1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RABasic function pass, which provides a minimal 11 // implementation of the basic register allocator. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "LiveIntervalUnion.h" 17 #include "RegAllocBase.h" 18 #include "RenderMachineFunction.h" 19 #include "Spiller.h" 20 #include "VirtRegMap.h" 21 #include "VirtRegRewriter.h" 22 #include "llvm/ADT/OwningPtr.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Function.h" 25 #include "llvm/PassAnalysisSupport.h" 26 #include "llvm/CodeGen/CalcSpillWeights.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/LiveStackAnalysis.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/RegAllocRegistry.h" 35 #include "llvm/CodeGen/RegisterCoalescer.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #ifndef NDEBUG 40 #include "llvm/ADT/SparseBitVector.h" 41 #endif 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 #include <cstdlib> 47 48 using namespace llvm; 49 50 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 51 createBasicRegisterAllocator); 52 53 // Temporary verification option until we can put verification inside 54 // MachineVerifier. 55 static cl::opt<bool> 56 VerifyRegAlloc("verify-regalloc", 57 cl::desc("Verify live intervals before renaming")); 58 59 namespace { 60 61 class PhysicalRegisterDescription : public AbstractRegisterDescription { 62 const TargetRegisterInfo *TRI; 63 public: 64 PhysicalRegisterDescription(const TargetRegisterInfo *T): TRI(T) {} 65 virtual const char *getName(unsigned Reg) const { return TRI->getName(Reg); } 66 }; 67 68 /// RABasic provides a minimal implementation of the basic register allocation 69 /// algorithm. It prioritizes live virtual registers by spill weight and spills 70 /// whenever a register is unavailable. This is not practical in production but 71 /// provides a useful baseline both for measuring other allocators and comparing 72 /// the speed of the basic algorithm against other styles of allocators. 73 class RABasic : public MachineFunctionPass, public RegAllocBase 74 { 75 // context 76 MachineFunction *MF; 77 const TargetMachine *TM; 78 MachineRegisterInfo *MRI; 79 80 BitVector ReservedRegs; 81 82 // analyses 83 LiveStacks *LS; 84 RenderMachineFunction *RMF; 85 86 // state 87 std::auto_ptr<Spiller> SpillerInstance; 88 89 public: 90 RABasic(); 91 92 /// Return the pass name. 93 virtual const char* getPassName() const { 94 return "Basic Register Allocator"; 95 } 96 97 /// RABasic analysis usage. 98 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 99 100 virtual void releaseMemory(); 101 102 virtual Spiller &spiller() { return *SpillerInstance; } 103 104 virtual float getPriority(LiveInterval *LI) { return LI->weight; } 105 106 virtual unsigned selectOrSplit(LiveInterval &VirtReg, 107 SmallVectorImpl<LiveInterval*> &SplitVRegs); 108 109 /// Perform register allocation. 110 virtual bool runOnMachineFunction(MachineFunction &mf); 111 112 static char ID; 113 }; 114 115 char RABasic::ID = 0; 116 117 } // end anonymous namespace 118 119 RABasic::RABasic(): MachineFunctionPass(ID) { 120 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 121 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 122 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 123 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); 124 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 125 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 126 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 127 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 128 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 129 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); 130 } 131 132 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 133 AU.setPreservesCFG(); 134 AU.addRequired<AliasAnalysis>(); 135 AU.addPreserved<AliasAnalysis>(); 136 AU.addRequired<LiveIntervals>(); 137 AU.addPreserved<SlotIndexes>(); 138 if (StrongPHIElim) 139 AU.addRequiredID(StrongPHIEliminationID); 140 AU.addRequiredTransitive<RegisterCoalescer>(); 141 AU.addRequired<CalculateSpillWeights>(); 142 AU.addRequired<LiveStacks>(); 143 AU.addPreserved<LiveStacks>(); 144 AU.addRequiredID(MachineDominatorsID); 145 AU.addPreservedID(MachineDominatorsID); 146 AU.addRequired<MachineLoopInfo>(); 147 AU.addPreserved<MachineLoopInfo>(); 148 AU.addRequired<VirtRegMap>(); 149 AU.addPreserved<VirtRegMap>(); 150 DEBUG(AU.addRequired<RenderMachineFunction>()); 151 MachineFunctionPass::getAnalysisUsage(AU); 152 } 153 154 void RABasic::releaseMemory() { 155 SpillerInstance.reset(0); 156 RegAllocBase::releaseMemory(); 157 } 158 159 #ifndef NDEBUG 160 // Verify each LiveIntervalUnion. 161 void RegAllocBase::verify() { 162 LiveVirtRegBitSet VisitedVRegs; 163 OwningArrayPtr<LiveVirtRegBitSet> 164 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); 165 166 // Verify disjoint unions. 167 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 168 DEBUG(PhysicalRegisterDescription PRD(TRI); 169 PhysReg2LiveUnion[PhysReg].dump(&PRD)); 170 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; 171 PhysReg2LiveUnion[PhysReg].verify(VRegs); 172 // Union + intersection test could be done efficiently in one pass, but 173 // don't add a method to SparseBitVector unless we really need it. 174 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); 175 VisitedVRegs |= VRegs; 176 } 177 178 // Verify vreg coverage. 179 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); 180 liItr != liEnd; ++liItr) { 181 unsigned reg = liItr->first; 182 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; 183 if (!VRM->hasPhys(reg)) continue; // spilled? 184 unsigned PhysReg = VRM->getPhys(reg); 185 if (!unionVRegs[PhysReg].test(reg)) { 186 dbgs() << "LiveVirtReg " << reg << " not in union " << 187 TRI->getName(PhysReg) << "\n"; 188 llvm_unreachable("unallocated live vreg"); 189 } 190 } 191 // FIXME: I'm not sure how to verify spilled intervals. 192 } 193 #endif //!NDEBUG 194 195 //===----------------------------------------------------------------------===// 196 // RegAllocBase Implementation 197 //===----------------------------------------------------------------------===// 198 199 // Instantiate a LiveIntervalUnion for each physical register. 200 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, 201 unsigned NRegs) { 202 NumRegs = NRegs; 203 Array = 204 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); 205 for (unsigned r = 0; r != NRegs; ++r) 206 new(Array + r) LiveIntervalUnion(r, allocator); 207 } 208 209 void RegAllocBase::init(const TargetRegisterInfo &tri, VirtRegMap &vrm, 210 LiveIntervals &lis) { 211 TRI = &tri; 212 VRM = &vrm; 213 LIS = &lis; 214 PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs()); 215 // Cache an interferece query for each physical reg 216 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); 217 } 218 219 void RegAllocBase::LiveUnionArray::clear() { 220 if (!Array) 221 return; 222 for (unsigned r = 0; r != NumRegs; ++r) 223 Array[r].~LiveIntervalUnion(); 224 free(Array); 225 NumRegs = 0; 226 Array = 0; 227 } 228 229 void RegAllocBase::releaseMemory() { 230 PhysReg2LiveUnion.clear(); 231 } 232 233 // Visit all the live virtual registers. If they are already assigned to a 234 // physical register, unify them with the corresponding LiveIntervalUnion, 235 // otherwise push them on the priority queue for later assignment. 236 void RegAllocBase:: 237 seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) { 238 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { 239 unsigned RegNum = I->first; 240 LiveInterval &VirtReg = *I->second; 241 if (TargetRegisterInfo::isPhysicalRegister(RegNum)) 242 PhysReg2LiveUnion[RegNum].unify(VirtReg); 243 else 244 VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum)); 245 } 246 } 247 248 // Top-level driver to manage the queue of unassigned VirtRegs and call the 249 // selectOrSplit implementation. 250 void RegAllocBase::allocatePhysRegs() { 251 252 // Push each vreg onto a queue or "precolor" by adding it to a physreg union. 253 std::priority_queue<std::pair<float, unsigned> > VirtRegQ; 254 seedLiveVirtRegs(VirtRegQ); 255 256 // Continue assigning vregs one at a time to available physical registers. 257 while (!VirtRegQ.empty()) { 258 // Pop the highest priority vreg. 259 LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second); 260 VirtRegQ.pop(); 261 262 // selectOrSplit requests the allocator to return an available physical 263 // register if possible and populate a list of new live intervals that 264 // result from splitting. 265 typedef SmallVector<LiveInterval*, 4> VirtRegVec; 266 VirtRegVec SplitVRegs; 267 unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs); 268 269 if (AvailablePhysReg) { 270 DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg) << 271 " " << VirtReg << '\n'); 272 assert(!VRM->hasPhys(VirtReg.reg) && "duplicate vreg in union"); 273 VRM->assignVirt2Phys(VirtReg.reg, AvailablePhysReg); 274 PhysReg2LiveUnion[AvailablePhysReg].unify(VirtReg); 275 } 276 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); 277 I != E; ++I) { 278 LiveInterval* SplitVirtReg = *I; 279 if (SplitVirtReg->empty()) continue; 280 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); 281 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && 282 "expect split value in virtual register"); 283 VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg), 284 SplitVirtReg->reg)); 285 } 286 } 287 } 288 289 // Check if this live virtual register interferes with a physical register. If 290 // not, then check for interference on each register that aliases with the 291 // physical register. Return the interfering register. 292 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, 293 unsigned PhysReg) { 294 if (query(VirtReg, PhysReg).checkInterference()) 295 return PhysReg; 296 for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) { 297 if (query(VirtReg, *AliasI).checkInterference()) 298 return *AliasI; 299 } 300 return 0; 301 } 302 303 // Helper for spillInteferences() that spills all interfering vregs currently 304 // assigned to this physical register. 305 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, 306 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 307 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); 308 assert(Q.seenAllInterferences() && "need collectInterferences()"); 309 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); 310 311 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), 312 E = PendingSpills.end(); I != E; ++I) { 313 LiveInterval &SpilledVReg = **I; 314 DEBUG(dbgs() << "extracting from " << 315 TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); 316 317 // Deallocate the interfering vreg by removing it from the union. 318 // A LiveInterval instance may not be in a union during modification! 319 PhysReg2LiveUnion[PhysReg].extract(SpilledVReg); 320 321 // Clear the vreg assignment. 322 VRM->clearVirt(SpilledVReg.reg); 323 324 // Spill the extracted interval. 325 spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills); 326 } 327 // After extracting segments, the query's results are invalid. But keep the 328 // contents valid until we're done accessing pendingSpills. 329 Q.clear(); 330 } 331 332 // Spill or split all live virtual registers currently unified under PhysReg 333 // that interfere with VirtReg. The newly spilled or split live intervals are 334 // returned by appending them to SplitVRegs. 335 bool 336 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 337 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 338 // Record each interference and determine if all are spillable before mutating 339 // either the union or live intervals. 340 341 // Collect interferences assigned to the requested physical register. 342 LiveIntervalUnion::Query &QPreg = query(VirtReg, PhysReg); 343 unsigned NumInterferences = QPreg.collectInterferingVRegs(); 344 if (QPreg.seenUnspillableVReg()) { 345 return false; 346 } 347 // Collect interferences assigned to any alias of the physical register. 348 for (const unsigned *asI = TRI->getAliasSet(PhysReg); *asI; ++asI) { 349 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); 350 NumInterferences += QAlias.collectInterferingVRegs(); 351 if (QAlias.seenUnspillableVReg()) { 352 return false; 353 } 354 } 355 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << 356 " interferences with " << VirtReg << "\n"); 357 assert(NumInterferences > 0 && "expect interference"); 358 359 // Spill each interfering vreg allocated to PhysReg or an alias. 360 spillReg(VirtReg, PhysReg, SplitVRegs); 361 for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) 362 spillReg(VirtReg, *AliasI, SplitVRegs); 363 return true; 364 } 365 366 // Add newly allocated physical registers to the MBB live in sets. 367 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { 368 typedef SmallVector<MachineBasicBlock*, 8> MBBVec; 369 MBBVec liveInMBBs; 370 MachineBasicBlock &entryMBB = *MF->begin(); 371 372 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 373 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; 374 if (LiveUnion.empty()) 375 continue; 376 for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid(); 377 ++SI) { 378 379 // Find the set of basic blocks which this range is live into... 380 liveInMBBs.clear(); 381 if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue; 382 383 // And add the physreg for this interval to their live-in sets. 384 for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end(); 385 I != E; ++I) { 386 MachineBasicBlock *MBB = *I; 387 if (MBB == &entryMBB) continue; 388 if (MBB->isLiveIn(PhysReg)) continue; 389 MBB->addLiveIn(PhysReg); 390 } 391 } 392 } 393 } 394 395 396 //===----------------------------------------------------------------------===// 397 // RABasic Implementation 398 //===----------------------------------------------------------------------===// 399 400 // Driver for the register assignment and splitting heuristics. 401 // Manages iteration over the LiveIntervalUnions. 402 // 403 // This is a minimal implementation of register assignment and splitting that 404 // spills whenever we run out of registers. 405 // 406 // selectOrSplit can only be called once per live virtual register. We then do a 407 // single interference test for each register the correct class until we find an 408 // available register. So, the number of interference tests in the worst case is 409 // |vregs| * |machineregs|. And since the number of interference tests is 410 // minimal, there is no value in caching them outside the scope of 411 // selectOrSplit(). 412 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 413 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 414 // Populate a list of physical register spill candidates. 415 SmallVector<unsigned, 8> PhysRegSpillCands; 416 417 // Check for an available register in this class. 418 const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg); 419 DEBUG(dbgs() << "RegClass: " << TRC->getName() << ' '); 420 421 for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF), 422 E = TRC->allocation_order_end(*MF); 423 I != E; ++I) { 424 425 unsigned PhysReg = *I; 426 if (ReservedRegs.test(PhysReg)) continue; 427 428 // Check interference and as a side effect, intialize queries for this 429 // VirtReg and its aliases. 430 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); 431 if (interfReg == 0) { 432 // Found an available register. 433 return PhysReg; 434 } 435 LiveInterval *interferingVirtReg = 436 Queries[interfReg].firstInterference().liveUnionPos().value(); 437 438 // The current VirtReg must either spillable, or one of its interferences 439 // must have less spill weight. 440 if (interferingVirtReg->weight < VirtReg.weight ) { 441 PhysRegSpillCands.push_back(PhysReg); 442 } 443 } 444 // Try to spill another interfering reg with less spill weight. 445 // 446 // FIXME: RAGreedy will sort this list by spill weight. 447 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 448 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 449 450 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; 451 452 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && 453 "Interference after spill."); 454 // Tell the caller to allocate to this newly freed physical register. 455 return *PhysRegI; 456 } 457 // No other spill candidates were found, so spill the current VirtReg. 458 DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 459 SmallVector<LiveInterval*, 1> pendingSpills; 460 461 spiller().spill(&VirtReg, SplitVRegs, pendingSpills); 462 463 // The live virtual register requesting allocation was spilled, so tell 464 // the caller not to allocate anything during this round. 465 return 0; 466 } 467 468 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 469 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 470 << "********** Function: " 471 << ((Value*)mf.getFunction())->getName() << '\n'); 472 473 MF = &mf; 474 TM = &mf.getTarget(); 475 MRI = &mf.getRegInfo(); 476 477 DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); 478 479 const TargetRegisterInfo *TRI = TM->getRegisterInfo(); 480 RegAllocBase::init(*TRI, getAnalysis<VirtRegMap>(), 481 getAnalysis<LiveIntervals>()); 482 483 ReservedRegs = TRI->getReservedRegs(*MF); 484 485 SpillerInstance.reset(createSpiller(*this, *MF, *VRM)); 486 487 allocatePhysRegs(); 488 489 addMBBLiveIns(MF); 490 491 // Diagnostic output before rewriting 492 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 493 494 // optional HTML output 495 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); 496 497 // FIXME: Verification currently must run before VirtRegRewriter. We should 498 // make the rewriter a separate pass and override verifyAnalysis instead. When 499 // that happens, verification naturally falls under VerifyMachineCode. 500 #ifndef NDEBUG 501 if (VerifyRegAlloc) { 502 // Verify accuracy of LiveIntervals. The standard machine code verifier 503 // ensures that each LiveIntervals covers all uses of the virtual reg. 504 505 // FIXME: MachineVerifier is badly broken when using the standard 506 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the 507 // inline spiller, some tests fail to verify because the coalescer does not 508 // always generate verifiable code. 509 MF->verify(this); 510 511 // Verify that LiveIntervals are partitioned into unions and disjoint within 512 // the unions. 513 verify(); 514 } 515 #endif // !NDEBUG 516 517 // Run rewriter 518 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); 519 rewriter->runOnMachineFunction(*MF, *VRM, LIS); 520 521 // The pass output is in VirtRegMap. Release all the transient data. 522 releaseMemory(); 523 524 return true; 525 } 526 527 FunctionPass* llvm::createBasicRegisterAllocator() 528 { 529 return new RABasic(); 530 } 531