xref: /llvm-project/llvm/lib/CodeGen/RDFGraph.cpp (revision f8ed60b56d1948422dda924fcf450560591e8a19)
1 //===- RDFGraph.cpp -------------------------------------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Target-independent, SSA-based data flow graph for register data flow (RDF).
10 //
11 #include "llvm/ADT/BitVector.h"
12 #include "llvm/ADT/STLExtras.h"
13 #include "llvm/ADT/SetVector.h"
14 #include "llvm/CodeGen/MachineBasicBlock.h"
15 #include "llvm/CodeGen/MachineDominanceFrontier.h"
16 #include "llvm/CodeGen/MachineDominators.h"
17 #include "llvm/CodeGen/MachineFunction.h"
18 #include "llvm/CodeGen/MachineInstr.h"
19 #include "llvm/CodeGen/MachineOperand.h"
20 #include "llvm/CodeGen/MachineRegisterInfo.h"
21 #include "llvm/CodeGen/RDFGraph.h"
22 #include "llvm/CodeGen/RDFRegisters.h"
23 #include "llvm/CodeGen/TargetInstrInfo.h"
24 #include "llvm/CodeGen/TargetLowering.h"
25 #include "llvm/CodeGen/TargetRegisterInfo.h"
26 #include "llvm/CodeGen/TargetSubtargetInfo.h"
27 #include "llvm/IR/Function.h"
28 #include "llvm/MC/LaneBitmask.h"
29 #include "llvm/MC/MCInstrDesc.h"
30 #include "llvm/Support/ErrorHandling.h"
31 #include "llvm/Support/raw_ostream.h"
32 #include <algorithm>
33 #include <cassert>
34 #include <cstdint>
35 #include <cstring>
36 #include <iterator>
37 #include <set>
38 #include <utility>
39 #include <vector>
40 
41 using namespace llvm;
42 using namespace rdf;
43 
44 // Printing functions. Have them here first, so that the rest of the code
45 // can use them.
46 namespace llvm {
47 namespace rdf {
48 
49 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) {
50   P.G.getPRI().print(OS, P.Obj);
51   return OS;
52 }
53 
54 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) {
55   auto NA = P.G.addr<NodeBase *>(P.Obj);
56   uint16_t Attrs = NA.Addr->getAttrs();
57   uint16_t Kind = NodeAttrs::kind(Attrs);
58   uint16_t Flags = NodeAttrs::flags(Attrs);
59   switch (NodeAttrs::type(Attrs)) {
60   case NodeAttrs::Code:
61     switch (Kind) {
62     case NodeAttrs::Func:
63       OS << 'f';
64       break;
65     case NodeAttrs::Block:
66       OS << 'b';
67       break;
68     case NodeAttrs::Stmt:
69       OS << 's';
70       break;
71     case NodeAttrs::Phi:
72       OS << 'p';
73       break;
74     default:
75       OS << "c?";
76       break;
77     }
78     break;
79   case NodeAttrs::Ref:
80     if (Flags & NodeAttrs::Undef)
81       OS << '/';
82     if (Flags & NodeAttrs::Dead)
83       OS << '\\';
84     if (Flags & NodeAttrs::Preserving)
85       OS << '+';
86     if (Flags & NodeAttrs::Clobbering)
87       OS << '~';
88     switch (Kind) {
89     case NodeAttrs::Use:
90       OS << 'u';
91       break;
92     case NodeAttrs::Def:
93       OS << 'd';
94       break;
95     case NodeAttrs::Block:
96       OS << 'b';
97       break;
98     default:
99       OS << "r?";
100       break;
101     }
102     break;
103   default:
104     OS << '?';
105     break;
106   }
107   OS << P.Obj;
108   if (Flags & NodeAttrs::Shadow)
109     OS << '"';
110   return OS;
111 }
112 
113 static void printRefHeader(raw_ostream &OS, const Ref RA,
114                            const DataFlowGraph &G) {
115   OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>';
116   if (RA.Addr->getFlags() & NodeAttrs::Fixed)
117     OS << '!';
118 }
119 
120 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) {
121   printRefHeader(OS, P.Obj, P.G);
122   OS << '(';
123   if (NodeId N = P.Obj.Addr->getReachingDef())
124     OS << Print(N, P.G);
125   OS << ',';
126   if (NodeId N = P.Obj.Addr->getReachedDef())
127     OS << Print(N, P.G);
128   OS << ',';
129   if (NodeId N = P.Obj.Addr->getReachedUse())
130     OS << Print(N, P.G);
131   OS << "):";
132   if (NodeId N = P.Obj.Addr->getSibling())
133     OS << Print(N, P.G);
134   return OS;
135 }
136 
137 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) {
138   printRefHeader(OS, P.Obj, P.G);
139   OS << '(';
140   if (NodeId N = P.Obj.Addr->getReachingDef())
141     OS << Print(N, P.G);
142   OS << "):";
143   if (NodeId N = P.Obj.Addr->getSibling())
144     OS << Print(N, P.G);
145   return OS;
146 }
147 
148 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) {
149   printRefHeader(OS, P.Obj, P.G);
150   OS << '(';
151   if (NodeId N = P.Obj.Addr->getReachingDef())
152     OS << Print(N, P.G);
153   OS << ',';
154   if (NodeId N = P.Obj.Addr->getPredecessor())
155     OS << Print(N, P.G);
156   OS << "):";
157   if (NodeId N = P.Obj.Addr->getSibling())
158     OS << Print(N, P.G);
159   return OS;
160 }
161 
162 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) {
163   switch (P.Obj.Addr->getKind()) {
164   case NodeAttrs::Def:
165     OS << PrintNode<DefNode *>(P.Obj, P.G);
166     break;
167   case NodeAttrs::Use:
168     if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef)
169       OS << PrintNode<PhiUseNode *>(P.Obj, P.G);
170     else
171       OS << PrintNode<UseNode *>(P.Obj, P.G);
172     break;
173   }
174   return OS;
175 }
176 
177 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) {
178   unsigned N = P.Obj.size();
179   for (auto I : P.Obj) {
180     OS << Print(I.Id, P.G);
181     if (--N)
182       OS << ' ';
183   }
184   return OS;
185 }
186 
187 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) {
188   unsigned N = P.Obj.size();
189   for (auto I : P.Obj) {
190     OS << Print(I, P.G);
191     if (--N)
192       OS << ' ';
193   }
194   return OS;
195 }
196 
197 namespace {
198 
199 template <typename T> struct PrintListV {
200   PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {}
201 
202   using Type = T;
203   const NodeList &List;
204   const DataFlowGraph &G;
205 };
206 
207 template <typename T>
208 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) {
209   unsigned N = P.List.size();
210   for (NodeAddr<T> A : P.List) {
211     OS << PrintNode<T>(A, P.G);
212     if (--N)
213       OS << ", ";
214   }
215   return OS;
216 }
217 
218 } // end anonymous namespace
219 
220 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) {
221   OS << Print(P.Obj.Id, P.G) << ": phi ["
222      << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
223   return OS;
224 }
225 
226 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) {
227   const MachineInstr &MI = *P.Obj.Addr->getCode();
228   unsigned Opc = MI.getOpcode();
229   OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc);
230   // Print the target for calls and branches (for readability).
231   if (MI.isCall() || MI.isBranch()) {
232     MachineInstr::const_mop_iterator T =
233         llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool {
234           return Op.isMBB() || Op.isGlobal() || Op.isSymbol();
235         });
236     if (T != MI.operands_end()) {
237       OS << ' ';
238       if (T->isMBB())
239         OS << printMBBReference(*T->getMBB());
240       else if (T->isGlobal())
241         OS << T->getGlobal()->getName();
242       else if (T->isSymbol())
243         OS << T->getSymbolName();
244     }
245   }
246   OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']';
247   return OS;
248 }
249 
250 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) {
251   switch (P.Obj.Addr->getKind()) {
252   case NodeAttrs::Phi:
253     OS << PrintNode<PhiNode *>(P.Obj, P.G);
254     break;
255   case NodeAttrs::Stmt:
256     OS << PrintNode<StmtNode *>(P.Obj, P.G);
257     break;
258   default:
259     OS << "instr? " << Print(P.Obj.Id, P.G);
260     break;
261   }
262   return OS;
263 }
264 
265 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) {
266   MachineBasicBlock *BB = P.Obj.Addr->getCode();
267   unsigned NP = BB->pred_size();
268   std::vector<int> Ns;
269   auto PrintBBs = [&OS](std::vector<int> Ns) -> void {
270     unsigned N = Ns.size();
271     for (int I : Ns) {
272       OS << "%bb." << I;
273       if (--N)
274         OS << ", ";
275     }
276   };
277 
278   OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB)
279      << " --- preds(" << NP << "): ";
280   for (MachineBasicBlock *B : BB->predecessors())
281     Ns.push_back(B->getNumber());
282   PrintBBs(Ns);
283 
284   unsigned NS = BB->succ_size();
285   OS << "  succs(" << NS << "): ";
286   Ns.clear();
287   for (MachineBasicBlock *B : BB->successors())
288     Ns.push_back(B->getNumber());
289   PrintBBs(Ns);
290   OS << '\n';
291 
292   for (auto I : P.Obj.Addr->members(P.G))
293     OS << PrintNode<InstrNode *>(I, P.G) << '\n';
294   return OS;
295 }
296 
297 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) {
298   OS << "DFG dump:[\n"
299      << Print(P.Obj.Id, P.G)
300      << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n';
301   for (auto I : P.Obj.Addr->members(P.G))
302     OS << PrintNode<BlockNode *>(I, P.G) << '\n';
303   OS << "]\n";
304   return OS;
305 }
306 
307 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) {
308   OS << '{';
309   for (auto I : P.Obj)
310     OS << ' ' << Print(I, P.G);
311   OS << " }";
312   return OS;
313 }
314 
315 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) {
316   OS << P.Obj;
317   return OS;
318 }
319 
320 raw_ostream &operator<<(raw_ostream &OS,
321                         const Print<DataFlowGraph::DefStack> &P) {
322   for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) {
323     OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G)
324        << '>';
325     I.down();
326     if (I != E)
327       OS << ' ';
328   }
329   return OS;
330 }
331 
332 } // end namespace rdf
333 } // end namespace llvm
334 
335 // Node allocation functions.
336 //
337 // Node allocator is like a slab memory allocator: it allocates blocks of
338 // memory in sizes that are multiples of the size of a node. Each block has
339 // the same size. Nodes are allocated from the currently active block, and
340 // when it becomes full, a new one is created.
341 // There is a mapping scheme between node id and its location in a block,
342 // and within that block is described in the header file.
343 //
344 void NodeAllocator::startNewBlock() {
345   void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize);
346   char *P = static_cast<char *>(T);
347   Blocks.push_back(P);
348   // Check if the block index is still within the allowed range, i.e. less
349   // than 2^N, where N is the number of bits in NodeId for the block index.
350   // BitsPerIndex is the number of bits per node index.
351   assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) &&
352          "Out of bits for block index");
353   ActiveEnd = P;
354 }
355 
356 bool NodeAllocator::needNewBlock() {
357   if (Blocks.empty())
358     return true;
359 
360   char *ActiveBegin = Blocks.back();
361   uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize;
362   return Index >= NodesPerBlock;
363 }
364 
365 Node NodeAllocator::New() {
366   if (needNewBlock())
367     startNewBlock();
368 
369   uint32_t ActiveB = Blocks.size() - 1;
370   uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize;
371   Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(ActiveB, Index)};
372   ActiveEnd += NodeMemSize;
373   return NA;
374 }
375 
376 NodeId NodeAllocator::id(const NodeBase *P) const {
377   uintptr_t A = reinterpret_cast<uintptr_t>(P);
378   for (unsigned i = 0, n = Blocks.size(); i != n; ++i) {
379     uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]);
380     if (A < B || A >= B + NodesPerBlock * NodeMemSize)
381       continue;
382     uint32_t Idx = (A - B) / NodeMemSize;
383     return makeId(i, Idx);
384   }
385   llvm_unreachable("Invalid node address");
386 }
387 
388 void NodeAllocator::clear() {
389   MemPool.Reset();
390   Blocks.clear();
391   ActiveEnd = nullptr;
392 }
393 
394 // Insert node NA after "this" in the circular chain.
395 void NodeBase::append(Node NA) {
396   NodeId Nx = Next;
397   // If NA is already "next", do nothing.
398   if (Next != NA.Id) {
399     Next = NA.Id;
400     NA.Addr->Next = Nx;
401   }
402 }
403 
404 // Fundamental node manipulator functions.
405 
406 // Obtain the register reference from a reference node.
407 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const {
408   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
409   if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)
410     return G.unpack(RefData.PR);
411   assert(RefData.Op != nullptr);
412   return G.makeRegRef(*RefData.Op);
413 }
414 
415 // Set the register reference in the reference node directly (for references
416 // in phi nodes).
417 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) {
418   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
419   assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef);
420   RefData.PR = G.pack(RR);
421 }
422 
423 // Set the register reference in the reference node based on a machine
424 // operand (for references in statement nodes).
425 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) {
426   assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref);
427   assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef));
428   (void)G;
429   RefData.Op = Op;
430 }
431 
432 // Get the owner of a given reference node.
433 Node RefNode::getOwner(const DataFlowGraph &G) {
434   Node NA = G.addr<NodeBase *>(getNext());
435 
436   while (NA.Addr != this) {
437     if (NA.Addr->getType() == NodeAttrs::Code)
438       return NA;
439     NA = G.addr<NodeBase *>(NA.Addr->getNext());
440   }
441   llvm_unreachable("No owner in circular list");
442 }
443 
444 // Connect the def node to the reaching def node.
445 void DefNode::linkToDef(NodeId Self, Def DA) {
446   RefData.RD = DA.Id;
447   RefData.Sib = DA.Addr->getReachedDef();
448   DA.Addr->setReachedDef(Self);
449 }
450 
451 // Connect the use node to the reaching def node.
452 void UseNode::linkToDef(NodeId Self, Def DA) {
453   RefData.RD = DA.Id;
454   RefData.Sib = DA.Addr->getReachedUse();
455   DA.Addr->setReachedUse(Self);
456 }
457 
458 // Get the first member of the code node.
459 Node CodeNode::getFirstMember(const DataFlowGraph &G) const {
460   if (CodeData.FirstM == 0)
461     return Node();
462   return G.addr<NodeBase *>(CodeData.FirstM);
463 }
464 
465 // Get the last member of the code node.
466 Node CodeNode::getLastMember(const DataFlowGraph &G) const {
467   if (CodeData.LastM == 0)
468     return Node();
469   return G.addr<NodeBase *>(CodeData.LastM);
470 }
471 
472 // Add node NA at the end of the member list of the given code node.
473 void CodeNode::addMember(Node NA, const DataFlowGraph &G) {
474   Node ML = getLastMember(G);
475   if (ML.Id != 0) {
476     ML.Addr->append(NA);
477   } else {
478     CodeData.FirstM = NA.Id;
479     NodeId Self = G.id(this);
480     NA.Addr->setNext(Self);
481   }
482   CodeData.LastM = NA.Id;
483 }
484 
485 // Add node NA after member node MA in the given code node.
486 void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) {
487   MA.Addr->append(NA);
488   if (CodeData.LastM == MA.Id)
489     CodeData.LastM = NA.Id;
490 }
491 
492 // Remove member node NA from the given code node.
493 void CodeNode::removeMember(Node NA, const DataFlowGraph &G) {
494   Node MA = getFirstMember(G);
495   assert(MA.Id != 0);
496 
497   // Special handling if the member to remove is the first member.
498   if (MA.Id == NA.Id) {
499     if (CodeData.LastM == MA.Id) {
500       // If it is the only member, set both first and last to 0.
501       CodeData.FirstM = CodeData.LastM = 0;
502     } else {
503       // Otherwise, advance the first member.
504       CodeData.FirstM = MA.Addr->getNext();
505     }
506     return;
507   }
508 
509   while (MA.Addr != this) {
510     NodeId MX = MA.Addr->getNext();
511     if (MX == NA.Id) {
512       MA.Addr->setNext(NA.Addr->getNext());
513       // If the member to remove happens to be the last one, update the
514       // LastM indicator.
515       if (CodeData.LastM == NA.Id)
516         CodeData.LastM = MA.Id;
517       return;
518     }
519     MA = G.addr<NodeBase *>(MX);
520   }
521   llvm_unreachable("No such member");
522 }
523 
524 // Return the list of all members of the code node.
525 NodeList CodeNode::members(const DataFlowGraph &G) const {
526   static auto True = [](Node) -> bool { return true; };
527   return members_if(True, G);
528 }
529 
530 // Return the owner of the given instr node.
531 Node InstrNode::getOwner(const DataFlowGraph &G) {
532   Node NA = G.addr<NodeBase *>(getNext());
533 
534   while (NA.Addr != this) {
535     assert(NA.Addr->getType() == NodeAttrs::Code);
536     if (NA.Addr->getKind() == NodeAttrs::Block)
537       return NA;
538     NA = G.addr<NodeBase *>(NA.Addr->getNext());
539   }
540   llvm_unreachable("No owner in circular list");
541 }
542 
543 // Add the phi node PA to the given block node.
544 void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) {
545   Node M = getFirstMember(G);
546   if (M.Id == 0) {
547     addMember(PA, G);
548     return;
549   }
550 
551   assert(M.Addr->getType() == NodeAttrs::Code);
552   if (M.Addr->getKind() == NodeAttrs::Stmt) {
553     // If the first member of the block is a statement, insert the phi as
554     // the first member.
555     CodeData.FirstM = PA.Id;
556     PA.Addr->setNext(M.Id);
557   } else {
558     // If the first member is a phi, find the last phi, and append PA to it.
559     assert(M.Addr->getKind() == NodeAttrs::Phi);
560     Node MN = M;
561     do {
562       M = MN;
563       MN = G.addr<NodeBase *>(M.Addr->getNext());
564       assert(MN.Addr->getType() == NodeAttrs::Code);
565     } while (MN.Addr->getKind() == NodeAttrs::Phi);
566 
567     // M is the last phi.
568     addMemberAfter(M, PA, G);
569   }
570 }
571 
572 // Find the block node corresponding to the machine basic block BB in the
573 // given func node.
574 Block FuncNode::findBlock(const MachineBasicBlock *BB,
575                           const DataFlowGraph &G) const {
576   auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; };
577   NodeList Ms = members_if(EqBB, G);
578   if (!Ms.empty())
579     return Ms[0];
580   return Block();
581 }
582 
583 // Get the block node for the entry block in the given function.
584 Block FuncNode::getEntryBlock(const DataFlowGraph &G) {
585   MachineBasicBlock *EntryB = &getCode()->front();
586   return findBlock(EntryB, G);
587 }
588 
589 // Target operand information.
590 //
591 
592 // For a given instruction, check if there are any bits of RR that can remain
593 // unchanged across this def.
594 bool TargetOperandInfo::isPreserving(const MachineInstr &In,
595                                      unsigned OpNum) const {
596   return TII.isPredicated(In);
597 }
598 
599 // Check if the definition of RR produces an unspecified value.
600 bool TargetOperandInfo::isClobbering(const MachineInstr &In,
601                                      unsigned OpNum) const {
602   const MachineOperand &Op = In.getOperand(OpNum);
603   if (Op.isRegMask())
604     return true;
605   assert(Op.isReg());
606   if (In.isCall())
607     if (Op.isDef() && Op.isDead())
608       return true;
609   return false;
610 }
611 
612 // Check if the given instruction specifically requires
613 bool TargetOperandInfo::isFixedReg(const MachineInstr &In,
614                                    unsigned OpNum) const {
615   if (In.isCall() || In.isReturn() || In.isInlineAsm())
616     return true;
617   // Check for a tail call.
618   if (In.isBranch())
619     for (const MachineOperand &O : In.operands())
620       if (O.isGlobal() || O.isSymbol())
621         return true;
622 
623   const MCInstrDesc &D = In.getDesc();
624   if (D.implicit_defs().empty() && D.implicit_uses().empty())
625     return false;
626   const MachineOperand &Op = In.getOperand(OpNum);
627   // If there is a sub-register, treat the operand as non-fixed. Currently,
628   // fixed registers are those that are listed in the descriptor as implicit
629   // uses or defs, and those lists do not allow sub-registers.
630   if (Op.getSubReg() != 0)
631     return false;
632   Register Reg = Op.getReg();
633   ArrayRef<MCPhysReg> ImpOps =
634       Op.isDef() ? D.implicit_defs() : D.implicit_uses();
635   return is_contained(ImpOps, Reg);
636 }
637 
638 //
639 // The data flow graph construction.
640 //
641 
642 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
643                              const TargetRegisterInfo &tri,
644                              const MachineDominatorTree &mdt,
645                              const MachineDominanceFrontier &mdf)
646     : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii),
647       TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI),
648       LiveIns(PRI) {}
649 
650 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii,
651                              const TargetRegisterInfo &tri,
652                              const MachineDominatorTree &mdt,
653                              const MachineDominanceFrontier &mdf,
654                              const TargetOperandInfo &toi)
655     : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi),
656       LiveIns(PRI) {}
657 
658 // The implementation of the definition stack.
659 // Each register reference has its own definition stack. In particular,
660 // for a register references "Reg" and "Reg:subreg" will each have their
661 // own definition stacks.
662 
663 // Construct a stack iterator.
664 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S,
665                                             bool Top)
666     : DS(S) {
667   if (!Top) {
668     // Initialize to bottom.
669     Pos = 0;
670     return;
671   }
672   // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty).
673   Pos = DS.Stack.size();
674   while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1]))
675     Pos--;
676 }
677 
678 // Return the size of the stack, including block delimiters.
679 unsigned DataFlowGraph::DefStack::size() const {
680   unsigned S = 0;
681   for (auto I = top(), E = bottom(); I != E; I.down())
682     S++;
683   return S;
684 }
685 
686 // Remove the top entry from the stack. Remove all intervening delimiters
687 // so that after this, the stack is either empty, or the top of the stack
688 // is a non-delimiter.
689 void DataFlowGraph::DefStack::pop() {
690   assert(!empty());
691   unsigned P = nextDown(Stack.size());
692   Stack.resize(P);
693 }
694 
695 // Push a delimiter for block node N on the stack.
696 void DataFlowGraph::DefStack::start_block(NodeId N) {
697   assert(N != 0);
698   Stack.push_back(Def(nullptr, N));
699 }
700 
701 // Remove all nodes from the top of the stack, until the delimited for
702 // block node N is encountered. Remove the delimiter as well. In effect,
703 // this will remove from the stack all definitions from block N.
704 void DataFlowGraph::DefStack::clear_block(NodeId N) {
705   assert(N != 0);
706   unsigned P = Stack.size();
707   while (P > 0) {
708     bool Found = isDelimiter(Stack[P - 1], N);
709     P--;
710     if (Found)
711       break;
712   }
713   // This will also remove the delimiter, if found.
714   Stack.resize(P);
715 }
716 
717 // Move the stack iterator up by one.
718 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const {
719   // Get the next valid position after P (skipping all delimiters).
720   // The input position P does not have to point to a non-delimiter.
721   unsigned SS = Stack.size();
722   bool IsDelim;
723   assert(P < SS);
724   do {
725     P++;
726     IsDelim = isDelimiter(Stack[P - 1]);
727   } while (P < SS && IsDelim);
728   assert(!IsDelim);
729   return P;
730 }
731 
732 // Move the stack iterator down by one.
733 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const {
734   // Get the preceding valid position before P (skipping all delimiters).
735   // The input position P does not have to point to a non-delimiter.
736   assert(P > 0 && P <= Stack.size());
737   bool IsDelim = isDelimiter(Stack[P - 1]);
738   do {
739     if (--P == 0)
740       break;
741     IsDelim = isDelimiter(Stack[P - 1]);
742   } while (P > 0 && IsDelim);
743   assert(!IsDelim);
744   return P;
745 }
746 
747 // Register information.
748 
749 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const {
750   RegisterAggr LR(getPRI());
751   const Function &F = MF.getFunction();
752   const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr;
753   const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering();
754   if (RegisterId R = TLI.getExceptionPointerRegister(PF))
755     LR.insert(RegisterRef(R));
756   if (!isFuncletEHPersonality(classifyEHPersonality(PF))) {
757     if (RegisterId R = TLI.getExceptionSelectorRegister(PF))
758       LR.insert(RegisterRef(R));
759   }
760   return LR;
761 }
762 
763 // Node management functions.
764 
765 // Get the pointer to the node with the id N.
766 NodeBase *DataFlowGraph::ptr(NodeId N) const {
767   if (N == 0)
768     return nullptr;
769   return Memory.ptr(N);
770 }
771 
772 // Get the id of the node at the address P.
773 NodeId DataFlowGraph::id(const NodeBase *P) const {
774   if (P == nullptr)
775     return 0;
776   return Memory.id(P);
777 }
778 
779 // Allocate a new node and set the attributes to Attrs.
780 Node DataFlowGraph::newNode(uint16_t Attrs) {
781   Node P = Memory.New();
782   P.Addr->init();
783   P.Addr->setAttrs(Attrs);
784   return P;
785 }
786 
787 // Make a copy of the given node B, except for the data-flow links, which
788 // are set to 0.
789 Node DataFlowGraph::cloneNode(const Node B) {
790   Node NA = newNode(0);
791   memcpy(NA.Addr, B.Addr, sizeof(NodeBase));
792   // Ref nodes need to have the data-flow links reset.
793   if (NA.Addr->getType() == NodeAttrs::Ref) {
794     Ref RA = NA;
795     RA.Addr->setReachingDef(0);
796     RA.Addr->setSibling(0);
797     if (NA.Addr->getKind() == NodeAttrs::Def) {
798       Def DA = NA;
799       DA.Addr->setReachedDef(0);
800       DA.Addr->setReachedUse(0);
801     }
802   }
803   return NA;
804 }
805 
806 // Allocation routines for specific node types/kinds.
807 
808 Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) {
809   Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
810   UA.Addr->setRegRef(&Op, *this);
811   return UA;
812 }
813 
814 PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB,
815                                 uint16_t Flags) {
816   PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags);
817   assert(Flags & NodeAttrs::PhiRef);
818   PUA.Addr->setRegRef(RR, *this);
819   PUA.Addr->setPredecessor(PredB.Id);
820   return PUA;
821 }
822 
823 Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) {
824   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
825   DA.Addr->setRegRef(&Op, *this);
826   return DA;
827 }
828 
829 Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) {
830   Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags);
831   assert(Flags & NodeAttrs::PhiRef);
832   DA.Addr->setRegRef(RR, *this);
833   return DA;
834 }
835 
836 Phi DataFlowGraph::newPhi(Block Owner) {
837   Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi);
838   Owner.Addr->addPhi(PA, *this);
839   return PA;
840 }
841 
842 Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) {
843   Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt);
844   SA.Addr->setCode(MI);
845   Owner.Addr->addMember(SA, *this);
846   return SA;
847 }
848 
849 Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) {
850   Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block);
851   BA.Addr->setCode(BB);
852   Owner.Addr->addMember(BA, *this);
853   return BA;
854 }
855 
856 Func DataFlowGraph::newFunc(MachineFunction *MF) {
857   Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func);
858   FA.Addr->setCode(MF);
859   return FA;
860 }
861 
862 // Build the data flow graph.
863 void DataFlowGraph::build(unsigned Options) {
864   reset();
865   TheFunc = newFunc(&MF);
866 
867   if (MF.empty())
868     return;
869 
870   for (MachineBasicBlock &B : MF) {
871     Block BA = newBlock(TheFunc, &B);
872     BlockNodes.insert(std::make_pair(&B, BA));
873     for (MachineInstr &I : B) {
874       if (I.isDebugInstr())
875         continue;
876       buildStmt(BA, I);
877     }
878   }
879 
880   Block EA = TheFunc.Addr->getEntryBlock(*this);
881   NodeList Blocks = TheFunc.Addr->members(*this);
882 
883   // Collect information about block references.
884   RegisterSet AllRefs(getPRI());
885   for (Block BA : Blocks)
886     for (Instr IA : BA.Addr->members(*this))
887       for (Ref RA : IA.Addr->members(*this))
888         AllRefs.insert(RA.Addr->getRegRef(*this));
889 
890   // Collect function live-ins and entry block live-ins.
891   MachineRegisterInfo &MRI = MF.getRegInfo();
892   MachineBasicBlock &EntryB = *EA.Addr->getCode();
893   assert(EntryB.pred_empty() && "Function entry block has predecessors");
894   for (std::pair<unsigned, unsigned> P : MRI.liveins())
895     LiveIns.insert(RegisterRef(P.first));
896   if (MRI.tracksLiveness()) {
897     for (auto I : EntryB.liveins())
898       LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask));
899   }
900 
901   // Add function-entry phi nodes for the live-in registers.
902   for (RegisterRef RR : LiveIns.refs()) {
903     Phi PA = newPhi(EA);
904     uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
905     Def DA = newDef(PA, RR, PhiFlags);
906     PA.Addr->addMember(DA, *this);
907   }
908 
909   // Add phis for landing pads.
910   // Landing pads, unlike usual backs blocks, are not entered through
911   // branches in the program, or fall-throughs from other blocks. They
912   // are entered from the exception handling runtime and target's ABI
913   // may define certain registers as defined on entry to such a block.
914   RegisterAggr EHRegs = getLandingPadLiveIns();
915   if (!EHRegs.empty()) {
916     for (Block BA : Blocks) {
917       const MachineBasicBlock &B = *BA.Addr->getCode();
918       if (!B.isEHPad())
919         continue;
920 
921       // Prepare a list of NodeIds of the block's predecessors.
922       NodeList Preds;
923       for (MachineBasicBlock *PB : B.predecessors())
924         Preds.push_back(findBlock(PB));
925 
926       // Build phi nodes for each live-in.
927       for (RegisterRef RR : EHRegs.refs()) {
928         Phi PA = newPhi(BA);
929         uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
930         // Add def:
931         Def DA = newDef(PA, RR, PhiFlags);
932         PA.Addr->addMember(DA, *this);
933         // Add uses (no reaching defs for phi uses):
934         for (Block PBA : Preds) {
935           PhiUse PUA = newPhiUse(PA, RR, PBA);
936           PA.Addr->addMember(PUA, *this);
937         }
938       }
939     }
940   }
941 
942   // Build a map "PhiM" which will contain, for each block, the set
943   // of references that will require phi definitions in that block.
944   BlockRefsMap PhiM(getPRI());
945   for (Block BA : Blocks)
946     recordDefsForDF(PhiM, BA);
947   for (Block BA : Blocks)
948     buildPhis(PhiM, AllRefs, BA);
949 
950   // Link all the refs. This will recursively traverse the dominator tree.
951   DefStackMap DM;
952   linkBlockRefs(DM, EA);
953 
954   // Finally, remove all unused phi nodes.
955   if (!(Options & BuildOptions::KeepDeadPhis))
956     removeUnusedPhis();
957 }
958 
959 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const {
960   assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg));
961   assert(Reg != 0);
962   if (Sub != 0)
963     Reg = TRI.getSubReg(Reg, Sub);
964   return RegisterRef(Reg);
965 }
966 
967 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const {
968   assert(Op.isReg() || Op.isRegMask());
969   if (Op.isReg())
970     return makeRegRef(Op.getReg(), Op.getSubReg());
971   return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()),
972                      LaneBitmask::getAll());
973 }
974 
975 // For each stack in the map DefM, push the delimiter for block B on it.
976 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) {
977   // Push block delimiters.
978   for (auto &P : DefM)
979     P.second.start_block(B);
980 }
981 
982 // Remove all definitions coming from block B from each stack in DefM.
983 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) {
984   // Pop all defs from this block from the definition stack. Defs that were
985   // added to the map during the traversal of instructions will not have a
986   // delimiter, but for those, the whole stack will be emptied.
987   for (auto &P : DefM)
988     P.second.clear_block(B);
989 
990   // Finally, remove empty stacks from the map.
991   for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) {
992     NextI = std::next(I);
993     // This preserves the validity of iterators other than I.
994     if (I->second.empty())
995       DefM.erase(I);
996   }
997 }
998 
999 // Push all definitions from the instruction node IA to an appropriate
1000 // stack in DefM.
1001 void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) {
1002   pushClobbers(IA, DefM);
1003   pushDefs(IA, DefM);
1004 }
1005 
1006 // Push all definitions from the instruction node IA to an appropriate
1007 // stack in DefM.
1008 void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) {
1009   NodeSet Visited;
1010   std::set<RegisterId> Defined;
1011 
1012   // The important objectives of this function are:
1013   // - to be able to handle instructions both while the graph is being
1014   //   constructed, and after the graph has been constructed, and
1015   // - maintain proper ordering of definitions on the stack for each
1016   //   register reference:
1017   //   - if there are two or more related defs in IA (i.e. coming from
1018   //     the same machine operand), then only push one def on the stack,
1019   //   - if there are multiple unrelated defs of non-overlapping
1020   //     subregisters of S, then the stack for S will have both (in an
1021   //     unspecified order), but the order does not matter from the data-
1022   //     -flow perspective.
1023 
1024   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1025     if (Visited.count(DA.Id))
1026       continue;
1027     if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering))
1028       continue;
1029 
1030     NodeList Rel = getRelatedRefs(IA, DA);
1031     Def PDA = Rel.front();
1032     RegisterRef RR = PDA.Addr->getRegRef(*this);
1033 
1034     // Push the definition on the stack for the register and all aliases.
1035     // The def stack traversal in linkNodeUp will check the exact aliasing.
1036     DefM[RR.Reg].push(DA);
1037     Defined.insert(RR.Reg);
1038     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1039       // Check that we don't push the same def twice.
1040       assert(A != RR.Reg);
1041       if (!Defined.count(A))
1042         DefM[A].push(DA);
1043     }
1044     // Mark all the related defs as visited.
1045     for (Node T : Rel)
1046       Visited.insert(T.Id);
1047   }
1048 }
1049 
1050 // Push all definitions from the instruction node IA to an appropriate
1051 // stack in DefM.
1052 void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) {
1053   NodeSet Visited;
1054 #ifndef NDEBUG
1055   std::set<RegisterId> Defined;
1056 #endif
1057 
1058   // The important objectives of this function are:
1059   // - to be able to handle instructions both while the graph is being
1060   //   constructed, and after the graph has been constructed, and
1061   // - maintain proper ordering of definitions on the stack for each
1062   //   register reference:
1063   //   - if there are two or more related defs in IA (i.e. coming from
1064   //     the same machine operand), then only push one def on the stack,
1065   //   - if there are multiple unrelated defs of non-overlapping
1066   //     subregisters of S, then the stack for S will have both (in an
1067   //     unspecified order), but the order does not matter from the data-
1068   //     -flow perspective.
1069 
1070   for (Def DA : IA.Addr->members_if(IsDef, *this)) {
1071     if (Visited.count(DA.Id))
1072       continue;
1073     if (DA.Addr->getFlags() & NodeAttrs::Clobbering)
1074       continue;
1075 
1076     NodeList Rel = getRelatedRefs(IA, DA);
1077     Def PDA = Rel.front();
1078     RegisterRef RR = PDA.Addr->getRegRef(*this);
1079 #ifndef NDEBUG
1080     // Assert if the register is defined in two or more unrelated defs.
1081     // This could happen if there are two or more def operands defining it.
1082     if (!Defined.insert(RR.Reg).second) {
1083       MachineInstr *MI = Stmt(IA).Addr->getCode();
1084       dbgs() << "Multiple definitions of register: " << Print(RR, *this)
1085              << " in\n  " << *MI << "in " << printMBBReference(*MI->getParent())
1086              << '\n';
1087       llvm_unreachable(nullptr);
1088     }
1089 #endif
1090     // Push the definition on the stack for the register and all aliases.
1091     // The def stack traversal in linkNodeUp will check the exact aliasing.
1092     DefM[RR.Reg].push(DA);
1093     for (RegisterId A : getPRI().getAliasSet(RR.Reg)) {
1094       // Check that we don't push the same def twice.
1095       assert(A != RR.Reg);
1096       DefM[A].push(DA);
1097     }
1098     // Mark all the related defs as visited.
1099     for (Node T : Rel)
1100       Visited.insert(T.Id);
1101   }
1102 }
1103 
1104 // Return the list of all reference nodes related to RA, including RA itself.
1105 // See "getNextRelated" for the meaning of a "related reference".
1106 NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const {
1107   assert(IA.Id != 0 && RA.Id != 0);
1108 
1109   NodeList Refs;
1110   NodeId Start = RA.Id;
1111   do {
1112     Refs.push_back(RA);
1113     RA = getNextRelated(IA, RA);
1114   } while (RA.Id != 0 && RA.Id != Start);
1115   return Refs;
1116 }
1117 
1118 // Clear all information in the graph.
1119 void DataFlowGraph::reset() {
1120   Memory.clear();
1121   BlockNodes.clear();
1122   TheFunc = Func();
1123 }
1124 
1125 // Return the next reference node in the instruction node IA that is related
1126 // to RA. Conceptually, two reference nodes are related if they refer to the
1127 // same instance of a register access, but differ in flags or other minor
1128 // characteristics. Specific examples of related nodes are shadow reference
1129 // nodes.
1130 // Return the equivalent of nullptr if there are no more related references.
1131 Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const {
1132   assert(IA.Id != 0 && RA.Id != 0);
1133 
1134   auto Related = [this, RA](Ref TA) -> bool {
1135     if (TA.Addr->getKind() != RA.Addr->getKind())
1136       return false;
1137     if (!getPRI().equal_to(TA.Addr->getRegRef(*this),
1138                            RA.Addr->getRegRef(*this))) {
1139       return false;
1140     }
1141     return true;
1142   };
1143   auto RelatedStmt = [&Related, RA](Ref TA) -> bool {
1144     return Related(TA) && &RA.Addr->getOp() == &TA.Addr->getOp();
1145   };
1146   auto RelatedPhi = [&Related, RA](Ref TA) -> bool {
1147     if (!Related(TA))
1148       return false;
1149     if (TA.Addr->getKind() != NodeAttrs::Use)
1150       return true;
1151     // For phi uses, compare predecessor blocks.
1152     const NodeAddr<const PhiUseNode *> TUA = TA;
1153     const NodeAddr<const PhiUseNode *> RUA = RA;
1154     return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor();
1155   };
1156 
1157   RegisterRef RR = RA.Addr->getRegRef(*this);
1158   if (IA.Addr->getKind() == NodeAttrs::Stmt)
1159     return RA.Addr->getNextRef(RR, RelatedStmt, true, *this);
1160   return RA.Addr->getNextRef(RR, RelatedPhi, true, *this);
1161 }
1162 
1163 // Find the next node related to RA in IA that satisfies condition P.
1164 // If such a node was found, return a pair where the second element is the
1165 // located node. If such a node does not exist, return a pair where the
1166 // first element is the element after which such a node should be inserted,
1167 // and the second element is a null-address.
1168 template <typename Predicate>
1169 std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA,
1170                                                  Predicate P) const {
1171   assert(IA.Id != 0 && RA.Id != 0);
1172 
1173   Ref NA;
1174   NodeId Start = RA.Id;
1175   while (true) {
1176     NA = getNextRelated(IA, RA);
1177     if (NA.Id == 0 || NA.Id == Start)
1178       break;
1179     if (P(NA))
1180       break;
1181     RA = NA;
1182   }
1183 
1184   if (NA.Id != 0 && NA.Id != Start)
1185     return std::make_pair(RA, NA);
1186   return std::make_pair(RA, Ref());
1187 }
1188 
1189 // Get the next shadow node in IA corresponding to RA, and optionally create
1190 // such a node if it does not exist.
1191 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) {
1192   assert(IA.Id != 0 && RA.Id != 0);
1193 
1194   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1195   auto IsShadow = [Flags](Ref TA) -> bool {
1196     return TA.Addr->getFlags() == Flags;
1197   };
1198   auto Loc = locateNextRef(IA, RA, IsShadow);
1199   if (Loc.second.Id != 0 || !Create)
1200     return Loc.second;
1201 
1202   // Create a copy of RA and mark is as shadow.
1203   Ref NA = cloneNode(RA);
1204   NA.Addr->setFlags(Flags | NodeAttrs::Shadow);
1205   IA.Addr->addMemberAfter(Loc.first, NA, *this);
1206   return NA;
1207 }
1208 
1209 // Get the next shadow node in IA corresponding to RA. Return null-address
1210 // if such a node does not exist.
1211 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA) const {
1212   assert(IA.Id != 0 && RA.Id != 0);
1213   uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow;
1214   auto IsShadow = [Flags](Ref TA) -> bool {
1215     return TA.Addr->getFlags() == Flags;
1216   };
1217   return locateNextRef(IA, RA, IsShadow).second;
1218 }
1219 
1220 // Create a new statement node in the block node BA that corresponds to
1221 // the machine instruction MI.
1222 void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) {
1223   Stmt SA = newStmt(BA, &In);
1224 
1225   auto isCall = [](const MachineInstr &In) -> bool {
1226     if (In.isCall())
1227       return true;
1228     // Is tail call?
1229     if (In.isBranch()) {
1230       for (const MachineOperand &Op : In.operands())
1231         if (Op.isGlobal() || Op.isSymbol())
1232           return true;
1233       // Assume indirect branches are calls. This is for the purpose of
1234       // keeping implicit operands, and so it won't hurt on intra-function
1235       // indirect branches.
1236       if (In.isIndirectBranch())
1237         return true;
1238     }
1239     return false;
1240   };
1241 
1242   auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool {
1243     // This instruction defines DR. Check if there is a use operand that
1244     // would make DR live on entry to the instruction.
1245     for (const MachineOperand &Op : In.all_uses()) {
1246       if (Op.getReg() == 0 || Op.isUndef())
1247         continue;
1248       RegisterRef UR = makeRegRef(Op);
1249       if (getPRI().alias(DR, UR))
1250         return false;
1251     }
1252     return true;
1253   };
1254 
1255   bool IsCall = isCall(In);
1256   unsigned NumOps = In.getNumOperands();
1257 
1258   // Avoid duplicate implicit defs. This will not detect cases of implicit
1259   // defs that define registers that overlap, but it is not clear how to
1260   // interpret that in the absence of explicit defs. Overlapping explicit
1261   // defs are likely illegal already.
1262   BitVector DoneDefs(TRI.getNumRegs());
1263   // Process explicit defs first.
1264   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1265     MachineOperand &Op = In.getOperand(OpN);
1266     if (!Op.isReg() || !Op.isDef() || Op.isImplicit())
1267       continue;
1268     Register R = Op.getReg();
1269     if (!R || !R.isPhysical())
1270       continue;
1271     uint16_t Flags = NodeAttrs::None;
1272     if (TOI.isPreserving(In, OpN)) {
1273       Flags |= NodeAttrs::Preserving;
1274       // If the def is preserving, check if it is also undefined.
1275       if (isDefUndef(In, makeRegRef(Op)))
1276         Flags |= NodeAttrs::Undef;
1277     }
1278     if (TOI.isClobbering(In, OpN))
1279       Flags |= NodeAttrs::Clobbering;
1280     if (TOI.isFixedReg(In, OpN))
1281       Flags |= NodeAttrs::Fixed;
1282     if (IsCall && Op.isDead())
1283       Flags |= NodeAttrs::Dead;
1284     Def DA = newDef(SA, Op, Flags);
1285     SA.Addr->addMember(DA, *this);
1286     assert(!DoneDefs.test(R));
1287     DoneDefs.set(R);
1288   }
1289 
1290   // Process reg-masks (as clobbers).
1291   BitVector DoneClobbers(TRI.getNumRegs());
1292   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1293     MachineOperand &Op = In.getOperand(OpN);
1294     if (!Op.isRegMask())
1295       continue;
1296     uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead;
1297     Def DA = newDef(SA, Op, Flags);
1298     SA.Addr->addMember(DA, *this);
1299     // Record all clobbered registers in DoneDefs.
1300     const uint32_t *RM = Op.getRegMask();
1301     for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i)
1302       if (!(RM[i / 32] & (1u << (i % 32))))
1303         DoneClobbers.set(i);
1304   }
1305 
1306   // Process implicit defs, skipping those that have already been added
1307   // as explicit.
1308   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1309     MachineOperand &Op = In.getOperand(OpN);
1310     if (!Op.isReg() || !Op.isDef() || !Op.isImplicit())
1311       continue;
1312     Register R = Op.getReg();
1313     if (!R || !R.isPhysical() || DoneDefs.test(R))
1314       continue;
1315     RegisterRef RR = makeRegRef(Op);
1316     uint16_t Flags = NodeAttrs::None;
1317     if (TOI.isPreserving(In, OpN)) {
1318       Flags |= NodeAttrs::Preserving;
1319       // If the def is preserving, check if it is also undefined.
1320       if (isDefUndef(In, RR))
1321         Flags |= NodeAttrs::Undef;
1322     }
1323     if (TOI.isClobbering(In, OpN))
1324       Flags |= NodeAttrs::Clobbering;
1325     if (TOI.isFixedReg(In, OpN))
1326       Flags |= NodeAttrs::Fixed;
1327     if (IsCall && Op.isDead()) {
1328       if (DoneClobbers.test(R))
1329         continue;
1330       Flags |= NodeAttrs::Dead;
1331     }
1332     Def DA = newDef(SA, Op, Flags);
1333     SA.Addr->addMember(DA, *this);
1334     DoneDefs.set(R);
1335   }
1336 
1337   for (unsigned OpN = 0; OpN < NumOps; ++OpN) {
1338     MachineOperand &Op = In.getOperand(OpN);
1339     if (!Op.isReg() || !Op.isUse())
1340       continue;
1341     Register R = Op.getReg();
1342     if (!R || !R.isPhysical())
1343       continue;
1344     uint16_t Flags = NodeAttrs::None;
1345     if (Op.isUndef())
1346       Flags |= NodeAttrs::Undef;
1347     if (TOI.isFixedReg(In, OpN))
1348       Flags |= NodeAttrs::Fixed;
1349     Use UA = newUse(SA, Op, Flags);
1350     SA.Addr->addMember(UA, *this);
1351   }
1352 }
1353 
1354 // Scan all defs in the block node BA and record in PhiM the locations of
1355 // phi nodes corresponding to these defs.
1356 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) {
1357   // Check all defs from block BA and record them in each block in BA's
1358   // iterated dominance frontier. This information will later be used to
1359   // create phi nodes.
1360   MachineBasicBlock *BB = BA.Addr->getCode();
1361   assert(BB);
1362   auto DFLoc = MDF.find(BB);
1363   if (DFLoc == MDF.end() || DFLoc->second.empty())
1364     return;
1365 
1366   // Traverse all instructions in the block and collect the set of all
1367   // defined references. For each reference there will be a phi created
1368   // in the block's iterated dominance frontier.
1369   // This is done to make sure that each defined reference gets only one
1370   // phi node, even if it is defined multiple times.
1371   RegisterAggr Defs(getPRI());
1372   for (Instr IA : BA.Addr->members(*this))
1373     for (Ref RA : IA.Addr->members_if(IsDef, *this))
1374       Defs.insert(RA.Addr->getRegRef(*this));
1375 
1376   // Calculate the iterated dominance frontier of BB.
1377   const MachineDominanceFrontier::DomSetType &DF = DFLoc->second;
1378   SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end());
1379   for (unsigned i = 0; i < IDF.size(); ++i) {
1380     auto F = MDF.find(IDF[i]);
1381     if (F != MDF.end())
1382       IDF.insert(F->second.begin(), F->second.end());
1383   }
1384 
1385   // Finally, add the set of defs to each block in the iterated dominance
1386   // frontier.
1387   for (auto *DB : IDF) {
1388     Block DBA = findBlock(DB);
1389     PhiM[DBA.Id].insert(Defs);
1390   }
1391 }
1392 
1393 // Given the locations of phi nodes in the map PhiM, create the phi nodes
1394 // that are located in the block node BA.
1395 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs,
1396                               Block BA) {
1397   // Check if this blocks has any DF defs, i.e. if there are any defs
1398   // that this block is in the iterated dominance frontier of.
1399   auto HasDF = PhiM.find(BA.Id);
1400   if (HasDF == PhiM.end() || HasDF->second.empty())
1401     return;
1402 
1403   // Prepare a list of NodeIds of the block's predecessors.
1404   NodeList Preds;
1405   const MachineBasicBlock *MBB = BA.Addr->getCode();
1406   for (MachineBasicBlock *PB : MBB->predecessors())
1407     Preds.push_back(findBlock(PB));
1408 
1409   const RegisterAggr &Defs = PhiM[BA.Id];
1410   uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving;
1411 
1412   for (RegisterRef RR : Defs.refs()) {
1413     Phi PA = newPhi(BA);
1414     PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this);
1415 
1416     // Add phi uses.
1417     for (Block PBA : Preds) {
1418       PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this);
1419     }
1420   }
1421 }
1422 
1423 // Remove any unneeded phi nodes that were created during the build process.
1424 void DataFlowGraph::removeUnusedPhis() {
1425   // This will remove unused phis, i.e. phis where each def does not reach
1426   // any uses or other defs. This will not detect or remove circular phi
1427   // chains that are otherwise dead. Unused/dead phis are created during
1428   // the build process and this function is intended to remove these cases
1429   // that are easily determinable to be unnecessary.
1430 
1431   SetVector<NodeId> PhiQ;
1432   for (Block BA : TheFunc.Addr->members(*this)) {
1433     for (auto P : BA.Addr->members_if(IsPhi, *this))
1434       PhiQ.insert(P.Id);
1435   }
1436 
1437   static auto HasUsedDef = [](NodeList &Ms) -> bool {
1438     for (Node M : Ms) {
1439       if (M.Addr->getKind() != NodeAttrs::Def)
1440         continue;
1441       Def DA = M;
1442       if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0)
1443         return true;
1444     }
1445     return false;
1446   };
1447 
1448   // Any phi, if it is removed, may affect other phis (make them dead).
1449   // For each removed phi, collect the potentially affected phis and add
1450   // them back to the queue.
1451   while (!PhiQ.empty()) {
1452     auto PA = addr<PhiNode *>(PhiQ[0]);
1453     PhiQ.remove(PA.Id);
1454     NodeList Refs = PA.Addr->members(*this);
1455     if (HasUsedDef(Refs))
1456       continue;
1457     for (Ref RA : Refs) {
1458       if (NodeId RD = RA.Addr->getReachingDef()) {
1459         auto RDA = addr<DefNode *>(RD);
1460         Instr OA = RDA.Addr->getOwner(*this);
1461         if (IsPhi(OA))
1462           PhiQ.insert(OA.Id);
1463       }
1464       if (RA.Addr->isDef())
1465         unlinkDef(RA, true);
1466       else
1467         unlinkUse(RA, true);
1468     }
1469     Block BA = PA.Addr->getOwner(*this);
1470     BA.Addr->removeMember(PA, *this);
1471   }
1472 }
1473 
1474 // For a given reference node TA in an instruction node IA, connect the
1475 // reaching def of TA to the appropriate def node. Create any shadow nodes
1476 // as appropriate.
1477 template <typename T>
1478 void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) {
1479   if (DS.empty())
1480     return;
1481   RegisterRef RR = TA.Addr->getRegRef(*this);
1482   NodeAddr<T> TAP;
1483 
1484   // References from the def stack that have been examined so far.
1485   RegisterAggr Defs(getPRI());
1486 
1487   for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) {
1488     RegisterRef QR = I->Addr->getRegRef(*this);
1489 
1490     // Skip all defs that are aliased to any of the defs that we have already
1491     // seen. If this completes a cover of RR, stop the stack traversal.
1492     bool Alias = Defs.hasAliasOf(QR);
1493     bool Cover = Defs.insert(QR).hasCoverOf(RR);
1494     if (Alias) {
1495       if (Cover)
1496         break;
1497       continue;
1498     }
1499 
1500     // The reaching def.
1501     Def RDA = *I;
1502 
1503     // Pick the reached node.
1504     if (TAP.Id == 0) {
1505       TAP = TA;
1506     } else {
1507       // Mark the existing ref as "shadow" and create a new shadow.
1508       TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow);
1509       TAP = getNextShadow(IA, TAP, true);
1510     }
1511 
1512     // Create the link.
1513     TAP.Addr->linkToDef(TAP.Id, RDA);
1514 
1515     if (Cover)
1516       break;
1517   }
1518 }
1519 
1520 // Create data-flow links for all reference nodes in the statement node SA.
1521 template <typename Predicate>
1522 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) {
1523 #ifndef NDEBUG
1524   RegisterSet Defs(getPRI());
1525 #endif
1526 
1527   // Link all nodes (upwards in the data-flow) with their reaching defs.
1528   for (Ref RA : SA.Addr->members_if(P, *this)) {
1529     uint16_t Kind = RA.Addr->getKind();
1530     assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use);
1531     RegisterRef RR = RA.Addr->getRegRef(*this);
1532 #ifndef NDEBUG
1533     // Do not expect multiple defs of the same reference.
1534     assert(Kind != NodeAttrs::Def || !Defs.count(RR));
1535     Defs.insert(RR);
1536 #endif
1537 
1538     auto F = DefM.find(RR.Reg);
1539     if (F == DefM.end())
1540       continue;
1541     DefStack &DS = F->second;
1542     if (Kind == NodeAttrs::Use)
1543       linkRefUp<UseNode *>(SA, RA, DS);
1544     else if (Kind == NodeAttrs::Def)
1545       linkRefUp<DefNode *>(SA, RA, DS);
1546     else
1547       llvm_unreachable("Unexpected node in instruction");
1548   }
1549 }
1550 
1551 // Create data-flow links for all instructions in the block node BA. This
1552 // will include updating any phi nodes in BA.
1553 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) {
1554   // Push block delimiters.
1555   markBlock(BA.Id, DefM);
1556 
1557   auto IsClobber = [](Ref RA) -> bool {
1558     return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering);
1559   };
1560   auto IsNoClobber = [](Ref RA) -> bool {
1561     return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering);
1562   };
1563 
1564   assert(BA.Addr && "block node address is needed to create a data-flow link");
1565   // For each non-phi instruction in the block, link all the defs and uses
1566   // to their reaching defs. For any member of the block (including phis),
1567   // push the defs on the corresponding stacks.
1568   for (Instr IA : BA.Addr->members(*this)) {
1569     // Ignore phi nodes here. They will be linked part by part from the
1570     // predecessors.
1571     if (IA.Addr->getKind() == NodeAttrs::Stmt) {
1572       linkStmtRefs(DefM, IA, IsUse);
1573       linkStmtRefs(DefM, IA, IsClobber);
1574     }
1575 
1576     // Push the definitions on the stack.
1577     pushClobbers(IA, DefM);
1578 
1579     if (IA.Addr->getKind() == NodeAttrs::Stmt)
1580       linkStmtRefs(DefM, IA, IsNoClobber);
1581 
1582     pushDefs(IA, DefM);
1583   }
1584 
1585   // Recursively process all children in the dominator tree.
1586   MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode());
1587   for (auto *I : *N) {
1588     MachineBasicBlock *SB = I->getBlock();
1589     Block SBA = findBlock(SB);
1590     linkBlockRefs(DefM, SBA);
1591   }
1592 
1593   // Link the phi uses from the successor blocks.
1594   auto IsUseForBA = [BA](Node NA) -> bool {
1595     if (NA.Addr->getKind() != NodeAttrs::Use)
1596       return false;
1597     assert(NA.Addr->getFlags() & NodeAttrs::PhiRef);
1598     PhiUse PUA = NA;
1599     return PUA.Addr->getPredecessor() == BA.Id;
1600   };
1601 
1602   RegisterAggr EHLiveIns = getLandingPadLiveIns();
1603   MachineBasicBlock *MBB = BA.Addr->getCode();
1604 
1605   for (MachineBasicBlock *SB : MBB->successors()) {
1606     bool IsEHPad = SB->isEHPad();
1607     Block SBA = findBlock(SB);
1608     for (Instr IA : SBA.Addr->members_if(IsPhi, *this)) {
1609       // Do not link phi uses for landing pad live-ins.
1610       if (IsEHPad) {
1611         // Find what register this phi is for.
1612         Ref RA = IA.Addr->getFirstMember(*this);
1613         assert(RA.Id != 0);
1614         if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this)))
1615           continue;
1616       }
1617       // Go over each phi use associated with MBB, and link it.
1618       for (auto U : IA.Addr->members_if(IsUseForBA, *this)) {
1619         PhiUse PUA = U;
1620         RegisterRef RR = PUA.Addr->getRegRef(*this);
1621         linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]);
1622       }
1623     }
1624   }
1625 
1626   // Pop all defs from this block from the definition stacks.
1627   releaseBlock(BA.Id, DefM);
1628 }
1629 
1630 // Remove the use node UA from any data-flow and structural links.
1631 void DataFlowGraph::unlinkUseDF(Use UA) {
1632   NodeId RD = UA.Addr->getReachingDef();
1633   NodeId Sib = UA.Addr->getSibling();
1634 
1635   if (RD == 0) {
1636     assert(Sib == 0);
1637     return;
1638   }
1639 
1640   auto RDA = addr<DefNode *>(RD);
1641   auto TA = addr<UseNode *>(RDA.Addr->getReachedUse());
1642   if (TA.Id == UA.Id) {
1643     RDA.Addr->setReachedUse(Sib);
1644     return;
1645   }
1646 
1647   while (TA.Id != 0) {
1648     NodeId S = TA.Addr->getSibling();
1649     if (S == UA.Id) {
1650       TA.Addr->setSibling(UA.Addr->getSibling());
1651       return;
1652     }
1653     TA = addr<UseNode *>(S);
1654   }
1655 }
1656 
1657 // Remove the def node DA from any data-flow and structural links.
1658 void DataFlowGraph::unlinkDefDF(Def DA) {
1659   //
1660   //         RD
1661   //         | reached
1662   //         | def
1663   //         :
1664   //         .
1665   //        +----+
1666   // ... -- | DA | -- ... -- 0  : sibling chain of DA
1667   //        +----+
1668   //         |  | reached
1669   //         |  : def
1670   //         |  .
1671   //         | ...  : Siblings (defs)
1672   //         |
1673   //         : reached
1674   //         . use
1675   //        ... : sibling chain of reached uses
1676 
1677   NodeId RD = DA.Addr->getReachingDef();
1678 
1679   // Visit all siblings of the reached def and reset their reaching defs.
1680   // Also, defs reached by DA are now "promoted" to being reached by RD,
1681   // so all of them will need to be spliced into the sibling chain where
1682   // DA belongs.
1683   auto getAllNodes = [this](NodeId N) -> NodeList {
1684     NodeList Res;
1685     while (N) {
1686       auto RA = addr<RefNode *>(N);
1687       // Keep the nodes in the exact sibling order.
1688       Res.push_back(RA);
1689       N = RA.Addr->getSibling();
1690     }
1691     return Res;
1692   };
1693   NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef());
1694   NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse());
1695 
1696   if (RD == 0) {
1697     for (Ref I : ReachedDefs)
1698       I.Addr->setSibling(0);
1699     for (Ref I : ReachedUses)
1700       I.Addr->setSibling(0);
1701   }
1702   for (Def I : ReachedDefs)
1703     I.Addr->setReachingDef(RD);
1704   for (Use I : ReachedUses)
1705     I.Addr->setReachingDef(RD);
1706 
1707   NodeId Sib = DA.Addr->getSibling();
1708   if (RD == 0) {
1709     assert(Sib == 0);
1710     return;
1711   }
1712 
1713   // Update the reaching def node and remove DA from the sibling list.
1714   auto RDA = addr<DefNode *>(RD);
1715   auto TA = addr<DefNode *>(RDA.Addr->getReachedDef());
1716   if (TA.Id == DA.Id) {
1717     // If DA is the first reached def, just update the RD's reached def
1718     // to the DA's sibling.
1719     RDA.Addr->setReachedDef(Sib);
1720   } else {
1721     // Otherwise, traverse the sibling list of the reached defs and remove
1722     // DA from it.
1723     while (TA.Id != 0) {
1724       NodeId S = TA.Addr->getSibling();
1725       if (S == DA.Id) {
1726         TA.Addr->setSibling(Sib);
1727         break;
1728       }
1729       TA = addr<DefNode *>(S);
1730     }
1731   }
1732 
1733   // Splice the DA's reached defs into the RDA's reached def chain.
1734   if (!ReachedDefs.empty()) {
1735     auto Last = Def(ReachedDefs.back());
1736     Last.Addr->setSibling(RDA.Addr->getReachedDef());
1737     RDA.Addr->setReachedDef(ReachedDefs.front().Id);
1738   }
1739   // Splice the DA's reached uses into the RDA's reached use chain.
1740   if (!ReachedUses.empty()) {
1741     auto Last = Use(ReachedUses.back());
1742     Last.Addr->setSibling(RDA.Addr->getReachedUse());
1743     RDA.Addr->setReachedUse(ReachedUses.front().Id);
1744   }
1745 }
1746