1 //===- RDFGraph.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Target-independent, SSA-based data flow graph for register data flow (RDF). 10 // 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineDominanceFrontier.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/RDFGraph.h" 22 #include "llvm/CodeGen/RDFRegisters.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/MC/LaneBitmask.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <cstring> 36 #include <iterator> 37 #include <set> 38 #include <utility> 39 #include <vector> 40 41 using namespace llvm; 42 using namespace rdf; 43 44 // Printing functions. Have them here first, so that the rest of the code 45 // can use them. 46 namespace llvm { 47 namespace rdf { 48 49 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) { 50 P.G.getPRI().print(OS, P.Obj); 51 return OS; 52 } 53 54 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) { 55 auto NA = P.G.addr<NodeBase *>(P.Obj); 56 uint16_t Attrs = NA.Addr->getAttrs(); 57 uint16_t Kind = NodeAttrs::kind(Attrs); 58 uint16_t Flags = NodeAttrs::flags(Attrs); 59 switch (NodeAttrs::type(Attrs)) { 60 case NodeAttrs::Code: 61 switch (Kind) { 62 case NodeAttrs::Func: 63 OS << 'f'; 64 break; 65 case NodeAttrs::Block: 66 OS << 'b'; 67 break; 68 case NodeAttrs::Stmt: 69 OS << 's'; 70 break; 71 case NodeAttrs::Phi: 72 OS << 'p'; 73 break; 74 default: 75 OS << "c?"; 76 break; 77 } 78 break; 79 case NodeAttrs::Ref: 80 if (Flags & NodeAttrs::Undef) 81 OS << '/'; 82 if (Flags & NodeAttrs::Dead) 83 OS << '\\'; 84 if (Flags & NodeAttrs::Preserving) 85 OS << '+'; 86 if (Flags & NodeAttrs::Clobbering) 87 OS << '~'; 88 switch (Kind) { 89 case NodeAttrs::Use: 90 OS << 'u'; 91 break; 92 case NodeAttrs::Def: 93 OS << 'd'; 94 break; 95 case NodeAttrs::Block: 96 OS << 'b'; 97 break; 98 default: 99 OS << "r?"; 100 break; 101 } 102 break; 103 default: 104 OS << '?'; 105 break; 106 } 107 OS << P.Obj; 108 if (Flags & NodeAttrs::Shadow) 109 OS << '"'; 110 return OS; 111 } 112 113 static void printRefHeader(raw_ostream &OS, const NodeAddr<RefNode *> RA, 114 const DataFlowGraph &G) { 115 OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>'; 116 if (RA.Addr->getFlags() & NodeAttrs::Fixed) 117 OS << '!'; 118 } 119 120 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<DefNode *>> &P) { 121 printRefHeader(OS, P.Obj, P.G); 122 OS << '('; 123 if (NodeId N = P.Obj.Addr->getReachingDef()) 124 OS << Print(N, P.G); 125 OS << ','; 126 if (NodeId N = P.Obj.Addr->getReachedDef()) 127 OS << Print(N, P.G); 128 OS << ','; 129 if (NodeId N = P.Obj.Addr->getReachedUse()) 130 OS << Print(N, P.G); 131 OS << "):"; 132 if (NodeId N = P.Obj.Addr->getSibling()) 133 OS << Print(N, P.G); 134 return OS; 135 } 136 137 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<UseNode *>> &P) { 138 printRefHeader(OS, P.Obj, P.G); 139 OS << '('; 140 if (NodeId N = P.Obj.Addr->getReachingDef()) 141 OS << Print(N, P.G); 142 OS << "):"; 143 if (NodeId N = P.Obj.Addr->getSibling()) 144 OS << Print(N, P.G); 145 return OS; 146 } 147 148 raw_ostream &operator<<(raw_ostream &OS, 149 const Print<NodeAddr<PhiUseNode *>> &P) { 150 printRefHeader(OS, P.Obj, P.G); 151 OS << '('; 152 if (NodeId N = P.Obj.Addr->getReachingDef()) 153 OS << Print(N, P.G); 154 OS << ','; 155 if (NodeId N = P.Obj.Addr->getPredecessor()) 156 OS << Print(N, P.G); 157 OS << "):"; 158 if (NodeId N = P.Obj.Addr->getSibling()) 159 OS << Print(N, P.G); 160 return OS; 161 } 162 163 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<RefNode *>> &P) { 164 switch (P.Obj.Addr->getKind()) { 165 case NodeAttrs::Def: 166 OS << PrintNode<DefNode *>(P.Obj, P.G); 167 break; 168 case NodeAttrs::Use: 169 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) 170 OS << PrintNode<PhiUseNode *>(P.Obj, P.G); 171 else 172 OS << PrintNode<UseNode *>(P.Obj, P.G); 173 break; 174 } 175 return OS; 176 } 177 178 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) { 179 unsigned N = P.Obj.size(); 180 for (auto I : P.Obj) { 181 OS << Print(I.Id, P.G); 182 if (--N) 183 OS << ' '; 184 } 185 return OS; 186 } 187 188 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) { 189 unsigned N = P.Obj.size(); 190 for (auto I : P.Obj) { 191 OS << Print(I, P.G); 192 if (--N) 193 OS << ' '; 194 } 195 return OS; 196 } 197 198 namespace { 199 200 template <typename T> struct PrintListV { 201 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} 202 203 using Type = T; 204 const NodeList &List; 205 const DataFlowGraph &G; 206 }; 207 208 template <typename T> 209 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) { 210 unsigned N = P.List.size(); 211 for (NodeAddr<T> A : P.List) { 212 OS << PrintNode<T>(A, P.G); 213 if (--N) 214 OS << ", "; 215 } 216 return OS; 217 } 218 219 } // end anonymous namespace 220 221 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<PhiNode *>> &P) { 222 OS << Print(P.Obj.Id, P.G) << ": phi [" 223 << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 224 return OS; 225 } 226 227 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<StmtNode *>> &P) { 228 const MachineInstr &MI = *P.Obj.Addr->getCode(); 229 unsigned Opc = MI.getOpcode(); 230 OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); 231 // Print the target for calls and branches (for readability). 232 if (MI.isCall() || MI.isBranch()) { 233 MachineInstr::const_mop_iterator T = 234 llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool { 235 return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); 236 }); 237 if (T != MI.operands_end()) { 238 OS << ' '; 239 if (T->isMBB()) 240 OS << printMBBReference(*T->getMBB()); 241 else if (T->isGlobal()) 242 OS << T->getGlobal()->getName(); 243 else if (T->isSymbol()) 244 OS << T->getSymbolName(); 245 } 246 } 247 OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 248 return OS; 249 } 250 251 raw_ostream &operator<<(raw_ostream &OS, 252 const Print<NodeAddr<InstrNode *>> &P) { 253 switch (P.Obj.Addr->getKind()) { 254 case NodeAttrs::Phi: 255 OS << PrintNode<PhiNode *>(P.Obj, P.G); 256 break; 257 case NodeAttrs::Stmt: 258 OS << PrintNode<StmtNode *>(P.Obj, P.G); 259 break; 260 default: 261 OS << "instr? " << Print(P.Obj.Id, P.G); 262 break; 263 } 264 return OS; 265 } 266 267 raw_ostream &operator<<(raw_ostream &OS, 268 const Print<NodeAddr<BlockNode *>> &P) { 269 MachineBasicBlock *BB = P.Obj.Addr->getCode(); 270 unsigned NP = BB->pred_size(); 271 std::vector<int> Ns; 272 auto PrintBBs = [&OS](std::vector<int> Ns) -> void { 273 unsigned N = Ns.size(); 274 for (int I : Ns) { 275 OS << "%bb." << I; 276 if (--N) 277 OS << ", "; 278 } 279 }; 280 281 OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) 282 << " --- preds(" << NP << "): "; 283 for (MachineBasicBlock *B : BB->predecessors()) 284 Ns.push_back(B->getNumber()); 285 PrintBBs(Ns); 286 287 unsigned NS = BB->succ_size(); 288 OS << " succs(" << NS << "): "; 289 Ns.clear(); 290 for (MachineBasicBlock *B : BB->successors()) 291 Ns.push_back(B->getNumber()); 292 PrintBBs(Ns); 293 OS << '\n'; 294 295 for (auto I : P.Obj.Addr->members(P.G)) 296 OS << PrintNode<InstrNode *>(I, P.G) << '\n'; 297 return OS; 298 } 299 300 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeAddr<FuncNode *>> &P) { 301 OS << "DFG dump:[\n" 302 << Print(P.Obj.Id, P.G) 303 << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; 304 for (auto I : P.Obj.Addr->members(P.G)) 305 OS << PrintNode<BlockNode *>(I, P.G) << '\n'; 306 OS << "]\n"; 307 return OS; 308 } 309 310 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) { 311 OS << '{'; 312 for (auto I : P.Obj) 313 OS << ' ' << Print(I, P.G); 314 OS << " }"; 315 return OS; 316 } 317 318 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) { 319 OS << P.Obj; 320 return OS; 321 } 322 323 raw_ostream &operator<<(raw_ostream &OS, 324 const Print<DataFlowGraph::DefStack> &P) { 325 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) { 326 OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G) 327 << '>'; 328 I.down(); 329 if (I != E) 330 OS << ' '; 331 } 332 return OS; 333 } 334 335 } // end namespace rdf 336 } // end namespace llvm 337 338 // Node allocation functions. 339 // 340 // Node allocator is like a slab memory allocator: it allocates blocks of 341 // memory in sizes that are multiples of the size of a node. Each block has 342 // the same size. Nodes are allocated from the currently active block, and 343 // when it becomes full, a new one is created. 344 // There is a mapping scheme between node id and its location in a block, 345 // and within that block is described in the header file. 346 // 347 void NodeAllocator::startNewBlock() { 348 void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize); 349 char *P = static_cast<char *>(T); 350 Blocks.push_back(P); 351 // Check if the block index is still within the allowed range, i.e. less 352 // than 2^N, where N is the number of bits in NodeId for the block index. 353 // BitsPerIndex is the number of bits per node index. 354 assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) && 355 "Out of bits for block index"); 356 ActiveEnd = P; 357 } 358 359 bool NodeAllocator::needNewBlock() { 360 if (Blocks.empty()) 361 return true; 362 363 char *ActiveBegin = Blocks.back(); 364 uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize; 365 return Index >= NodesPerBlock; 366 } 367 368 NodeAddr<NodeBase *> NodeAllocator::New() { 369 if (needNewBlock()) 370 startNewBlock(); 371 372 uint32_t ActiveB = Blocks.size() - 1; 373 uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize; 374 NodeAddr<NodeBase *> NA = {reinterpret_cast<NodeBase *>(ActiveEnd), 375 makeId(ActiveB, Index)}; 376 ActiveEnd += NodeMemSize; 377 return NA; 378 } 379 380 NodeId NodeAllocator::id(const NodeBase *P) const { 381 uintptr_t A = reinterpret_cast<uintptr_t>(P); 382 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { 383 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); 384 if (A < B || A >= B + NodesPerBlock * NodeMemSize) 385 continue; 386 uint32_t Idx = (A - B) / NodeMemSize; 387 return makeId(i, Idx); 388 } 389 llvm_unreachable("Invalid node address"); 390 } 391 392 void NodeAllocator::clear() { 393 MemPool.Reset(); 394 Blocks.clear(); 395 ActiveEnd = nullptr; 396 } 397 398 // Insert node NA after "this" in the circular chain. 399 void NodeBase::append(NodeAddr<NodeBase *> NA) { 400 NodeId Nx = Next; 401 // If NA is already "next", do nothing. 402 if (Next != NA.Id) { 403 Next = NA.Id; 404 NA.Addr->Next = Nx; 405 } 406 } 407 408 // Fundamental node manipulator functions. 409 410 // Obtain the register reference from a reference node. 411 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { 412 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 413 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) 414 return G.unpack(Ref.PR); 415 assert(Ref.Op != nullptr); 416 return G.makeRegRef(*Ref.Op); 417 } 418 419 // Set the register reference in the reference node directly (for references 420 // in phi nodes). 421 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { 422 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 423 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); 424 Ref.PR = G.pack(RR); 425 } 426 427 // Set the register reference in the reference node based on a machine 428 // operand (for references in statement nodes). 429 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { 430 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 431 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); 432 (void)G; 433 Ref.Op = Op; 434 } 435 436 // Get the owner of a given reference node. 437 NodeAddr<NodeBase *> RefNode::getOwner(const DataFlowGraph &G) { 438 NodeAddr<NodeBase *> NA = G.addr<NodeBase *>(getNext()); 439 440 while (NA.Addr != this) { 441 if (NA.Addr->getType() == NodeAttrs::Code) 442 return NA; 443 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 444 } 445 llvm_unreachable("No owner in circular list"); 446 } 447 448 // Connect the def node to the reaching def node. 449 void DefNode::linkToDef(NodeId Self, NodeAddr<DefNode *> DA) { 450 Ref.RD = DA.Id; 451 Ref.Sib = DA.Addr->getReachedDef(); 452 DA.Addr->setReachedDef(Self); 453 } 454 455 // Connect the use node to the reaching def node. 456 void UseNode::linkToDef(NodeId Self, NodeAddr<DefNode *> DA) { 457 Ref.RD = DA.Id; 458 Ref.Sib = DA.Addr->getReachedUse(); 459 DA.Addr->setReachedUse(Self); 460 } 461 462 // Get the first member of the code node. 463 NodeAddr<NodeBase *> CodeNode::getFirstMember(const DataFlowGraph &G) const { 464 if (Code.FirstM == 0) 465 return NodeAddr<NodeBase *>(); 466 return G.addr<NodeBase *>(Code.FirstM); 467 } 468 469 // Get the last member of the code node. 470 NodeAddr<NodeBase *> CodeNode::getLastMember(const DataFlowGraph &G) const { 471 if (Code.LastM == 0) 472 return NodeAddr<NodeBase *>(); 473 return G.addr<NodeBase *>(Code.LastM); 474 } 475 476 // Add node NA at the end of the member list of the given code node. 477 void CodeNode::addMember(NodeAddr<NodeBase *> NA, const DataFlowGraph &G) { 478 NodeAddr<NodeBase *> ML = getLastMember(G); 479 if (ML.Id != 0) { 480 ML.Addr->append(NA); 481 } else { 482 Code.FirstM = NA.Id; 483 NodeId Self = G.id(this); 484 NA.Addr->setNext(Self); 485 } 486 Code.LastM = NA.Id; 487 } 488 489 // Add node NA after member node MA in the given code node. 490 void CodeNode::addMemberAfter(NodeAddr<NodeBase *> MA, NodeAddr<NodeBase *> NA, 491 const DataFlowGraph &G) { 492 MA.Addr->append(NA); 493 if (Code.LastM == MA.Id) 494 Code.LastM = NA.Id; 495 } 496 497 // Remove member node NA from the given code node. 498 void CodeNode::removeMember(NodeAddr<NodeBase *> NA, const DataFlowGraph &G) { 499 NodeAddr<NodeBase *> MA = getFirstMember(G); 500 assert(MA.Id != 0); 501 502 // Special handling if the member to remove is the first member. 503 if (MA.Id == NA.Id) { 504 if (Code.LastM == MA.Id) { 505 // If it is the only member, set both first and last to 0. 506 Code.FirstM = Code.LastM = 0; 507 } else { 508 // Otherwise, advance the first member. 509 Code.FirstM = MA.Addr->getNext(); 510 } 511 return; 512 } 513 514 while (MA.Addr != this) { 515 NodeId MX = MA.Addr->getNext(); 516 if (MX == NA.Id) { 517 MA.Addr->setNext(NA.Addr->getNext()); 518 // If the member to remove happens to be the last one, update the 519 // LastM indicator. 520 if (Code.LastM == NA.Id) 521 Code.LastM = MA.Id; 522 return; 523 } 524 MA = G.addr<NodeBase *>(MX); 525 } 526 llvm_unreachable("No such member"); 527 } 528 529 // Return the list of all members of the code node. 530 NodeList CodeNode::members(const DataFlowGraph &G) const { 531 static auto True = [](NodeAddr<NodeBase *>) -> bool { return true; }; 532 return members_if(True, G); 533 } 534 535 // Return the owner of the given instr node. 536 NodeAddr<NodeBase *> InstrNode::getOwner(const DataFlowGraph &G) { 537 NodeAddr<NodeBase *> NA = G.addr<NodeBase *>(getNext()); 538 539 while (NA.Addr != this) { 540 assert(NA.Addr->getType() == NodeAttrs::Code); 541 if (NA.Addr->getKind() == NodeAttrs::Block) 542 return NA; 543 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 544 } 545 llvm_unreachable("No owner in circular list"); 546 } 547 548 // Add the phi node PA to the given block node. 549 void BlockNode::addPhi(NodeAddr<PhiNode *> PA, const DataFlowGraph &G) { 550 NodeAddr<NodeBase *> M = getFirstMember(G); 551 if (M.Id == 0) { 552 addMember(PA, G); 553 return; 554 } 555 556 assert(M.Addr->getType() == NodeAttrs::Code); 557 if (M.Addr->getKind() == NodeAttrs::Stmt) { 558 // If the first member of the block is a statement, insert the phi as 559 // the first member. 560 Code.FirstM = PA.Id; 561 PA.Addr->setNext(M.Id); 562 } else { 563 // If the first member is a phi, find the last phi, and append PA to it. 564 assert(M.Addr->getKind() == NodeAttrs::Phi); 565 NodeAddr<NodeBase *> MN = M; 566 do { 567 M = MN; 568 MN = G.addr<NodeBase *>(M.Addr->getNext()); 569 assert(MN.Addr->getType() == NodeAttrs::Code); 570 } while (MN.Addr->getKind() == NodeAttrs::Phi); 571 572 // M is the last phi. 573 addMemberAfter(M, PA, G); 574 } 575 } 576 577 // Find the block node corresponding to the machine basic block BB in the 578 // given func node. 579 NodeAddr<BlockNode *> FuncNode::findBlock(const MachineBasicBlock *BB, 580 const DataFlowGraph &G) const { 581 auto EqBB = [BB](NodeAddr<NodeBase *> NA) -> bool { 582 return NodeAddr<BlockNode *>(NA).Addr->getCode() == BB; 583 }; 584 NodeList Ms = members_if(EqBB, G); 585 if (!Ms.empty()) 586 return Ms[0]; 587 return NodeAddr<BlockNode *>(); 588 } 589 590 // Get the block node for the entry block in the given function. 591 NodeAddr<BlockNode *> FuncNode::getEntryBlock(const DataFlowGraph &G) { 592 MachineBasicBlock *EntryB = &getCode()->front(); 593 return findBlock(EntryB, G); 594 } 595 596 // Target operand information. 597 // 598 599 // For a given instruction, check if there are any bits of RR that can remain 600 // unchanged across this def. 601 bool TargetOperandInfo::isPreserving(const MachineInstr &In, 602 unsigned OpNum) const { 603 return TII.isPredicated(In); 604 } 605 606 // Check if the definition of RR produces an unspecified value. 607 bool TargetOperandInfo::isClobbering(const MachineInstr &In, 608 unsigned OpNum) const { 609 const MachineOperand &Op = In.getOperand(OpNum); 610 if (Op.isRegMask()) 611 return true; 612 assert(Op.isReg()); 613 if (In.isCall()) 614 if (Op.isDef() && Op.isDead()) 615 return true; 616 return false; 617 } 618 619 // Check if the given instruction specifically requires 620 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, 621 unsigned OpNum) const { 622 if (In.isCall() || In.isReturn() || In.isInlineAsm()) 623 return true; 624 // Check for a tail call. 625 if (In.isBranch()) 626 for (const MachineOperand &O : In.operands()) 627 if (O.isGlobal() || O.isSymbol()) 628 return true; 629 630 const MCInstrDesc &D = In.getDesc(); 631 if (D.implicit_defs().empty() && D.implicit_uses().empty()) 632 return false; 633 const MachineOperand &Op = In.getOperand(OpNum); 634 // If there is a sub-register, treat the operand as non-fixed. Currently, 635 // fixed registers are those that are listed in the descriptor as implicit 636 // uses or defs, and those lists do not allow sub-registers. 637 if (Op.getSubReg() != 0) 638 return false; 639 Register Reg = Op.getReg(); 640 ArrayRef<MCPhysReg> ImpOps = 641 Op.isDef() ? D.implicit_defs() : D.implicit_uses(); 642 return is_contained(ImpOps, Reg); 643 } 644 645 // 646 // The data flow graph construction. 647 // 648 649 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 650 const TargetRegisterInfo &tri, 651 const MachineDominatorTree &mdt, 652 const MachineDominanceFrontier &mdf) 653 : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii), 654 TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), 655 LiveIns(PRI) {} 656 657 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 658 const TargetRegisterInfo &tri, 659 const MachineDominatorTree &mdt, 660 const MachineDominanceFrontier &mdf, 661 const TargetOperandInfo &toi) 662 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), 663 LiveIns(PRI) {} 664 665 // The implementation of the definition stack. 666 // Each register reference has its own definition stack. In particular, 667 // for a register references "Reg" and "Reg:subreg" will each have their 668 // own definition stacks. 669 670 // Construct a stack iterator. 671 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, 672 bool Top) 673 : DS(S) { 674 if (!Top) { 675 // Initialize to bottom. 676 Pos = 0; 677 return; 678 } 679 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). 680 Pos = DS.Stack.size(); 681 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1])) 682 Pos--; 683 } 684 685 // Return the size of the stack, including block delimiters. 686 unsigned DataFlowGraph::DefStack::size() const { 687 unsigned S = 0; 688 for (auto I = top(), E = bottom(); I != E; I.down()) 689 S++; 690 return S; 691 } 692 693 // Remove the top entry from the stack. Remove all intervening delimiters 694 // so that after this, the stack is either empty, or the top of the stack 695 // is a non-delimiter. 696 void DataFlowGraph::DefStack::pop() { 697 assert(!empty()); 698 unsigned P = nextDown(Stack.size()); 699 Stack.resize(P); 700 } 701 702 // Push a delimiter for block node N on the stack. 703 void DataFlowGraph::DefStack::start_block(NodeId N) { 704 assert(N != 0); 705 Stack.push_back(NodeAddr<DefNode *>(nullptr, N)); 706 } 707 708 // Remove all nodes from the top of the stack, until the delimited for 709 // block node N is encountered. Remove the delimiter as well. In effect, 710 // this will remove from the stack all definitions from block N. 711 void DataFlowGraph::DefStack::clear_block(NodeId N) { 712 assert(N != 0); 713 unsigned P = Stack.size(); 714 while (P > 0) { 715 bool Found = isDelimiter(Stack[P - 1], N); 716 P--; 717 if (Found) 718 break; 719 } 720 // This will also remove the delimiter, if found. 721 Stack.resize(P); 722 } 723 724 // Move the stack iterator up by one. 725 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { 726 // Get the next valid position after P (skipping all delimiters). 727 // The input position P does not have to point to a non-delimiter. 728 unsigned SS = Stack.size(); 729 bool IsDelim; 730 assert(P < SS); 731 do { 732 P++; 733 IsDelim = isDelimiter(Stack[P - 1]); 734 } while (P < SS && IsDelim); 735 assert(!IsDelim); 736 return P; 737 } 738 739 // Move the stack iterator down by one. 740 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { 741 // Get the preceding valid position before P (skipping all delimiters). 742 // The input position P does not have to point to a non-delimiter. 743 assert(P > 0 && P <= Stack.size()); 744 bool IsDelim = isDelimiter(Stack[P - 1]); 745 do { 746 if (--P == 0) 747 break; 748 IsDelim = isDelimiter(Stack[P - 1]); 749 } while (P > 0 && IsDelim); 750 assert(!IsDelim); 751 return P; 752 } 753 754 // Register information. 755 756 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const { 757 RegisterAggr LR(getPRI()); 758 const Function &F = MF.getFunction(); 759 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr; 760 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 761 if (RegisterId R = TLI.getExceptionPointerRegister(PF)) 762 LR.insert(RegisterRef(R)); 763 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { 764 if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) 765 LR.insert(RegisterRef(R)); 766 } 767 return LR; 768 } 769 770 // Node management functions. 771 772 // Get the pointer to the node with the id N. 773 NodeBase *DataFlowGraph::ptr(NodeId N) const { 774 if (N == 0) 775 return nullptr; 776 return Memory.ptr(N); 777 } 778 779 // Get the id of the node at the address P. 780 NodeId DataFlowGraph::id(const NodeBase *P) const { 781 if (P == nullptr) 782 return 0; 783 return Memory.id(P); 784 } 785 786 // Allocate a new node and set the attributes to Attrs. 787 NodeAddr<NodeBase *> DataFlowGraph::newNode(uint16_t Attrs) { 788 NodeAddr<NodeBase *> P = Memory.New(); 789 P.Addr->init(); 790 P.Addr->setAttrs(Attrs); 791 return P; 792 } 793 794 // Make a copy of the given node B, except for the data-flow links, which 795 // are set to 0. 796 NodeAddr<NodeBase *> DataFlowGraph::cloneNode(const NodeAddr<NodeBase *> B) { 797 NodeAddr<NodeBase *> NA = newNode(0); 798 memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); 799 // Ref nodes need to have the data-flow links reset. 800 if (NA.Addr->getType() == NodeAttrs::Ref) { 801 NodeAddr<RefNode *> RA = NA; 802 RA.Addr->setReachingDef(0); 803 RA.Addr->setSibling(0); 804 if (NA.Addr->getKind() == NodeAttrs::Def) { 805 NodeAddr<DefNode *> DA = NA; 806 DA.Addr->setReachedDef(0); 807 DA.Addr->setReachedUse(0); 808 } 809 } 810 return NA; 811 } 812 813 // Allocation routines for specific node types/kinds. 814 815 NodeAddr<UseNode *> DataFlowGraph::newUse(NodeAddr<InstrNode *> Owner, 816 MachineOperand &Op, uint16_t Flags) { 817 NodeAddr<UseNode *> UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 818 UA.Addr->setRegRef(&Op, *this); 819 return UA; 820 } 821 822 NodeAddr<PhiUseNode *> DataFlowGraph::newPhiUse(NodeAddr<PhiNode *> Owner, 823 RegisterRef RR, 824 NodeAddr<BlockNode *> PredB, 825 uint16_t Flags) { 826 NodeAddr<PhiUseNode *> PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 827 assert(Flags & NodeAttrs::PhiRef); 828 PUA.Addr->setRegRef(RR, *this); 829 PUA.Addr->setPredecessor(PredB.Id); 830 return PUA; 831 } 832 833 NodeAddr<DefNode *> DataFlowGraph::newDef(NodeAddr<InstrNode *> Owner, 834 MachineOperand &Op, uint16_t Flags) { 835 NodeAddr<DefNode *> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 836 DA.Addr->setRegRef(&Op, *this); 837 return DA; 838 } 839 840 NodeAddr<DefNode *> DataFlowGraph::newDef(NodeAddr<InstrNode *> Owner, 841 RegisterRef RR, uint16_t Flags) { 842 NodeAddr<DefNode *> DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 843 assert(Flags & NodeAttrs::PhiRef); 844 DA.Addr->setRegRef(RR, *this); 845 return DA; 846 } 847 848 NodeAddr<PhiNode *> DataFlowGraph::newPhi(NodeAddr<BlockNode *> Owner) { 849 NodeAddr<PhiNode *> PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); 850 Owner.Addr->addPhi(PA, *this); 851 return PA; 852 } 853 854 NodeAddr<StmtNode *> DataFlowGraph::newStmt(NodeAddr<BlockNode *> Owner, 855 MachineInstr *MI) { 856 NodeAddr<StmtNode *> SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); 857 SA.Addr->setCode(MI); 858 Owner.Addr->addMember(SA, *this); 859 return SA; 860 } 861 862 NodeAddr<BlockNode *> DataFlowGraph::newBlock(NodeAddr<FuncNode *> Owner, 863 MachineBasicBlock *BB) { 864 NodeAddr<BlockNode *> BA = newNode(NodeAttrs::Code | NodeAttrs::Block); 865 BA.Addr->setCode(BB); 866 Owner.Addr->addMember(BA, *this); 867 return BA; 868 } 869 870 NodeAddr<FuncNode *> DataFlowGraph::newFunc(MachineFunction *MF) { 871 NodeAddr<FuncNode *> FA = newNode(NodeAttrs::Code | NodeAttrs::Func); 872 FA.Addr->setCode(MF); 873 return FA; 874 } 875 876 // Build the data flow graph. 877 void DataFlowGraph::build(unsigned Options) { 878 reset(); 879 Func = newFunc(&MF); 880 881 if (MF.empty()) 882 return; 883 884 for (MachineBasicBlock &B : MF) { 885 NodeAddr<BlockNode *> BA = newBlock(Func, &B); 886 BlockNodes.insert(std::make_pair(&B, BA)); 887 for (MachineInstr &I : B) { 888 if (I.isDebugInstr()) 889 continue; 890 buildStmt(BA, I); 891 } 892 } 893 894 NodeAddr<BlockNode *> EA = Func.Addr->getEntryBlock(*this); 895 NodeList Blocks = Func.Addr->members(*this); 896 897 // Collect information about block references. 898 RegisterSet AllRefs(getPRI()); 899 for (NodeAddr<BlockNode *> BA : Blocks) 900 for (NodeAddr<InstrNode *> IA : BA.Addr->members(*this)) 901 for (NodeAddr<RefNode *> RA : IA.Addr->members(*this)) 902 AllRefs.insert(RA.Addr->getRegRef(*this)); 903 904 // Collect function live-ins and entry block live-ins. 905 MachineRegisterInfo &MRI = MF.getRegInfo(); 906 MachineBasicBlock &EntryB = *EA.Addr->getCode(); 907 assert(EntryB.pred_empty() && "Function entry block has predecessors"); 908 for (std::pair<unsigned, unsigned> P : MRI.liveins()) 909 LiveIns.insert(RegisterRef(P.first)); 910 if (MRI.tracksLiveness()) { 911 for (auto I : EntryB.liveins()) 912 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); 913 } 914 915 // Add function-entry phi nodes for the live-in registers. 916 for (RegisterRef RR : LiveIns.refs()) { 917 NodeAddr<PhiNode *> PA = newPhi(EA); 918 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 919 NodeAddr<DefNode *> DA = newDef(PA, RR, PhiFlags); 920 PA.Addr->addMember(DA, *this); 921 } 922 923 // Add phis for landing pads. 924 // Landing pads, unlike usual backs blocks, are not entered through 925 // branches in the program, or fall-throughs from other blocks. They 926 // are entered from the exception handling runtime and target's ABI 927 // may define certain registers as defined on entry to such a block. 928 RegisterAggr EHRegs = getLandingPadLiveIns(); 929 if (!EHRegs.empty()) { 930 for (NodeAddr<BlockNode *> BA : Blocks) { 931 const MachineBasicBlock &B = *BA.Addr->getCode(); 932 if (!B.isEHPad()) 933 continue; 934 935 // Prepare a list of NodeIds of the block's predecessors. 936 NodeList Preds; 937 for (MachineBasicBlock *PB : B.predecessors()) 938 Preds.push_back(findBlock(PB)); 939 940 // Build phi nodes for each live-in. 941 for (RegisterRef RR : EHRegs.refs()) { 942 NodeAddr<PhiNode *> PA = newPhi(BA); 943 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 944 // Add def: 945 NodeAddr<DefNode *> DA = newDef(PA, RR, PhiFlags); 946 PA.Addr->addMember(DA, *this); 947 // Add uses (no reaching defs for phi uses): 948 for (NodeAddr<BlockNode *> PBA : Preds) { 949 NodeAddr<PhiUseNode *> PUA = newPhiUse(PA, RR, PBA); 950 PA.Addr->addMember(PUA, *this); 951 } 952 } 953 } 954 } 955 956 // Build a map "PhiM" which will contain, for each block, the set 957 // of references that will require phi definitions in that block. 958 BlockRefsMap PhiM(getPRI()); 959 for (NodeAddr<BlockNode *> BA : Blocks) 960 recordDefsForDF(PhiM, BA); 961 for (NodeAddr<BlockNode *> BA : Blocks) 962 buildPhis(PhiM, AllRefs, BA); 963 964 // Link all the refs. This will recursively traverse the dominator tree. 965 DefStackMap DM; 966 linkBlockRefs(DM, EA); 967 968 // Finally, remove all unused phi nodes. 969 if (!(Options & BuildOptions::KeepDeadPhis)) 970 removeUnusedPhis(); 971 } 972 973 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { 974 assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg)); 975 assert(Reg != 0); 976 if (Sub != 0) 977 Reg = TRI.getSubReg(Reg, Sub); 978 return RegisterRef(Reg); 979 } 980 981 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { 982 assert(Op.isReg() || Op.isRegMask()); 983 if (Op.isReg()) 984 return makeRegRef(Op.getReg(), Op.getSubReg()); 985 return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()), 986 LaneBitmask::getAll()); 987 } 988 989 // For each stack in the map DefM, push the delimiter for block B on it. 990 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { 991 // Push block delimiters. 992 for (auto &P : DefM) 993 P.second.start_block(B); 994 } 995 996 // Remove all definitions coming from block B from each stack in DefM. 997 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { 998 // Pop all defs from this block from the definition stack. Defs that were 999 // added to the map during the traversal of instructions will not have a 1000 // delimiter, but for those, the whole stack will be emptied. 1001 for (auto &P : DefM) 1002 P.second.clear_block(B); 1003 1004 // Finally, remove empty stacks from the map. 1005 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { 1006 NextI = std::next(I); 1007 // This preserves the validity of iterators other than I. 1008 if (I->second.empty()) 1009 DefM.erase(I); 1010 } 1011 } 1012 1013 // Push all definitions from the instruction node IA to an appropriate 1014 // stack in DefM. 1015 void DataFlowGraph::pushAllDefs(NodeAddr<InstrNode *> IA, DefStackMap &DefM) { 1016 pushClobbers(IA, DefM); 1017 pushDefs(IA, DefM); 1018 } 1019 1020 // Push all definitions from the instruction node IA to an appropriate 1021 // stack in DefM. 1022 void DataFlowGraph::pushClobbers(NodeAddr<InstrNode *> IA, DefStackMap &DefM) { 1023 NodeSet Visited; 1024 std::set<RegisterId> Defined; 1025 1026 // The important objectives of this function are: 1027 // - to be able to handle instructions both while the graph is being 1028 // constructed, and after the graph has been constructed, and 1029 // - maintain proper ordering of definitions on the stack for each 1030 // register reference: 1031 // - if there are two or more related defs in IA (i.e. coming from 1032 // the same machine operand), then only push one def on the stack, 1033 // - if there are multiple unrelated defs of non-overlapping 1034 // subregisters of S, then the stack for S will have both (in an 1035 // unspecified order), but the order does not matter from the data- 1036 // -flow perspective. 1037 1038 for (NodeAddr<DefNode *> DA : IA.Addr->members_if(IsDef, *this)) { 1039 if (Visited.count(DA.Id)) 1040 continue; 1041 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) 1042 continue; 1043 1044 NodeList Rel = getRelatedRefs(IA, DA); 1045 NodeAddr<DefNode *> PDA = Rel.front(); 1046 RegisterRef RR = PDA.Addr->getRegRef(*this); 1047 1048 // Push the definition on the stack for the register and all aliases. 1049 // The def stack traversal in linkNodeUp will check the exact aliasing. 1050 DefM[RR.Reg].push(DA); 1051 Defined.insert(RR.Reg); 1052 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1053 // Check that we don't push the same def twice. 1054 assert(A != RR.Reg); 1055 if (!Defined.count(A)) 1056 DefM[A].push(DA); 1057 } 1058 // Mark all the related defs as visited. 1059 for (NodeAddr<NodeBase *> T : Rel) 1060 Visited.insert(T.Id); 1061 } 1062 } 1063 1064 // Push all definitions from the instruction node IA to an appropriate 1065 // stack in DefM. 1066 void DataFlowGraph::pushDefs(NodeAddr<InstrNode *> IA, DefStackMap &DefM) { 1067 NodeSet Visited; 1068 #ifndef NDEBUG 1069 std::set<RegisterId> Defined; 1070 #endif 1071 1072 // The important objectives of this function are: 1073 // - to be able to handle instructions both while the graph is being 1074 // constructed, and after the graph has been constructed, and 1075 // - maintain proper ordering of definitions on the stack for each 1076 // register reference: 1077 // - if there are two or more related defs in IA (i.e. coming from 1078 // the same machine operand), then only push one def on the stack, 1079 // - if there are multiple unrelated defs of non-overlapping 1080 // subregisters of S, then the stack for S will have both (in an 1081 // unspecified order), but the order does not matter from the data- 1082 // -flow perspective. 1083 1084 for (NodeAddr<DefNode *> DA : IA.Addr->members_if(IsDef, *this)) { 1085 if (Visited.count(DA.Id)) 1086 continue; 1087 if (DA.Addr->getFlags() & NodeAttrs::Clobbering) 1088 continue; 1089 1090 NodeList Rel = getRelatedRefs(IA, DA); 1091 NodeAddr<DefNode *> PDA = Rel.front(); 1092 RegisterRef RR = PDA.Addr->getRegRef(*this); 1093 #ifndef NDEBUG 1094 // Assert if the register is defined in two or more unrelated defs. 1095 // This could happen if there are two or more def operands defining it. 1096 if (!Defined.insert(RR.Reg).second) { 1097 MachineInstr *MI = NodeAddr<StmtNode *>(IA).Addr->getCode(); 1098 dbgs() << "Multiple definitions of register: " << Print(RR, *this) 1099 << " in\n " << *MI << "in " << printMBBReference(*MI->getParent()) 1100 << '\n'; 1101 llvm_unreachable(nullptr); 1102 } 1103 #endif 1104 // Push the definition on the stack for the register and all aliases. 1105 // The def stack traversal in linkNodeUp will check the exact aliasing. 1106 DefM[RR.Reg].push(DA); 1107 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1108 // Check that we don't push the same def twice. 1109 assert(A != RR.Reg); 1110 DefM[A].push(DA); 1111 } 1112 // Mark all the related defs as visited. 1113 for (NodeAddr<NodeBase *> T : Rel) 1114 Visited.insert(T.Id); 1115 } 1116 } 1117 1118 // Return the list of all reference nodes related to RA, including RA itself. 1119 // See "getNextRelated" for the meaning of a "related reference". 1120 NodeList DataFlowGraph::getRelatedRefs(NodeAddr<InstrNode *> IA, 1121 NodeAddr<RefNode *> RA) const { 1122 assert(IA.Id != 0 && RA.Id != 0); 1123 1124 NodeList Refs; 1125 NodeId Start = RA.Id; 1126 do { 1127 Refs.push_back(RA); 1128 RA = getNextRelated(IA, RA); 1129 } while (RA.Id != 0 && RA.Id != Start); 1130 return Refs; 1131 } 1132 1133 // Clear all information in the graph. 1134 void DataFlowGraph::reset() { 1135 Memory.clear(); 1136 BlockNodes.clear(); 1137 Func = NodeAddr<FuncNode *>(); 1138 } 1139 1140 // Return the next reference node in the instruction node IA that is related 1141 // to RA. Conceptually, two reference nodes are related if they refer to the 1142 // same instance of a register access, but differ in flags or other minor 1143 // characteristics. Specific examples of related nodes are shadow reference 1144 // nodes. 1145 // Return the equivalent of nullptr if there are no more related references. 1146 NodeAddr<RefNode *> 1147 DataFlowGraph::getNextRelated(NodeAddr<InstrNode *> IA, 1148 NodeAddr<RefNode *> RA) const { 1149 assert(IA.Id != 0 && RA.Id != 0); 1150 1151 auto Related = [this, RA](NodeAddr<RefNode *> TA) -> bool { 1152 if (TA.Addr->getKind() != RA.Addr->getKind()) 1153 return false; 1154 if (!getPRI().equal_to(TA.Addr->getRegRef(*this), 1155 RA.Addr->getRegRef(*this))) { 1156 return false; 1157 } 1158 return true; 1159 }; 1160 auto RelatedStmt = [&Related, RA](NodeAddr<RefNode *> TA) -> bool { 1161 return Related(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); 1162 }; 1163 auto RelatedPhi = [&Related, RA](NodeAddr<RefNode *> TA) -> bool { 1164 if (!Related(TA)) 1165 return false; 1166 if (TA.Addr->getKind() != NodeAttrs::Use) 1167 return true; 1168 // For phi uses, compare predecessor blocks. 1169 const NodeAddr<const PhiUseNode *> TUA = TA; 1170 const NodeAddr<const PhiUseNode *> RUA = RA; 1171 return TUA.Addr->getPredecessor() == RUA.Addr->getPredecessor(); 1172 }; 1173 1174 RegisterRef RR = RA.Addr->getRegRef(*this); 1175 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1176 return RA.Addr->getNextRef(RR, RelatedStmt, true, *this); 1177 return RA.Addr->getNextRef(RR, RelatedPhi, true, *this); 1178 } 1179 1180 // Find the next node related to RA in IA that satisfies condition P. 1181 // If such a node was found, return a pair where the second element is the 1182 // located node. If such a node does not exist, return a pair where the 1183 // first element is the element after which such a node should be inserted, 1184 // and the second element is a null-address. 1185 template <typename Predicate> 1186 std::pair<NodeAddr<RefNode *>, NodeAddr<RefNode *>> 1187 DataFlowGraph::locateNextRef(NodeAddr<InstrNode *> IA, NodeAddr<RefNode *> RA, 1188 Predicate P) const { 1189 assert(IA.Id != 0 && RA.Id != 0); 1190 1191 NodeAddr<RefNode *> NA; 1192 NodeId Start = RA.Id; 1193 while (true) { 1194 NA = getNextRelated(IA, RA); 1195 if (NA.Id == 0 || NA.Id == Start) 1196 break; 1197 if (P(NA)) 1198 break; 1199 RA = NA; 1200 } 1201 1202 if (NA.Id != 0 && NA.Id != Start) 1203 return std::make_pair(RA, NA); 1204 return std::make_pair(RA, NodeAddr<RefNode *>()); 1205 } 1206 1207 // Get the next shadow node in IA corresponding to RA, and optionally create 1208 // such a node if it does not exist. 1209 NodeAddr<RefNode *> DataFlowGraph::getNextShadow(NodeAddr<InstrNode *> IA, 1210 NodeAddr<RefNode *> RA, 1211 bool Create) { 1212 assert(IA.Id != 0 && RA.Id != 0); 1213 1214 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1215 auto IsShadow = [Flags](NodeAddr<RefNode *> TA) -> bool { 1216 return TA.Addr->getFlags() == Flags; 1217 }; 1218 auto Loc = locateNextRef(IA, RA, IsShadow); 1219 if (Loc.second.Id != 0 || !Create) 1220 return Loc.second; 1221 1222 // Create a copy of RA and mark is as shadow. 1223 NodeAddr<RefNode *> NA = cloneNode(RA); 1224 NA.Addr->setFlags(Flags | NodeAttrs::Shadow); 1225 IA.Addr->addMemberAfter(Loc.first, NA, *this); 1226 return NA; 1227 } 1228 1229 // Get the next shadow node in IA corresponding to RA. Return null-address 1230 // if such a node does not exist. 1231 NodeAddr<RefNode *> DataFlowGraph::getNextShadow(NodeAddr<InstrNode *> IA, 1232 NodeAddr<RefNode *> RA) const { 1233 assert(IA.Id != 0 && RA.Id != 0); 1234 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1235 auto IsShadow = [Flags](NodeAddr<RefNode *> TA) -> bool { 1236 return TA.Addr->getFlags() == Flags; 1237 }; 1238 return locateNextRef(IA, RA, IsShadow).second; 1239 } 1240 1241 // Create a new statement node in the block node BA that corresponds to 1242 // the machine instruction MI. 1243 void DataFlowGraph::buildStmt(NodeAddr<BlockNode *> BA, MachineInstr &In) { 1244 NodeAddr<StmtNode *> SA = newStmt(BA, &In); 1245 1246 auto isCall = [](const MachineInstr &In) -> bool { 1247 if (In.isCall()) 1248 return true; 1249 // Is tail call? 1250 if (In.isBranch()) { 1251 for (const MachineOperand &Op : In.operands()) 1252 if (Op.isGlobal() || Op.isSymbol()) 1253 return true; 1254 // Assume indirect branches are calls. This is for the purpose of 1255 // keeping implicit operands, and so it won't hurt on intra-function 1256 // indirect branches. 1257 if (In.isIndirectBranch()) 1258 return true; 1259 } 1260 return false; 1261 }; 1262 1263 auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool { 1264 // This instruction defines DR. Check if there is a use operand that 1265 // would make DR live on entry to the instruction. 1266 for (const MachineOperand &Op : In.all_uses()) { 1267 if (Op.getReg() == 0 || Op.isUndef()) 1268 continue; 1269 RegisterRef UR = makeRegRef(Op); 1270 if (getPRI().alias(DR, UR)) 1271 return false; 1272 } 1273 return true; 1274 }; 1275 1276 bool IsCall = isCall(In); 1277 unsigned NumOps = In.getNumOperands(); 1278 1279 // Avoid duplicate implicit defs. This will not detect cases of implicit 1280 // defs that define registers that overlap, but it is not clear how to 1281 // interpret that in the absence of explicit defs. Overlapping explicit 1282 // defs are likely illegal already. 1283 BitVector DoneDefs(TRI.getNumRegs()); 1284 // Process explicit defs first. 1285 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1286 MachineOperand &Op = In.getOperand(OpN); 1287 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1288 continue; 1289 Register R = Op.getReg(); 1290 if (!R || !R.isPhysical()) 1291 continue; 1292 uint16_t Flags = NodeAttrs::None; 1293 if (TOI.isPreserving(In, OpN)) { 1294 Flags |= NodeAttrs::Preserving; 1295 // If the def is preserving, check if it is also undefined. 1296 if (isDefUndef(In, makeRegRef(Op))) 1297 Flags |= NodeAttrs::Undef; 1298 } 1299 if (TOI.isClobbering(In, OpN)) 1300 Flags |= NodeAttrs::Clobbering; 1301 if (TOI.isFixedReg(In, OpN)) 1302 Flags |= NodeAttrs::Fixed; 1303 if (IsCall && Op.isDead()) 1304 Flags |= NodeAttrs::Dead; 1305 NodeAddr<DefNode *> DA = newDef(SA, Op, Flags); 1306 SA.Addr->addMember(DA, *this); 1307 assert(!DoneDefs.test(R)); 1308 DoneDefs.set(R); 1309 } 1310 1311 // Process reg-masks (as clobbers). 1312 BitVector DoneClobbers(TRI.getNumRegs()); 1313 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1314 MachineOperand &Op = In.getOperand(OpN); 1315 if (!Op.isRegMask()) 1316 continue; 1317 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead; 1318 NodeAddr<DefNode *> DA = newDef(SA, Op, Flags); 1319 SA.Addr->addMember(DA, *this); 1320 // Record all clobbered registers in DoneDefs. 1321 const uint32_t *RM = Op.getRegMask(); 1322 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) 1323 if (!(RM[i / 32] & (1u << (i % 32)))) 1324 DoneClobbers.set(i); 1325 } 1326 1327 // Process implicit defs, skipping those that have already been added 1328 // as explicit. 1329 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1330 MachineOperand &Op = In.getOperand(OpN); 1331 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) 1332 continue; 1333 Register R = Op.getReg(); 1334 if (!R || !R.isPhysical() || DoneDefs.test(R)) 1335 continue; 1336 RegisterRef RR = makeRegRef(Op); 1337 uint16_t Flags = NodeAttrs::None; 1338 if (TOI.isPreserving(In, OpN)) { 1339 Flags |= NodeAttrs::Preserving; 1340 // If the def is preserving, check if it is also undefined. 1341 if (isDefUndef(In, RR)) 1342 Flags |= NodeAttrs::Undef; 1343 } 1344 if (TOI.isClobbering(In, OpN)) 1345 Flags |= NodeAttrs::Clobbering; 1346 if (TOI.isFixedReg(In, OpN)) 1347 Flags |= NodeAttrs::Fixed; 1348 if (IsCall && Op.isDead()) { 1349 if (DoneClobbers.test(R)) 1350 continue; 1351 Flags |= NodeAttrs::Dead; 1352 } 1353 NodeAddr<DefNode *> DA = newDef(SA, Op, Flags); 1354 SA.Addr->addMember(DA, *this); 1355 DoneDefs.set(R); 1356 } 1357 1358 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1359 MachineOperand &Op = In.getOperand(OpN); 1360 if (!Op.isReg() || !Op.isUse()) 1361 continue; 1362 Register R = Op.getReg(); 1363 if (!R || !R.isPhysical()) 1364 continue; 1365 uint16_t Flags = NodeAttrs::None; 1366 if (Op.isUndef()) 1367 Flags |= NodeAttrs::Undef; 1368 if (TOI.isFixedReg(In, OpN)) 1369 Flags |= NodeAttrs::Fixed; 1370 NodeAddr<UseNode *> UA = newUse(SA, Op, Flags); 1371 SA.Addr->addMember(UA, *this); 1372 } 1373 } 1374 1375 // Scan all defs in the block node BA and record in PhiM the locations of 1376 // phi nodes corresponding to these defs. 1377 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, 1378 NodeAddr<BlockNode *> BA) { 1379 // Check all defs from block BA and record them in each block in BA's 1380 // iterated dominance frontier. This information will later be used to 1381 // create phi nodes. 1382 MachineBasicBlock *BB = BA.Addr->getCode(); 1383 assert(BB); 1384 auto DFLoc = MDF.find(BB); 1385 if (DFLoc == MDF.end() || DFLoc->second.empty()) 1386 return; 1387 1388 // Traverse all instructions in the block and collect the set of all 1389 // defined references. For each reference there will be a phi created 1390 // in the block's iterated dominance frontier. 1391 // This is done to make sure that each defined reference gets only one 1392 // phi node, even if it is defined multiple times. 1393 RegisterAggr Defs(getPRI()); 1394 for (NodeAddr<InstrNode *> IA : BA.Addr->members(*this)) 1395 for (NodeAddr<RefNode *> RA : IA.Addr->members_if(IsDef, *this)) 1396 Defs.insert(RA.Addr->getRegRef(*this)); 1397 1398 // Calculate the iterated dominance frontier of BB. 1399 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; 1400 SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end()); 1401 for (unsigned i = 0; i < IDF.size(); ++i) { 1402 auto F = MDF.find(IDF[i]); 1403 if (F != MDF.end()) 1404 IDF.insert(F->second.begin(), F->second.end()); 1405 } 1406 1407 // Finally, add the set of defs to each block in the iterated dominance 1408 // frontier. 1409 for (auto *DB : IDF) { 1410 NodeAddr<BlockNode *> DBA = findBlock(DB); 1411 PhiM[DBA.Id].insert(Defs); 1412 } 1413 } 1414 1415 // Given the locations of phi nodes in the map PhiM, create the phi nodes 1416 // that are located in the block node BA. 1417 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, RegisterSet &AllRefs, 1418 NodeAddr<BlockNode *> BA) { 1419 // Check if this blocks has any DF defs, i.e. if there are any defs 1420 // that this block is in the iterated dominance frontier of. 1421 auto HasDF = PhiM.find(BA.Id); 1422 if (HasDF == PhiM.end() || HasDF->second.empty()) 1423 return; 1424 1425 // Prepare a list of NodeIds of the block's predecessors. 1426 NodeList Preds; 1427 const MachineBasicBlock *MBB = BA.Addr->getCode(); 1428 for (MachineBasicBlock *PB : MBB->predecessors()) 1429 Preds.push_back(findBlock(PB)); 1430 1431 const RegisterAggr &Defs = PhiM[BA.Id]; 1432 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 1433 1434 for (RegisterRef RR : Defs.refs()) { 1435 NodeAddr<PhiNode *> PA = newPhi(BA); 1436 PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this); 1437 1438 // Add phi uses. 1439 for (NodeAddr<BlockNode *> PBA : Preds) { 1440 PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this); 1441 } 1442 } 1443 } 1444 1445 // Remove any unneeded phi nodes that were created during the build process. 1446 void DataFlowGraph::removeUnusedPhis() { 1447 // This will remove unused phis, i.e. phis where each def does not reach 1448 // any uses or other defs. This will not detect or remove circular phi 1449 // chains that are otherwise dead. Unused/dead phis are created during 1450 // the build process and this function is intended to remove these cases 1451 // that are easily determinable to be unnecessary. 1452 1453 SetVector<NodeId> PhiQ; 1454 for (NodeAddr<BlockNode *> BA : Func.Addr->members(*this)) { 1455 for (auto P : BA.Addr->members_if(IsPhi, *this)) 1456 PhiQ.insert(P.Id); 1457 } 1458 1459 static auto HasUsedDef = [](NodeList &Ms) -> bool { 1460 for (NodeAddr<NodeBase *> M : Ms) { 1461 if (M.Addr->getKind() != NodeAttrs::Def) 1462 continue; 1463 NodeAddr<DefNode *> DA = M; 1464 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) 1465 return true; 1466 } 1467 return false; 1468 }; 1469 1470 // Any phi, if it is removed, may affect other phis (make them dead). 1471 // For each removed phi, collect the potentially affected phis and add 1472 // them back to the queue. 1473 while (!PhiQ.empty()) { 1474 auto PA = addr<PhiNode *>(PhiQ[0]); 1475 PhiQ.remove(PA.Id); 1476 NodeList Refs = PA.Addr->members(*this); 1477 if (HasUsedDef(Refs)) 1478 continue; 1479 for (NodeAddr<RefNode *> RA : Refs) { 1480 if (NodeId RD = RA.Addr->getReachingDef()) { 1481 auto RDA = addr<DefNode *>(RD); 1482 NodeAddr<InstrNode *> OA = RDA.Addr->getOwner(*this); 1483 if (IsPhi(OA)) 1484 PhiQ.insert(OA.Id); 1485 } 1486 if (RA.Addr->isDef()) 1487 unlinkDef(RA, true); 1488 else 1489 unlinkUse(RA, true); 1490 } 1491 NodeAddr<BlockNode *> BA = PA.Addr->getOwner(*this); 1492 BA.Addr->removeMember(PA, *this); 1493 } 1494 } 1495 1496 // For a given reference node TA in an instruction node IA, connect the 1497 // reaching def of TA to the appropriate def node. Create any shadow nodes 1498 // as appropriate. 1499 template <typename T> 1500 void DataFlowGraph::linkRefUp(NodeAddr<InstrNode *> IA, NodeAddr<T> TA, 1501 DefStack &DS) { 1502 if (DS.empty()) 1503 return; 1504 RegisterRef RR = TA.Addr->getRegRef(*this); 1505 NodeAddr<T> TAP; 1506 1507 // References from the def stack that have been examined so far. 1508 RegisterAggr Defs(getPRI()); 1509 1510 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { 1511 RegisterRef QR = I->Addr->getRegRef(*this); 1512 1513 // Skip all defs that are aliased to any of the defs that we have already 1514 // seen. If this completes a cover of RR, stop the stack traversal. 1515 bool Alias = Defs.hasAliasOf(QR); 1516 bool Cover = Defs.insert(QR).hasCoverOf(RR); 1517 if (Alias) { 1518 if (Cover) 1519 break; 1520 continue; 1521 } 1522 1523 // The reaching def. 1524 NodeAddr<DefNode *> RDA = *I; 1525 1526 // Pick the reached node. 1527 if (TAP.Id == 0) { 1528 TAP = TA; 1529 } else { 1530 // Mark the existing ref as "shadow" and create a new shadow. 1531 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); 1532 TAP = getNextShadow(IA, TAP, true); 1533 } 1534 1535 // Create the link. 1536 TAP.Addr->linkToDef(TAP.Id, RDA); 1537 1538 if (Cover) 1539 break; 1540 } 1541 } 1542 1543 // Create data-flow links for all reference nodes in the statement node SA. 1544 template <typename Predicate> 1545 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, NodeAddr<StmtNode *> SA, 1546 Predicate P) { 1547 #ifndef NDEBUG 1548 RegisterSet Defs(getPRI()); 1549 #endif 1550 1551 // Link all nodes (upwards in the data-flow) with their reaching defs. 1552 for (NodeAddr<RefNode *> RA : SA.Addr->members_if(P, *this)) { 1553 uint16_t Kind = RA.Addr->getKind(); 1554 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); 1555 RegisterRef RR = RA.Addr->getRegRef(*this); 1556 #ifndef NDEBUG 1557 // Do not expect multiple defs of the same reference. 1558 assert(Kind != NodeAttrs::Def || !Defs.count(RR)); 1559 Defs.insert(RR); 1560 #endif 1561 1562 auto F = DefM.find(RR.Reg); 1563 if (F == DefM.end()) 1564 continue; 1565 DefStack &DS = F->second; 1566 if (Kind == NodeAttrs::Use) 1567 linkRefUp<UseNode *>(SA, RA, DS); 1568 else if (Kind == NodeAttrs::Def) 1569 linkRefUp<DefNode *>(SA, RA, DS); 1570 else 1571 llvm_unreachable("Unexpected node in instruction"); 1572 } 1573 } 1574 1575 // Create data-flow links for all instructions in the block node BA. This 1576 // will include updating any phi nodes in BA. 1577 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, NodeAddr<BlockNode *> BA) { 1578 // Push block delimiters. 1579 markBlock(BA.Id, DefM); 1580 1581 auto IsClobber = [](NodeAddr<RefNode *> RA) -> bool { 1582 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); 1583 }; 1584 auto IsNoClobber = [](NodeAddr<RefNode *> RA) -> bool { 1585 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); 1586 }; 1587 1588 assert(BA.Addr && "block node address is needed to create a data-flow link"); 1589 // For each non-phi instruction in the block, link all the defs and uses 1590 // to their reaching defs. For any member of the block (including phis), 1591 // push the defs on the corresponding stacks. 1592 for (NodeAddr<InstrNode *> IA : BA.Addr->members(*this)) { 1593 // Ignore phi nodes here. They will be linked part by part from the 1594 // predecessors. 1595 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1596 linkStmtRefs(DefM, IA, IsUse); 1597 linkStmtRefs(DefM, IA, IsClobber); 1598 } 1599 1600 // Push the definitions on the stack. 1601 pushClobbers(IA, DefM); 1602 1603 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1604 linkStmtRefs(DefM, IA, IsNoClobber); 1605 1606 pushDefs(IA, DefM); 1607 } 1608 1609 // Recursively process all children in the dominator tree. 1610 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); 1611 for (auto *I : *N) { 1612 MachineBasicBlock *SB = I->getBlock(); 1613 NodeAddr<BlockNode *> SBA = findBlock(SB); 1614 linkBlockRefs(DefM, SBA); 1615 } 1616 1617 // Link the phi uses from the successor blocks. 1618 auto IsUseForBA = [BA](NodeAddr<NodeBase *> NA) -> bool { 1619 if (NA.Addr->getKind() != NodeAttrs::Use) 1620 return false; 1621 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); 1622 NodeAddr<PhiUseNode *> PUA = NA; 1623 return PUA.Addr->getPredecessor() == BA.Id; 1624 }; 1625 1626 RegisterAggr EHLiveIns = getLandingPadLiveIns(); 1627 MachineBasicBlock *MBB = BA.Addr->getCode(); 1628 1629 for (MachineBasicBlock *SB : MBB->successors()) { 1630 bool IsEHPad = SB->isEHPad(); 1631 NodeAddr<BlockNode *> SBA = findBlock(SB); 1632 for (NodeAddr<InstrNode *> IA : SBA.Addr->members_if(IsPhi, *this)) { 1633 // Do not link phi uses for landing pad live-ins. 1634 if (IsEHPad) { 1635 // Find what register this phi is for. 1636 NodeAddr<RefNode *> RA = IA.Addr->getFirstMember(*this); 1637 assert(RA.Id != 0); 1638 if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this))) 1639 continue; 1640 } 1641 // Go over each phi use associated with MBB, and link it. 1642 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { 1643 NodeAddr<PhiUseNode *> PUA = U; 1644 RegisterRef RR = PUA.Addr->getRegRef(*this); 1645 linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]); 1646 } 1647 } 1648 } 1649 1650 // Pop all defs from this block from the definition stacks. 1651 releaseBlock(BA.Id, DefM); 1652 } 1653 1654 // Remove the use node UA from any data-flow and structural links. 1655 void DataFlowGraph::unlinkUseDF(NodeAddr<UseNode *> UA) { 1656 NodeId RD = UA.Addr->getReachingDef(); 1657 NodeId Sib = UA.Addr->getSibling(); 1658 1659 if (RD == 0) { 1660 assert(Sib == 0); 1661 return; 1662 } 1663 1664 auto RDA = addr<DefNode *>(RD); 1665 auto TA = addr<UseNode *>(RDA.Addr->getReachedUse()); 1666 if (TA.Id == UA.Id) { 1667 RDA.Addr->setReachedUse(Sib); 1668 return; 1669 } 1670 1671 while (TA.Id != 0) { 1672 NodeId S = TA.Addr->getSibling(); 1673 if (S == UA.Id) { 1674 TA.Addr->setSibling(UA.Addr->getSibling()); 1675 return; 1676 } 1677 TA = addr<UseNode *>(S); 1678 } 1679 } 1680 1681 // Remove the def node DA from any data-flow and structural links. 1682 void DataFlowGraph::unlinkDefDF(NodeAddr<DefNode *> DA) { 1683 // 1684 // RD 1685 // | reached 1686 // | def 1687 // : 1688 // . 1689 // +----+ 1690 // ... -- | DA | -- ... -- 0 : sibling chain of DA 1691 // +----+ 1692 // | | reached 1693 // | : def 1694 // | . 1695 // | ... : Siblings (defs) 1696 // | 1697 // : reached 1698 // . use 1699 // ... : sibling chain of reached uses 1700 1701 NodeId RD = DA.Addr->getReachingDef(); 1702 1703 // Visit all siblings of the reached def and reset their reaching defs. 1704 // Also, defs reached by DA are now "promoted" to being reached by RD, 1705 // so all of them will need to be spliced into the sibling chain where 1706 // DA belongs. 1707 auto getAllNodes = [this](NodeId N) -> NodeList { 1708 NodeList Res; 1709 while (N) { 1710 auto RA = addr<RefNode *>(N); 1711 // Keep the nodes in the exact sibling order. 1712 Res.push_back(RA); 1713 N = RA.Addr->getSibling(); 1714 } 1715 return Res; 1716 }; 1717 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); 1718 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); 1719 1720 if (RD == 0) { 1721 for (NodeAddr<RefNode *> I : ReachedDefs) 1722 I.Addr->setSibling(0); 1723 for (NodeAddr<RefNode *> I : ReachedUses) 1724 I.Addr->setSibling(0); 1725 } 1726 for (NodeAddr<DefNode *> I : ReachedDefs) 1727 I.Addr->setReachingDef(RD); 1728 for (NodeAddr<UseNode *> I : ReachedUses) 1729 I.Addr->setReachingDef(RD); 1730 1731 NodeId Sib = DA.Addr->getSibling(); 1732 if (RD == 0) { 1733 assert(Sib == 0); 1734 return; 1735 } 1736 1737 // Update the reaching def node and remove DA from the sibling list. 1738 auto RDA = addr<DefNode *>(RD); 1739 auto TA = addr<DefNode *>(RDA.Addr->getReachedDef()); 1740 if (TA.Id == DA.Id) { 1741 // If DA is the first reached def, just update the RD's reached def 1742 // to the DA's sibling. 1743 RDA.Addr->setReachedDef(Sib); 1744 } else { 1745 // Otherwise, traverse the sibling list of the reached defs and remove 1746 // DA from it. 1747 while (TA.Id != 0) { 1748 NodeId S = TA.Addr->getSibling(); 1749 if (S == DA.Id) { 1750 TA.Addr->setSibling(Sib); 1751 break; 1752 } 1753 TA = addr<DefNode *>(S); 1754 } 1755 } 1756 1757 // Splice the DA's reached defs into the RDA's reached def chain. 1758 if (!ReachedDefs.empty()) { 1759 auto Last = NodeAddr<DefNode *>(ReachedDefs.back()); 1760 Last.Addr->setSibling(RDA.Addr->getReachedDef()); 1761 RDA.Addr->setReachedDef(ReachedDefs.front().Id); 1762 } 1763 // Splice the DA's reached uses into the RDA's reached use chain. 1764 if (!ReachedUses.empty()) { 1765 auto Last = NodeAddr<UseNode *>(ReachedUses.back()); 1766 Last.Addr->setSibling(RDA.Addr->getReachedUse()); 1767 RDA.Addr->setReachedUse(ReachedUses.front().Id); 1768 } 1769 } 1770