1 //===-- RegAllocBasic.cpp - basic register allocator ----------------------===// 2 // 3 // The LLVM Compiler Infrastructure 4 // 5 // This file is distributed under the University of Illinois Open Source 6 // License. See LICENSE.TXT for details. 7 // 8 //===----------------------------------------------------------------------===// 9 // 10 // This file defines the RABasic function pass, which provides a minimal 11 // implementation of the basic register allocator. 12 // 13 //===----------------------------------------------------------------------===// 14 15 #define DEBUG_TYPE "regalloc" 16 #include "LiveIntervalUnion.h" 17 #include "RegAllocBase.h" 18 #include "RenderMachineFunction.h" 19 #include "Spiller.h" 20 #include "VirtRegMap.h" 21 #include "VirtRegRewriter.h" 22 #include "llvm/ADT/OwningPtr.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/Function.h" 25 #include "llvm/PassAnalysisSupport.h" 26 #include "llvm/CodeGen/CalcSpillWeights.h" 27 #include "llvm/CodeGen/LiveIntervalAnalysis.h" 28 #include "llvm/CodeGen/LiveStackAnalysis.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineRegisterInfo.h" 33 #include "llvm/CodeGen/Passes.h" 34 #include "llvm/CodeGen/RegAllocRegistry.h" 35 #include "llvm/CodeGen/RegisterCoalescer.h" 36 #include "llvm/Target/TargetMachine.h" 37 #include "llvm/Target/TargetOptions.h" 38 #include "llvm/Target/TargetRegisterInfo.h" 39 #ifndef NDEBUG 40 #include "llvm/ADT/SparseBitVector.h" 41 #endif 42 #include "llvm/Support/Debug.h" 43 #include "llvm/Support/ErrorHandling.h" 44 #include "llvm/Support/raw_ostream.h" 45 46 #include <cstdlib> 47 48 using namespace llvm; 49 50 static RegisterRegAlloc basicRegAlloc("basic", "basic register allocator", 51 createBasicRegisterAllocator); 52 53 // Temporary verification option until we can put verification inside 54 // MachineVerifier. 55 static cl::opt<bool> 56 VerifyRegAlloc("verify-regalloc", 57 cl::desc("Verify live intervals before renaming")); 58 59 namespace { 60 61 class PhysicalRegisterDescription : public AbstractRegisterDescription { 62 const TargetRegisterInfo *TRI; 63 public: 64 PhysicalRegisterDescription(const TargetRegisterInfo *T): TRI(T) {} 65 virtual const char *getName(unsigned Reg) const { return TRI->getName(Reg); } 66 }; 67 68 /// RABasic provides a minimal implementation of the basic register allocation 69 /// algorithm. It prioritizes live virtual registers by spill weight and spills 70 /// whenever a register is unavailable. This is not practical in production but 71 /// provides a useful baseline both for measuring other allocators and comparing 72 /// the speed of the basic algorithm against other styles of allocators. 73 class RABasic : public MachineFunctionPass, public RegAllocBase 74 { 75 // context 76 MachineFunction *MF; 77 BitVector ReservedRegs; 78 79 // analyses 80 LiveStacks *LS; 81 RenderMachineFunction *RMF; 82 83 // state 84 std::auto_ptr<Spiller> SpillerInstance; 85 86 public: 87 RABasic(); 88 89 /// Return the pass name. 90 virtual const char* getPassName() const { 91 return "Basic Register Allocator"; 92 } 93 94 /// RABasic analysis usage. 95 virtual void getAnalysisUsage(AnalysisUsage &AU) const; 96 97 virtual void releaseMemory(); 98 99 virtual Spiller &spiller() { return *SpillerInstance; } 100 101 virtual float getPriority(LiveInterval *LI) { return LI->weight; } 102 103 virtual unsigned selectOrSplit(LiveInterval &VirtReg, 104 SmallVectorImpl<LiveInterval*> &SplitVRegs); 105 106 /// Perform register allocation. 107 virtual bool runOnMachineFunction(MachineFunction &mf); 108 109 static char ID; 110 }; 111 112 char RABasic::ID = 0; 113 114 } // end anonymous namespace 115 116 RABasic::RABasic(): MachineFunctionPass(ID) { 117 initializeLiveIntervalsPass(*PassRegistry::getPassRegistry()); 118 initializeSlotIndexesPass(*PassRegistry::getPassRegistry()); 119 initializeStrongPHIEliminationPass(*PassRegistry::getPassRegistry()); 120 initializeRegisterCoalescerAnalysisGroup(*PassRegistry::getPassRegistry()); 121 initializeCalculateSpillWeightsPass(*PassRegistry::getPassRegistry()); 122 initializeLiveStacksPass(*PassRegistry::getPassRegistry()); 123 initializeMachineDominatorTreePass(*PassRegistry::getPassRegistry()); 124 initializeMachineLoopInfoPass(*PassRegistry::getPassRegistry()); 125 initializeVirtRegMapPass(*PassRegistry::getPassRegistry()); 126 initializeRenderMachineFunctionPass(*PassRegistry::getPassRegistry()); 127 } 128 129 void RABasic::getAnalysisUsage(AnalysisUsage &AU) const { 130 AU.setPreservesCFG(); 131 AU.addRequired<AliasAnalysis>(); 132 AU.addPreserved<AliasAnalysis>(); 133 AU.addRequired<LiveIntervals>(); 134 AU.addPreserved<SlotIndexes>(); 135 if (StrongPHIElim) 136 AU.addRequiredID(StrongPHIEliminationID); 137 AU.addRequiredTransitive<RegisterCoalescer>(); 138 AU.addRequired<CalculateSpillWeights>(); 139 AU.addRequired<LiveStacks>(); 140 AU.addPreserved<LiveStacks>(); 141 AU.addRequiredID(MachineDominatorsID); 142 AU.addPreservedID(MachineDominatorsID); 143 AU.addRequired<MachineLoopInfo>(); 144 AU.addPreserved<MachineLoopInfo>(); 145 AU.addRequired<VirtRegMap>(); 146 AU.addPreserved<VirtRegMap>(); 147 DEBUG(AU.addRequired<RenderMachineFunction>()); 148 MachineFunctionPass::getAnalysisUsage(AU); 149 } 150 151 void RABasic::releaseMemory() { 152 SpillerInstance.reset(0); 153 RegAllocBase::releaseMemory(); 154 } 155 156 #ifndef NDEBUG 157 // Verify each LiveIntervalUnion. 158 void RegAllocBase::verify() { 159 LiveVirtRegBitSet VisitedVRegs; 160 OwningArrayPtr<LiveVirtRegBitSet> 161 unionVRegs(new LiveVirtRegBitSet[PhysReg2LiveUnion.numRegs()]); 162 163 // Verify disjoint unions. 164 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 165 DEBUG(PhysicalRegisterDescription PRD(TRI); 166 PhysReg2LiveUnion[PhysReg].dump(&PRD)); 167 LiveVirtRegBitSet &VRegs = unionVRegs[PhysReg]; 168 PhysReg2LiveUnion[PhysReg].verify(VRegs); 169 // Union + intersection test could be done efficiently in one pass, but 170 // don't add a method to SparseBitVector unless we really need it. 171 assert(!VisitedVRegs.intersects(VRegs) && "vreg in multiple unions"); 172 VisitedVRegs |= VRegs; 173 } 174 175 // Verify vreg coverage. 176 for (LiveIntervals::iterator liItr = LIS->begin(), liEnd = LIS->end(); 177 liItr != liEnd; ++liItr) { 178 unsigned reg = liItr->first; 179 if (TargetRegisterInfo::isPhysicalRegister(reg)) continue; 180 if (!VRM->hasPhys(reg)) continue; // spilled? 181 unsigned PhysReg = VRM->getPhys(reg); 182 if (!unionVRegs[PhysReg].test(reg)) { 183 dbgs() << "LiveVirtReg " << reg << " not in union " << 184 TRI->getName(PhysReg) << "\n"; 185 llvm_unreachable("unallocated live vreg"); 186 } 187 } 188 // FIXME: I'm not sure how to verify spilled intervals. 189 } 190 #endif //!NDEBUG 191 192 //===----------------------------------------------------------------------===// 193 // RegAllocBase Implementation 194 //===----------------------------------------------------------------------===// 195 196 // Instantiate a LiveIntervalUnion for each physical register. 197 void RegAllocBase::LiveUnionArray::init(LiveIntervalUnion::Allocator &allocator, 198 unsigned NRegs) { 199 NumRegs = NRegs; 200 Array = 201 static_cast<LiveIntervalUnion*>(malloc(sizeof(LiveIntervalUnion)*NRegs)); 202 for (unsigned r = 0; r != NRegs; ++r) 203 new(Array + r) LiveIntervalUnion(r, allocator); 204 } 205 206 void RegAllocBase::init(VirtRegMap &vrm, LiveIntervals &lis) { 207 TRI = &vrm.getTargetRegInfo(); 208 MRI = &vrm.getRegInfo(); 209 VRM = &vrm; 210 LIS = &lis; 211 PhysReg2LiveUnion.init(UnionAllocator, TRI->getNumRegs()); 212 // Cache an interferece query for each physical reg 213 Queries.reset(new LiveIntervalUnion::Query[PhysReg2LiveUnion.numRegs()]); 214 } 215 216 void RegAllocBase::LiveUnionArray::clear() { 217 if (!Array) 218 return; 219 for (unsigned r = 0; r != NumRegs; ++r) 220 Array[r].~LiveIntervalUnion(); 221 free(Array); 222 NumRegs = 0; 223 Array = 0; 224 } 225 226 void RegAllocBase::releaseMemory() { 227 PhysReg2LiveUnion.clear(); 228 } 229 230 // Visit all the live virtual registers. If they are already assigned to a 231 // physical register, unify them with the corresponding LiveIntervalUnion, 232 // otherwise push them on the priority queue for later assignment. 233 void RegAllocBase:: 234 seedLiveVirtRegs(std::priority_queue<std::pair<float, unsigned> > &VirtRegQ) { 235 for (LiveIntervals::iterator I = LIS->begin(), E = LIS->end(); I != E; ++I) { 236 unsigned RegNum = I->first; 237 LiveInterval &VirtReg = *I->second; 238 if (TargetRegisterInfo::isPhysicalRegister(RegNum)) 239 PhysReg2LiveUnion[RegNum].unify(VirtReg); 240 else 241 VirtRegQ.push(std::make_pair(getPriority(&VirtReg), RegNum)); 242 } 243 } 244 245 // Top-level driver to manage the queue of unassigned VirtRegs and call the 246 // selectOrSplit implementation. 247 void RegAllocBase::allocatePhysRegs() { 248 249 // Push each vreg onto a queue or "precolor" by adding it to a physreg union. 250 std::priority_queue<std::pair<float, unsigned> > VirtRegQ; 251 seedLiveVirtRegs(VirtRegQ); 252 253 // Continue assigning vregs one at a time to available physical registers. 254 while (!VirtRegQ.empty()) { 255 // Pop the highest priority vreg. 256 LiveInterval &VirtReg = LIS->getInterval(VirtRegQ.top().second); 257 VirtRegQ.pop(); 258 259 // selectOrSplit requests the allocator to return an available physical 260 // register if possible and populate a list of new live intervals that 261 // result from splitting. 262 DEBUG(dbgs() << "\nselectOrSplit " << MRI->getRegClass(VirtReg.reg)->getName() 263 << ':' << VirtReg << '\n'); 264 typedef SmallVector<LiveInterval*, 4> VirtRegVec; 265 VirtRegVec SplitVRegs; 266 unsigned AvailablePhysReg = selectOrSplit(VirtReg, SplitVRegs); 267 268 if (AvailablePhysReg) { 269 DEBUG(dbgs() << "allocating: " << TRI->getName(AvailablePhysReg) 270 << " for " << VirtReg << '\n'); 271 assert(!VRM->hasPhys(VirtReg.reg) && "duplicate vreg in union"); 272 VRM->assignVirt2Phys(VirtReg.reg, AvailablePhysReg); 273 PhysReg2LiveUnion[AvailablePhysReg].unify(VirtReg); 274 } 275 for (VirtRegVec::iterator I = SplitVRegs.begin(), E = SplitVRegs.end(); 276 I != E; ++I) { 277 LiveInterval* SplitVirtReg = *I; 278 if (SplitVirtReg->empty()) continue; 279 DEBUG(dbgs() << "queuing new interval: " << *SplitVirtReg << "\n"); 280 assert(TargetRegisterInfo::isVirtualRegister(SplitVirtReg->reg) && 281 "expect split value in virtual register"); 282 VirtRegQ.push(std::make_pair(getPriority(SplitVirtReg), 283 SplitVirtReg->reg)); 284 } 285 } 286 } 287 288 // Check if this live virtual register interferes with a physical register. If 289 // not, then check for interference on each register that aliases with the 290 // physical register. Return the interfering register. 291 unsigned RegAllocBase::checkPhysRegInterference(LiveInterval &VirtReg, 292 unsigned PhysReg) { 293 if (query(VirtReg, PhysReg).checkInterference()) 294 return PhysReg; 295 for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) { 296 if (query(VirtReg, *AliasI).checkInterference()) 297 return *AliasI; 298 } 299 return 0; 300 } 301 302 // Helper for spillInteferences() that spills all interfering vregs currently 303 // assigned to this physical register. 304 void RegAllocBase::spillReg(LiveInterval& VirtReg, unsigned PhysReg, 305 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 306 LiveIntervalUnion::Query &Q = query(VirtReg, PhysReg); 307 assert(Q.seenAllInterferences() && "need collectInterferences()"); 308 const SmallVectorImpl<LiveInterval*> &PendingSpills = Q.interferingVRegs(); 309 310 for (SmallVectorImpl<LiveInterval*>::const_iterator I = PendingSpills.begin(), 311 E = PendingSpills.end(); I != E; ++I) { 312 LiveInterval &SpilledVReg = **I; 313 DEBUG(dbgs() << "extracting from " << 314 TRI->getName(PhysReg) << " " << SpilledVReg << '\n'); 315 316 // Deallocate the interfering vreg by removing it from the union. 317 // A LiveInterval instance may not be in a union during modification! 318 PhysReg2LiveUnion[PhysReg].extract(SpilledVReg); 319 320 // Clear the vreg assignment. 321 VRM->clearVirt(SpilledVReg.reg); 322 323 // Spill the extracted interval. 324 spiller().spill(&SpilledVReg, SplitVRegs, PendingSpills); 325 } 326 // After extracting segments, the query's results are invalid. But keep the 327 // contents valid until we're done accessing pendingSpills. 328 Q.clear(); 329 } 330 331 // Spill or split all live virtual registers currently unified under PhysReg 332 // that interfere with VirtReg. The newly spilled or split live intervals are 333 // returned by appending them to SplitVRegs. 334 bool 335 RegAllocBase::spillInterferences(LiveInterval &VirtReg, unsigned PhysReg, 336 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 337 // Record each interference and determine if all are spillable before mutating 338 // either the union or live intervals. 339 340 // Collect interferences assigned to the requested physical register. 341 LiveIntervalUnion::Query &QPreg = query(VirtReg, PhysReg); 342 unsigned NumInterferences = QPreg.collectInterferingVRegs(); 343 if (QPreg.seenUnspillableVReg()) { 344 return false; 345 } 346 // Collect interferences assigned to any alias of the physical register. 347 for (const unsigned *asI = TRI->getAliasSet(PhysReg); *asI; ++asI) { 348 LiveIntervalUnion::Query &QAlias = query(VirtReg, *asI); 349 NumInterferences += QAlias.collectInterferingVRegs(); 350 if (QAlias.seenUnspillableVReg()) { 351 return false; 352 } 353 } 354 DEBUG(dbgs() << "spilling " << TRI->getName(PhysReg) << 355 " interferences with " << VirtReg << "\n"); 356 assert(NumInterferences > 0 && "expect interference"); 357 358 // Spill each interfering vreg allocated to PhysReg or an alias. 359 spillReg(VirtReg, PhysReg, SplitVRegs); 360 for (const unsigned *AliasI = TRI->getAliasSet(PhysReg); *AliasI; ++AliasI) 361 spillReg(VirtReg, *AliasI, SplitVRegs); 362 return true; 363 } 364 365 // Add newly allocated physical registers to the MBB live in sets. 366 void RegAllocBase::addMBBLiveIns(MachineFunction *MF) { 367 typedef SmallVector<MachineBasicBlock*, 8> MBBVec; 368 MBBVec liveInMBBs; 369 MachineBasicBlock &entryMBB = *MF->begin(); 370 371 for (unsigned PhysReg = 0; PhysReg < PhysReg2LiveUnion.numRegs(); ++PhysReg) { 372 LiveIntervalUnion &LiveUnion = PhysReg2LiveUnion[PhysReg]; 373 if (LiveUnion.empty()) 374 continue; 375 for (LiveIntervalUnion::SegmentIter SI = LiveUnion.begin(); SI.valid(); 376 ++SI) { 377 378 // Find the set of basic blocks which this range is live into... 379 liveInMBBs.clear(); 380 if (!LIS->findLiveInMBBs(SI.start(), SI.stop(), liveInMBBs)) continue; 381 382 // And add the physreg for this interval to their live-in sets. 383 for (MBBVec::iterator I = liveInMBBs.begin(), E = liveInMBBs.end(); 384 I != E; ++I) { 385 MachineBasicBlock *MBB = *I; 386 if (MBB == &entryMBB) continue; 387 if (MBB->isLiveIn(PhysReg)) continue; 388 MBB->addLiveIn(PhysReg); 389 } 390 } 391 } 392 } 393 394 395 //===----------------------------------------------------------------------===// 396 // RABasic Implementation 397 //===----------------------------------------------------------------------===// 398 399 // Driver for the register assignment and splitting heuristics. 400 // Manages iteration over the LiveIntervalUnions. 401 // 402 // This is a minimal implementation of register assignment and splitting that 403 // spills whenever we run out of registers. 404 // 405 // selectOrSplit can only be called once per live virtual register. We then do a 406 // single interference test for each register the correct class until we find an 407 // available register. So, the number of interference tests in the worst case is 408 // |vregs| * |machineregs|. And since the number of interference tests is 409 // minimal, there is no value in caching them outside the scope of 410 // selectOrSplit(). 411 unsigned RABasic::selectOrSplit(LiveInterval &VirtReg, 412 SmallVectorImpl<LiveInterval*> &SplitVRegs) { 413 // Populate a list of physical register spill candidates. 414 SmallVector<unsigned, 8> PhysRegSpillCands; 415 416 // Check for an available register in this class. 417 const TargetRegisterClass *TRC = MRI->getRegClass(VirtReg.reg); 418 419 for (TargetRegisterClass::iterator I = TRC->allocation_order_begin(*MF), 420 E = TRC->allocation_order_end(*MF); 421 I != E; ++I) { 422 423 unsigned PhysReg = *I; 424 if (ReservedRegs.test(PhysReg)) continue; 425 426 // Check interference and as a side effect, intialize queries for this 427 // VirtReg and its aliases. 428 unsigned interfReg = checkPhysRegInterference(VirtReg, PhysReg); 429 if (interfReg == 0) { 430 // Found an available register. 431 return PhysReg; 432 } 433 LiveInterval *interferingVirtReg = 434 Queries[interfReg].firstInterference().liveUnionPos().value(); 435 436 // The current VirtReg must either be spillable, or one of its interferences 437 // must have less spill weight. 438 if (interferingVirtReg->weight < VirtReg.weight ) { 439 PhysRegSpillCands.push_back(PhysReg); 440 } 441 } 442 // Try to spill another interfering reg with less spill weight. 443 for (SmallVectorImpl<unsigned>::iterator PhysRegI = PhysRegSpillCands.begin(), 444 PhysRegE = PhysRegSpillCands.end(); PhysRegI != PhysRegE; ++PhysRegI) { 445 446 if (!spillInterferences(VirtReg, *PhysRegI, SplitVRegs)) continue; 447 448 assert(checkPhysRegInterference(VirtReg, *PhysRegI) == 0 && 449 "Interference after spill."); 450 // Tell the caller to allocate to this newly freed physical register. 451 return *PhysRegI; 452 } 453 // No other spill candidates were found, so spill the current VirtReg. 454 DEBUG(dbgs() << "spilling: " << VirtReg << '\n'); 455 SmallVector<LiveInterval*, 1> pendingSpills; 456 457 spiller().spill(&VirtReg, SplitVRegs, pendingSpills); 458 459 // The live virtual register requesting allocation was spilled, so tell 460 // the caller not to allocate anything during this round. 461 return 0; 462 } 463 464 bool RABasic::runOnMachineFunction(MachineFunction &mf) { 465 DEBUG(dbgs() << "********** BASIC REGISTER ALLOCATION **********\n" 466 << "********** Function: " 467 << ((Value*)mf.getFunction())->getName() << '\n'); 468 469 MF = &mf; 470 DEBUG(RMF = &getAnalysis<RenderMachineFunction>()); 471 472 RegAllocBase::init(getAnalysis<VirtRegMap>(), getAnalysis<LiveIntervals>()); 473 474 ReservedRegs = TRI->getReservedRegs(*MF); 475 476 SpillerInstance.reset(createSpiller(*this, *MF, *VRM)); 477 478 allocatePhysRegs(); 479 480 addMBBLiveIns(MF); 481 482 // Diagnostic output before rewriting 483 DEBUG(dbgs() << "Post alloc VirtRegMap:\n" << *VRM << "\n"); 484 485 // optional HTML output 486 DEBUG(RMF->renderMachineFunction("After basic register allocation.", VRM)); 487 488 // FIXME: Verification currently must run before VirtRegRewriter. We should 489 // make the rewriter a separate pass and override verifyAnalysis instead. When 490 // that happens, verification naturally falls under VerifyMachineCode. 491 #ifndef NDEBUG 492 if (VerifyRegAlloc) { 493 // Verify accuracy of LiveIntervals. The standard machine code verifier 494 // ensures that each LiveIntervals covers all uses of the virtual reg. 495 496 // FIXME: MachineVerifier is badly broken when using the standard 497 // spiller. Always use -spiller=inline with -verify-regalloc. Even with the 498 // inline spiller, some tests fail to verify because the coalescer does not 499 // always generate verifiable code. 500 MF->verify(this); 501 502 // Verify that LiveIntervals are partitioned into unions and disjoint within 503 // the unions. 504 verify(); 505 } 506 #endif // !NDEBUG 507 508 // Run rewriter 509 std::auto_ptr<VirtRegRewriter> rewriter(createVirtRegRewriter()); 510 rewriter->runOnMachineFunction(*MF, *VRM, LIS); 511 512 // The pass output is in VirtRegMap. Release all the transient data. 513 releaseMemory(); 514 515 return true; 516 } 517 518 FunctionPass* llvm::createBasicRegisterAllocator() 519 { 520 return new RABasic(); 521 } 522