1 //===- RDFGraph.cpp -------------------------------------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Target-independent, SSA-based data flow graph for register data flow (RDF). 10 // 11 #include "llvm/ADT/BitVector.h" 12 #include "llvm/ADT/STLExtras.h" 13 #include "llvm/ADT/SetVector.h" 14 #include "llvm/CodeGen/MachineBasicBlock.h" 15 #include "llvm/CodeGen/MachineDominanceFrontier.h" 16 #include "llvm/CodeGen/MachineDominators.h" 17 #include "llvm/CodeGen/MachineFunction.h" 18 #include "llvm/CodeGen/MachineInstr.h" 19 #include "llvm/CodeGen/MachineOperand.h" 20 #include "llvm/CodeGen/MachineRegisterInfo.h" 21 #include "llvm/CodeGen/RDFGraph.h" 22 #include "llvm/CodeGen/RDFRegisters.h" 23 #include "llvm/CodeGen/TargetInstrInfo.h" 24 #include "llvm/CodeGen/TargetLowering.h" 25 #include "llvm/CodeGen/TargetRegisterInfo.h" 26 #include "llvm/CodeGen/TargetSubtargetInfo.h" 27 #include "llvm/IR/Function.h" 28 #include "llvm/MC/LaneBitmask.h" 29 #include "llvm/MC/MCInstrDesc.h" 30 #include "llvm/Support/ErrorHandling.h" 31 #include "llvm/Support/raw_ostream.h" 32 #include <algorithm> 33 #include <cassert> 34 #include <cstdint> 35 #include <cstring> 36 #include <iterator> 37 #include <set> 38 #include <utility> 39 #include <vector> 40 41 // Printing functions. Have them here first, so that the rest of the code 42 // can use them. 43 namespace llvm::rdf { 44 45 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterRef> &P) { 46 P.G.getPRI().print(OS, P.Obj); 47 return OS; 48 } 49 50 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeId> &P) { 51 if (P.Obj == 0) 52 return OS << "null"; 53 auto NA = P.G.addr<NodeBase *>(P.Obj); 54 uint16_t Attrs = NA.Addr->getAttrs(); 55 uint16_t Kind = NodeAttrs::kind(Attrs); 56 uint16_t Flags = NodeAttrs::flags(Attrs); 57 switch (NodeAttrs::type(Attrs)) { 58 case NodeAttrs::Code: 59 switch (Kind) { 60 case NodeAttrs::Func: 61 OS << 'f'; 62 break; 63 case NodeAttrs::Block: 64 OS << 'b'; 65 break; 66 case NodeAttrs::Stmt: 67 OS << 's'; 68 break; 69 case NodeAttrs::Phi: 70 OS << 'p'; 71 break; 72 default: 73 OS << "c?"; 74 break; 75 } 76 break; 77 case NodeAttrs::Ref: 78 if (Flags & NodeAttrs::Undef) 79 OS << '/'; 80 if (Flags & NodeAttrs::Dead) 81 OS << '\\'; 82 if (Flags & NodeAttrs::Preserving) 83 OS << '+'; 84 if (Flags & NodeAttrs::Clobbering) 85 OS << '~'; 86 switch (Kind) { 87 case NodeAttrs::Use: 88 OS << 'u'; 89 break; 90 case NodeAttrs::Def: 91 OS << 'd'; 92 break; 93 case NodeAttrs::Block: 94 OS << 'b'; 95 break; 96 default: 97 OS << "r?"; 98 break; 99 } 100 break; 101 default: 102 OS << '?'; 103 break; 104 } 105 OS << P.Obj; 106 if (Flags & NodeAttrs::Shadow) 107 OS << '"'; 108 return OS; 109 } 110 111 static void printRefHeader(raw_ostream &OS, const Ref RA, 112 const DataFlowGraph &G) { 113 OS << Print(RA.Id, G) << '<' << Print(RA.Addr->getRegRef(G), G) << '>'; 114 if (RA.Addr->getFlags() & NodeAttrs::Fixed) 115 OS << '!'; 116 } 117 118 raw_ostream &operator<<(raw_ostream &OS, const Print<Def> &P) { 119 printRefHeader(OS, P.Obj, P.G); 120 OS << '('; 121 if (NodeId N = P.Obj.Addr->getReachingDef()) 122 OS << Print(N, P.G); 123 OS << ','; 124 if (NodeId N = P.Obj.Addr->getReachedDef()) 125 OS << Print(N, P.G); 126 OS << ','; 127 if (NodeId N = P.Obj.Addr->getReachedUse()) 128 OS << Print(N, P.G); 129 OS << "):"; 130 if (NodeId N = P.Obj.Addr->getSibling()) 131 OS << Print(N, P.G); 132 return OS; 133 } 134 135 raw_ostream &operator<<(raw_ostream &OS, const Print<Use> &P) { 136 printRefHeader(OS, P.Obj, P.G); 137 OS << '('; 138 if (NodeId N = P.Obj.Addr->getReachingDef()) 139 OS << Print(N, P.G); 140 OS << "):"; 141 if (NodeId N = P.Obj.Addr->getSibling()) 142 OS << Print(N, P.G); 143 return OS; 144 } 145 146 raw_ostream &operator<<(raw_ostream &OS, const Print<PhiUse> &P) { 147 printRefHeader(OS, P.Obj, P.G); 148 OS << '('; 149 if (NodeId N = P.Obj.Addr->getReachingDef()) 150 OS << Print(N, P.G); 151 OS << ','; 152 if (NodeId N = P.Obj.Addr->getPredecessor()) 153 OS << Print(N, P.G); 154 OS << "):"; 155 if (NodeId N = P.Obj.Addr->getSibling()) 156 OS << Print(N, P.G); 157 return OS; 158 } 159 160 raw_ostream &operator<<(raw_ostream &OS, const Print<Ref> &P) { 161 switch (P.Obj.Addr->getKind()) { 162 case NodeAttrs::Def: 163 OS << PrintNode<DefNode *>(P.Obj, P.G); 164 break; 165 case NodeAttrs::Use: 166 if (P.Obj.Addr->getFlags() & NodeAttrs::PhiRef) 167 OS << PrintNode<PhiUseNode *>(P.Obj, P.G); 168 else 169 OS << PrintNode<UseNode *>(P.Obj, P.G); 170 break; 171 } 172 return OS; 173 } 174 175 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeList> &P) { 176 unsigned N = P.Obj.size(); 177 for (auto I : P.Obj) { 178 OS << Print(I.Id, P.G); 179 if (--N) 180 OS << ' '; 181 } 182 return OS; 183 } 184 185 raw_ostream &operator<<(raw_ostream &OS, const Print<NodeSet> &P) { 186 unsigned N = P.Obj.size(); 187 for (auto I : P.Obj) { 188 OS << Print(I, P.G); 189 if (--N) 190 OS << ' '; 191 } 192 return OS; 193 } 194 195 namespace { 196 197 template <typename T> struct PrintListV { 198 PrintListV(const NodeList &L, const DataFlowGraph &G) : List(L), G(G) {} 199 200 using Type = T; 201 const NodeList &List; 202 const DataFlowGraph &G; 203 }; 204 205 template <typename T> 206 raw_ostream &operator<<(raw_ostream &OS, const PrintListV<T> &P) { 207 unsigned N = P.List.size(); 208 for (NodeAddr<T> A : P.List) { 209 OS << PrintNode<T>(A, P.G); 210 if (--N) 211 OS << ", "; 212 } 213 return OS; 214 } 215 216 } // end anonymous namespace 217 218 raw_ostream &operator<<(raw_ostream &OS, const Print<Phi> &P) { 219 OS << Print(P.Obj.Id, P.G) << ": phi [" 220 << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 221 return OS; 222 } 223 224 raw_ostream &operator<<(raw_ostream &OS, const Print<Stmt> &P) { 225 const MachineInstr &MI = *P.Obj.Addr->getCode(); 226 unsigned Opc = MI.getOpcode(); 227 OS << Print(P.Obj.Id, P.G) << ": " << P.G.getTII().getName(Opc); 228 // Print the target for calls and branches (for readability). 229 if (MI.isCall() || MI.isBranch()) { 230 MachineInstr::const_mop_iterator T = 231 llvm::find_if(MI.operands(), [](const MachineOperand &Op) -> bool { 232 return Op.isMBB() || Op.isGlobal() || Op.isSymbol(); 233 }); 234 if (T != MI.operands_end()) { 235 OS << ' '; 236 if (T->isMBB()) 237 OS << printMBBReference(*T->getMBB()); 238 else if (T->isGlobal()) 239 OS << T->getGlobal()->getName(); 240 else if (T->isSymbol()) 241 OS << T->getSymbolName(); 242 } 243 } 244 OS << " [" << PrintListV<RefNode *>(P.Obj.Addr->members(P.G), P.G) << ']'; 245 return OS; 246 } 247 248 raw_ostream &operator<<(raw_ostream &OS, const Print<Instr> &P) { 249 switch (P.Obj.Addr->getKind()) { 250 case NodeAttrs::Phi: 251 OS << PrintNode<PhiNode *>(P.Obj, P.G); 252 break; 253 case NodeAttrs::Stmt: 254 OS << PrintNode<StmtNode *>(P.Obj, P.G); 255 break; 256 default: 257 OS << "instr? " << Print(P.Obj.Id, P.G); 258 break; 259 } 260 return OS; 261 } 262 263 raw_ostream &operator<<(raw_ostream &OS, const Print<Block> &P) { 264 MachineBasicBlock *BB = P.Obj.Addr->getCode(); 265 unsigned NP = BB->pred_size(); 266 std::vector<int> Ns; 267 auto PrintBBs = [&OS](std::vector<int> Ns) -> void { 268 unsigned N = Ns.size(); 269 for (int I : Ns) { 270 OS << "%bb." << I; 271 if (--N) 272 OS << ", "; 273 } 274 }; 275 276 OS << Print(P.Obj.Id, P.G) << ": --- " << printMBBReference(*BB) 277 << " --- preds(" << NP << "): "; 278 for (MachineBasicBlock *B : BB->predecessors()) 279 Ns.push_back(B->getNumber()); 280 PrintBBs(Ns); 281 282 unsigned NS = BB->succ_size(); 283 OS << " succs(" << NS << "): "; 284 Ns.clear(); 285 for (MachineBasicBlock *B : BB->successors()) 286 Ns.push_back(B->getNumber()); 287 PrintBBs(Ns); 288 OS << '\n'; 289 290 for (auto I : P.Obj.Addr->members(P.G)) 291 OS << PrintNode<InstrNode *>(I, P.G) << '\n'; 292 return OS; 293 } 294 295 raw_ostream &operator<<(raw_ostream &OS, const Print<Func> &P) { 296 OS << "DFG dump:[\n" 297 << Print(P.Obj.Id, P.G) 298 << ": Function: " << P.Obj.Addr->getCode()->getName() << '\n'; 299 for (auto I : P.Obj.Addr->members(P.G)) 300 OS << PrintNode<BlockNode *>(I, P.G) << '\n'; 301 OS << "]\n"; 302 return OS; 303 } 304 305 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterSet> &P) { 306 OS << '{'; 307 for (auto I : P.Obj) 308 OS << ' ' << Print(I, P.G); 309 OS << " }"; 310 return OS; 311 } 312 313 raw_ostream &operator<<(raw_ostream &OS, const Print<RegisterAggr> &P) { 314 OS << P.Obj; 315 return OS; 316 } 317 318 raw_ostream &operator<<(raw_ostream &OS, 319 const Print<DataFlowGraph::DefStack> &P) { 320 for (auto I = P.Obj.top(), E = P.Obj.bottom(); I != E;) { 321 OS << Print(I->Id, P.G) << '<' << Print(I->Addr->getRegRef(P.G), P.G) 322 << '>'; 323 I.down(); 324 if (I != E) 325 OS << ' '; 326 } 327 return OS; 328 } 329 330 // Node allocation functions. 331 // 332 // Node allocator is like a slab memory allocator: it allocates blocks of 333 // memory in sizes that are multiples of the size of a node. Each block has 334 // the same size. Nodes are allocated from the currently active block, and 335 // when it becomes full, a new one is created. 336 // There is a mapping scheme between node id and its location in a block, 337 // and within that block is described in the header file. 338 // 339 void NodeAllocator::startNewBlock() { 340 void *T = MemPool.Allocate(NodesPerBlock * NodeMemSize, NodeMemSize); 341 char *P = static_cast<char *>(T); 342 Blocks.push_back(P); 343 // Check if the block index is still within the allowed range, i.e. less 344 // than 2^N, where N is the number of bits in NodeId for the block index. 345 // BitsPerIndex is the number of bits per node index. 346 assert((Blocks.size() < ((size_t)1 << (8 * sizeof(NodeId) - BitsPerIndex))) && 347 "Out of bits for block index"); 348 ActiveEnd = P; 349 } 350 351 bool NodeAllocator::needNewBlock() { 352 if (Blocks.empty()) 353 return true; 354 355 char *ActiveBegin = Blocks.back(); 356 uint32_t Index = (ActiveEnd - ActiveBegin) / NodeMemSize; 357 return Index >= NodesPerBlock; 358 } 359 360 Node NodeAllocator::New() { 361 if (needNewBlock()) 362 startNewBlock(); 363 364 uint32_t ActiveB = Blocks.size() - 1; 365 uint32_t Index = (ActiveEnd - Blocks[ActiveB]) / NodeMemSize; 366 Node NA = {reinterpret_cast<NodeBase *>(ActiveEnd), makeId(ActiveB, Index)}; 367 ActiveEnd += NodeMemSize; 368 return NA; 369 } 370 371 NodeId NodeAllocator::id(const NodeBase *P) const { 372 uintptr_t A = reinterpret_cast<uintptr_t>(P); 373 for (unsigned i = 0, n = Blocks.size(); i != n; ++i) { 374 uintptr_t B = reinterpret_cast<uintptr_t>(Blocks[i]); 375 if (A < B || A >= B + NodesPerBlock * NodeMemSize) 376 continue; 377 uint32_t Idx = (A - B) / NodeMemSize; 378 return makeId(i, Idx); 379 } 380 llvm_unreachable("Invalid node address"); 381 } 382 383 void NodeAllocator::clear() { 384 MemPool.Reset(); 385 Blocks.clear(); 386 ActiveEnd = nullptr; 387 } 388 389 // Insert node NA after "this" in the circular chain. 390 void NodeBase::append(Node NA) { 391 NodeId Nx = Next; 392 // If NA is already "next", do nothing. 393 if (Next != NA.Id) { 394 Next = NA.Id; 395 NA.Addr->Next = Nx; 396 } 397 } 398 399 // Fundamental node manipulator functions. 400 401 // Obtain the register reference from a reference node. 402 RegisterRef RefNode::getRegRef(const DataFlowGraph &G) const { 403 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 404 if (NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef) 405 return G.unpack(RefData.PR); 406 assert(RefData.Op != nullptr); 407 return G.makeRegRef(*RefData.Op); 408 } 409 410 // Set the register reference in the reference node directly (for references 411 // in phi nodes). 412 void RefNode::setRegRef(RegisterRef RR, DataFlowGraph &G) { 413 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 414 assert(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef); 415 RefData.PR = G.pack(RR); 416 } 417 418 // Set the register reference in the reference node based on a machine 419 // operand (for references in statement nodes). 420 void RefNode::setRegRef(MachineOperand *Op, DataFlowGraph &G) { 421 assert(NodeAttrs::type(Attrs) == NodeAttrs::Ref); 422 assert(!(NodeAttrs::flags(Attrs) & NodeAttrs::PhiRef)); 423 (void)G; 424 RefData.Op = Op; 425 } 426 427 // Get the owner of a given reference node. 428 Node RefNode::getOwner(const DataFlowGraph &G) { 429 Node NA = G.addr<NodeBase *>(getNext()); 430 431 while (NA.Addr != this) { 432 if (NA.Addr->getType() == NodeAttrs::Code) 433 return NA; 434 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 435 } 436 llvm_unreachable("No owner in circular list"); 437 } 438 439 // Connect the def node to the reaching def node. 440 void DefNode::linkToDef(NodeId Self, Def DA) { 441 RefData.RD = DA.Id; 442 RefData.Sib = DA.Addr->getReachedDef(); 443 DA.Addr->setReachedDef(Self); 444 } 445 446 // Connect the use node to the reaching def node. 447 void UseNode::linkToDef(NodeId Self, Def DA) { 448 RefData.RD = DA.Id; 449 RefData.Sib = DA.Addr->getReachedUse(); 450 DA.Addr->setReachedUse(Self); 451 } 452 453 // Get the first member of the code node. 454 Node CodeNode::getFirstMember(const DataFlowGraph &G) const { 455 if (CodeData.FirstM == 0) 456 return Node(); 457 return G.addr<NodeBase *>(CodeData.FirstM); 458 } 459 460 // Get the last member of the code node. 461 Node CodeNode::getLastMember(const DataFlowGraph &G) const { 462 if (CodeData.LastM == 0) 463 return Node(); 464 return G.addr<NodeBase *>(CodeData.LastM); 465 } 466 467 // Add node NA at the end of the member list of the given code node. 468 void CodeNode::addMember(Node NA, const DataFlowGraph &G) { 469 Node ML = getLastMember(G); 470 if (ML.Id != 0) { 471 ML.Addr->append(NA); 472 } else { 473 CodeData.FirstM = NA.Id; 474 NodeId Self = G.id(this); 475 NA.Addr->setNext(Self); 476 } 477 CodeData.LastM = NA.Id; 478 } 479 480 // Add node NA after member node MA in the given code node. 481 void CodeNode::addMemberAfter(Node MA, Node NA, const DataFlowGraph &G) { 482 MA.Addr->append(NA); 483 if (CodeData.LastM == MA.Id) 484 CodeData.LastM = NA.Id; 485 } 486 487 // Remove member node NA from the given code node. 488 void CodeNode::removeMember(Node NA, const DataFlowGraph &G) { 489 Node MA = getFirstMember(G); 490 assert(MA.Id != 0); 491 492 // Special handling if the member to remove is the first member. 493 if (MA.Id == NA.Id) { 494 if (CodeData.LastM == MA.Id) { 495 // If it is the only member, set both first and last to 0. 496 CodeData.FirstM = CodeData.LastM = 0; 497 } else { 498 // Otherwise, advance the first member. 499 CodeData.FirstM = MA.Addr->getNext(); 500 } 501 return; 502 } 503 504 while (MA.Addr != this) { 505 NodeId MX = MA.Addr->getNext(); 506 if (MX == NA.Id) { 507 MA.Addr->setNext(NA.Addr->getNext()); 508 // If the member to remove happens to be the last one, update the 509 // LastM indicator. 510 if (CodeData.LastM == NA.Id) 511 CodeData.LastM = MA.Id; 512 return; 513 } 514 MA = G.addr<NodeBase *>(MX); 515 } 516 llvm_unreachable("No such member"); 517 } 518 519 // Return the list of all members of the code node. 520 NodeList CodeNode::members(const DataFlowGraph &G) const { 521 static auto True = [](Node) -> bool { return true; }; 522 return members_if(True, G); 523 } 524 525 // Return the owner of the given instr node. 526 Node InstrNode::getOwner(const DataFlowGraph &G) { 527 Node NA = G.addr<NodeBase *>(getNext()); 528 529 while (NA.Addr != this) { 530 assert(NA.Addr->getType() == NodeAttrs::Code); 531 if (NA.Addr->getKind() == NodeAttrs::Block) 532 return NA; 533 NA = G.addr<NodeBase *>(NA.Addr->getNext()); 534 } 535 llvm_unreachable("No owner in circular list"); 536 } 537 538 // Add the phi node PA to the given block node. 539 void BlockNode::addPhi(Phi PA, const DataFlowGraph &G) { 540 Node M = getFirstMember(G); 541 if (M.Id == 0) { 542 addMember(PA, G); 543 return; 544 } 545 546 assert(M.Addr->getType() == NodeAttrs::Code); 547 if (M.Addr->getKind() == NodeAttrs::Stmt) { 548 // If the first member of the block is a statement, insert the phi as 549 // the first member. 550 CodeData.FirstM = PA.Id; 551 PA.Addr->setNext(M.Id); 552 } else { 553 // If the first member is a phi, find the last phi, and append PA to it. 554 assert(M.Addr->getKind() == NodeAttrs::Phi); 555 Node MN = M; 556 do { 557 M = MN; 558 MN = G.addr<NodeBase *>(M.Addr->getNext()); 559 assert(MN.Addr->getType() == NodeAttrs::Code); 560 } while (MN.Addr->getKind() == NodeAttrs::Phi); 561 562 // M is the last phi. 563 addMemberAfter(M, PA, G); 564 } 565 } 566 567 // Find the block node corresponding to the machine basic block BB in the 568 // given func node. 569 Block FuncNode::findBlock(const MachineBasicBlock *BB, 570 const DataFlowGraph &G) const { 571 auto EqBB = [BB](Node NA) -> bool { return Block(NA).Addr->getCode() == BB; }; 572 NodeList Ms = members_if(EqBB, G); 573 if (!Ms.empty()) 574 return Ms[0]; 575 return Block(); 576 } 577 578 // Get the block node for the entry block in the given function. 579 Block FuncNode::getEntryBlock(const DataFlowGraph &G) { 580 MachineBasicBlock *EntryB = &getCode()->front(); 581 return findBlock(EntryB, G); 582 } 583 584 // Target operand information. 585 // 586 587 // For a given instruction, check if there are any bits of RR that can remain 588 // unchanged across this def. 589 bool TargetOperandInfo::isPreserving(const MachineInstr &In, 590 unsigned OpNum) const { 591 return TII.isPredicated(In); 592 } 593 594 // Check if the definition of RR produces an unspecified value. 595 bool TargetOperandInfo::isClobbering(const MachineInstr &In, 596 unsigned OpNum) const { 597 const MachineOperand &Op = In.getOperand(OpNum); 598 if (Op.isRegMask()) 599 return true; 600 assert(Op.isReg()); 601 if (In.isCall()) 602 if (Op.isDef() && Op.isDead()) 603 return true; 604 return false; 605 } 606 607 // Check if the given instruction specifically requires 608 bool TargetOperandInfo::isFixedReg(const MachineInstr &In, 609 unsigned OpNum) const { 610 if (In.isCall() || In.isReturn() || In.isInlineAsm()) 611 return true; 612 // Check for a tail call. 613 if (In.isBranch()) 614 for (const MachineOperand &O : In.operands()) 615 if (O.isGlobal() || O.isSymbol()) 616 return true; 617 618 const MCInstrDesc &D = In.getDesc(); 619 if (D.implicit_defs().empty() && D.implicit_uses().empty()) 620 return false; 621 const MachineOperand &Op = In.getOperand(OpNum); 622 // If there is a sub-register, treat the operand as non-fixed. Currently, 623 // fixed registers are those that are listed in the descriptor as implicit 624 // uses or defs, and those lists do not allow sub-registers. 625 if (Op.getSubReg() != 0) 626 return false; 627 Register Reg = Op.getReg(); 628 ArrayRef<MCPhysReg> ImpOps = 629 Op.isDef() ? D.implicit_defs() : D.implicit_uses(); 630 return is_contained(ImpOps, Reg); 631 } 632 633 // 634 // The data flow graph construction. 635 // 636 637 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 638 const TargetRegisterInfo &tri, 639 const MachineDominatorTree &mdt, 640 const MachineDominanceFrontier &mdf) 641 : DefaultTOI(std::make_unique<TargetOperandInfo>(tii)), MF(mf), TII(tii), 642 TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(*DefaultTOI), 643 LiveIns(PRI) {} 644 645 DataFlowGraph::DataFlowGraph(MachineFunction &mf, const TargetInstrInfo &tii, 646 const TargetRegisterInfo &tri, 647 const MachineDominatorTree &mdt, 648 const MachineDominanceFrontier &mdf, 649 const TargetOperandInfo &toi) 650 : MF(mf), TII(tii), TRI(tri), PRI(tri, mf), MDT(mdt), MDF(mdf), TOI(toi), 651 LiveIns(PRI) {} 652 653 // The implementation of the definition stack. 654 // Each register reference has its own definition stack. In particular, 655 // for a register references "Reg" and "Reg:subreg" will each have their 656 // own definition stacks. 657 658 // Construct a stack iterator. 659 DataFlowGraph::DefStack::Iterator::Iterator(const DataFlowGraph::DefStack &S, 660 bool Top) 661 : DS(S) { 662 if (!Top) { 663 // Initialize to bottom. 664 Pos = 0; 665 return; 666 } 667 // Initialize to the top, i.e. top-most non-delimiter (or 0, if empty). 668 Pos = DS.Stack.size(); 669 while (Pos > 0 && DS.isDelimiter(DS.Stack[Pos - 1])) 670 Pos--; 671 } 672 673 // Return the size of the stack, including block delimiters. 674 unsigned DataFlowGraph::DefStack::size() const { 675 unsigned S = 0; 676 for (auto I = top(), E = bottom(); I != E; I.down()) 677 S++; 678 return S; 679 } 680 681 // Remove the top entry from the stack. Remove all intervening delimiters 682 // so that after this, the stack is either empty, or the top of the stack 683 // is a non-delimiter. 684 void DataFlowGraph::DefStack::pop() { 685 assert(!empty()); 686 unsigned P = nextDown(Stack.size()); 687 Stack.resize(P); 688 } 689 690 // Push a delimiter for block node N on the stack. 691 void DataFlowGraph::DefStack::start_block(NodeId N) { 692 assert(N != 0); 693 Stack.push_back(Def(nullptr, N)); 694 } 695 696 // Remove all nodes from the top of the stack, until the delimited for 697 // block node N is encountered. Remove the delimiter as well. In effect, 698 // this will remove from the stack all definitions from block N. 699 void DataFlowGraph::DefStack::clear_block(NodeId N) { 700 assert(N != 0); 701 unsigned P = Stack.size(); 702 while (P > 0) { 703 bool Found = isDelimiter(Stack[P - 1], N); 704 P--; 705 if (Found) 706 break; 707 } 708 // This will also remove the delimiter, if found. 709 Stack.resize(P); 710 } 711 712 // Move the stack iterator up by one. 713 unsigned DataFlowGraph::DefStack::nextUp(unsigned P) const { 714 // Get the next valid position after P (skipping all delimiters). 715 // The input position P does not have to point to a non-delimiter. 716 unsigned SS = Stack.size(); 717 bool IsDelim; 718 assert(P < SS); 719 do { 720 P++; 721 IsDelim = isDelimiter(Stack[P - 1]); 722 } while (P < SS && IsDelim); 723 assert(!IsDelim); 724 return P; 725 } 726 727 // Move the stack iterator down by one. 728 unsigned DataFlowGraph::DefStack::nextDown(unsigned P) const { 729 // Get the preceding valid position before P (skipping all delimiters). 730 // The input position P does not have to point to a non-delimiter. 731 assert(P > 0 && P <= Stack.size()); 732 bool IsDelim = isDelimiter(Stack[P - 1]); 733 do { 734 if (--P == 0) 735 break; 736 IsDelim = isDelimiter(Stack[P - 1]); 737 } while (P > 0 && IsDelim); 738 assert(!IsDelim); 739 return P; 740 } 741 742 // Register information. 743 744 RegisterAggr DataFlowGraph::getLandingPadLiveIns() const { 745 RegisterAggr LR(getPRI()); 746 const Function &F = MF.getFunction(); 747 const Constant *PF = F.hasPersonalityFn() ? F.getPersonalityFn() : nullptr; 748 const TargetLowering &TLI = *MF.getSubtarget().getTargetLowering(); 749 if (RegisterId R = TLI.getExceptionPointerRegister(PF)) 750 LR.insert(RegisterRef(R)); 751 if (!isFuncletEHPersonality(classifyEHPersonality(PF))) { 752 if (RegisterId R = TLI.getExceptionSelectorRegister(PF)) 753 LR.insert(RegisterRef(R)); 754 } 755 return LR; 756 } 757 758 // Node management functions. 759 760 // Get the pointer to the node with the id N. 761 NodeBase *DataFlowGraph::ptr(NodeId N) const { 762 if (N == 0) 763 return nullptr; 764 return Memory.ptr(N); 765 } 766 767 // Get the id of the node at the address P. 768 NodeId DataFlowGraph::id(const NodeBase *P) const { 769 if (P == nullptr) 770 return 0; 771 return Memory.id(P); 772 } 773 774 // Allocate a new node and set the attributes to Attrs. 775 Node DataFlowGraph::newNode(uint16_t Attrs) { 776 Node P = Memory.New(); 777 P.Addr->init(); 778 P.Addr->setAttrs(Attrs); 779 return P; 780 } 781 782 // Make a copy of the given node B, except for the data-flow links, which 783 // are set to 0. 784 Node DataFlowGraph::cloneNode(const Node B) { 785 Node NA = newNode(0); 786 memcpy(NA.Addr, B.Addr, sizeof(NodeBase)); 787 // Ref nodes need to have the data-flow links reset. 788 if (NA.Addr->getType() == NodeAttrs::Ref) { 789 Ref RA = NA; 790 RA.Addr->setReachingDef(0); 791 RA.Addr->setSibling(0); 792 if (NA.Addr->getKind() == NodeAttrs::Def) { 793 Def DA = NA; 794 DA.Addr->setReachedDef(0); 795 DA.Addr->setReachedUse(0); 796 } 797 } 798 return NA; 799 } 800 801 // Allocation routines for specific node types/kinds. 802 803 Use DataFlowGraph::newUse(Instr Owner, MachineOperand &Op, uint16_t Flags) { 804 Use UA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 805 UA.Addr->setRegRef(&Op, *this); 806 return UA; 807 } 808 809 PhiUse DataFlowGraph::newPhiUse(Phi Owner, RegisterRef RR, Block PredB, 810 uint16_t Flags) { 811 PhiUse PUA = newNode(NodeAttrs::Ref | NodeAttrs::Use | Flags); 812 assert(Flags & NodeAttrs::PhiRef); 813 PUA.Addr->setRegRef(RR, *this); 814 PUA.Addr->setPredecessor(PredB.Id); 815 return PUA; 816 } 817 818 Def DataFlowGraph::newDef(Instr Owner, MachineOperand &Op, uint16_t Flags) { 819 Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 820 DA.Addr->setRegRef(&Op, *this); 821 return DA; 822 } 823 824 Def DataFlowGraph::newDef(Instr Owner, RegisterRef RR, uint16_t Flags) { 825 Def DA = newNode(NodeAttrs::Ref | NodeAttrs::Def | Flags); 826 assert(Flags & NodeAttrs::PhiRef); 827 DA.Addr->setRegRef(RR, *this); 828 return DA; 829 } 830 831 Phi DataFlowGraph::newPhi(Block Owner) { 832 Phi PA = newNode(NodeAttrs::Code | NodeAttrs::Phi); 833 Owner.Addr->addPhi(PA, *this); 834 return PA; 835 } 836 837 Stmt DataFlowGraph::newStmt(Block Owner, MachineInstr *MI) { 838 Stmt SA = newNode(NodeAttrs::Code | NodeAttrs::Stmt); 839 SA.Addr->setCode(MI); 840 Owner.Addr->addMember(SA, *this); 841 return SA; 842 } 843 844 Block DataFlowGraph::newBlock(Func Owner, MachineBasicBlock *BB) { 845 Block BA = newNode(NodeAttrs::Code | NodeAttrs::Block); 846 BA.Addr->setCode(BB); 847 Owner.Addr->addMember(BA, *this); 848 return BA; 849 } 850 851 Func DataFlowGraph::newFunc(MachineFunction *MF) { 852 Func FA = newNode(NodeAttrs::Code | NodeAttrs::Func); 853 FA.Addr->setCode(MF); 854 return FA; 855 } 856 857 // Build the data flow graph. 858 void DataFlowGraph::build(unsigned Options) { 859 reset(); 860 TheFunc = newFunc(&MF); 861 862 if (MF.empty()) 863 return; 864 865 for (MachineBasicBlock &B : MF) { 866 Block BA = newBlock(TheFunc, &B); 867 BlockNodes.insert(std::make_pair(&B, BA)); 868 for (MachineInstr &I : B) { 869 if (I.isDebugInstr()) 870 continue; 871 buildStmt(BA, I); 872 } 873 } 874 875 Block EA = TheFunc.Addr->getEntryBlock(*this); 876 NodeList Blocks = TheFunc.Addr->members(*this); 877 878 // Collect function live-ins and entry block live-ins. 879 MachineRegisterInfo &MRI = MF.getRegInfo(); 880 MachineBasicBlock &EntryB = *EA.Addr->getCode(); 881 assert(EntryB.pred_empty() && "Function entry block has predecessors"); 882 for (std::pair<unsigned, unsigned> P : MRI.liveins()) 883 LiveIns.insert(RegisterRef(P.first)); 884 if (MRI.tracksLiveness()) { 885 for (auto I : EntryB.liveins()) 886 LiveIns.insert(RegisterRef(I.PhysReg, I.LaneMask)); 887 } 888 889 // Add function-entry phi nodes for the live-in registers. 890 for (RegisterRef RR : LiveIns.refs()) { 891 Phi PA = newPhi(EA); 892 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 893 Def DA = newDef(PA, RR, PhiFlags); 894 PA.Addr->addMember(DA, *this); 895 } 896 897 // Add phis for landing pads. 898 // Landing pads, unlike usual backs blocks, are not entered through 899 // branches in the program, or fall-throughs from other blocks. They 900 // are entered from the exception handling runtime and target's ABI 901 // may define certain registers as defined on entry to such a block. 902 RegisterAggr EHRegs = getLandingPadLiveIns(); 903 if (!EHRegs.empty()) { 904 for (Block BA : Blocks) { 905 const MachineBasicBlock &B = *BA.Addr->getCode(); 906 if (!B.isEHPad()) 907 continue; 908 909 // Prepare a list of NodeIds of the block's predecessors. 910 NodeList Preds; 911 for (MachineBasicBlock *PB : B.predecessors()) 912 Preds.push_back(findBlock(PB)); 913 914 // Build phi nodes for each live-in. 915 for (RegisterRef RR : EHRegs.refs()) { 916 Phi PA = newPhi(BA); 917 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 918 // Add def: 919 Def DA = newDef(PA, RR, PhiFlags); 920 PA.Addr->addMember(DA, *this); 921 // Add uses (no reaching defs for phi uses): 922 for (Block PBA : Preds) { 923 PhiUse PUA = newPhiUse(PA, RR, PBA); 924 PA.Addr->addMember(PUA, *this); 925 } 926 } 927 } 928 } 929 930 // Build a map "PhiM" which will contain, for each block, the set 931 // of references that will require phi definitions in that block. 932 BlockRefsMap PhiM(getPRI()); 933 for (Block BA : Blocks) 934 recordDefsForDF(PhiM, BA); 935 for (Block BA : Blocks) 936 buildPhis(PhiM, BA); 937 938 // Link all the refs. This will recursively traverse the dominator tree. 939 DefStackMap DM; 940 linkBlockRefs(DM, EA); 941 942 // Finally, remove all unused phi nodes. 943 if (!(Options & BuildOptions::KeepDeadPhis)) 944 removeUnusedPhis(); 945 } 946 947 RegisterRef DataFlowGraph::makeRegRef(unsigned Reg, unsigned Sub) const { 948 assert(RegisterRef::isRegId(Reg) || RegisterRef::isMaskId(Reg)); 949 assert(Reg != 0); 950 if (Sub != 0) 951 Reg = TRI.getSubReg(Reg, Sub); 952 return RegisterRef(Reg); 953 } 954 955 RegisterRef DataFlowGraph::makeRegRef(const MachineOperand &Op) const { 956 assert(Op.isReg() || Op.isRegMask()); 957 if (Op.isReg()) 958 return makeRegRef(Op.getReg(), Op.getSubReg()); 959 return RegisterRef(getPRI().getRegMaskId(Op.getRegMask()), 960 LaneBitmask::getAll()); 961 } 962 963 // For each stack in the map DefM, push the delimiter for block B on it. 964 void DataFlowGraph::markBlock(NodeId B, DefStackMap &DefM) { 965 // Push block delimiters. 966 for (auto &P : DefM) 967 P.second.start_block(B); 968 } 969 970 // Remove all definitions coming from block B from each stack in DefM. 971 void DataFlowGraph::releaseBlock(NodeId B, DefStackMap &DefM) { 972 // Pop all defs from this block from the definition stack. Defs that were 973 // added to the map during the traversal of instructions will not have a 974 // delimiter, but for those, the whole stack will be emptied. 975 for (auto &P : DefM) 976 P.second.clear_block(B); 977 978 // Finally, remove empty stacks from the map. 979 for (auto I = DefM.begin(), E = DefM.end(), NextI = I; I != E; I = NextI) { 980 NextI = std::next(I); 981 // This preserves the validity of iterators other than I. 982 if (I->second.empty()) 983 DefM.erase(I); 984 } 985 } 986 987 // Push all definitions from the instruction node IA to an appropriate 988 // stack in DefM. 989 void DataFlowGraph::pushAllDefs(Instr IA, DefStackMap &DefM) { 990 pushClobbers(IA, DefM); 991 pushDefs(IA, DefM); 992 } 993 994 // Push all definitions from the instruction node IA to an appropriate 995 // stack in DefM. 996 void DataFlowGraph::pushClobbers(Instr IA, DefStackMap &DefM) { 997 NodeSet Visited; 998 std::set<RegisterId> Defined; 999 1000 // The important objectives of this function are: 1001 // - to be able to handle instructions both while the graph is being 1002 // constructed, and after the graph has been constructed, and 1003 // - maintain proper ordering of definitions on the stack for each 1004 // register reference: 1005 // - if there are two or more related defs in IA (i.e. coming from 1006 // the same machine operand), then only push one def on the stack, 1007 // - if there are multiple unrelated defs of non-overlapping 1008 // subregisters of S, then the stack for S will have both (in an 1009 // unspecified order), but the order does not matter from the data- 1010 // -flow perspective. 1011 1012 for (Def DA : IA.Addr->members_if(IsDef, *this)) { 1013 if (Visited.count(DA.Id)) 1014 continue; 1015 if (!(DA.Addr->getFlags() & NodeAttrs::Clobbering)) 1016 continue; 1017 1018 NodeList Rel = getRelatedRefs(IA, DA); 1019 Def PDA = Rel.front(); 1020 RegisterRef RR = PDA.Addr->getRegRef(*this); 1021 1022 // Push the definition on the stack for the register and all aliases. 1023 // The def stack traversal in linkNodeUp will check the exact aliasing. 1024 DefM[RR.Reg].push(DA); 1025 Defined.insert(RR.Reg); 1026 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1027 // Check that we don't push the same def twice. 1028 assert(A != RR.Reg); 1029 if (!Defined.count(A)) 1030 DefM[A].push(DA); 1031 } 1032 // Mark all the related defs as visited. 1033 for (Node T : Rel) 1034 Visited.insert(T.Id); 1035 } 1036 } 1037 1038 // Push all definitions from the instruction node IA to an appropriate 1039 // stack in DefM. 1040 void DataFlowGraph::pushDefs(Instr IA, DefStackMap &DefM) { 1041 NodeSet Visited; 1042 #ifndef NDEBUG 1043 std::set<RegisterId> Defined; 1044 #endif 1045 1046 // The important objectives of this function are: 1047 // - to be able to handle instructions both while the graph is being 1048 // constructed, and after the graph has been constructed, and 1049 // - maintain proper ordering of definitions on the stack for each 1050 // register reference: 1051 // - if there are two or more related defs in IA (i.e. coming from 1052 // the same machine operand), then only push one def on the stack, 1053 // - if there are multiple unrelated defs of non-overlapping 1054 // subregisters of S, then the stack for S will have both (in an 1055 // unspecified order), but the order does not matter from the data- 1056 // -flow perspective. 1057 1058 for (Def DA : IA.Addr->members_if(IsDef, *this)) { 1059 if (Visited.count(DA.Id)) 1060 continue; 1061 if (DA.Addr->getFlags() & NodeAttrs::Clobbering) 1062 continue; 1063 1064 NodeList Rel = getRelatedRefs(IA, DA); 1065 Def PDA = Rel.front(); 1066 RegisterRef RR = PDA.Addr->getRegRef(*this); 1067 #ifndef NDEBUG 1068 // Assert if the register is defined in two or more unrelated defs. 1069 // This could happen if there are two or more def operands defining it. 1070 if (!Defined.insert(RR.Reg).second) { 1071 MachineInstr *MI = Stmt(IA).Addr->getCode(); 1072 dbgs() << "Multiple definitions of register: " << Print(RR, *this) 1073 << " in\n " << *MI << "in " << printMBBReference(*MI->getParent()) 1074 << '\n'; 1075 llvm_unreachable(nullptr); 1076 } 1077 #endif 1078 // Push the definition on the stack for the register and all aliases. 1079 // The def stack traversal in linkNodeUp will check the exact aliasing. 1080 DefM[RR.Reg].push(DA); 1081 for (RegisterId A : getPRI().getAliasSet(RR.Reg)) { 1082 // Check that we don't push the same def twice. 1083 assert(A != RR.Reg); 1084 DefM[A].push(DA); 1085 } 1086 // Mark all the related defs as visited. 1087 for (Node T : Rel) 1088 Visited.insert(T.Id); 1089 } 1090 } 1091 1092 // Return the list of all reference nodes related to RA, including RA itself. 1093 // See "getNextRelated" for the meaning of a "related reference". 1094 NodeList DataFlowGraph::getRelatedRefs(Instr IA, Ref RA) const { 1095 assert(IA.Id != 0 && RA.Id != 0); 1096 1097 NodeList Refs; 1098 NodeId Start = RA.Id; 1099 do { 1100 Refs.push_back(RA); 1101 RA = getNextRelated(IA, RA); 1102 } while (RA.Id != 0 && RA.Id != Start); 1103 return Refs; 1104 } 1105 1106 // Clear all information in the graph. 1107 void DataFlowGraph::reset() { 1108 Memory.clear(); 1109 BlockNodes.clear(); 1110 TheFunc = Func(); 1111 } 1112 1113 // Return the next reference node in the instruction node IA that is related 1114 // to RA. Conceptually, two reference nodes are related if they refer to the 1115 // same instance of a register access, but differ in flags or other minor 1116 // characteristics. Specific examples of related nodes are shadow reference 1117 // nodes. 1118 // Return the equivalent of nullptr if there are no more related references. 1119 Ref DataFlowGraph::getNextRelated(Instr IA, Ref RA) const { 1120 assert(IA.Id != 0 && RA.Id != 0); 1121 1122 auto IsRelated = [this, RA](Ref TA) -> bool { 1123 if (TA.Addr->getKind() != RA.Addr->getKind()) 1124 return false; 1125 if (!getPRI().equal_to(TA.Addr->getRegRef(*this), 1126 RA.Addr->getRegRef(*this))) { 1127 return false; 1128 } 1129 return true; 1130 }; 1131 1132 RegisterRef RR = RA.Addr->getRegRef(*this); 1133 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1134 auto Cond = [&IsRelated, RA](Ref TA) -> bool { 1135 return IsRelated(TA) && &RA.Addr->getOp() == &TA.Addr->getOp(); 1136 }; 1137 return RA.Addr->getNextRef(RR, Cond, true, *this); 1138 } 1139 1140 assert(IA.Addr->getKind() == NodeAttrs::Phi); 1141 auto Cond = [&IsRelated, RA](Ref TA) -> bool { 1142 if (!IsRelated(TA)) 1143 return false; 1144 if (TA.Addr->getKind() != NodeAttrs::Use) 1145 return true; 1146 // For phi uses, compare predecessor blocks. 1147 return PhiUse(TA).Addr->getPredecessor() == 1148 PhiUse(RA).Addr->getPredecessor(); 1149 }; 1150 return RA.Addr->getNextRef(RR, Cond, true, *this); 1151 } 1152 1153 // Find the next node related to RA in IA that satisfies condition P. 1154 // If such a node was found, return a pair where the second element is the 1155 // located node. If such a node does not exist, return a pair where the 1156 // first element is the element after which such a node should be inserted, 1157 // and the second element is a null-address. 1158 template <typename Predicate> 1159 std::pair<Ref, Ref> DataFlowGraph::locateNextRef(Instr IA, Ref RA, 1160 Predicate P) const { 1161 assert(IA.Id != 0 && RA.Id != 0); 1162 1163 Ref NA; 1164 NodeId Start = RA.Id; 1165 while (true) { 1166 NA = getNextRelated(IA, RA); 1167 if (NA.Id == 0 || NA.Id == Start) 1168 break; 1169 if (P(NA)) 1170 break; 1171 RA = NA; 1172 } 1173 1174 if (NA.Id != 0 && NA.Id != Start) 1175 return std::make_pair(RA, NA); 1176 return std::make_pair(RA, Ref()); 1177 } 1178 1179 // Get the next shadow node in IA corresponding to RA, and optionally create 1180 // such a node if it does not exist. 1181 Ref DataFlowGraph::getNextShadow(Instr IA, Ref RA, bool Create) { 1182 assert(IA.Id != 0 && RA.Id != 0); 1183 1184 uint16_t Flags = RA.Addr->getFlags() | NodeAttrs::Shadow; 1185 auto IsShadow = [Flags](Ref TA) -> bool { 1186 return TA.Addr->getFlags() == Flags; 1187 }; 1188 auto Loc = locateNextRef(IA, RA, IsShadow); 1189 if (Loc.second.Id != 0 || !Create) 1190 return Loc.second; 1191 1192 // Create a copy of RA and mark is as shadow. 1193 Ref NA = cloneNode(RA); 1194 NA.Addr->setFlags(Flags | NodeAttrs::Shadow); 1195 IA.Addr->addMemberAfter(Loc.first, NA, *this); 1196 return NA; 1197 } 1198 1199 // Create a new statement node in the block node BA that corresponds to 1200 // the machine instruction MI. 1201 void DataFlowGraph::buildStmt(Block BA, MachineInstr &In) { 1202 Stmt SA = newStmt(BA, &In); 1203 1204 auto isCall = [](const MachineInstr &In) -> bool { 1205 if (In.isCall()) 1206 return true; 1207 // Is tail call? 1208 if (In.isBranch()) { 1209 for (const MachineOperand &Op : In.operands()) 1210 if (Op.isGlobal() || Op.isSymbol()) 1211 return true; 1212 // Assume indirect branches are calls. This is for the purpose of 1213 // keeping implicit operands, and so it won't hurt on intra-function 1214 // indirect branches. 1215 if (In.isIndirectBranch()) 1216 return true; 1217 } 1218 return false; 1219 }; 1220 1221 auto isDefUndef = [this](const MachineInstr &In, RegisterRef DR) -> bool { 1222 // This instruction defines DR. Check if there is a use operand that 1223 // would make DR live on entry to the instruction. 1224 for (const MachineOperand &Op : In.all_uses()) { 1225 if (Op.getReg() == 0 || Op.isUndef()) 1226 continue; 1227 RegisterRef UR = makeRegRef(Op); 1228 if (getPRI().alias(DR, UR)) 1229 return false; 1230 } 1231 return true; 1232 }; 1233 1234 bool IsCall = isCall(In); 1235 unsigned NumOps = In.getNumOperands(); 1236 1237 // Avoid duplicate implicit defs. This will not detect cases of implicit 1238 // defs that define registers that overlap, but it is not clear how to 1239 // interpret that in the absence of explicit defs. Overlapping explicit 1240 // defs are likely illegal already. 1241 BitVector DoneDefs(TRI.getNumRegs()); 1242 // Process explicit defs first. 1243 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1244 MachineOperand &Op = In.getOperand(OpN); 1245 if (!Op.isReg() || !Op.isDef() || Op.isImplicit()) 1246 continue; 1247 Register R = Op.getReg(); 1248 if (!R || !R.isPhysical()) 1249 continue; 1250 uint16_t Flags = NodeAttrs::None; 1251 if (TOI.isPreserving(In, OpN)) { 1252 Flags |= NodeAttrs::Preserving; 1253 // If the def is preserving, check if it is also undefined. 1254 if (isDefUndef(In, makeRegRef(Op))) 1255 Flags |= NodeAttrs::Undef; 1256 } 1257 if (TOI.isClobbering(In, OpN)) 1258 Flags |= NodeAttrs::Clobbering; 1259 if (TOI.isFixedReg(In, OpN)) 1260 Flags |= NodeAttrs::Fixed; 1261 if (IsCall && Op.isDead()) 1262 Flags |= NodeAttrs::Dead; 1263 Def DA = newDef(SA, Op, Flags); 1264 SA.Addr->addMember(DA, *this); 1265 assert(!DoneDefs.test(R)); 1266 DoneDefs.set(R); 1267 } 1268 1269 // Process reg-masks (as clobbers). 1270 BitVector DoneClobbers(TRI.getNumRegs()); 1271 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1272 MachineOperand &Op = In.getOperand(OpN); 1273 if (!Op.isRegMask()) 1274 continue; 1275 uint16_t Flags = NodeAttrs::Clobbering | NodeAttrs::Fixed | NodeAttrs::Dead; 1276 Def DA = newDef(SA, Op, Flags); 1277 SA.Addr->addMember(DA, *this); 1278 // Record all clobbered registers in DoneDefs. 1279 const uint32_t *RM = Op.getRegMask(); 1280 for (unsigned i = 1, e = TRI.getNumRegs(); i != e; ++i) 1281 if (!(RM[i / 32] & (1u << (i % 32)))) 1282 DoneClobbers.set(i); 1283 } 1284 1285 // Process implicit defs, skipping those that have already been added 1286 // as explicit. 1287 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1288 MachineOperand &Op = In.getOperand(OpN); 1289 if (!Op.isReg() || !Op.isDef() || !Op.isImplicit()) 1290 continue; 1291 Register R = Op.getReg(); 1292 if (!R || !R.isPhysical() || DoneDefs.test(R)) 1293 continue; 1294 RegisterRef RR = makeRegRef(Op); 1295 uint16_t Flags = NodeAttrs::None; 1296 if (TOI.isPreserving(In, OpN)) { 1297 Flags |= NodeAttrs::Preserving; 1298 // If the def is preserving, check if it is also undefined. 1299 if (isDefUndef(In, RR)) 1300 Flags |= NodeAttrs::Undef; 1301 } 1302 if (TOI.isClobbering(In, OpN)) 1303 Flags |= NodeAttrs::Clobbering; 1304 if (TOI.isFixedReg(In, OpN)) 1305 Flags |= NodeAttrs::Fixed; 1306 if (IsCall && Op.isDead()) { 1307 if (DoneClobbers.test(R)) 1308 continue; 1309 Flags |= NodeAttrs::Dead; 1310 } 1311 Def DA = newDef(SA, Op, Flags); 1312 SA.Addr->addMember(DA, *this); 1313 DoneDefs.set(R); 1314 } 1315 1316 for (unsigned OpN = 0; OpN < NumOps; ++OpN) { 1317 MachineOperand &Op = In.getOperand(OpN); 1318 if (!Op.isReg() || !Op.isUse()) 1319 continue; 1320 Register R = Op.getReg(); 1321 if (!R || !R.isPhysical()) 1322 continue; 1323 uint16_t Flags = NodeAttrs::None; 1324 if (Op.isUndef()) 1325 Flags |= NodeAttrs::Undef; 1326 if (TOI.isFixedReg(In, OpN)) 1327 Flags |= NodeAttrs::Fixed; 1328 Use UA = newUse(SA, Op, Flags); 1329 SA.Addr->addMember(UA, *this); 1330 } 1331 } 1332 1333 // Scan all defs in the block node BA and record in PhiM the locations of 1334 // phi nodes corresponding to these defs. 1335 void DataFlowGraph::recordDefsForDF(BlockRefsMap &PhiM, Block BA) { 1336 // Check all defs from block BA and record them in each block in BA's 1337 // iterated dominance frontier. This information will later be used to 1338 // create phi nodes. 1339 MachineBasicBlock *BB = BA.Addr->getCode(); 1340 assert(BB); 1341 auto DFLoc = MDF.find(BB); 1342 if (DFLoc == MDF.end() || DFLoc->second.empty()) 1343 return; 1344 1345 // Traverse all instructions in the block and collect the set of all 1346 // defined references. For each reference there will be a phi created 1347 // in the block's iterated dominance frontier. 1348 // This is done to make sure that each defined reference gets only one 1349 // phi node, even if it is defined multiple times. 1350 RegisterAggr Defs(getPRI()); 1351 for (Instr IA : BA.Addr->members(*this)) 1352 for (Ref RA : IA.Addr->members_if(IsDef, *this)) 1353 Defs.insert(RA.Addr->getRegRef(*this)); 1354 1355 // Calculate the iterated dominance frontier of BB. 1356 const MachineDominanceFrontier::DomSetType &DF = DFLoc->second; 1357 SetVector<MachineBasicBlock *> IDF(DF.begin(), DF.end()); 1358 for (unsigned i = 0; i < IDF.size(); ++i) { 1359 auto F = MDF.find(IDF[i]); 1360 if (F != MDF.end()) 1361 IDF.insert(F->second.begin(), F->second.end()); 1362 } 1363 1364 // Finally, add the set of defs to each block in the iterated dominance 1365 // frontier. 1366 for (auto *DB : IDF) { 1367 Block DBA = findBlock(DB); 1368 PhiM[DBA.Id].insert(Defs); 1369 } 1370 } 1371 1372 // Given the locations of phi nodes in the map PhiM, create the phi nodes 1373 // that are located in the block node BA. 1374 void DataFlowGraph::buildPhis(BlockRefsMap &PhiM, Block BA) { 1375 // Check if this blocks has any DF defs, i.e. if there are any defs 1376 // that this block is in the iterated dominance frontier of. 1377 auto HasDF = PhiM.find(BA.Id); 1378 if (HasDF == PhiM.end() || HasDF->second.empty()) 1379 return; 1380 1381 // Prepare a list of NodeIds of the block's predecessors. 1382 NodeList Preds; 1383 const MachineBasicBlock *MBB = BA.Addr->getCode(); 1384 for (MachineBasicBlock *PB : MBB->predecessors()) 1385 Preds.push_back(findBlock(PB)); 1386 1387 const RegisterAggr &Defs = PhiM[BA.Id]; 1388 uint16_t PhiFlags = NodeAttrs::PhiRef | NodeAttrs::Preserving; 1389 1390 for (RegisterRef RR : Defs.refs()) { 1391 Phi PA = newPhi(BA); 1392 PA.Addr->addMember(newDef(PA, RR, PhiFlags), *this); 1393 1394 // Add phi uses. 1395 for (Block PBA : Preds) { 1396 PA.Addr->addMember(newPhiUse(PA, RR, PBA), *this); 1397 } 1398 } 1399 } 1400 1401 // Remove any unneeded phi nodes that were created during the build process. 1402 void DataFlowGraph::removeUnusedPhis() { 1403 // This will remove unused phis, i.e. phis where each def does not reach 1404 // any uses or other defs. This will not detect or remove circular phi 1405 // chains that are otherwise dead. Unused/dead phis are created during 1406 // the build process and this function is intended to remove these cases 1407 // that are easily determinable to be unnecessary. 1408 1409 SetVector<NodeId> PhiQ; 1410 for (Block BA : TheFunc.Addr->members(*this)) { 1411 for (auto P : BA.Addr->members_if(IsPhi, *this)) 1412 PhiQ.insert(P.Id); 1413 } 1414 1415 static auto HasUsedDef = [](NodeList &Ms) -> bool { 1416 for (Node M : Ms) { 1417 if (M.Addr->getKind() != NodeAttrs::Def) 1418 continue; 1419 Def DA = M; 1420 if (DA.Addr->getReachedDef() != 0 || DA.Addr->getReachedUse() != 0) 1421 return true; 1422 } 1423 return false; 1424 }; 1425 1426 // Any phi, if it is removed, may affect other phis (make them dead). 1427 // For each removed phi, collect the potentially affected phis and add 1428 // them back to the queue. 1429 while (!PhiQ.empty()) { 1430 auto PA = addr<PhiNode *>(PhiQ[0]); 1431 PhiQ.remove(PA.Id); 1432 NodeList Refs = PA.Addr->members(*this); 1433 if (HasUsedDef(Refs)) 1434 continue; 1435 for (Ref RA : Refs) { 1436 if (NodeId RD = RA.Addr->getReachingDef()) { 1437 auto RDA = addr<DefNode *>(RD); 1438 Instr OA = RDA.Addr->getOwner(*this); 1439 if (IsPhi(OA)) 1440 PhiQ.insert(OA.Id); 1441 } 1442 if (RA.Addr->isDef()) 1443 unlinkDef(RA, true); 1444 else 1445 unlinkUse(RA, true); 1446 } 1447 Block BA = PA.Addr->getOwner(*this); 1448 BA.Addr->removeMember(PA, *this); 1449 } 1450 } 1451 1452 // For a given reference node TA in an instruction node IA, connect the 1453 // reaching def of TA to the appropriate def node. Create any shadow nodes 1454 // as appropriate. 1455 template <typename T> 1456 void DataFlowGraph::linkRefUp(Instr IA, NodeAddr<T> TA, DefStack &DS) { 1457 if (DS.empty()) 1458 return; 1459 RegisterRef RR = TA.Addr->getRegRef(*this); 1460 NodeAddr<T> TAP; 1461 1462 // References from the def stack that have been examined so far. 1463 RegisterAggr Defs(getPRI()); 1464 1465 for (auto I = DS.top(), E = DS.bottom(); I != E; I.down()) { 1466 RegisterRef QR = I->Addr->getRegRef(*this); 1467 1468 // Skip all defs that are aliased to any of the defs that we have already 1469 // seen. If this completes a cover of RR, stop the stack traversal. 1470 bool Alias = Defs.hasAliasOf(QR); 1471 bool Cover = Defs.insert(QR).hasCoverOf(RR); 1472 if (Alias) { 1473 if (Cover) 1474 break; 1475 continue; 1476 } 1477 1478 // The reaching def. 1479 Def RDA = *I; 1480 1481 // Pick the reached node. 1482 if (TAP.Id == 0) { 1483 TAP = TA; 1484 } else { 1485 // Mark the existing ref as "shadow" and create a new shadow. 1486 TAP.Addr->setFlags(TAP.Addr->getFlags() | NodeAttrs::Shadow); 1487 TAP = getNextShadow(IA, TAP, true); 1488 } 1489 1490 // Create the link. 1491 TAP.Addr->linkToDef(TAP.Id, RDA); 1492 1493 if (Cover) 1494 break; 1495 } 1496 } 1497 1498 // Create data-flow links for all reference nodes in the statement node SA. 1499 template <typename Predicate> 1500 void DataFlowGraph::linkStmtRefs(DefStackMap &DefM, Stmt SA, Predicate P) { 1501 #ifndef NDEBUG 1502 RegisterSet Defs(getPRI()); 1503 #endif 1504 1505 // Link all nodes (upwards in the data-flow) with their reaching defs. 1506 for (Ref RA : SA.Addr->members_if(P, *this)) { 1507 uint16_t Kind = RA.Addr->getKind(); 1508 assert(Kind == NodeAttrs::Def || Kind == NodeAttrs::Use); 1509 RegisterRef RR = RA.Addr->getRegRef(*this); 1510 #ifndef NDEBUG 1511 // Do not expect multiple defs of the same reference. 1512 assert(Kind != NodeAttrs::Def || !Defs.count(RR)); 1513 Defs.insert(RR); 1514 #endif 1515 1516 auto F = DefM.find(RR.Reg); 1517 if (F == DefM.end()) 1518 continue; 1519 DefStack &DS = F->second; 1520 if (Kind == NodeAttrs::Use) 1521 linkRefUp<UseNode *>(SA, RA, DS); 1522 else if (Kind == NodeAttrs::Def) 1523 linkRefUp<DefNode *>(SA, RA, DS); 1524 else 1525 llvm_unreachable("Unexpected node in instruction"); 1526 } 1527 } 1528 1529 // Create data-flow links for all instructions in the block node BA. This 1530 // will include updating any phi nodes in BA. 1531 void DataFlowGraph::linkBlockRefs(DefStackMap &DefM, Block BA) { 1532 // Push block delimiters. 1533 markBlock(BA.Id, DefM); 1534 1535 auto IsClobber = [](Ref RA) -> bool { 1536 return IsDef(RA) && (RA.Addr->getFlags() & NodeAttrs::Clobbering); 1537 }; 1538 auto IsNoClobber = [](Ref RA) -> bool { 1539 return IsDef(RA) && !(RA.Addr->getFlags() & NodeAttrs::Clobbering); 1540 }; 1541 1542 assert(BA.Addr && "block node address is needed to create a data-flow link"); 1543 // For each non-phi instruction in the block, link all the defs and uses 1544 // to their reaching defs. For any member of the block (including phis), 1545 // push the defs on the corresponding stacks. 1546 for (Instr IA : BA.Addr->members(*this)) { 1547 // Ignore phi nodes here. They will be linked part by part from the 1548 // predecessors. 1549 if (IA.Addr->getKind() == NodeAttrs::Stmt) { 1550 linkStmtRefs(DefM, IA, IsUse); 1551 linkStmtRefs(DefM, IA, IsClobber); 1552 } 1553 1554 // Push the definitions on the stack. 1555 pushClobbers(IA, DefM); 1556 1557 if (IA.Addr->getKind() == NodeAttrs::Stmt) 1558 linkStmtRefs(DefM, IA, IsNoClobber); 1559 1560 pushDefs(IA, DefM); 1561 } 1562 1563 // Recursively process all children in the dominator tree. 1564 MachineDomTreeNode *N = MDT.getNode(BA.Addr->getCode()); 1565 for (auto *I : *N) { 1566 MachineBasicBlock *SB = I->getBlock(); 1567 Block SBA = findBlock(SB); 1568 linkBlockRefs(DefM, SBA); 1569 } 1570 1571 // Link the phi uses from the successor blocks. 1572 auto IsUseForBA = [BA](Node NA) -> bool { 1573 if (NA.Addr->getKind() != NodeAttrs::Use) 1574 return false; 1575 assert(NA.Addr->getFlags() & NodeAttrs::PhiRef); 1576 return PhiUse(NA).Addr->getPredecessor() == BA.Id; 1577 }; 1578 1579 RegisterAggr EHLiveIns = getLandingPadLiveIns(); 1580 MachineBasicBlock *MBB = BA.Addr->getCode(); 1581 1582 for (MachineBasicBlock *SB : MBB->successors()) { 1583 bool IsEHPad = SB->isEHPad(); 1584 Block SBA = findBlock(SB); 1585 for (Instr IA : SBA.Addr->members_if(IsPhi, *this)) { 1586 // Do not link phi uses for landing pad live-ins. 1587 if (IsEHPad) { 1588 // Find what register this phi is for. 1589 Ref RA = IA.Addr->getFirstMember(*this); 1590 assert(RA.Id != 0); 1591 if (EHLiveIns.hasCoverOf(RA.Addr->getRegRef(*this))) 1592 continue; 1593 } 1594 // Go over each phi use associated with MBB, and link it. 1595 for (auto U : IA.Addr->members_if(IsUseForBA, *this)) { 1596 PhiUse PUA = U; 1597 RegisterRef RR = PUA.Addr->getRegRef(*this); 1598 linkRefUp<UseNode *>(IA, PUA, DefM[RR.Reg]); 1599 } 1600 } 1601 } 1602 1603 // Pop all defs from this block from the definition stacks. 1604 releaseBlock(BA.Id, DefM); 1605 } 1606 1607 // Remove the use node UA from any data-flow and structural links. 1608 void DataFlowGraph::unlinkUseDF(Use UA) { 1609 NodeId RD = UA.Addr->getReachingDef(); 1610 NodeId Sib = UA.Addr->getSibling(); 1611 1612 if (RD == 0) { 1613 assert(Sib == 0); 1614 return; 1615 } 1616 1617 auto RDA = addr<DefNode *>(RD); 1618 auto TA = addr<UseNode *>(RDA.Addr->getReachedUse()); 1619 if (TA.Id == UA.Id) { 1620 RDA.Addr->setReachedUse(Sib); 1621 return; 1622 } 1623 1624 while (TA.Id != 0) { 1625 NodeId S = TA.Addr->getSibling(); 1626 if (S == UA.Id) { 1627 TA.Addr->setSibling(UA.Addr->getSibling()); 1628 return; 1629 } 1630 TA = addr<UseNode *>(S); 1631 } 1632 } 1633 1634 // Remove the def node DA from any data-flow and structural links. 1635 void DataFlowGraph::unlinkDefDF(Def DA) { 1636 // 1637 // RD 1638 // | reached 1639 // | def 1640 // : 1641 // . 1642 // +----+ 1643 // ... -- | DA | -- ... -- 0 : sibling chain of DA 1644 // +----+ 1645 // | | reached 1646 // | : def 1647 // | . 1648 // | ... : Siblings (defs) 1649 // | 1650 // : reached 1651 // . use 1652 // ... : sibling chain of reached uses 1653 1654 NodeId RD = DA.Addr->getReachingDef(); 1655 1656 // Visit all siblings of the reached def and reset their reaching defs. 1657 // Also, defs reached by DA are now "promoted" to being reached by RD, 1658 // so all of them will need to be spliced into the sibling chain where 1659 // DA belongs. 1660 auto getAllNodes = [this](NodeId N) -> NodeList { 1661 NodeList Res; 1662 while (N) { 1663 auto RA = addr<RefNode *>(N); 1664 // Keep the nodes in the exact sibling order. 1665 Res.push_back(RA); 1666 N = RA.Addr->getSibling(); 1667 } 1668 return Res; 1669 }; 1670 NodeList ReachedDefs = getAllNodes(DA.Addr->getReachedDef()); 1671 NodeList ReachedUses = getAllNodes(DA.Addr->getReachedUse()); 1672 1673 if (RD == 0) { 1674 for (Ref I : ReachedDefs) 1675 I.Addr->setSibling(0); 1676 for (Ref I : ReachedUses) 1677 I.Addr->setSibling(0); 1678 } 1679 for (Def I : ReachedDefs) 1680 I.Addr->setReachingDef(RD); 1681 for (Use I : ReachedUses) 1682 I.Addr->setReachingDef(RD); 1683 1684 NodeId Sib = DA.Addr->getSibling(); 1685 if (RD == 0) { 1686 assert(Sib == 0); 1687 return; 1688 } 1689 1690 // Update the reaching def node and remove DA from the sibling list. 1691 auto RDA = addr<DefNode *>(RD); 1692 auto TA = addr<DefNode *>(RDA.Addr->getReachedDef()); 1693 if (TA.Id == DA.Id) { 1694 // If DA is the first reached def, just update the RD's reached def 1695 // to the DA's sibling. 1696 RDA.Addr->setReachedDef(Sib); 1697 } else { 1698 // Otherwise, traverse the sibling list of the reached defs and remove 1699 // DA from it. 1700 while (TA.Id != 0) { 1701 NodeId S = TA.Addr->getSibling(); 1702 if (S == DA.Id) { 1703 TA.Addr->setSibling(Sib); 1704 break; 1705 } 1706 TA = addr<DefNode *>(S); 1707 } 1708 } 1709 1710 // Splice the DA's reached defs into the RDA's reached def chain. 1711 if (!ReachedDefs.empty()) { 1712 auto Last = Def(ReachedDefs.back()); 1713 Last.Addr->setSibling(RDA.Addr->getReachedDef()); 1714 RDA.Addr->setReachedDef(ReachedDefs.front().Id); 1715 } 1716 // Splice the DA's reached uses into the RDA's reached use chain. 1717 if (!ReachedUses.empty()) { 1718 auto Last = Use(ReachedUses.back()); 1719 Last.Addr->setSibling(RDA.Addr->getReachedUse()); 1720 RDA.Addr->setReachedUse(ReachedUses.front().Id); 1721 } 1722 } 1723 1724 } // end namespace llvm::rdf 1725