume implicit MOs were re-arranged 1203 return true; 1204 } 1205 return false; 1206 } 1207 1208 #ifndef NDEBUG 1209 1210 void RegAllocFastImpl::dumpState() const { 1211 for (unsigned Unit = 1, UnitE = TRI->getNumRegUnits(); Unit != UnitE; 1212 ++Unit) { 1213 switch (unsigned VirtReg = RegUnitStates[Unit]) { 1214 case regFree: 1215 break; 1216 case regPreAssigned: 1217 dbgs() << " " << printRegUnit(Unit, TRI) << "[P]"; 1218 break; 1219 case regLiveIn: 1220 llvm_unreachable("Should not have regLiveIn in map"); 1221 default: { 1222 dbgs() << ' ' << printRegUnit(Unit, TRI) << '=' << printReg(VirtReg); 1223 LiveRegMap::const_iterator I = findLiveVirtReg(VirtReg); 1224 assert(I != LiveVirtRegs.end() && "have LiveVirtRegs entry"); 1225 if (I->LiveOut || I->Reloaded) { 1226 dbgs() << '['; 1227 if (I->LiveOut) 1228 dbgs() << 'O'; 1229 if (I->Reloaded) 1230 dbgs() << 'R'; 1231 dbgs() << ']'; 1232 } 1233 assert(TRI->hasRegUnit(I->PhysReg, Unit) && "inverse mapping present"); 1234 break; 1235 } 1236 } 1237 } 1238 dbgs() << '\n'; 1239 // Check that LiveVirtRegs is the inverse. 1240 for (const LiveReg &LR : LiveVirtRegs) { 1241 Register VirtReg = LR.VirtReg; 1242 assert(VirtReg.isVirtual() && "Bad map key"); 1243 MCPhysReg PhysReg = LR.PhysReg; 1244 if (PhysReg != 0) { 1245 assert(Register::isPhysicalRegister(PhysReg) && "mapped to physreg"); 1246 for (MCRegUnit Unit : TRI->regunits(PhysReg)) { 1247 assert(RegUnitStates[Unit] == VirtReg && "inverse map valid"); 1248 } 1249 } 1250 } 1251 } 1252 #endif 1253 1254 /// Count number of defs consumed from each register class by \p Reg 1255 void RegAllocFastImpl::addRegClassDefCounts( 1256 std::vector<unsigned> &RegClassDefCounts, Register Reg) const { 1257 assert(RegClassDefCounts.size() == TRI->getNumRegClasses()); 1258 1259 if (Reg.isVirtual()) { 1260 if (!shouldAllocateRegister(Reg)) 1261 return; 1262 const TargetRegisterClass *OpRC = MRI->getRegClass(Reg); 1263 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1264 RCIdx != RCIdxEnd; ++RCIdx) { 1265 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1266 // FIXME: Consider aliasing sub/super registers. 1267 if (OpRC->hasSubClassEq(IdxRC)) 1268 ++RegClassDefCounts[RCIdx]; 1269 } 1270 1271 return; 1272 } 1273 1274 for (unsigned RCIdx = 0, RCIdxEnd = TRI->getNumRegClasses(); 1275 RCIdx != RCIdxEnd; ++RCIdx) { 1276 const TargetRegisterClass *IdxRC = TRI->getRegClass(RCIdx); 1277 for (MCRegAliasIterator Alias(Reg, TRI, true); Alias.isValid(); ++Alias) { 1278 if (IdxRC->contains(*Alias)) { 1279 ++RegClassDefCounts[RCIdx]; 1280 break; 1281 } 1282 } 1283 } 1284 } 1285 1286 /// Compute \ref DefOperandIndexes so it contains the indices of "def" operands 1287 /// that are to be allocated. Those are ordered in a way that small classes, 1288 /// early clobbers and livethroughs are allocated first. 1289 void RegAllocFastImpl::findAndSortDefOperandIndexes(const MachineInstr &MI) { 1290 DefOperandIndexes.clear(); 1291 1292 // Track number of defs which may consume a register from the class. 1293 std::vector<unsigned> RegClassDefCounts(TRI->getNumRegClasses(), 0); 1294 assert(RegClassDefCounts[0] == 0); 1295 1296 LLVM_DEBUG(dbgs() << "Need to assign livethroughs\n"); 1297 for (unsigned I = 0, E = MI.getNumOperands(); I < E; ++I) { 1298 const MachineOperand &MO = MI.getOperand(I); 1299 if (!MO.isReg()) 1300 continue; 1301 Register Reg = MO.getReg(); 1302 if (MO.readsReg()) { 1303 if (Reg.isPhysical()) { 1304 LLVM_DEBUG(dbgs() << "mark extra used: " << printReg(Reg, TRI) << '\n'); 1305 markPhysRegUsedInInstr(Reg); 1306 } 1307 } 1308 1309 if (MO.isDef()) { 1310 if (Reg.isVirtual() && shouldAllocateRegister(Reg)) 1311 DefOperandIndexes.push_back(I); 1312 1313 addRegClassDefCounts(RegClassDefCounts, Reg); 1314 } 1315 } 1316 1317 llvm::sort(DefOperandIndexes, [&](uint16_t I0, uint16_t I1) { 1318 const MachineOperand &MO0 = MI.getOperand(I0); 1319 const MachineOperand &MO1 = MI.getOperand(I1); 1320 Register Reg0 = MO0.getReg(); 1321 Register Reg1 = MO1.getReg(); 1322 const TargetRegisterClass &RC0 = *MRI->getRegClass(Reg0); 1323 const TargetRegisterClass &RC1 = *MRI->getRegClass(Reg1); 1324 1325 // Identify regclass that are easy to use up completely just in this 1326 // instruction. 1327 unsigned ClassSize0 = RegClassInfo.getOrder(&RC0).size(); 1328 unsigned ClassSize1 = RegClassInfo.getOrder(&RC1).size(); 1329 1330 bool SmallClass0 = ClassSize0 < RegClassDefCounts[RC0.getID()]; 1331 bool SmallClass1 = ClassSize1 < RegClassDefCounts[RC1.getID()]; 1332 if (SmallClass0 > SmallClass1) 1333 return true; 1334 if (SmallClass0 < SmallClass1) 1335 return false; 1336 1337 // Allocate early clobbers and livethrough operands first. 1338 bool Livethrough0 = MO0.isEarlyClobber() || MO0.isTied() || 1339 (MO0.getSubReg() == 0 && !MO0.isUndef()); 1340 bool Livethrough1 = MO1.isEarlyClobber() || MO1.isTied() || 1341 (MO1.getSubReg() == 0 && !MO1.isUndef()); 1342 if (Livethrough0 > Livethrough1) 1343 return true; 1344 if (Livethrough0 < Livethrough1) 1345 return false; 1346 1347 // Tie-break rule: operand index. 1348 return I0 < I1; 1349 }); 1350 } 1351 1352 // Returns true if MO is tied and the operand it's tied to is not Undef (not 1353 // Undef is not the same thing as Def). 1354 static bool isTiedToNotUndef(const MachineOperand &MO) { 1355 if (!MO.isTied()) 1356 return false; 1357 const MachineInstr &MI = *MO.getParent(); 1358 unsigned TiedIdx = MI.findTiedOperandIdx(MI.getOperandNo(&MO)); 1359 const MachineOperand &TiedMO = MI.getOperand(TiedIdx); 1360 return !TiedMO.isUndef(); 1361 } 1362 1363 void RegAllocFastImpl::allocateInstruction(MachineInstr &MI) { 1364 // The basic algorithm here is: 1365 // 1. Mark registers of def operands as free 1366 // 2. Allocate registers to use operands and place reload instructions for 1367 // registers displaced by the allocation. 1368 // 1369 // However we need to handle some corner cases: 1370 // - pre-assigned defs and uses need to be handled before the other def/use 1371 // operands are processed to avoid the allocation heuristics clashing with 1372 // the pre-assignment. 1373 // - The "free def operands" step has to come last instead of first for tied 1374 // operands and early-clobbers. 1375 1376 UsedInInstr.clear(); 1377 RegMasks.clear(); 1378 BundleVirtRegsMap.clear(); 1379 1380 // Scan for special cases; Apply pre-assigned register defs to state. 1381 bool HasPhysRegUse = false; 1382 bool HasRegMask = false; 1383 bool HasVRegDef = false; 1384 bool HasDef = false; 1385 bool HasEarlyClobber = false; 1386 bool NeedToAssignLiveThroughs = false; 1387 for (MachineOperand &MO : MI.operands()) { 1388 if (MO.isReg()) { 1389 Register Reg = MO.getReg(); 1390 if (Reg.isVirtual()) { 1391 if (!shouldAllocateRegister(Reg)) 1392 continue; 1393 if (MO.isDef()) { 1394 HasDef = true; 1395 HasVRegDef = true; 1396 if (MO.isEarlyClobber()) { 1397 HasEarlyClobber = true; 1398 NeedToAssignLiveThroughs = true; 1399 } 1400 if (isTiedToNotUndef(MO) || (MO.getSubReg() != 0 && !MO.isUndef())) 1401 NeedToAssignLiveThroughs = true; 1402 } 1403 } else if (Reg.isPhysical()) { 1404 if (!MRI->isReserved(Reg)) { 1405 if (MO.isDef()) { 1406 HasDef = true; 1407 bool displacedAny = definePhysReg(MI, Reg); 1408 if (MO.isEarlyClobber()) 1409 HasEarlyClobber = true; 1410 if (!displacedAny) 1411 MO.setIsDead(true); 1412 } 1413 if (MO.readsReg()) 1414 HasPhysRegUse = true; 1415 } 1416 } 1417 } else if (MO.isRegMask()) { 1418 HasRegMask = true; 1419 RegMasks.push_back(MO.getRegMask()); 1420 } 1421 } 1422 1423 // Allocate virtreg defs. 1424 if (HasDef) { 1425 if (HasVRegDef) { 1426 // Note that Implicit MOs can get re-arranged by defineVirtReg(), so loop 1427 // multiple times to ensure no operand is missed. 1428 bool ReArrangedImplicitOps = true; 1429 1430 // Special handling for early clobbers, tied operands or subregister defs: 1431 // Compared to "normal" defs these: 1432 // - Must not use a register that is pre-assigned for a use operand. 1433 // - In order to solve tricky inline assembly constraints we change the 1434 // heuristic to figure out a good operand order before doing 1435 // assignments. 1436 if (NeedToAssignLiveThroughs) { 1437 PhysRegUses.clear(); 1438 1439 while (ReArrangedImplicitOps) { 1440 ReArrangedImplicitOps = false; 1441 findAndSortDefOperandIndexes(MI); 1442 for (uint16_t OpIdx : DefOperandIndexes) { 1443 MachineOperand &MO = MI.getOperand(OpIdx); 1444 LLVM_DEBUG(dbgs() << "Allocating " << MO << '\n'); 1445 Register Reg = MO.getReg(); 1446 if (MO.isEarlyClobber() || isTiedToNotUndef(MO) || 1447 (MO.getSubReg() && !MO.isUndef())) { 1448 ReArrangedImplicitOps = defineLiveThroughVirtReg(MI, OpIdx, Reg); 1449 } else { 1450 ReArrangedImplicitOps = defineVirtReg(MI, OpIdx, Reg); 1451 } 1452 // Implicit operands of MI were re-arranged, 1453 // re-compute DefOperandIndexes. 1454 if (ReArrangedImplicitOps) 1455 break; 1456 } 1457 } 1458 } else { 1459 // Assign virtual register defs. 1460 while (ReArrangedImplicitOps) { 1461 ReArrangedImplicitOps = false; 1462 for (MachineOperand &MO : MI.operands()) { 1463 if (!MO.isReg() || !MO.isDef()) 1464 continue; 1465 Register Reg = MO.getReg(); 1466 if (Reg.isVirtual()) { 1467 ReArrangedImplicitOps = 1468 defineVirtReg(MI, MI.getOperandNo(&MO), Reg); 1469 if (ReArrangedImplicitOps) 1470 break; 1471 } 1472 } 1473 } 1474 } 1475 } 1476 1477 // Free registers occupied by defs. 1478 // Iterate operands in reverse order, so we see the implicit super register 1479 // defs first (we added them earlier in case of <def,read-undef>). 1480 for (MachineOperand &MO : reverse(MI.operands())) { 1481 if (!MO.isReg() || !MO.isDef()) 1482 continue; 1483 1484 Register Reg = MO.getReg(); 1485 1486 // subreg defs don't free the full register. We left the subreg number 1487 // around as a marker in setPhysReg() to recognize this case here. 1488 if (Reg.isPhysical() && MO.getSubReg() != 0) { 1489 MO.setSubReg(0); 1490 continue; 1491 } 1492 1493 assert((!MO.isTied() || !isClobberedByRegMasks(MO.getReg())) && 1494 "tied def assigned to clobbered register"); 1495 1496 // Do not free tied operands and early clobbers. 1497 if (isTiedToNotUndef(MO) || MO.isEarlyClobber()) 1498 continue; 1499 if (!Reg) 1500 continue; 1501 if (Reg.isVirtual()) { 1502 assert(!shouldAllocateRegister(Reg)); 1503 continue; 1504 } 1505 assert(Reg.isPhysical()); 1506 if (MRI->isReserved(Reg)) 1507 continue; 1508 freePhysReg(Reg); 1509 unmarkRegUsedInInstr(Reg); 1510 } 1511 } 1512 1513 // Displace clobbered registers. 1514 if (HasRegMask) { 1515 assert(!RegMasks.empty() && "expected RegMask"); 1516 // MRI bookkeeping. 1517 for (const auto *RM : RegMasks) 1518 MRI->addPhysRegsUsedFromRegMask(RM); 1519 1520 // Displace clobbered registers. 1521 for (const LiveReg &LR : LiveVirtRegs) { 1522 MCPhysReg PhysReg = LR.PhysReg; 1523 if (PhysReg != 0 && isClobberedByRegMasks(PhysReg)) 1524 displacePhysReg(MI, PhysReg); 1525 } 1526 } 1527 1528 // Apply pre-assigned register uses to state. 1529 if (HasPhysRegUse) { 1530 for (MachineOperand &MO : MI.operands()) { 1531 if (!MO.isReg() || !MO.readsReg()) 1532 continue; 1533 Register Reg = MO.getReg(); 1534 if (!Reg.isPhysical()) 1535 continue; 1536 if (MRI->isReserved(Reg)) 1537 continue; 1538 if (!usePhysReg(MI, Reg)) 1539 MO.setIsKill(true); 1540 } 1541 } 1542 1543 // Allocate virtreg uses and insert reloads as necessary. 1544 // Implicit MOs can get moved/removed by useVirtReg(), so loop multiple 1545 // times to ensure no operand is missed. 1546 bool HasUndefUse = false; 1547 bool ReArrangedImplicitMOs = true; 1548 while (ReArrangedImplicitMOs) { 1549 ReArrangedImplicitMOs = false; 1550 for (MachineOperand &MO : MI.operands()) { 1551 if (!MO.isReg() || !MO.isUse()) 1552 continue; 1553 Register Reg = MO.getReg(); 1554 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1555 continue; 1556 1557 if (MO.isUndef()) { 1558 HasUndefUse = true; 1559 continue; 1560 } 1561 1562 // Populate MayLiveAcrossBlocks in case the use block is allocated before 1563 // the def block (removing the vreg uses). 1564 mayLiveIn(Reg); 1565 1566 assert(!MO.isInternalRead() && "Bundles not supported"); 1567 assert(MO.readsReg() && "reading use"); 1568 ReArrangedImplicitMOs = useVirtReg(MI, MO, Reg); 1569 if (ReArrangedImplicitMOs) 1570 break; 1571 } 1572 } 1573 1574 // Allocate undef operands. This is a separate step because in a situation 1575 // like ` = OP undef %X, %X` both operands need the same register assign 1576 // so we should perform the normal assignment first. 1577 if (HasUndefUse) { 1578 for (MachineOperand &MO : MI.all_uses()) { 1579 Register Reg = MO.getReg(); 1580 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1581 continue; 1582 1583 assert(MO.isUndef() && "Should only have undef virtreg uses left"); 1584 allocVirtRegUndef(MO); 1585 } 1586 } 1587 1588 // Free early clobbers. 1589 if (HasEarlyClobber) { 1590 for (MachineOperand &MO : reverse(MI.all_defs())) { 1591 if (!MO.isEarlyClobber()) 1592 continue; 1593 assert(!MO.getSubReg() && "should be already handled in def processing"); 1594 1595 Register Reg = MO.getReg(); 1596 if (!Reg) 1597 continue; 1598 if (Reg.isVirtual()) { 1599 assert(!shouldAllocateRegister(Reg)); 1600 continue; 1601 } 1602 assert(Reg.isPhysical() && "should have register assigned"); 1603 1604 // We sometimes get odd situations like: 1605 // early-clobber %x0 = INSTRUCTION %x0 1606 // which is semantically questionable as the early-clobber should 1607 // apply before the use. But in practice we consider the use to 1608 // happen before the early clobber now. Don't free the early clobber 1609 // register in this case. 1610 if (MI.readsRegister(Reg, TRI)) 1611 continue; 1612 1613 freePhysReg(Reg); 1614 } 1615 } 1616 1617 LLVM_DEBUG(dbgs() << "<< " << MI); 1618 if (MI.isCopy() && MI.getOperand(0).getReg() == MI.getOperand(1).getReg() && 1619 MI.getNumOperands() == 2) { 1620 LLVM_DEBUG(dbgs() << "Mark identity copy for removal\n"); 1621 Coalesced.push_back(&MI); 1622 } 1623 } 1624 1625 void RegAllocFastImpl::handleDebugValue(MachineInstr &MI) { 1626 // Ignore DBG_VALUEs that aren't based on virtual registers. These are 1627 // mostly constants and frame indices. 1628 assert(MI.isDebugValue() && "not a DBG_VALUE*"); 1629 for (const auto &MO : MI.debug_operands()) { 1630 if (!MO.isReg()) 1631 continue; 1632 Register Reg = MO.getReg(); 1633 if (!Reg.isVirtual()) 1634 continue; 1635 if (!shouldAllocateRegister(Reg)) 1636 continue; 1637 1638 // Already spilled to a stackslot? 1639 int SS = StackSlotForVirtReg[Reg]; 1640 if (SS != -1) { 1641 // Modify DBG_VALUE now that the value is in a spill slot. 1642 updateDbgValueForSpill(MI, SS, Reg); 1643 LLVM_DEBUG(dbgs() << "Rewrite DBG_VALUE for spilled memory: " << MI); 1644 continue; 1645 } 1646 1647 // See if this virtual register has already been allocated to a physical 1648 // register or spilled to a stack slot. 1649 LiveRegMap::iterator LRI = findLiveVirtReg(Reg); 1650 SmallVector<MachineOperand *> DbgOps; 1651 for (MachineOperand &Op : MI.getDebugOperandsForReg(Reg)) 1652 DbgOps.push_back(&Op); 1653 1654 if (LRI != LiveVirtRegs.end() && LRI->PhysReg) { 1655 // Update every use of Reg within MI. 1656 for (auto &RegMO : DbgOps) 1657 setPhysReg(MI, *RegMO, LRI->PhysReg); 1658 } else { 1659 DanglingDbgValues[Reg].push_back(&MI); 1660 } 1661 1662 // If Reg hasn't been spilled, put this DBG_VALUE in LiveDbgValueMap so 1663 // that future spills of Reg will have DBG_VALUEs. 1664 LiveDbgValueMap[Reg].append(DbgOps.begin(), DbgOps.end()); 1665 } 1666 } 1667 1668 void RegAllocFastImpl::handleBundle(MachineInstr &MI) { 1669 MachineBasicBlock::instr_iterator BundledMI = MI.getIterator(); 1670 ++BundledMI; 1671 while (BundledMI->isBundledWithPred()) { 1672 for (MachineOperand &MO : BundledMI->operands()) { 1673 if (!MO.isReg()) 1674 continue; 1675 1676 Register Reg = MO.getReg(); 1677 if (!Reg.isVirtual() || !shouldAllocateRegister(Reg)) 1678 continue; 1679 1680 DenseMap<Register, MCPhysReg>::iterator DI; 1681 DI = BundleVirtRegsMap.find(Reg); 1682 assert(DI != BundleVirtRegsMap.end() && "Unassigned virtual register"); 1683 1684 setPhysReg(MI, MO, DI->second); 1685 } 1686 1687 ++BundledMI; 1688 } 1689 } 1690 1691 void RegAllocFastImpl::allocateBasicBlock(MachineBasicBlock &MBB) { 1692 this->MBB = &MBB; 1693 LLVM_DEBUG(dbgs() << "\nAllocating " << MBB); 1694 1695 PosIndexes.unsetInitialized(); 1696 RegUnitStates.assign(TRI->getNumRegUnits(), regFree); 1697 assert(LiveVirtRegs.empty() && "Mapping not cleared from last block?"); 1698 1699 for (const auto &LiveReg : MBB.liveouts()) 1700 setPhysRegState(LiveReg.PhysReg, regPreAssigned); 1701 1702 Coalesced.clear(); 1703 1704 // Traverse block in reverse order allocating instructions one by one. 1705 for (MachineInstr &MI : reverse(MBB)) { 1706 LLVM_DEBUG(dbgs() << "\n>> " << MI << "Regs:"; dumpState()); 1707 1708 // Special handling for debug values. Note that they are not allowed to 1709 // affect codegen of the other instructions in any way. 1710 if (MI.isDebugValue()) { 1711 handleDebugValue(MI); 1712 continue; 1713 } 1714 1715 allocateInstruction(MI); 1716 1717 // Once BUNDLE header is assigned registers, same assignments need to be 1718 // done for bundled MIs. 1719 if (MI.getOpcode() == TargetOpcode::BUNDLE) { 1720 handleBundle(MI); 1721 } 1722 } 1723 1724 LLVM_DEBUG(dbgs() << "Begin Regs:"; dumpState()); 1725 1726 // Spill all physical registers holding virtual registers now. 1727 LLVM_DEBUG(dbgs() << "Loading live registers at begin of block.\n"); 1728 reloadAtBegin(MBB); 1729 1730 // Erase all the coalesced copies. We are delaying it until now because 1731 // LiveVirtRegs might refer to the instrs. 1732 for (MachineInstr *MI : Coalesced) 1733 MBB.erase(MI); 1734 NumCoalesced += Coalesced.size(); 1735 1736 for (auto &UDBGPair : DanglingDbgValues) { 1737 for (MachineInstr *DbgValue : UDBGPair.second) { 1738 assert(DbgValue->isDebugValue() && "expected DBG_VALUE"); 1739 // Nothing to do if the vreg was spilled in the meantime. 1740 if (!DbgValue->hasDebugOperandForReg(UDBGPair.first)) 1741 continue; 1742 LLVM_DEBUG(dbgs() << "Register did not survive for " << *DbgValue 1743 << '\n'); 1744 DbgValue->setDebugValueUndef(); 1745 } 1746 } 1747 DanglingDbgValues.clear(); 1748 1749 LLVM_DEBUG(MBB.dump()); 1750 } 1751 1752 bool RegAllocFastImpl::runOnMachineFunction(MachineFunction &MF) { 1753 LLVM_DEBUG(dbgs() << "********** FAST REGISTER ALLOCATION **********\n" 1754 << "********** Function: " << MF.getName() << '\n'); 1755 MRI = &MF.getRegInfo(); 1756 const TargetSubtargetInfo &STI = MF.getSubtarget(); 1757 TRI = STI.getRegisterInfo(); 1758 TII = STI.getInstrInfo(); 1759 MFI = &MF.getFrameInfo(); 1760 MRI->freezeReservedRegs(); 1761 RegClassInfo.runOnMachineFunction(MF); 1762 unsigned NumRegUnits = TRI->getNumRegUnits(); 1763 UsedInInstr.clear(); 1764 UsedInInstr.setUniverse(NumRegUnits); 1765 PhysRegUses.clear(); 1766 PhysRegUses.setUniverse(NumRegUnits); 1767 1768 // initialize the virtual->physical register map to have a 'null' 1769 // mapping for all virtual registers 1770 unsigned NumVirtRegs = MRI->getNumVirtRegs(); 1771 StackSlotForVirtReg.resize(NumVirtRegs); 1772 LiveVirtRegs.setUniverse(NumVirtRegs); 1773 MayLiveAcrossBlocks.clear(); 1774 MayLiveAcrossBlocks.resize(NumVirtRegs); 1775 1776 // Loop over all of the basic blocks, eliminating virtual register references 1777 for (MachineBasicBlock &MBB : MF) 1778 allocateBasicBlock(MBB); 1779 1780 if (ClearVirtRegs) { 1781 // All machine operands and other references to virtual registers have been 1782 // replaced. Remove the virtual registers. 1783 MRI->clearVirtRegs(); 1784 } 1785 1786 StackSlotForVirtReg.clear(); 1787 LiveDbgValueMap.clear(); 1788 return true; 1789 } 1790 1791 PreservedAnalyses RegAllocFastPass::run(MachineFunction &MF, 1792 MachineFunctionAnalysisManager &) { 1793 RegAllocFastImpl Impl(Opts.Filter, Opts.ClearVRegs); 1794 bool Changed = Impl.runOnMachineFunction(MF); 1795 if (!Changed) 1796 return PreservedAnalyses::all(); 1797 auto PA = getMachineFunctionPassPreservedAnalyses(); 1798 PA.preserveSet<CFGAnalyses>(); 1799 return PA; 1800 } 1801 1802 void RegAllocFastPass::printPipeline( 1803 raw_ostream &OS, function_ref<StringRef(StringRef)> MapClassName2PassName) { 1804 bool PrintFilterName = Opts.FilterName != "all"; 1805 bool PrintNoClearVRegs = !Opts.ClearVRegs; 1806 bool PrintSemicolon = PrintFilterName && PrintNoClearVRegs; 1807 1808 OS << "regallocfast"; 1809 if (PrintFilterName || PrintNoClearVRegs) { 1810 OS << '<'; 1811 if (PrintFilterName) 1812 OS << "filter=" << Opts.FilterName; 1813 if (PrintSemicolon) 1814 OS << ';'; 1815 if (PrintNoClearVRegs) 1816 OS << "no-clear-vregs"; 1817 OS << '>'; 1818 } 1819 } 1820 1821 FunctionPass *llvm::createFastRegisterAllocator() { return new RegAllocFast(); } 1822 1823 FunctionPass *llvm::createFastRegisterAllocator(RegClassFilterFunc Ftor, 1824 bool ClearVirtRegs) { 1825 return new RegAllocFast(Ftor, ClearVirtRegs); 1826 } 1827