1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/MachineVerifier.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeCalc.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConvergenceVerifier.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/PseudoSourceValue.h" 54 #include "llvm/CodeGen/RegisterBank.h" 55 #include "llvm/CodeGen/RegisterBankInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGenTypes/LowLevelType.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/EHPersonalities.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/InlineAsm.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCAsmInfo.h" 73 #include "llvm/MC/MCDwarf.h" 74 #include "llvm/MC/MCInstrDesc.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCTargetOptions.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/ModRef.h" 83 #include "llvm/Support/Mutex.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstddef> 89 #include <cstdint> 90 #include <iterator> 91 #include <string> 92 #include <utility> 93 94 using namespace llvm; 95 96 namespace { 97 98 /// Used the by the ReportedErrors class to guarantee only one error is reported 99 /// at one time. 100 static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock; 101 102 struct MachineVerifier { 103 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, 104 raw_ostream *OS, bool AbortOnError = true) 105 : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b), 106 ReportedErrs(AbortOnError) {} 107 108 MachineVerifier(Pass *pass, const char *b, raw_ostream *OS, 109 bool AbortOnError = true) 110 : PASS(pass), OS(OS ? *OS : nulls()), Banner(b), 111 ReportedErrs(AbortOnError) {} 112 113 MachineVerifier(const char *b, LiveVariables *LiveVars, 114 LiveIntervals *LiveInts, LiveStacks *LiveStks, 115 SlotIndexes *Indexes, raw_ostream *OS, 116 bool AbortOnError = true) 117 : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), 118 LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes), 119 ReportedErrs(AbortOnError) {} 120 121 /// \returns true if no problems were found. 122 bool verify(const MachineFunction &MF); 123 124 MachineFunctionAnalysisManager *MFAM = nullptr; 125 Pass *const PASS = nullptr; 126 raw_ostream &OS; 127 const char *Banner; 128 const MachineFunction *MF = nullptr; 129 const TargetMachine *TM = nullptr; 130 const TargetInstrInfo *TII = nullptr; 131 const TargetRegisterInfo *TRI = nullptr; 132 const MachineRegisterInfo *MRI = nullptr; 133 const RegisterBankInfo *RBI = nullptr; 134 135 // Avoid querying the MachineFunctionProperties for each operand. 136 bool isFunctionRegBankSelected = false; 137 bool isFunctionSelected = false; 138 bool isFunctionTracksDebugUserValues = false; 139 140 using RegVector = SmallVector<Register, 16>; 141 using RegMaskVector = SmallVector<const uint32_t *, 4>; 142 using RegSet = DenseSet<Register>; 143 using RegMap = DenseMap<Register, const MachineInstr *>; 144 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 145 146 const MachineInstr *FirstNonPHI = nullptr; 147 const MachineInstr *FirstTerminator = nullptr; 148 BlockSet FunctionBlocks; 149 150 BitVector regsReserved; 151 RegSet regsLive; 152 RegVector regsDefined, regsDead, regsKilled; 153 RegMaskVector regMasks; 154 155 SlotIndex lastIndex; 156 157 // Add Reg and any sub-registers to RV 158 void addRegWithSubRegs(RegVector &RV, Register Reg) { 159 RV.push_back(Reg); 160 if (Reg.isPhysical()) 161 append_range(RV, TRI->subregs(Reg.asMCReg())); 162 } 163 164 struct BBInfo { 165 // Is this MBB reachable from the MF entry point? 166 bool reachable = false; 167 168 // Vregs that must be live in because they are used without being 169 // defined. Map value is the user. vregsLiveIn doesn't include regs 170 // that only are used by PHI nodes. 171 RegMap vregsLiveIn; 172 173 // Regs killed in MBB. They may be defined again, and will then be in both 174 // regsKilled and regsLiveOut. 175 RegSet regsKilled; 176 177 // Regs defined in MBB and live out. Note that vregs passing through may 178 // be live out without being mentioned here. 179 RegSet regsLiveOut; 180 181 // Vregs that pass through MBB untouched. This set is disjoint from 182 // regsKilled and regsLiveOut. 183 RegSet vregsPassed; 184 185 // Vregs that must pass through MBB because they are needed by a successor 186 // block. This set is disjoint from regsLiveOut. 187 RegSet vregsRequired; 188 189 // Set versions of block's predecessor and successor lists. 190 BlockSet Preds, Succs; 191 192 BBInfo() = default; 193 194 // Add register to vregsRequired if it belongs there. Return true if 195 // anything changed. 196 bool addRequired(Register Reg) { 197 if (!Reg.isVirtual()) 198 return false; 199 if (regsLiveOut.count(Reg)) 200 return false; 201 return vregsRequired.insert(Reg).second; 202 } 203 204 // Same for a full set. 205 bool addRequired(const RegSet &RS) { 206 bool Changed = false; 207 for (Register Reg : RS) 208 Changed |= addRequired(Reg); 209 return Changed; 210 } 211 212 // Same for a full map. 213 bool addRequired(const RegMap &RM) { 214 bool Changed = false; 215 for (const auto &I : RM) 216 Changed |= addRequired(I.first); 217 return Changed; 218 } 219 220 // Live-out registers are either in regsLiveOut or vregsPassed. 221 bool isLiveOut(Register Reg) const { 222 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 223 } 224 }; 225 226 // Extra register info per MBB. 227 DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap; 228 229 bool isReserved(Register Reg) { 230 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 231 } 232 233 bool isAllocatable(Register Reg) const { 234 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 235 !regsReserved.test(Reg.id()); 236 } 237 238 // Analysis information if available 239 LiveVariables *LiveVars = nullptr; 240 LiveIntervals *LiveInts = nullptr; 241 LiveStacks *LiveStks = nullptr; 242 SlotIndexes *Indexes = nullptr; 243 244 /// A class to track the number of reported error and to guarantee that only 245 /// one error is reported at one time. 246 class ReportedErrors { 247 unsigned NumReported = 0; 248 bool AbortOnError; 249 250 public: 251 /// \param AbortOnError -- If set, abort after printing the first error. 252 ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {} 253 254 ~ReportedErrors() { 255 if (!hasError()) 256 return; 257 if (AbortOnError) 258 report_fatal_error("Found " + Twine(NumReported) + 259 " machine code errors."); 260 // Since we haven't aborted, release the lock to allow other threads to 261 // report errors. 262 ReportedErrorsLock->unlock(); 263 } 264 265 /// Increment the number of reported errors. 266 /// \returns true if this is the first reported error. 267 bool increment() { 268 // If this is the first error this thread has encountered, grab the lock 269 // to prevent other threads from reporting errors at the same time. 270 // Otherwise we assume we already have the lock. 271 if (!hasError()) 272 ReportedErrorsLock->lock(); 273 ++NumReported; 274 return NumReported == 1; 275 } 276 277 /// \returns true if an error was reported. 278 bool hasError() { return NumReported; } 279 }; 280 ReportedErrors ReportedErrs; 281 282 // This is calculated only when trying to verify convergence control tokens. 283 // Similar to the LLVM IR verifier, we calculate this locally instead of 284 // relying on the pass manager. 285 MachineDominatorTree DT; 286 287 void visitMachineFunctionBefore(); 288 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 289 void visitMachineBundleBefore(const MachineInstr *MI); 290 291 /// Verify that all of \p MI's virtual register operands are scalars. 292 /// \returns True if all virtual register operands are scalar. False 293 /// otherwise. 294 bool verifyAllRegOpsScalar(const MachineInstr &MI, 295 const MachineRegisterInfo &MRI); 296 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 297 298 bool verifyGIntrinsicSideEffects(const MachineInstr *MI); 299 bool verifyGIntrinsicConvergence(const MachineInstr *MI); 300 void verifyPreISelGenericInstruction(const MachineInstr *MI); 301 302 void visitMachineInstrBefore(const MachineInstr *MI); 303 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 304 void visitMachineBundleAfter(const MachineInstr *MI); 305 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 306 void visitMachineFunctionAfter(); 307 308 void report(const char *msg, const MachineFunction *MF); 309 void report(const char *msg, const MachineBasicBlock *MBB); 310 void report(const char *msg, const MachineInstr *MI); 311 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 312 LLT MOVRegType = LLT{}); 313 void report(const Twine &Msg, const MachineInstr *MI); 314 315 void report_context(const LiveInterval &LI) const; 316 void report_context(const LiveRange &LR, Register VRegUnit, 317 LaneBitmask LaneMask) const; 318 void report_context(const LiveRange::Segment &S) const; 319 void report_context(const VNInfo &VNI) const; 320 void report_context(SlotIndex Pos) const; 321 void report_context(MCPhysReg PhysReg) const; 322 void report_context_liverange(const LiveRange &LR) const; 323 void report_context_lanemask(LaneBitmask LaneMask) const; 324 void report_context_vreg(Register VReg) const; 325 void report_context_vreg_regunit(Register VRegOrUnit) const; 326 327 void verifyInlineAsm(const MachineInstr *MI); 328 329 void checkLiveness(const MachineOperand *MO, unsigned MONum); 330 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 331 SlotIndex UseIdx, const LiveRange &LR, 332 Register VRegOrUnit, 333 LaneBitmask LaneMask = LaneBitmask::getNone()); 334 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 335 SlotIndex DefIdx, const LiveRange &LR, 336 Register VRegOrUnit, bool SubRangeCheck = false, 337 LaneBitmask LaneMask = LaneBitmask::getNone()); 338 339 void markReachable(const MachineBasicBlock *MBB); 340 void calcRegsPassed(); 341 void checkPHIOps(const MachineBasicBlock &MBB); 342 343 void calcRegsRequired(); 344 void verifyLiveVariables(); 345 void verifyLiveIntervals(); 346 void verifyLiveInterval(const LiveInterval &); 347 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 348 LaneBitmask); 349 void verifyLiveRangeSegment(const LiveRange &, 350 const LiveRange::const_iterator I, Register, 351 LaneBitmask); 352 void verifyLiveRange(const LiveRange &, Register, 353 LaneBitmask LaneMask = LaneBitmask::getNone()); 354 355 void verifyStackFrame(); 356 357 void verifySlotIndexes() const; 358 void verifyProperties(const MachineFunction &MF); 359 }; 360 361 struct MachineVerifierLegacyPass : public MachineFunctionPass { 362 static char ID; // Pass ID, replacement for typeid 363 364 const std::string Banner; 365 366 MachineVerifierLegacyPass(std::string banner = std::string()) 367 : MachineFunctionPass(ID), Banner(std::move(banner)) { 368 initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 369 } 370 371 void getAnalysisUsage(AnalysisUsage &AU) const override { 372 AU.addUsedIfAvailable<LiveStacks>(); 373 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 374 AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); 375 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); 376 AU.setPreservesAll(); 377 MachineFunctionPass::getAnalysisUsage(AU); 378 } 379 380 bool runOnMachineFunction(MachineFunction &MF) override { 381 // Skip functions that have known verification problems. 382 // FIXME: Remove this mechanism when all problematic passes have been 383 // fixed. 384 if (MF.getProperties().hasProperty( 385 MachineFunctionProperties::Property::FailsVerification)) 386 return false; 387 388 MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); 389 return false; 390 } 391 }; 392 393 } // end anonymous namespace 394 395 PreservedAnalyses 396 MachineVerifierPass::run(MachineFunction &MF, 397 MachineFunctionAnalysisManager &MFAM) { 398 // Skip functions that have known verification problems. 399 // FIXME: Remove this mechanism when all problematic passes have been 400 // fixed. 401 if (MF.getProperties().hasProperty( 402 MachineFunctionProperties::Property::FailsVerification)) 403 return PreservedAnalyses::all(); 404 MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); 405 return PreservedAnalyses::all(); 406 } 407 408 char MachineVerifierLegacyPass::ID = 0; 409 410 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", 411 "Verify generated machine code", false, false) 412 413 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 414 return new MachineVerifierLegacyPass(Banner); 415 } 416 417 void llvm::verifyMachineFunction(const std::string &Banner, 418 const MachineFunction &MF) { 419 // TODO: Use MFAM after porting below analyses. 420 // LiveVariables *LiveVars; 421 // LiveIntervals *LiveInts; 422 // LiveStacks *LiveStks; 423 // SlotIndexes *Indexes; 424 MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); 425 } 426 427 bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, 428 bool AbortOnError) const { 429 return MachineVerifier(p, Banner, OS, AbortOnError).verify(*this); 430 } 431 432 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 433 const char *Banner, raw_ostream *OS, 434 bool AbortOnError) const { 435 return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts, 436 /*LiveStks=*/nullptr, Indexes, OS, AbortOnError) 437 .verify(*this); 438 } 439 440 void MachineVerifier::verifySlotIndexes() const { 441 if (Indexes == nullptr) 442 return; 443 444 // Ensure the IdxMBB list is sorted by slot indexes. 445 SlotIndex Last; 446 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 447 E = Indexes->MBBIndexEnd(); I != E; ++I) { 448 assert(!Last.isValid() || I->first > Last); 449 Last = I->first; 450 } 451 } 452 453 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 454 // If a pass has introduced virtual registers without clearing the 455 // NoVRegs property (or set it without allocating the vregs) 456 // then report an error. 457 if (MF.getProperties().hasProperty( 458 MachineFunctionProperties::Property::NoVRegs) && 459 MRI->getNumVirtRegs()) 460 report("Function has NoVRegs property but there are VReg operands", &MF); 461 } 462 463 bool MachineVerifier::verify(const MachineFunction &MF) { 464 this->MF = &MF; 465 TM = &MF.getTarget(); 466 TII = MF.getSubtarget().getInstrInfo(); 467 TRI = MF.getSubtarget().getRegisterInfo(); 468 RBI = MF.getSubtarget().getRegBankInfo(); 469 MRI = &MF.getRegInfo(); 470 471 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 472 MachineFunctionProperties::Property::FailedISel); 473 474 // If we're mid-GlobalISel and we already triggered the fallback path then 475 // it's expected that the MIR is somewhat broken but that's ok since we'll 476 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 477 if (isFunctionFailedISel) 478 return true; 479 480 isFunctionRegBankSelected = MF.getProperties().hasProperty( 481 MachineFunctionProperties::Property::RegBankSelected); 482 isFunctionSelected = MF.getProperties().hasProperty( 483 MachineFunctionProperties::Property::Selected); 484 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 485 MachineFunctionProperties::Property::TracksDebugUserValues); 486 487 if (PASS) { 488 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 489 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; 490 // We don't want to verify LiveVariables if LiveIntervals is available. 491 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 492 if (!LiveInts) 493 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; 494 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 495 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 496 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 497 } 498 if (MFAM) { 499 MachineFunction &Func = const_cast<MachineFunction &>(MF); 500 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func); 501 if (!LiveInts) 502 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func); 503 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); 504 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func); 505 } 506 507 verifySlotIndexes(); 508 509 verifyProperties(MF); 510 511 visitMachineFunctionBefore(); 512 for (const MachineBasicBlock &MBB : MF) { 513 visitMachineBasicBlockBefore(&MBB); 514 // Keep track of the current bundle header. 515 const MachineInstr *CurBundle = nullptr; 516 // Do we expect the next instruction to be part of the same bundle? 517 bool InBundle = false; 518 519 for (const MachineInstr &MI : MBB.instrs()) { 520 if (MI.getParent() != &MBB) { 521 report("Bad instruction parent pointer", &MBB); 522 OS << "Instruction: " << MI; 523 continue; 524 } 525 526 // Check for consistent bundle flags. 527 if (InBundle && !MI.isBundledWithPred()) 528 report("Missing BundledPred flag, " 529 "BundledSucc was set on predecessor", 530 &MI); 531 if (!InBundle && MI.isBundledWithPred()) 532 report("BundledPred flag is set, " 533 "but BundledSucc not set on predecessor", 534 &MI); 535 536 // Is this a bundle header? 537 if (!MI.isInsideBundle()) { 538 if (CurBundle) 539 visitMachineBundleAfter(CurBundle); 540 CurBundle = &MI; 541 visitMachineBundleBefore(CurBundle); 542 } else if (!CurBundle) 543 report("No bundle header", &MI); 544 visitMachineInstrBefore(&MI); 545 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 546 const MachineOperand &Op = MI.getOperand(I); 547 if (Op.getParent() != &MI) { 548 // Make sure to use correct addOperand / removeOperand / ChangeTo 549 // functions when replacing operands of a MachineInstr. 550 report("Instruction has operand with wrong parent set", &MI); 551 } 552 553 visitMachineOperand(&Op, I); 554 } 555 556 // Was this the last bundled instruction? 557 InBundle = MI.isBundledWithSucc(); 558 } 559 if (CurBundle) 560 visitMachineBundleAfter(CurBundle); 561 if (InBundle) 562 report("BundledSucc flag set on last instruction in block", &MBB.back()); 563 visitMachineBasicBlockAfter(&MBB); 564 } 565 visitMachineFunctionAfter(); 566 567 // Clean up. 568 regsLive.clear(); 569 regsDefined.clear(); 570 regsDead.clear(); 571 regsKilled.clear(); 572 regMasks.clear(); 573 MBBInfoMap.clear(); 574 575 return !ReportedErrs.hasError(); 576 } 577 578 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 579 assert(MF); 580 OS << '\n'; 581 if (ReportedErrs.increment()) { 582 if (Banner) 583 OS << "# " << Banner << '\n'; 584 585 if (LiveInts != nullptr) 586 LiveInts->print(OS); 587 else 588 MF->print(OS, Indexes); 589 } 590 591 OS << "*** Bad machine code: " << msg << " ***\n" 592 << "- function: " << MF->getName() << '\n'; 593 } 594 595 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 596 assert(MBB); 597 report(msg, MBB->getParent()); 598 OS << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName() 599 << " (" << (const void *)MBB << ')'; 600 if (Indexes) 601 OS << " [" << Indexes->getMBBStartIdx(MBB) << ';' 602 << Indexes->getMBBEndIdx(MBB) << ')'; 603 OS << '\n'; 604 } 605 606 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 607 assert(MI); 608 report(msg, MI->getParent()); 609 OS << "- instruction: "; 610 if (Indexes && Indexes->hasIndex(*MI)) 611 OS << Indexes->getInstructionIndex(*MI) << '\t'; 612 MI->print(OS, /*IsStandalone=*/true); 613 } 614 615 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 616 unsigned MONum, LLT MOVRegType) { 617 assert(MO); 618 report(msg, MO->getParent()); 619 OS << "- operand " << MONum << ": "; 620 MO->print(OS, MOVRegType, TRI); 621 OS << '\n'; 622 } 623 624 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 625 report(Msg.str().c_str(), MI); 626 } 627 628 void MachineVerifier::report_context(SlotIndex Pos) const { 629 OS << "- at: " << Pos << '\n'; 630 } 631 632 void MachineVerifier::report_context(const LiveInterval &LI) const { 633 OS << "- interval: " << LI << '\n'; 634 } 635 636 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 637 LaneBitmask LaneMask) const { 638 report_context_liverange(LR); 639 report_context_vreg_regunit(VRegUnit); 640 if (LaneMask.any()) 641 report_context_lanemask(LaneMask); 642 } 643 644 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 645 OS << "- segment: " << S << '\n'; 646 } 647 648 void MachineVerifier::report_context(const VNInfo &VNI) const { 649 OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 650 } 651 652 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 653 OS << "- liverange: " << LR << '\n'; 654 } 655 656 void MachineVerifier::report_context(MCPhysReg PReg) const { 657 OS << "- p. register: " << printReg(PReg, TRI) << '\n'; 658 } 659 660 void MachineVerifier::report_context_vreg(Register VReg) const { 661 OS << "- v. register: " << printReg(VReg, TRI) << '\n'; 662 } 663 664 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 665 if (VRegOrUnit.isVirtual()) { 666 report_context_vreg(VRegOrUnit); 667 } else { 668 OS << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 669 } 670 } 671 672 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 673 OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 674 } 675 676 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 677 BBInfo &MInfo = MBBInfoMap[MBB]; 678 if (!MInfo.reachable) { 679 MInfo.reachable = true; 680 for (const MachineBasicBlock *Succ : MBB->successors()) 681 markReachable(Succ); 682 } 683 } 684 685 void MachineVerifier::visitMachineFunctionBefore() { 686 lastIndex = SlotIndex(); 687 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 688 : TRI->getReservedRegs(*MF); 689 690 if (!MF->empty()) 691 markReachable(&MF->front()); 692 693 // Build a set of the basic blocks in the function. 694 FunctionBlocks.clear(); 695 for (const auto &MBB : *MF) { 696 FunctionBlocks.insert(&MBB); 697 BBInfo &MInfo = MBBInfoMap[&MBB]; 698 699 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 700 if (MInfo.Preds.size() != MBB.pred_size()) 701 report("MBB has duplicate entries in its predecessor list.", &MBB); 702 703 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 704 if (MInfo.Succs.size() != MBB.succ_size()) 705 report("MBB has duplicate entries in its successor list.", &MBB); 706 } 707 708 // Check that the register use lists are sane. 709 MRI->verifyUseLists(); 710 711 if (!MF->empty()) 712 verifyStackFrame(); 713 } 714 715 void 716 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 717 FirstTerminator = nullptr; 718 FirstNonPHI = nullptr; 719 720 if (!MF->getProperties().hasProperty( 721 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 722 // If this block has allocatable physical registers live-in, check that 723 // it is an entry block or landing pad. 724 for (const auto &LI : MBB->liveins()) { 725 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 726 MBB->getIterator() != MBB->getParent()->begin() && 727 !MBB->isInlineAsmBrIndirectTarget()) { 728 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 729 "inlineasm-br-indirect-target.", 730 MBB); 731 report_context(LI.PhysReg); 732 } 733 } 734 } 735 736 if (MBB->isIRBlockAddressTaken()) { 737 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 738 report("ir-block-address-taken is associated with basic block not used by " 739 "a blockaddress.", 740 MBB); 741 } 742 743 // Count the number of landing pad successors. 744 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 745 for (const auto *succ : MBB->successors()) { 746 if (succ->isEHPad()) 747 LandingPadSuccs.insert(succ); 748 if (!FunctionBlocks.count(succ)) 749 report("MBB has successor that isn't part of the function.", MBB); 750 if (!MBBInfoMap[succ].Preds.count(MBB)) { 751 report("Inconsistent CFG", MBB); 752 OS << "MBB is not in the predecessor list of the successor " 753 << printMBBReference(*succ) << ".\n"; 754 } 755 } 756 757 // Check the predecessor list. 758 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 759 if (!FunctionBlocks.count(Pred)) 760 report("MBB has predecessor that isn't part of the function.", MBB); 761 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 762 report("Inconsistent CFG", MBB); 763 OS << "MBB is not in the successor list of the predecessor " 764 << printMBBReference(*Pred) << ".\n"; 765 } 766 } 767 768 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 769 const BasicBlock *BB = MBB->getBasicBlock(); 770 const Function &F = MF->getFunction(); 771 if (LandingPadSuccs.size() > 1 && 772 !(AsmInfo && 773 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 774 BB && isa<SwitchInst>(BB->getTerminator())) && 775 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 776 report("MBB has more than one landing pad successor", MBB); 777 778 // Call analyzeBranch. If it succeeds, there several more conditions to check. 779 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 780 SmallVector<MachineOperand, 4> Cond; 781 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 782 Cond)) { 783 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 784 // check whether its answers match up with reality. 785 if (!TBB && !FBB) { 786 // Block falls through to its successor. 787 if (!MBB->empty() && MBB->back().isBarrier() && 788 !TII->isPredicated(MBB->back())) { 789 report("MBB exits via unconditional fall-through but ends with a " 790 "barrier instruction!", MBB); 791 } 792 if (!Cond.empty()) { 793 report("MBB exits via unconditional fall-through but has a condition!", 794 MBB); 795 } 796 } else if (TBB && !FBB && Cond.empty()) { 797 // Block unconditionally branches somewhere. 798 if (MBB->empty()) { 799 report("MBB exits via unconditional branch but doesn't contain " 800 "any instructions!", MBB); 801 } else if (!MBB->back().isBarrier()) { 802 report("MBB exits via unconditional branch but doesn't end with a " 803 "barrier instruction!", MBB); 804 } else if (!MBB->back().isTerminator()) { 805 report("MBB exits via unconditional branch but the branch isn't a " 806 "terminator instruction!", MBB); 807 } 808 } else if (TBB && !FBB && !Cond.empty()) { 809 // Block conditionally branches somewhere, otherwise falls through. 810 if (MBB->empty()) { 811 report("MBB exits via conditional branch/fall-through but doesn't " 812 "contain any instructions!", MBB); 813 } else if (MBB->back().isBarrier()) { 814 report("MBB exits via conditional branch/fall-through but ends with a " 815 "barrier instruction!", MBB); 816 } else if (!MBB->back().isTerminator()) { 817 report("MBB exits via conditional branch/fall-through but the branch " 818 "isn't a terminator instruction!", MBB); 819 } 820 } else if (TBB && FBB) { 821 // Block conditionally branches somewhere, otherwise branches 822 // somewhere else. 823 if (MBB->empty()) { 824 report("MBB exits via conditional branch/branch but doesn't " 825 "contain any instructions!", MBB); 826 } else if (!MBB->back().isBarrier()) { 827 report("MBB exits via conditional branch/branch but doesn't end with a " 828 "barrier instruction!", MBB); 829 } else if (!MBB->back().isTerminator()) { 830 report("MBB exits via conditional branch/branch but the branch " 831 "isn't a terminator instruction!", MBB); 832 } 833 if (Cond.empty()) { 834 report("MBB exits via conditional branch/branch but there's no " 835 "condition!", MBB); 836 } 837 } else { 838 report("analyzeBranch returned invalid data!", MBB); 839 } 840 841 // Now check that the successors match up with the answers reported by 842 // analyzeBranch. 843 if (TBB && !MBB->isSuccessor(TBB)) 844 report("MBB exits via jump or conditional branch, but its target isn't a " 845 "CFG successor!", 846 MBB); 847 if (FBB && !MBB->isSuccessor(FBB)) 848 report("MBB exits via conditional branch, but its target isn't a CFG " 849 "successor!", 850 MBB); 851 852 // There might be a fallthrough to the next block if there's either no 853 // unconditional true branch, or if there's a condition, and one of the 854 // branches is missing. 855 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 856 857 // A conditional fallthrough must be an actual CFG successor, not 858 // unreachable. (Conversely, an unconditional fallthrough might not really 859 // be a successor, because the block might end in unreachable.) 860 if (!Cond.empty() && !FBB) { 861 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 862 if (MBBI == MF->end()) { 863 report("MBB conditionally falls through out of function!", MBB); 864 } else if (!MBB->isSuccessor(&*MBBI)) 865 report("MBB exits via conditional branch/fall-through but the CFG " 866 "successors don't match the actual successors!", 867 MBB); 868 } 869 870 // Verify that there aren't any extra un-accounted-for successors. 871 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 872 // If this successor is one of the branch targets, it's okay. 873 if (SuccMBB == TBB || SuccMBB == FBB) 874 continue; 875 // If we might have a fallthrough, and the successor is the fallthrough 876 // block, that's also ok. 877 if (Fallthrough && SuccMBB == MBB->getNextNode()) 878 continue; 879 // Also accept successors which are for exception-handling or might be 880 // inlineasm_br targets. 881 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 882 continue; 883 report("MBB has unexpected successors which are not branch targets, " 884 "fallthrough, EHPads, or inlineasm_br targets.", 885 MBB); 886 } 887 } 888 889 regsLive.clear(); 890 if (MRI->tracksLiveness()) { 891 for (const auto &LI : MBB->liveins()) { 892 if (!Register::isPhysicalRegister(LI.PhysReg)) { 893 report("MBB live-in list contains non-physical register", MBB); 894 continue; 895 } 896 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 897 regsLive.insert(SubReg); 898 } 899 } 900 901 const MachineFrameInfo &MFI = MF->getFrameInfo(); 902 BitVector PR = MFI.getPristineRegs(*MF); 903 for (unsigned I : PR.set_bits()) { 904 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 905 regsLive.insert(SubReg); 906 } 907 908 regsKilled.clear(); 909 regsDefined.clear(); 910 911 if (Indexes) 912 lastIndex = Indexes->getMBBStartIdx(MBB); 913 } 914 915 // This function gets called for all bundle headers, including normal 916 // stand-alone unbundled instructions. 917 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 918 if (Indexes && Indexes->hasIndex(*MI)) { 919 SlotIndex idx = Indexes->getInstructionIndex(*MI); 920 if (!(idx > lastIndex)) { 921 report("Instruction index out of order", MI); 922 OS << "Last instruction was at " << lastIndex << '\n'; 923 } 924 lastIndex = idx; 925 } 926 927 // Ensure non-terminators don't follow terminators. 928 if (MI->isTerminator()) { 929 if (!FirstTerminator) 930 FirstTerminator = MI; 931 } else if (FirstTerminator) { 932 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 933 // precede non-terminators. 934 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 935 report("Non-terminator instruction after the first terminator", MI); 936 OS << "First terminator was:\t" << *FirstTerminator; 937 } 938 } 939 } 940 941 // The operands on an INLINEASM instruction must follow a template. 942 // Verify that the flag operands make sense. 943 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 944 // The first two operands on INLINEASM are the asm string and global flags. 945 if (MI->getNumOperands() < 2) { 946 report("Too few operands on inline asm", MI); 947 return; 948 } 949 if (!MI->getOperand(0).isSymbol()) 950 report("Asm string must be an external symbol", MI); 951 if (!MI->getOperand(1).isImm()) 952 report("Asm flags must be an immediate", MI); 953 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 954 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 955 // and Extra_IsConvergent = 32. 956 if (!isUInt<6>(MI->getOperand(1).getImm())) 957 report("Unknown asm flags", &MI->getOperand(1), 1); 958 959 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 960 961 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 962 unsigned NumOps; 963 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 964 const MachineOperand &MO = MI->getOperand(OpNo); 965 // There may be implicit ops after the fixed operands. 966 if (!MO.isImm()) 967 break; 968 const InlineAsm::Flag F(MO.getImm()); 969 NumOps = 1 + F.getNumOperandRegisters(); 970 } 971 972 if (OpNo > MI->getNumOperands()) 973 report("Missing operands in last group", MI); 974 975 // An optional MDNode follows the groups. 976 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 977 ++OpNo; 978 979 // All trailing operands must be implicit registers. 980 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 981 const MachineOperand &MO = MI->getOperand(OpNo); 982 if (!MO.isReg() || !MO.isImplicit()) 983 report("Expected implicit register after groups", &MO, OpNo); 984 } 985 986 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 987 const MachineBasicBlock *MBB = MI->getParent(); 988 989 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 990 i != e; ++i) { 991 const MachineOperand &MO = MI->getOperand(i); 992 993 if (!MO.isMBB()) 994 continue; 995 996 // Check the successor & predecessor lists look ok, assume they are 997 // not. Find the indirect target without going through the successors. 998 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 999 if (!IndirectTargetMBB) { 1000 report("INLINEASM_BR indirect target does not exist", &MO, i); 1001 break; 1002 } 1003 1004 if (!MBB->isSuccessor(IndirectTargetMBB)) 1005 report("INLINEASM_BR indirect target missing from successor list", &MO, 1006 i); 1007 1008 if (!IndirectTargetMBB->isPredecessor(MBB)) 1009 report("INLINEASM_BR indirect target predecessor list missing parent", 1010 &MO, i); 1011 } 1012 } 1013 } 1014 1015 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 1016 const MachineRegisterInfo &MRI) { 1017 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 1018 if (!Op.isReg()) 1019 return false; 1020 const auto Reg = Op.getReg(); 1021 if (Reg.isPhysical()) 1022 return false; 1023 return !MRI.getType(Reg).isScalar(); 1024 })) 1025 return true; 1026 report("All register operands must have scalar types", &MI); 1027 return false; 1028 } 1029 1030 /// Check that types are consistent when two operands need to have the same 1031 /// number of vector elements. 1032 /// \return true if the types are valid. 1033 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 1034 const MachineInstr *MI) { 1035 if (Ty0.isVector() != Ty1.isVector()) { 1036 report("operand types must be all-vector or all-scalar", MI); 1037 // Generally we try to report as many issues as possible at once, but in 1038 // this case it's not clear what should we be comparing the size of the 1039 // scalar with: the size of the whole vector or its lane. Instead of 1040 // making an arbitrary choice and emitting not so helpful message, let's 1041 // avoid the extra noise and stop here. 1042 return false; 1043 } 1044 1045 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { 1046 report("operand types must preserve number of vector elements", MI); 1047 return false; 1048 } 1049 1050 return true; 1051 } 1052 1053 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { 1054 auto Opcode = MI->getOpcode(); 1055 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || 1056 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; 1057 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1058 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1059 AttributeList Attrs = Intrinsic::getAttributes( 1060 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1061 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1062 if (NoSideEffects && DeclHasSideEffects) { 1063 report(Twine(TII->getName(Opcode), 1064 " used with intrinsic that accesses memory"), 1065 MI); 1066 return false; 1067 } 1068 if (!NoSideEffects && !DeclHasSideEffects) { 1069 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); 1070 return false; 1071 } 1072 } 1073 1074 return true; 1075 } 1076 1077 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { 1078 auto Opcode = MI->getOpcode(); 1079 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || 1080 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; 1081 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1082 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1083 AttributeList Attrs = Intrinsic::getAttributes( 1084 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1085 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); 1086 if (NotConvergent && DeclIsConvergent) { 1087 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), 1088 MI); 1089 return false; 1090 } 1091 if (!NotConvergent && !DeclIsConvergent) { 1092 report( 1093 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), 1094 MI); 1095 return false; 1096 } 1097 } 1098 1099 return true; 1100 } 1101 1102 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 1103 if (isFunctionSelected) 1104 report("Unexpected generic instruction in a Selected function", MI); 1105 1106 const MCInstrDesc &MCID = MI->getDesc(); 1107 unsigned NumOps = MI->getNumOperands(); 1108 1109 // Branches must reference a basic block if they are not indirect 1110 if (MI->isBranch() && !MI->isIndirectBranch()) { 1111 bool HasMBB = false; 1112 for (const MachineOperand &Op : MI->operands()) { 1113 if (Op.isMBB()) { 1114 HasMBB = true; 1115 break; 1116 } 1117 } 1118 1119 if (!HasMBB) { 1120 report("Branch instruction is missing a basic block operand or " 1121 "isIndirectBranch property", 1122 MI); 1123 } 1124 } 1125 1126 // Check types. 1127 SmallVector<LLT, 4> Types; 1128 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 1129 I != E; ++I) { 1130 if (!MCID.operands()[I].isGenericType()) 1131 continue; 1132 // Generic instructions specify type equality constraints between some of 1133 // their operands. Make sure these are consistent. 1134 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 1135 Types.resize(std::max(TypeIdx + 1, Types.size())); 1136 1137 const MachineOperand *MO = &MI->getOperand(I); 1138 if (!MO->isReg()) { 1139 report("generic instruction must use register operands", MI); 1140 continue; 1141 } 1142 1143 LLT OpTy = MRI->getType(MO->getReg()); 1144 // Don't report a type mismatch if there is no actual mismatch, only a 1145 // type missing, to reduce noise: 1146 if (OpTy.isValid()) { 1147 // Only the first valid type for a type index will be printed: don't 1148 // overwrite it later so it's always clear which type was expected: 1149 if (!Types[TypeIdx].isValid()) 1150 Types[TypeIdx] = OpTy; 1151 else if (Types[TypeIdx] != OpTy) 1152 report("Type mismatch in generic instruction", MO, I, OpTy); 1153 } else { 1154 // Generic instructions must have types attached to their operands. 1155 report("Generic instruction is missing a virtual register type", MO, I); 1156 } 1157 } 1158 1159 // Generic opcodes must not have physical register operands. 1160 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1161 const MachineOperand *MO = &MI->getOperand(I); 1162 if (MO->isReg() && MO->getReg().isPhysical()) 1163 report("Generic instruction cannot have physical register", MO, I); 1164 } 1165 1166 // Avoid out of bounds in checks below. This was already reported earlier. 1167 if (MI->getNumOperands() < MCID.getNumOperands()) 1168 return; 1169 1170 StringRef ErrorInfo; 1171 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1172 report(ErrorInfo.data(), MI); 1173 1174 // Verify properties of various specific instruction types 1175 unsigned Opc = MI->getOpcode(); 1176 switch (Opc) { 1177 case TargetOpcode::G_ASSERT_SEXT: 1178 case TargetOpcode::G_ASSERT_ZEXT: { 1179 std::string OpcName = 1180 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1181 if (!MI->getOperand(2).isImm()) { 1182 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1183 break; 1184 } 1185 1186 Register Dst = MI->getOperand(0).getReg(); 1187 Register Src = MI->getOperand(1).getReg(); 1188 LLT SrcTy = MRI->getType(Src); 1189 int64_t Imm = MI->getOperand(2).getImm(); 1190 if (Imm <= 0) { 1191 report(Twine(OpcName, " size must be >= 1"), MI); 1192 break; 1193 } 1194 1195 if (Imm >= SrcTy.getScalarSizeInBits()) { 1196 report(Twine(OpcName, " size must be less than source bit width"), MI); 1197 break; 1198 } 1199 1200 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1201 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1202 1203 // Allow only the source bank to be set. 1204 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1205 report(Twine(OpcName, " cannot change register bank"), MI); 1206 break; 1207 } 1208 1209 // Don't allow a class change. Do allow member class->regbank. 1210 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1211 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1212 report( 1213 Twine(OpcName, " source and destination register classes must match"), 1214 MI); 1215 break; 1216 } 1217 1218 break; 1219 } 1220 1221 case TargetOpcode::G_CONSTANT: 1222 case TargetOpcode::G_FCONSTANT: { 1223 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1224 if (DstTy.isVector()) 1225 report("Instruction cannot use a vector result type", MI); 1226 1227 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1228 if (!MI->getOperand(1).isCImm()) { 1229 report("G_CONSTANT operand must be cimm", MI); 1230 break; 1231 } 1232 1233 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1234 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1235 report("inconsistent constant size", MI); 1236 } else { 1237 if (!MI->getOperand(1).isFPImm()) { 1238 report("G_FCONSTANT operand must be fpimm", MI); 1239 break; 1240 } 1241 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1242 1243 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1244 DstTy.getSizeInBits()) { 1245 report("inconsistent constant size", MI); 1246 } 1247 } 1248 1249 break; 1250 } 1251 case TargetOpcode::G_LOAD: 1252 case TargetOpcode::G_STORE: 1253 case TargetOpcode::G_ZEXTLOAD: 1254 case TargetOpcode::G_SEXTLOAD: { 1255 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1256 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1257 if (!PtrTy.isPointer()) 1258 report("Generic memory instruction must access a pointer", MI); 1259 1260 // Generic loads and stores must have a single MachineMemOperand 1261 // describing that access. 1262 if (!MI->hasOneMemOperand()) { 1263 report("Generic instruction accessing memory must have one mem operand", 1264 MI); 1265 } else { 1266 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1267 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1268 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1269 if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), 1270 ValTy.getSizeInBits())) 1271 report("Generic extload must have a narrower memory type", MI); 1272 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1273 if (TypeSize::isKnownGT(MMO.getSize().getValue(), 1274 ValTy.getSizeInBytes())) 1275 report("load memory size cannot exceed result size", MI); 1276 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1277 if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), 1278 MMO.getSize().getValue())) 1279 report("store memory size cannot exceed value size", MI); 1280 } 1281 1282 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1283 if (Opc == TargetOpcode::G_STORE) { 1284 if (Order == AtomicOrdering::Acquire || 1285 Order == AtomicOrdering::AcquireRelease) 1286 report("atomic store cannot use acquire ordering", MI); 1287 1288 } else { 1289 if (Order == AtomicOrdering::Release || 1290 Order == AtomicOrdering::AcquireRelease) 1291 report("atomic load cannot use release ordering", MI); 1292 } 1293 } 1294 1295 break; 1296 } 1297 case TargetOpcode::G_PHI: { 1298 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1299 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1300 [this, &DstTy](const MachineOperand &MO) { 1301 if (!MO.isReg()) 1302 return true; 1303 LLT Ty = MRI->getType(MO.getReg()); 1304 if (!Ty.isValid() || (Ty != DstTy)) 1305 return false; 1306 return true; 1307 })) 1308 report("Generic Instruction G_PHI has operands with incompatible/missing " 1309 "types", 1310 MI); 1311 break; 1312 } 1313 case TargetOpcode::G_BITCAST: { 1314 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1315 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1316 if (!DstTy.isValid() || !SrcTy.isValid()) 1317 break; 1318 1319 if (SrcTy.isPointer() != DstTy.isPointer()) 1320 report("bitcast cannot convert between pointers and other types", MI); 1321 1322 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1323 report("bitcast sizes must match", MI); 1324 1325 if (SrcTy == DstTy) 1326 report("bitcast must change the type", MI); 1327 1328 break; 1329 } 1330 case TargetOpcode::G_INTTOPTR: 1331 case TargetOpcode::G_PTRTOINT: 1332 case TargetOpcode::G_ADDRSPACE_CAST: { 1333 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1334 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1335 if (!DstTy.isValid() || !SrcTy.isValid()) 1336 break; 1337 1338 verifyVectorElementMatch(DstTy, SrcTy, MI); 1339 1340 DstTy = DstTy.getScalarType(); 1341 SrcTy = SrcTy.getScalarType(); 1342 1343 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1344 if (!DstTy.isPointer()) 1345 report("inttoptr result type must be a pointer", MI); 1346 if (SrcTy.isPointer()) 1347 report("inttoptr source type must not be a pointer", MI); 1348 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1349 if (!SrcTy.isPointer()) 1350 report("ptrtoint source type must be a pointer", MI); 1351 if (DstTy.isPointer()) 1352 report("ptrtoint result type must not be a pointer", MI); 1353 } else { 1354 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1355 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1356 report("addrspacecast types must be pointers", MI); 1357 else { 1358 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1359 report("addrspacecast must convert different address spaces", MI); 1360 } 1361 } 1362 1363 break; 1364 } 1365 case TargetOpcode::G_PTR_ADD: { 1366 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1367 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1368 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1369 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1370 break; 1371 1372 if (!PtrTy.isPointerOrPointerVector()) 1373 report("gep first operand must be a pointer", MI); 1374 1375 if (OffsetTy.isPointerOrPointerVector()) 1376 report("gep offset operand must not be a pointer", MI); 1377 1378 if (PtrTy.isPointerOrPointerVector()) { 1379 const DataLayout &DL = MF->getDataLayout(); 1380 unsigned AS = PtrTy.getAddressSpace(); 1381 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 1382 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { 1383 report("gep offset operand must match index size for address space", 1384 MI); 1385 } 1386 } 1387 1388 // TODO: Is the offset allowed to be a scalar with a vector? 1389 break; 1390 } 1391 case TargetOpcode::G_PTRMASK: { 1392 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1393 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1394 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1395 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1396 break; 1397 1398 if (!DstTy.isPointerOrPointerVector()) 1399 report("ptrmask result type must be a pointer", MI); 1400 1401 if (!MaskTy.getScalarType().isScalar()) 1402 report("ptrmask mask type must be an integer", MI); 1403 1404 verifyVectorElementMatch(DstTy, MaskTy, MI); 1405 break; 1406 } 1407 case TargetOpcode::G_SEXT: 1408 case TargetOpcode::G_ZEXT: 1409 case TargetOpcode::G_ANYEXT: 1410 case TargetOpcode::G_TRUNC: 1411 case TargetOpcode::G_FPEXT: 1412 case TargetOpcode::G_FPTRUNC: { 1413 // Number of operands and presense of types is already checked (and 1414 // reported in case of any issues), so no need to report them again. As 1415 // we're trying to report as many issues as possible at once, however, the 1416 // instructions aren't guaranteed to have the right number of operands or 1417 // types attached to them at this point 1418 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1419 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1420 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1421 if (!DstTy.isValid() || !SrcTy.isValid()) 1422 break; 1423 1424 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) 1425 report("Generic extend/truncate can not operate on pointers", MI); 1426 1427 verifyVectorElementMatch(DstTy, SrcTy, MI); 1428 1429 unsigned DstSize = DstTy.getScalarSizeInBits(); 1430 unsigned SrcSize = SrcTy.getScalarSizeInBits(); 1431 switch (MI->getOpcode()) { 1432 default: 1433 if (DstSize <= SrcSize) 1434 report("Generic extend has destination type no larger than source", MI); 1435 break; 1436 case TargetOpcode::G_TRUNC: 1437 case TargetOpcode::G_FPTRUNC: 1438 if (DstSize >= SrcSize) 1439 report("Generic truncate has destination type no smaller than source", 1440 MI); 1441 break; 1442 } 1443 break; 1444 } 1445 case TargetOpcode::G_SELECT: { 1446 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1447 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1448 if (!SelTy.isValid() || !CondTy.isValid()) 1449 break; 1450 1451 // Scalar condition select on a vector is valid. 1452 if (CondTy.isVector()) 1453 verifyVectorElementMatch(SelTy, CondTy, MI); 1454 break; 1455 } 1456 case TargetOpcode::G_MERGE_VALUES: { 1457 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1458 // e.g. s2N = MERGE sN, sN 1459 // Merging multiple scalars into a vector is not allowed, should use 1460 // G_BUILD_VECTOR for that. 1461 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1462 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1463 if (DstTy.isVector() || SrcTy.isVector()) 1464 report("G_MERGE_VALUES cannot operate on vectors", MI); 1465 1466 const unsigned NumOps = MI->getNumOperands(); 1467 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1468 report("G_MERGE_VALUES result size is inconsistent", MI); 1469 1470 for (unsigned I = 2; I != NumOps; ++I) { 1471 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1472 report("G_MERGE_VALUES source types do not match", MI); 1473 } 1474 1475 break; 1476 } 1477 case TargetOpcode::G_UNMERGE_VALUES: { 1478 unsigned NumDsts = MI->getNumOperands() - 1; 1479 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1480 for (unsigned i = 1; i < NumDsts; ++i) { 1481 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1482 report("G_UNMERGE_VALUES destination types do not match", MI); 1483 break; 1484 } 1485 } 1486 1487 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1488 if (DstTy.isVector()) { 1489 // This case is the converse of G_CONCAT_VECTORS. 1490 if (!SrcTy.isVector() || 1491 (SrcTy.getScalarType() != DstTy.getScalarType() && 1492 !SrcTy.isPointerVector()) || 1493 SrcTy.isScalableVector() != DstTy.isScalableVector() || 1494 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1495 report("G_UNMERGE_VALUES source operand does not match vector " 1496 "destination operands", 1497 MI); 1498 } else if (SrcTy.isVector()) { 1499 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1500 // mismatched types as long as the total size matches: 1501 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1502 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1503 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1504 "destination operands", 1505 MI); 1506 } else { 1507 // This case is the converse of G_MERGE_VALUES. 1508 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1509 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1510 "destination operands", 1511 MI); 1512 } 1513 } 1514 break; 1515 } 1516 case TargetOpcode::G_BUILD_VECTOR: { 1517 // Source types must be scalars, dest type a vector. Total size of scalars 1518 // must match the dest vector size. 1519 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1520 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1521 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1522 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1523 break; 1524 } 1525 1526 if (DstTy.getElementType() != SrcEltTy) 1527 report("G_BUILD_VECTOR result element type must match source type", MI); 1528 1529 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1530 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1531 1532 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1533 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1534 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1535 1536 break; 1537 } 1538 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1539 // Source types must be scalars, dest type a vector. Scalar types must be 1540 // larger than the dest vector elt type, as this is a truncating operation. 1541 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1542 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1543 if (!DstTy.isVector() || SrcEltTy.isVector()) 1544 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1545 MI); 1546 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1547 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1548 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1549 MI); 1550 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1551 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1552 "dest elt type", 1553 MI); 1554 break; 1555 } 1556 case TargetOpcode::G_CONCAT_VECTORS: { 1557 // Source types should be vectors, and total size should match the dest 1558 // vector size. 1559 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1560 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1561 if (!DstTy.isVector() || !SrcTy.isVector()) 1562 report("G_CONCAT_VECTOR requires vector source and destination operands", 1563 MI); 1564 1565 if (MI->getNumOperands() < 3) 1566 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1567 1568 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1569 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1570 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1571 if (DstTy.getElementCount() != 1572 SrcTy.getElementCount() * (MI->getNumOperands() - 1)) 1573 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1574 break; 1575 } 1576 case TargetOpcode::G_ICMP: 1577 case TargetOpcode::G_FCMP: { 1578 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1579 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1580 1581 if ((DstTy.isVector() != SrcTy.isVector()) || 1582 (DstTy.isVector() && 1583 DstTy.getElementCount() != SrcTy.getElementCount())) 1584 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1585 1586 break; 1587 } 1588 case TargetOpcode::G_SCMP: 1589 case TargetOpcode::G_UCMP: { 1590 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1591 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1592 LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg()); 1593 1594 if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { 1595 report("Generic scmp/ucmp does not support pointers as operands", MI); 1596 break; 1597 } 1598 1599 if (DstTy.isPointerOrPointerVector()) { 1600 report("Generic scmp/ucmp does not support pointers as a result", MI); 1601 break; 1602 } 1603 1604 if ((DstTy.isVector() != SrcTy.isVector()) || 1605 (DstTy.isVector() && 1606 DstTy.getElementCount() != SrcTy.getElementCount())) { 1607 report("Generic vector scmp/ucmp must preserve number of lanes", MI); 1608 break; 1609 } 1610 1611 if (SrcTy != SrcTy2) { 1612 report("Generic scmp/ucmp must have same input types", MI); 1613 break; 1614 } 1615 1616 break; 1617 } 1618 case TargetOpcode::G_EXTRACT: { 1619 const MachineOperand &SrcOp = MI->getOperand(1); 1620 if (!SrcOp.isReg()) { 1621 report("extract source must be a register", MI); 1622 break; 1623 } 1624 1625 const MachineOperand &OffsetOp = MI->getOperand(2); 1626 if (!OffsetOp.isImm()) { 1627 report("extract offset must be a constant", MI); 1628 break; 1629 } 1630 1631 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1632 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1633 if (SrcSize == DstSize) 1634 report("extract source must be larger than result", MI); 1635 1636 if (DstSize + OffsetOp.getImm() > SrcSize) 1637 report("extract reads past end of register", MI); 1638 break; 1639 } 1640 case TargetOpcode::G_INSERT: { 1641 const MachineOperand &SrcOp = MI->getOperand(2); 1642 if (!SrcOp.isReg()) { 1643 report("insert source must be a register", MI); 1644 break; 1645 } 1646 1647 const MachineOperand &OffsetOp = MI->getOperand(3); 1648 if (!OffsetOp.isImm()) { 1649 report("insert offset must be a constant", MI); 1650 break; 1651 } 1652 1653 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1654 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1655 1656 if (DstSize <= SrcSize) 1657 report("inserted size must be smaller than total register", MI); 1658 1659 if (SrcSize + OffsetOp.getImm() > DstSize) 1660 report("insert writes past end of register", MI); 1661 1662 break; 1663 } 1664 case TargetOpcode::G_JUMP_TABLE: { 1665 if (!MI->getOperand(1).isJTI()) 1666 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1667 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1668 if (!DstTy.isPointer()) 1669 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1670 break; 1671 } 1672 case TargetOpcode::G_BRJT: { 1673 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1674 report("G_BRJT src operand 0 must be a pointer type", MI); 1675 1676 if (!MI->getOperand(1).isJTI()) 1677 report("G_BRJT src operand 1 must be a jump table index", MI); 1678 1679 const auto &IdxOp = MI->getOperand(2); 1680 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1681 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1682 break; 1683 } 1684 case TargetOpcode::G_INTRINSIC: 1685 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: 1686 case TargetOpcode::G_INTRINSIC_CONVERGENT: 1687 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { 1688 // TODO: Should verify number of def and use operands, but the current 1689 // interface requires passing in IR types for mangling. 1690 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1691 if (!IntrIDOp.isIntrinsicID()) { 1692 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1693 break; 1694 } 1695 1696 if (!verifyGIntrinsicSideEffects(MI)) 1697 break; 1698 if (!verifyGIntrinsicConvergence(MI)) 1699 break; 1700 1701 break; 1702 } 1703 case TargetOpcode::G_SEXT_INREG: { 1704 if (!MI->getOperand(2).isImm()) { 1705 report("G_SEXT_INREG expects an immediate operand #2", MI); 1706 break; 1707 } 1708 1709 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1710 int64_t Imm = MI->getOperand(2).getImm(); 1711 if (Imm <= 0) 1712 report("G_SEXT_INREG size must be >= 1", MI); 1713 if (Imm >= SrcTy.getScalarSizeInBits()) 1714 report("G_SEXT_INREG size must be less than source bit width", MI); 1715 break; 1716 } 1717 case TargetOpcode::G_BSWAP: { 1718 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1719 if (DstTy.getScalarSizeInBits() % 16 != 0) 1720 report("G_BSWAP size must be a multiple of 16 bits", MI); 1721 break; 1722 } 1723 case TargetOpcode::G_VSCALE: { 1724 if (!MI->getOperand(1).isCImm()) { 1725 report("G_VSCALE operand must be cimm", MI); 1726 break; 1727 } 1728 if (MI->getOperand(1).getCImm()->isZero()) { 1729 report("G_VSCALE immediate cannot be zero", MI); 1730 break; 1731 } 1732 break; 1733 } 1734 case TargetOpcode::G_INSERT_SUBVECTOR: { 1735 const MachineOperand &Src0Op = MI->getOperand(1); 1736 if (!Src0Op.isReg()) { 1737 report("G_INSERT_SUBVECTOR first source must be a register", MI); 1738 break; 1739 } 1740 1741 const MachineOperand &Src1Op = MI->getOperand(2); 1742 if (!Src1Op.isReg()) { 1743 report("G_INSERT_SUBVECTOR second source must be a register", MI); 1744 break; 1745 } 1746 1747 const MachineOperand &IndexOp = MI->getOperand(3); 1748 if (!IndexOp.isImm()) { 1749 report("G_INSERT_SUBVECTOR index must be an immediate", MI); 1750 break; 1751 } 1752 1753 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1754 LLT Src1Ty = MRI->getType(Src1Op.getReg()); 1755 1756 if (!DstTy.isVector()) { 1757 report("Destination type must be a vector", MI); 1758 break; 1759 } 1760 1761 if (!Src1Ty.isVector()) { 1762 report("Second source must be a vector", MI); 1763 break; 1764 } 1765 1766 if (DstTy.getElementType() != Src1Ty.getElementType()) { 1767 report("Element type of vectors must be the same", MI); 1768 break; 1769 } 1770 1771 if (Src1Ty.isScalable() != DstTy.isScalable()) { 1772 report("Vector types must both be fixed or both be scalable", MI); 1773 break; 1774 } 1775 1776 if (ElementCount::isKnownGT(Src1Ty.getElementCount(), 1777 DstTy.getElementCount())) { 1778 report("Second source must be smaller than destination vector", MI); 1779 break; 1780 } 1781 1782 uint64_t Idx = IndexOp.getImm(); 1783 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); 1784 if (IndexOp.getImm() % Src1MinLen != 0) { 1785 report("Index must be a multiple of the second source vector's " 1786 "minimum vector length", 1787 MI); 1788 break; 1789 } 1790 1791 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1792 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { 1793 report("Subvector type and index must not cause insert to overrun the " 1794 "vector being inserted into", 1795 MI); 1796 break; 1797 } 1798 1799 break; 1800 } 1801 case TargetOpcode::G_EXTRACT_SUBVECTOR: { 1802 const MachineOperand &SrcOp = MI->getOperand(1); 1803 if (!SrcOp.isReg()) { 1804 report("G_EXTRACT_SUBVECTOR first source must be a register", MI); 1805 break; 1806 } 1807 1808 const MachineOperand &IndexOp = MI->getOperand(2); 1809 if (!IndexOp.isImm()) { 1810 report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); 1811 break; 1812 } 1813 1814 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1815 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1816 1817 if (!DstTy.isVector()) { 1818 report("Destination type must be a vector", MI); 1819 break; 1820 } 1821 1822 if (!SrcTy.isVector()) { 1823 report("Source must be a vector", MI); 1824 break; 1825 } 1826 1827 if (DstTy.getElementType() != SrcTy.getElementType()) { 1828 report("Element type of vectors must be the same", MI); 1829 break; 1830 } 1831 1832 if (SrcTy.isScalable() != DstTy.isScalable()) { 1833 report("Vector types must both be fixed or both be scalable", MI); 1834 break; 1835 } 1836 1837 if (ElementCount::isKnownGT(DstTy.getElementCount(), 1838 SrcTy.getElementCount())) { 1839 report("Destination vector must be smaller than source vector", MI); 1840 break; 1841 } 1842 1843 uint64_t Idx = IndexOp.getImm(); 1844 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1845 if (Idx % DstMinLen != 0) { 1846 report("Index must be a multiple of the destination vector's minimum " 1847 "vector length", 1848 MI); 1849 break; 1850 } 1851 1852 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); 1853 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { 1854 report("Destination type and index must not cause extract to overrun the " 1855 "source vector", 1856 MI); 1857 break; 1858 } 1859 1860 break; 1861 } 1862 case TargetOpcode::G_SHUFFLE_VECTOR: { 1863 const MachineOperand &MaskOp = MI->getOperand(3); 1864 if (!MaskOp.isShuffleMask()) { 1865 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1866 break; 1867 } 1868 1869 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1870 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1871 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1872 1873 if (Src0Ty != Src1Ty) 1874 report("Source operands must be the same type", MI); 1875 1876 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1877 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1878 1879 // Don't check that all operands are vector because scalars are used in 1880 // place of 1 element vectors. 1881 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1882 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1883 1884 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1885 1886 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1887 report("Wrong result type for shufflemask", MI); 1888 1889 for (int Idx : MaskIdxes) { 1890 if (Idx < 0) 1891 continue; 1892 1893 if (Idx >= 2 * SrcNumElts) 1894 report("Out of bounds shuffle index", MI); 1895 } 1896 1897 break; 1898 } 1899 1900 case TargetOpcode::G_SPLAT_VECTOR: { 1901 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1902 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1903 1904 if (!DstTy.isScalableVector()) { 1905 report("Destination type must be a scalable vector", MI); 1906 break; 1907 } 1908 1909 if (!SrcTy.isScalar() && !SrcTy.isPointer()) { 1910 report("Source type must be a scalar or pointer", MI); 1911 break; 1912 } 1913 1914 if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), 1915 SrcTy.getSizeInBits())) { 1916 report("Element type of the destination must be the same size or smaller " 1917 "than the source type", 1918 MI); 1919 break; 1920 } 1921 1922 break; 1923 } 1924 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1925 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1926 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1927 LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); 1928 1929 if (!DstTy.isScalar() && !DstTy.isPointer()) { 1930 report("Destination type must be a scalar or pointer", MI); 1931 break; 1932 } 1933 1934 if (!SrcTy.isVector()) { 1935 report("First source must be a vector", MI); 1936 break; 1937 } 1938 1939 auto TLI = MF->getSubtarget().getTargetLowering(); 1940 if (IdxTy.getSizeInBits() != 1941 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1942 report("Index type must match VectorIdxTy", MI); 1943 break; 1944 } 1945 1946 break; 1947 } 1948 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1949 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1950 LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); 1951 LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); 1952 LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); 1953 1954 if (!DstTy.isVector()) { 1955 report("Destination type must be a vector", MI); 1956 break; 1957 } 1958 1959 if (VecTy != DstTy) { 1960 report("Destination type and vector type must match", MI); 1961 break; 1962 } 1963 1964 if (!ScaTy.isScalar() && !ScaTy.isPointer()) { 1965 report("Inserted element must be a scalar or pointer", MI); 1966 break; 1967 } 1968 1969 auto TLI = MF->getSubtarget().getTargetLowering(); 1970 if (IdxTy.getSizeInBits() != 1971 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1972 report("Index type must match VectorIdxTy", MI); 1973 break; 1974 } 1975 1976 break; 1977 } 1978 case TargetOpcode::G_DYN_STACKALLOC: { 1979 const MachineOperand &DstOp = MI->getOperand(0); 1980 const MachineOperand &AllocOp = MI->getOperand(1); 1981 const MachineOperand &AlignOp = MI->getOperand(2); 1982 1983 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1984 report("dst operand 0 must be a pointer type", MI); 1985 break; 1986 } 1987 1988 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1989 report("src operand 1 must be a scalar reg type", MI); 1990 break; 1991 } 1992 1993 if (!AlignOp.isImm()) { 1994 report("src operand 2 must be an immediate type", MI); 1995 break; 1996 } 1997 break; 1998 } 1999 case TargetOpcode::G_MEMCPY_INLINE: 2000 case TargetOpcode::G_MEMCPY: 2001 case TargetOpcode::G_MEMMOVE: { 2002 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2003 if (MMOs.size() != 2) { 2004 report("memcpy/memmove must have 2 memory operands", MI); 2005 break; 2006 } 2007 2008 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 2009 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 2010 report("wrong memory operand types", MI); 2011 break; 2012 } 2013 2014 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 2015 report("inconsistent memory operand sizes", MI); 2016 2017 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2018 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 2019 2020 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 2021 report("memory instruction operand must be a pointer", MI); 2022 break; 2023 } 2024 2025 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2026 report("inconsistent store address space", MI); 2027 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 2028 report("inconsistent load address space", MI); 2029 2030 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 2031 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 2032 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 2033 2034 break; 2035 } 2036 case TargetOpcode::G_BZERO: 2037 case TargetOpcode::G_MEMSET: { 2038 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2039 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 2040 if (MMOs.size() != 1) { 2041 report(Twine(Name, " must have 1 memory operand"), MI); 2042 break; 2043 } 2044 2045 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 2046 report(Twine(Name, " memory operand must be a store"), MI); 2047 break; 2048 } 2049 2050 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2051 if (!DstPtrTy.isPointer()) { 2052 report(Twine(Name, " operand must be a pointer"), MI); 2053 break; 2054 } 2055 2056 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2057 report("inconsistent " + Twine(Name, " address space"), MI); 2058 2059 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 2060 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 2061 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 2062 2063 break; 2064 } 2065 case TargetOpcode::G_UBSANTRAP: { 2066 const MachineOperand &KindOp = MI->getOperand(0); 2067 if (!MI->getOperand(0).isImm()) { 2068 report("Crash kind must be an immediate", &KindOp, 0); 2069 break; 2070 } 2071 int64_t Kind = MI->getOperand(0).getImm(); 2072 if (!isInt<8>(Kind)) 2073 report("Crash kind must be 8 bit wide", &KindOp, 0); 2074 break; 2075 } 2076 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 2077 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 2078 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2079 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2080 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2081 if (!DstTy.isScalar()) 2082 report("Vector reduction requires a scalar destination type", MI); 2083 if (!Src1Ty.isScalar()) 2084 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 2085 if (!Src2Ty.isVector()) 2086 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 2087 break; 2088 } 2089 case TargetOpcode::G_VECREDUCE_FADD: 2090 case TargetOpcode::G_VECREDUCE_FMUL: 2091 case TargetOpcode::G_VECREDUCE_FMAX: 2092 case TargetOpcode::G_VECREDUCE_FMIN: 2093 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 2094 case TargetOpcode::G_VECREDUCE_FMINIMUM: 2095 case TargetOpcode::G_VECREDUCE_ADD: 2096 case TargetOpcode::G_VECREDUCE_MUL: 2097 case TargetOpcode::G_VECREDUCE_AND: 2098 case TargetOpcode::G_VECREDUCE_OR: 2099 case TargetOpcode::G_VECREDUCE_XOR: 2100 case TargetOpcode::G_VECREDUCE_SMAX: 2101 case TargetOpcode::G_VECREDUCE_SMIN: 2102 case TargetOpcode::G_VECREDUCE_UMAX: 2103 case TargetOpcode::G_VECREDUCE_UMIN: { 2104 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2105 if (!DstTy.isScalar()) 2106 report("Vector reduction requires a scalar destination type", MI); 2107 break; 2108 } 2109 2110 case TargetOpcode::G_SBFX: 2111 case TargetOpcode::G_UBFX: { 2112 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2113 if (DstTy.isVector()) { 2114 report("Bitfield extraction is not supported on vectors", MI); 2115 break; 2116 } 2117 break; 2118 } 2119 case TargetOpcode::G_SHL: 2120 case TargetOpcode::G_LSHR: 2121 case TargetOpcode::G_ASHR: 2122 case TargetOpcode::G_ROTR: 2123 case TargetOpcode::G_ROTL: { 2124 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2125 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2126 if (Src1Ty.isVector() != Src2Ty.isVector()) { 2127 report("Shifts and rotates require operands to be either all scalars or " 2128 "all vectors", 2129 MI); 2130 break; 2131 } 2132 break; 2133 } 2134 case TargetOpcode::G_LLROUND: 2135 case TargetOpcode::G_LROUND: { 2136 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2137 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2138 if (!DstTy.isValid() || !SrcTy.isValid()) 2139 break; 2140 if (SrcTy.isPointer() || DstTy.isPointer()) { 2141 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination"; 2142 report(Twine(Op, " operand must not be a pointer type"), MI); 2143 } else if (SrcTy.isScalar()) { 2144 verifyAllRegOpsScalar(*MI, *MRI); 2145 break; 2146 } else if (SrcTy.isVector()) { 2147 verifyVectorElementMatch(SrcTy, DstTy, MI); 2148 break; 2149 } 2150 break; 2151 } 2152 case TargetOpcode::G_IS_FPCLASS: { 2153 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 2154 LLT DestEltTy = DestTy.getScalarType(); 2155 if (!DestEltTy.isScalar()) { 2156 report("Destination must be a scalar or vector of scalars", MI); 2157 break; 2158 } 2159 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2160 LLT SrcEltTy = SrcTy.getScalarType(); 2161 if (!SrcEltTy.isScalar()) { 2162 report("Source must be a scalar or vector of scalars", MI); 2163 break; 2164 } 2165 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 2166 break; 2167 const MachineOperand &TestMO = MI->getOperand(2); 2168 if (!TestMO.isImm()) { 2169 report("floating-point class set (operand 2) must be an immediate", MI); 2170 break; 2171 } 2172 int64_t Test = TestMO.getImm(); 2173 if (Test < 0 || Test > fcAllFlags) { 2174 report("Incorrect floating-point class set (operand 2)", MI); 2175 break; 2176 } 2177 break; 2178 } 2179 case TargetOpcode::G_PREFETCH: { 2180 const MachineOperand &AddrOp = MI->getOperand(0); 2181 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { 2182 report("addr operand must be a pointer", &AddrOp, 0); 2183 break; 2184 } 2185 const MachineOperand &RWOp = MI->getOperand(1); 2186 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { 2187 report("rw operand must be an immediate 0-1", &RWOp, 1); 2188 break; 2189 } 2190 const MachineOperand &LocalityOp = MI->getOperand(2); 2191 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { 2192 report("locality operand must be an immediate 0-3", &LocalityOp, 2); 2193 break; 2194 } 2195 const MachineOperand &CacheTypeOp = MI->getOperand(3); 2196 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { 2197 report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); 2198 break; 2199 } 2200 break; 2201 } 2202 case TargetOpcode::G_ASSERT_ALIGN: { 2203 if (MI->getOperand(2).getImm() < 1) 2204 report("alignment immediate must be >= 1", MI); 2205 break; 2206 } 2207 case TargetOpcode::G_CONSTANT_POOL: { 2208 if (!MI->getOperand(1).isCPI()) 2209 report("Src operand 1 must be a constant pool index", MI); 2210 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 2211 report("Dst operand 0 must be a pointer", MI); 2212 break; 2213 } 2214 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { 2215 const MachineOperand &AddrOp = MI->getOperand(1); 2216 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) 2217 report("addr operand must be a pointer", &AddrOp, 1); 2218 break; 2219 } 2220 default: 2221 break; 2222 } 2223 } 2224 2225 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 2226 const MCInstrDesc &MCID = MI->getDesc(); 2227 if (MI->getNumOperands() < MCID.getNumOperands()) { 2228 report("Too few operands", MI); 2229 OS << MCID.getNumOperands() << " operands expected, but " 2230 << MI->getNumOperands() << " given.\n"; 2231 } 2232 2233 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) 2234 report("NoConvergent flag expected only on convergent instructions.", MI); 2235 2236 if (MI->isPHI()) { 2237 if (MF->getProperties().hasProperty( 2238 MachineFunctionProperties::Property::NoPHIs)) 2239 report("Found PHI instruction with NoPHIs property set", MI); 2240 2241 if (FirstNonPHI) 2242 report("Found PHI instruction after non-PHI", MI); 2243 } else if (FirstNonPHI == nullptr) 2244 FirstNonPHI = MI; 2245 2246 // Check the tied operands. 2247 if (MI->isInlineAsm()) 2248 verifyInlineAsm(MI); 2249 2250 // Check that unspillable terminators define a reg and have at most one use. 2251 if (TII->isUnspillableTerminator(MI)) { 2252 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 2253 report("Unspillable Terminator does not define a reg", MI); 2254 Register Def = MI->getOperand(0).getReg(); 2255 if (Def.isVirtual() && 2256 !MF->getProperties().hasProperty( 2257 MachineFunctionProperties::Property::NoPHIs) && 2258 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 2259 report("Unspillable Terminator expected to have at most one use!", MI); 2260 } 2261 2262 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 2263 // DBG_VALUEs: these are convenient to use in tests, but should never get 2264 // generated. 2265 if (MI->isDebugValue() && MI->getNumOperands() == 4) 2266 if (!MI->getDebugLoc()) 2267 report("Missing DebugLoc for debug instruction", MI); 2268 2269 // Meta instructions should never be the subject of debug value tracking, 2270 // they don't create a value in the output program at all. 2271 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 2272 report("Metadata instruction should not have a value tracking number", MI); 2273 2274 // Check the MachineMemOperands for basic consistency. 2275 for (MachineMemOperand *Op : MI->memoperands()) { 2276 if (Op->isLoad() && !MI->mayLoad()) 2277 report("Missing mayLoad flag", MI); 2278 if (Op->isStore() && !MI->mayStore()) 2279 report("Missing mayStore flag", MI); 2280 } 2281 2282 // Debug values must not have a slot index. 2283 // Other instructions must have one, unless they are inside a bundle. 2284 if (LiveInts) { 2285 bool mapped = !LiveInts->isNotInMIMap(*MI); 2286 if (MI->isDebugOrPseudoInstr()) { 2287 if (mapped) 2288 report("Debug instruction has a slot index", MI); 2289 } else if (MI->isInsideBundle()) { 2290 if (mapped) 2291 report("Instruction inside bundle has a slot index", MI); 2292 } else { 2293 if (!mapped) 2294 report("Missing slot index", MI); 2295 } 2296 } 2297 2298 unsigned Opc = MCID.getOpcode(); 2299 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 2300 verifyPreISelGenericInstruction(MI); 2301 return; 2302 } 2303 2304 StringRef ErrorInfo; 2305 if (!TII->verifyInstruction(*MI, ErrorInfo)) 2306 report(ErrorInfo.data(), MI); 2307 2308 // Verify properties of various specific instruction types 2309 switch (MI->getOpcode()) { 2310 case TargetOpcode::COPY: { 2311 const MachineOperand &DstOp = MI->getOperand(0); 2312 const MachineOperand &SrcOp = MI->getOperand(1); 2313 const Register SrcReg = SrcOp.getReg(); 2314 const Register DstReg = DstOp.getReg(); 2315 2316 LLT DstTy = MRI->getType(DstReg); 2317 LLT SrcTy = MRI->getType(SrcReg); 2318 if (SrcTy.isValid() && DstTy.isValid()) { 2319 // If both types are valid, check that the types are the same. 2320 if (SrcTy != DstTy) { 2321 report("Copy Instruction is illegal with mismatching types", MI); 2322 OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; 2323 } 2324 2325 break; 2326 } 2327 2328 if (!SrcTy.isValid() && !DstTy.isValid()) 2329 break; 2330 2331 // If we have only one valid type, this is likely a copy between a virtual 2332 // and physical register. 2333 TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 2334 TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 2335 if (SrcReg.isPhysical() && DstTy.isValid()) { 2336 const TargetRegisterClass *SrcRC = 2337 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 2338 if (SrcRC) 2339 SrcSize = TRI->getRegSizeInBits(*SrcRC); 2340 } 2341 2342 if (DstReg.isPhysical() && SrcTy.isValid()) { 2343 const TargetRegisterClass *DstRC = 2344 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 2345 if (DstRC) 2346 DstSize = TRI->getRegSizeInBits(*DstRC); 2347 } 2348 2349 // The next two checks allow COPY between physical and virtual registers, 2350 // when the virtual register has a scalable size and the physical register 2351 // has a fixed size. These checks allow COPY between *potentialy* mismatched 2352 // sizes. However, once RegisterBankSelection occurs, MachineVerifier should 2353 // be able to resolve a fixed size for the scalable vector, and at that 2354 // point this function will know for sure whether the sizes are mismatched 2355 // and correctly report a size mismatch. 2356 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && 2357 !SrcSize.isScalable()) 2358 break; 2359 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && 2360 !DstSize.isScalable()) 2361 break; 2362 2363 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { 2364 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 2365 report("Copy Instruction is illegal with mismatching sizes", MI); 2366 OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; 2367 } 2368 } 2369 break; 2370 } 2371 case TargetOpcode::STATEPOINT: { 2372 StatepointOpers SO(MI); 2373 if (!MI->getOperand(SO.getIDPos()).isImm() || 2374 !MI->getOperand(SO.getNBytesPos()).isImm() || 2375 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 2376 report("meta operands to STATEPOINT not constant!", MI); 2377 break; 2378 } 2379 2380 auto VerifyStackMapConstant = [&](unsigned Offset) { 2381 if (Offset >= MI->getNumOperands()) { 2382 report("stack map constant to STATEPOINT is out of range!", MI); 2383 return; 2384 } 2385 if (!MI->getOperand(Offset - 1).isImm() || 2386 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 2387 !MI->getOperand(Offset).isImm()) 2388 report("stack map constant to STATEPOINT not well formed!", MI); 2389 }; 2390 VerifyStackMapConstant(SO.getCCIdx()); 2391 VerifyStackMapConstant(SO.getFlagsIdx()); 2392 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 2393 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 2394 VerifyStackMapConstant(SO.getNumAllocaIdx()); 2395 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 2396 2397 // Verify that all explicit statepoint defs are tied to gc operands as 2398 // they are expected to be a relocation of gc operands. 2399 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 2400 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 2401 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 2402 unsigned UseOpIdx; 2403 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 2404 report("STATEPOINT defs expected to be tied", MI); 2405 break; 2406 } 2407 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 2408 report("STATEPOINT def tied to non-gc operand", MI); 2409 break; 2410 } 2411 } 2412 2413 // TODO: verify we have properly encoded deopt arguments 2414 } break; 2415 case TargetOpcode::INSERT_SUBREG: { 2416 unsigned InsertedSize; 2417 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 2418 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 2419 else 2420 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 2421 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 2422 if (SubRegSize < InsertedSize) { 2423 report("INSERT_SUBREG expected inserted value to have equal or lesser " 2424 "size than the subreg it was inserted into", MI); 2425 break; 2426 } 2427 } break; 2428 case TargetOpcode::REG_SEQUENCE: { 2429 unsigned NumOps = MI->getNumOperands(); 2430 if (!(NumOps & 1)) { 2431 report("Invalid number of operands for REG_SEQUENCE", MI); 2432 break; 2433 } 2434 2435 for (unsigned I = 1; I != NumOps; I += 2) { 2436 const MachineOperand &RegOp = MI->getOperand(I); 2437 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 2438 2439 if (!RegOp.isReg()) 2440 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 2441 2442 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 2443 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 2444 report("Invalid subregister index operand for REG_SEQUENCE", 2445 &SubRegOp, I + 1); 2446 } 2447 } 2448 2449 Register DstReg = MI->getOperand(0).getReg(); 2450 if (DstReg.isPhysical()) 2451 report("REG_SEQUENCE does not support physical register results", MI); 2452 2453 if (MI->getOperand(0).getSubReg()) 2454 report("Invalid subreg result for REG_SEQUENCE", MI); 2455 2456 break; 2457 } 2458 } 2459 } 2460 2461 void 2462 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 2463 const MachineInstr *MI = MO->getParent(); 2464 const MCInstrDesc &MCID = MI->getDesc(); 2465 unsigned NumDefs = MCID.getNumDefs(); 2466 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 2467 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 2468 2469 // The first MCID.NumDefs operands must be explicit register defines 2470 if (MONum < NumDefs) { 2471 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2472 if (!MO->isReg()) 2473 report("Explicit definition must be a register", MO, MONum); 2474 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2475 report("Explicit definition marked as use", MO, MONum); 2476 else if (MO->isImplicit()) 2477 report("Explicit definition marked as implicit", MO, MONum); 2478 } else if (MONum < MCID.getNumOperands()) { 2479 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2480 // Don't check if it's the last operand in a variadic instruction. See, 2481 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2482 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2483 if (!IsOptional) { 2484 if (MO->isReg()) { 2485 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2486 report("Explicit operand marked as def", MO, MONum); 2487 if (MO->isImplicit()) 2488 report("Explicit operand marked as implicit", MO, MONum); 2489 } 2490 2491 // Check that an instruction has register operands only as expected. 2492 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2493 !MO->isReg() && !MO->isFI()) 2494 report("Expected a register operand.", MO, MONum); 2495 if (MO->isReg()) { 2496 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2497 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2498 !TII->isPCRelRegisterOperandLegal(*MO))) 2499 report("Expected a non-register operand.", MO, MONum); 2500 } 2501 } 2502 2503 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2504 if (TiedTo != -1) { 2505 if (!MO->isReg()) 2506 report("Tied use must be a register", MO, MONum); 2507 else if (!MO->isTied()) 2508 report("Operand should be tied", MO, MONum); 2509 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2510 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2511 else if (MO->getReg().isPhysical()) { 2512 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2513 if (!MOTied.isReg()) 2514 report("Tied counterpart must be a register", &MOTied, TiedTo); 2515 else if (MOTied.getReg().isPhysical() && 2516 MO->getReg() != MOTied.getReg()) 2517 report("Tied physical registers must match.", &MOTied, TiedTo); 2518 } 2519 } else if (MO->isReg() && MO->isTied()) 2520 report("Explicit operand should not be tied", MO, MONum); 2521 } else if (!MI->isVariadic()) { 2522 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2523 if (!MO->isValidExcessOperand()) 2524 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2525 } 2526 2527 switch (MO->getType()) { 2528 case MachineOperand::MO_Register: { 2529 // Verify debug flag on debug instructions. Check this first because reg0 2530 // indicates an undefined debug value. 2531 if (MI->isDebugInstr() && MO->isUse()) { 2532 if (!MO->isDebug()) 2533 report("Register operand must be marked debug", MO, MONum); 2534 } else if (MO->isDebug()) { 2535 report("Register operand must not be marked debug", MO, MONum); 2536 } 2537 2538 const Register Reg = MO->getReg(); 2539 if (!Reg) 2540 return; 2541 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2542 checkLiveness(MO, MONum); 2543 2544 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2545 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2546 report("Undef virtual register def operands require a subregister", MO, MONum); 2547 2548 // Verify the consistency of tied operands. 2549 if (MO->isTied()) { 2550 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2551 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2552 if (!OtherMO.isReg()) 2553 report("Must be tied to a register", MO, MONum); 2554 if (!OtherMO.isTied()) 2555 report("Missing tie flags on tied operand", MO, MONum); 2556 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2557 report("Inconsistent tie links", MO, MONum); 2558 if (MONum < MCID.getNumDefs()) { 2559 if (OtherIdx < MCID.getNumOperands()) { 2560 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2561 report("Explicit def tied to explicit use without tie constraint", 2562 MO, MONum); 2563 } else { 2564 if (!OtherMO.isImplicit()) 2565 report("Explicit def should be tied to implicit use", MO, MONum); 2566 } 2567 } 2568 } 2569 2570 // Verify two-address constraints after the twoaddressinstruction pass. 2571 // Both twoaddressinstruction pass and phi-node-elimination pass call 2572 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification 2573 // after twoaddressinstruction pass not after phi-node-elimination pass. So 2574 // we shouldn't use the IsSSA as the condition, we should based on 2575 // TiedOpsRewritten property to verify two-address constraints, this 2576 // property will be set in twoaddressinstruction pass. 2577 unsigned DefIdx; 2578 if (MF->getProperties().hasProperty( 2579 MachineFunctionProperties::Property::TiedOpsRewritten) && 2580 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2581 Reg != MI->getOperand(DefIdx).getReg()) 2582 report("Two-address instruction operands must be identical", MO, MONum); 2583 2584 // Check register classes. 2585 unsigned SubIdx = MO->getSubReg(); 2586 2587 if (Reg.isPhysical()) { 2588 if (SubIdx) { 2589 report("Illegal subregister index for physical register", MO, MONum); 2590 return; 2591 } 2592 if (MONum < MCID.getNumOperands()) { 2593 if (const TargetRegisterClass *DRC = 2594 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2595 if (!DRC->contains(Reg)) { 2596 report("Illegal physical register for instruction", MO, MONum); 2597 OS << printReg(Reg, TRI) << " is not a " 2598 << TRI->getRegClassName(DRC) << " register.\n"; 2599 } 2600 } 2601 } 2602 if (MO->isRenamable()) { 2603 if (MRI->isReserved(Reg)) { 2604 report("isRenamable set on reserved register", MO, MONum); 2605 return; 2606 } 2607 } 2608 } else { 2609 // Virtual register. 2610 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2611 if (!RC) { 2612 // This is a generic virtual register. 2613 2614 // Do not allow undef uses for generic virtual registers. This ensures 2615 // getVRegDef can never fail and return null on a generic register. 2616 // 2617 // FIXME: This restriction should probably be broadened to all SSA 2618 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2619 // run on the SSA function just before phi elimination. 2620 if (MO->isUndef()) 2621 report("Generic virtual register use cannot be undef", MO, MONum); 2622 2623 // Debug value instruction is permitted to use undefined vregs. 2624 // This is a performance measure to skip the overhead of immediately 2625 // pruning unused debug operands. The final undef substitution occurs 2626 // when debug values are allocated in LDVImpl::handleDebugValue, so 2627 // these verifications always apply after this pass. 2628 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2629 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2630 // If we're post-Select, we can't have gvregs anymore. 2631 if (isFunctionSelected) { 2632 report("Generic virtual register invalid in a Selected function", 2633 MO, MONum); 2634 return; 2635 } 2636 2637 // The gvreg must have a type and it must not have a SubIdx. 2638 LLT Ty = MRI->getType(Reg); 2639 if (!Ty.isValid()) { 2640 report("Generic virtual register must have a valid type", MO, 2641 MONum); 2642 return; 2643 } 2644 2645 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2646 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2647 2648 // If we're post-RegBankSelect, the gvreg must have a bank. 2649 if (!RegBank && isFunctionRegBankSelected) { 2650 report("Generic virtual register must have a bank in a " 2651 "RegBankSelected function", 2652 MO, MONum); 2653 return; 2654 } 2655 2656 // Make sure the register fits into its register bank if any. 2657 if (RegBank && Ty.isValid() && !Ty.isScalableVector() && 2658 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2659 report("Register bank is too small for virtual register", MO, 2660 MONum); 2661 OS << "Register bank " << RegBank->getName() << " too small(" 2662 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2663 << Ty.getSizeInBits() << "-bits\n"; 2664 return; 2665 } 2666 } 2667 2668 if (SubIdx) { 2669 report("Generic virtual register does not allow subregister index", MO, 2670 MONum); 2671 return; 2672 } 2673 2674 // If this is a target specific instruction and this operand 2675 // has register class constraint, the virtual register must 2676 // comply to it. 2677 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2678 MONum < MCID.getNumOperands() && 2679 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2680 report("Virtual register does not match instruction constraint", MO, 2681 MONum); 2682 OS << "Expect register class " 2683 << TRI->getRegClassName(TII->getRegClass(MCID, MONum, TRI, *MF)) 2684 << " but got nothing\n"; 2685 return; 2686 } 2687 2688 break; 2689 } 2690 if (SubIdx) { 2691 const TargetRegisterClass *SRC = 2692 TRI->getSubClassWithSubReg(RC, SubIdx); 2693 if (!SRC) { 2694 report("Invalid subregister index for virtual register", MO, MONum); 2695 OS << "Register class " << TRI->getRegClassName(RC) 2696 << " does not support subreg index " << SubIdx << '\n'; 2697 return; 2698 } 2699 if (RC != SRC) { 2700 report("Invalid register class for subregister index", MO, MONum); 2701 OS << "Register class " << TRI->getRegClassName(RC) 2702 << " does not fully support subreg index " << SubIdx << '\n'; 2703 return; 2704 } 2705 } 2706 if (MONum < MCID.getNumOperands()) { 2707 if (const TargetRegisterClass *DRC = 2708 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2709 if (SubIdx) { 2710 const TargetRegisterClass *SuperRC = 2711 TRI->getLargestLegalSuperClass(RC, *MF); 2712 if (!SuperRC) { 2713 report("No largest legal super class exists.", MO, MONum); 2714 return; 2715 } 2716 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2717 if (!DRC) { 2718 report("No matching super-reg register class.", MO, MONum); 2719 return; 2720 } 2721 } 2722 if (!RC->hasSuperClassEq(DRC)) { 2723 report("Illegal virtual register for instruction", MO, MONum); 2724 OS << "Expected a " << TRI->getRegClassName(DRC) 2725 << " register, but got a " << TRI->getRegClassName(RC) 2726 << " register\n"; 2727 } 2728 } 2729 } 2730 } 2731 break; 2732 } 2733 2734 case MachineOperand::MO_RegisterMask: 2735 regMasks.push_back(MO->getRegMask()); 2736 break; 2737 2738 case MachineOperand::MO_MachineBasicBlock: 2739 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2740 report("PHI operand is not in the CFG", MO, MONum); 2741 break; 2742 2743 case MachineOperand::MO_FrameIndex: 2744 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2745 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2746 int FI = MO->getIndex(); 2747 LiveInterval &LI = LiveStks->getInterval(FI); 2748 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2749 2750 bool stores = MI->mayStore(); 2751 bool loads = MI->mayLoad(); 2752 // For a memory-to-memory move, we need to check if the frame 2753 // index is used for storing or loading, by inspecting the 2754 // memory operands. 2755 if (stores && loads) { 2756 for (auto *MMO : MI->memoperands()) { 2757 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2758 if (PSV == nullptr) continue; 2759 const FixedStackPseudoSourceValue *Value = 2760 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2761 if (Value == nullptr) continue; 2762 if (Value->getFrameIndex() != FI) continue; 2763 2764 if (MMO->isStore()) 2765 loads = false; 2766 else 2767 stores = false; 2768 break; 2769 } 2770 if (loads == stores) 2771 report("Missing fixed stack memoperand.", MI); 2772 } 2773 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2774 report("Instruction loads from dead spill slot", MO, MONum); 2775 OS << "Live stack: " << LI << '\n'; 2776 } 2777 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2778 report("Instruction stores to dead spill slot", MO, MONum); 2779 OS << "Live stack: " << LI << '\n'; 2780 } 2781 } 2782 break; 2783 2784 case MachineOperand::MO_CFIIndex: 2785 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2786 report("CFI instruction has invalid index", MO, MONum); 2787 break; 2788 2789 default: 2790 break; 2791 } 2792 } 2793 2794 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2795 unsigned MONum, SlotIndex UseIdx, 2796 const LiveRange &LR, 2797 Register VRegOrUnit, 2798 LaneBitmask LaneMask) { 2799 const MachineInstr *MI = MO->getParent(); 2800 2801 if (!LR.verify()) { 2802 report("invalid live range", MO, MONum); 2803 report_context_liverange(LR); 2804 report_context_vreg_regunit(VRegOrUnit); 2805 report_context(UseIdx); 2806 return; 2807 } 2808 2809 LiveQueryResult LRQ = LR.Query(UseIdx); 2810 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); 2811 // Check if we have a segment at the use, note however that we only need one 2812 // live subregister range, the others may be dead. 2813 if (!HasValue && LaneMask.none()) { 2814 report("No live segment at use", MO, MONum); 2815 report_context_liverange(LR); 2816 report_context_vreg_regunit(VRegOrUnit); 2817 report_context(UseIdx); 2818 } 2819 if (MO->isKill() && !LRQ.isKill()) { 2820 report("Live range continues after kill flag", MO, MONum); 2821 report_context_liverange(LR); 2822 report_context_vreg_regunit(VRegOrUnit); 2823 if (LaneMask.any()) 2824 report_context_lanemask(LaneMask); 2825 report_context(UseIdx); 2826 } 2827 } 2828 2829 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2830 unsigned MONum, SlotIndex DefIdx, 2831 const LiveRange &LR, 2832 Register VRegOrUnit, 2833 bool SubRangeCheck, 2834 LaneBitmask LaneMask) { 2835 if (!LR.verify()) { 2836 report("invalid live range", MO, MONum); 2837 report_context_liverange(LR); 2838 report_context_vreg_regunit(VRegOrUnit); 2839 if (LaneMask.any()) 2840 report_context_lanemask(LaneMask); 2841 report_context(DefIdx); 2842 } 2843 2844 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2845 // The LR can correspond to the whole reg and its def slot is not obliged 2846 // to be the same as the MO' def slot. E.g. when we check here "normal" 2847 // subreg MO but there is other EC subreg MO in the same instruction so the 2848 // whole reg has EC def slot and differs from the currently checked MO' def 2849 // slot. For example: 2850 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2851 // Check that there is an early-clobber def of the same superregister 2852 // somewhere is performed in visitMachineFunctionAfter() 2853 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2854 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2855 (VNI->def != DefIdx && 2856 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2857 report("Inconsistent valno->def", MO, MONum); 2858 report_context_liverange(LR); 2859 report_context_vreg_regunit(VRegOrUnit); 2860 if (LaneMask.any()) 2861 report_context_lanemask(LaneMask); 2862 report_context(*VNI); 2863 report_context(DefIdx); 2864 } 2865 } else { 2866 report("No live segment at def", MO, MONum); 2867 report_context_liverange(LR); 2868 report_context_vreg_regunit(VRegOrUnit); 2869 if (LaneMask.any()) 2870 report_context_lanemask(LaneMask); 2871 report_context(DefIdx); 2872 } 2873 // Check that, if the dead def flag is present, LiveInts agree. 2874 if (MO->isDead()) { 2875 LiveQueryResult LRQ = LR.Query(DefIdx); 2876 if (!LRQ.isDeadDef()) { 2877 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2878 // A dead subreg def only tells us that the specific subreg is dead. There 2879 // could be other non-dead defs of other subregs, or we could have other 2880 // parts of the register being live through the instruction. So unless we 2881 // are checking liveness for a subrange it is ok for the live range to 2882 // continue, given that we have a dead def of a subregister. 2883 if (SubRangeCheck || MO->getSubReg() == 0) { 2884 report("Live range continues after dead def flag", MO, MONum); 2885 report_context_liverange(LR); 2886 report_context_vreg_regunit(VRegOrUnit); 2887 if (LaneMask.any()) 2888 report_context_lanemask(LaneMask); 2889 } 2890 } 2891 } 2892 } 2893 2894 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2895 const MachineInstr *MI = MO->getParent(); 2896 const Register Reg = MO->getReg(); 2897 const unsigned SubRegIdx = MO->getSubReg(); 2898 2899 const LiveInterval *LI = nullptr; 2900 if (LiveInts && Reg.isVirtual()) { 2901 if (LiveInts->hasInterval(Reg)) { 2902 LI = &LiveInts->getInterval(Reg); 2903 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2904 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2905 report("Live interval for subreg operand has no subranges", MO, MONum); 2906 } else { 2907 report("Virtual register has no live interval", MO, MONum); 2908 } 2909 } 2910 2911 // Both use and def operands can read a register. 2912 if (MO->readsReg()) { 2913 if (MO->isKill()) 2914 addRegWithSubRegs(regsKilled, Reg); 2915 2916 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2917 // which case we have already checked that LiveVars knows any kills on the 2918 // bundle header instead). 2919 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2920 !MI->isBundledWithPred()) { 2921 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2922 if (!is_contained(VI.Kills, MI)) 2923 report("Kill missing from LiveVariables", MO, MONum); 2924 } 2925 2926 // Check LiveInts liveness and kill. 2927 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2928 SlotIndex UseIdx; 2929 if (MI->isPHI()) { 2930 // PHI use occurs on the edge, so check for live out here instead. 2931 UseIdx = LiveInts->getMBBEndIdx( 2932 MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); 2933 } else { 2934 UseIdx = LiveInts->getInstructionIndex(*MI); 2935 } 2936 // Check the cached regunit intervals. 2937 if (Reg.isPhysical() && !isReserved(Reg)) { 2938 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2939 if (MRI->isReservedRegUnit(Unit)) 2940 continue; 2941 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2942 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); 2943 } 2944 } 2945 2946 if (Reg.isVirtual()) { 2947 // This is a virtual register interval. 2948 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2949 2950 if (LI->hasSubRanges() && !MO->isDef()) { 2951 LaneBitmask MOMask = SubRegIdx != 0 2952 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2953 : MRI->getMaxLaneMaskForVReg(Reg); 2954 LaneBitmask LiveInMask; 2955 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2956 if ((MOMask & SR.LaneMask).none()) 2957 continue; 2958 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2959 LiveQueryResult LRQ = SR.Query(UseIdx); 2960 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) 2961 LiveInMask |= SR.LaneMask; 2962 } 2963 // At least parts of the register has to be live at the use. 2964 if ((LiveInMask & MOMask).none()) { 2965 report("No live subrange at use", MO, MONum); 2966 report_context(*LI); 2967 report_context(UseIdx); 2968 } 2969 // For PHIs all lanes should be live 2970 if (MI->isPHI() && LiveInMask != MOMask) { 2971 report("Not all lanes of PHI source live at use", MO, MONum); 2972 report_context(*LI); 2973 report_context(UseIdx); 2974 } 2975 } 2976 } 2977 } 2978 2979 // Use of a dead register. 2980 if (!regsLive.count(Reg)) { 2981 if (Reg.isPhysical()) { 2982 // Reserved registers may be used even when 'dead'. 2983 bool Bad = !isReserved(Reg); 2984 // We are fine if just any subregister has a defined value. 2985 if (Bad) { 2986 2987 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2988 if (regsLive.count(SubReg)) { 2989 Bad = false; 2990 break; 2991 } 2992 } 2993 } 2994 // If there is an additional implicit-use of a super register we stop 2995 // here. By definition we are fine if the super register is not 2996 // (completely) dead, if the complete super register is dead we will 2997 // get a report for its operand. 2998 if (Bad) { 2999 for (const MachineOperand &MOP : MI->uses()) { 3000 if (!MOP.isReg() || !MOP.isImplicit()) 3001 continue; 3002 3003 if (!MOP.getReg().isPhysical()) 3004 continue; 3005 3006 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 3007 Bad = false; 3008 } 3009 } 3010 if (Bad) 3011 report("Using an undefined physical register", MO, MONum); 3012 } else if (MRI->def_empty(Reg)) { 3013 report("Reading virtual register without a def", MO, MONum); 3014 } else { 3015 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3016 // We don't know which virtual registers are live in, so only complain 3017 // if vreg was killed in this MBB. Otherwise keep track of vregs that 3018 // must be live in. PHI instructions are handled separately. 3019 if (MInfo.regsKilled.count(Reg)) 3020 report("Using a killed virtual register", MO, MONum); 3021 else if (!MI->isPHI()) 3022 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 3023 } 3024 } 3025 } 3026 3027 if (MO->isDef()) { 3028 // Register defined. 3029 // TODO: verify that earlyclobber ops are not used. 3030 if (MO->isDead()) 3031 addRegWithSubRegs(regsDead, Reg); 3032 else 3033 addRegWithSubRegs(regsDefined, Reg); 3034 3035 // Verify SSA form. 3036 if (MRI->isSSA() && Reg.isVirtual() && 3037 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 3038 report("Multiple virtual register defs in SSA form", MO, MONum); 3039 3040 // Check LiveInts for a live segment, but only for virtual registers. 3041 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 3042 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 3043 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 3044 3045 if (Reg.isVirtual()) { 3046 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 3047 3048 if (LI->hasSubRanges()) { 3049 LaneBitmask MOMask = SubRegIdx != 0 3050 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 3051 : MRI->getMaxLaneMaskForVReg(Reg); 3052 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3053 if ((SR.LaneMask & MOMask).none()) 3054 continue; 3055 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 3056 } 3057 } 3058 } 3059 } 3060 } 3061 } 3062 3063 // This function gets called after visiting all instructions in a bundle. The 3064 // argument points to the bundle header. 3065 // Normal stand-alone instructions are also considered 'bundles', and this 3066 // function is called for all of them. 3067 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 3068 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3069 set_union(MInfo.regsKilled, regsKilled); 3070 set_subtract(regsLive, regsKilled); regsKilled.clear(); 3071 // Kill any masked registers. 3072 while (!regMasks.empty()) { 3073 const uint32_t *Mask = regMasks.pop_back_val(); 3074 for (Register Reg : regsLive) 3075 if (Reg.isPhysical() && 3076 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 3077 regsDead.push_back(Reg); 3078 } 3079 set_subtract(regsLive, regsDead); regsDead.clear(); 3080 set_union(regsLive, regsDefined); regsDefined.clear(); 3081 } 3082 3083 void 3084 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 3085 MBBInfoMap[MBB].regsLiveOut = regsLive; 3086 regsLive.clear(); 3087 3088 if (Indexes) { 3089 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 3090 if (!(stop > lastIndex)) { 3091 report("Block ends before last instruction index", MBB); 3092 OS << "Block ends at " << stop << " last instruction was at " << lastIndex 3093 << '\n'; 3094 } 3095 lastIndex = stop; 3096 } 3097 } 3098 3099 namespace { 3100 // This implements a set of registers that serves as a filter: can filter other 3101 // sets by passing through elements not in the filter and blocking those that 3102 // are. Any filter implicitly includes the full set of physical registers upon 3103 // creation, thus filtering them all out. The filter itself as a set only grows, 3104 // and needs to be as efficient as possible. 3105 struct VRegFilter { 3106 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 3107 // no duplicates. Both virtual and physical registers are fine. 3108 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 3109 SmallVector<Register, 0> VRegsBuffer; 3110 filterAndAdd(FromRegSet, VRegsBuffer); 3111 } 3112 // Filter \p FromRegSet through the filter and append passed elements into \p 3113 // ToVRegs. All elements appended are then added to the filter itself. 3114 // \returns true if anything changed. 3115 template <typename RegSetT> 3116 bool filterAndAdd(const RegSetT &FromRegSet, 3117 SmallVectorImpl<Register> &ToVRegs) { 3118 unsigned SparseUniverse = Sparse.size(); 3119 unsigned NewSparseUniverse = SparseUniverse; 3120 unsigned NewDenseSize = Dense.size(); 3121 size_t Begin = ToVRegs.size(); 3122 for (Register Reg : FromRegSet) { 3123 if (!Reg.isVirtual()) 3124 continue; 3125 unsigned Index = Register::virtReg2Index(Reg); 3126 if (Index < SparseUniverseMax) { 3127 if (Index < SparseUniverse && Sparse.test(Index)) 3128 continue; 3129 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 3130 } else { 3131 if (Dense.count(Reg)) 3132 continue; 3133 ++NewDenseSize; 3134 } 3135 ToVRegs.push_back(Reg); 3136 } 3137 size_t End = ToVRegs.size(); 3138 if (Begin == End) 3139 return false; 3140 // Reserving space in sets once performs better than doing so continuously 3141 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 3142 // tuned all the way down) and double iteration (the second one is over a 3143 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 3144 Sparse.resize(NewSparseUniverse); 3145 Dense.reserve(NewDenseSize); 3146 for (unsigned I = Begin; I < End; ++I) { 3147 Register Reg = ToVRegs[I]; 3148 unsigned Index = Register::virtReg2Index(Reg); 3149 if (Index < SparseUniverseMax) 3150 Sparse.set(Index); 3151 else 3152 Dense.insert(Reg); 3153 } 3154 return true; 3155 } 3156 3157 private: 3158 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 3159 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 3160 // are tracked by Dense. The only purpose of the threashold and the Dense set 3161 // is to have a reasonably growing memory usage in pathological cases (large 3162 // number of very sparse VRegFilter instances live at the same time). In 3163 // practice even in the worst-by-execution time cases having all elements 3164 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 3165 // space efficient than if tracked by Dense. The threashold is set to keep the 3166 // worst-case memory usage within 2x of figures determined empirically for 3167 // "all Dense" scenario in such worst-by-execution-time cases. 3168 BitVector Sparse; 3169 DenseSet<unsigned> Dense; 3170 }; 3171 3172 // Implements both a transfer function and a (binary, in-place) join operator 3173 // for a dataflow over register sets with set union join and filtering transfer 3174 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 3175 // Maintains out_b as its state, allowing for O(n) iteration over it at any 3176 // time, where n is the size of the set (as opposed to O(U) where U is the 3177 // universe). filter_b implicitly contains all physical registers at all times. 3178 class FilteringVRegSet { 3179 VRegFilter Filter; 3180 SmallVector<Register, 0> VRegs; 3181 3182 public: 3183 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 3184 // Both virtual and physical registers are fine. 3185 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 3186 Filter.add(RS); 3187 } 3188 // Passes \p RS through the filter_b (transfer function) and adds what's left 3189 // to itself (out_b). 3190 template <typename RegSetT> bool add(const RegSetT &RS) { 3191 // Double-duty the Filter: to maintain VRegs a set (and the join operation 3192 // a set union) just add everything being added here to the Filter as well. 3193 return Filter.filterAndAdd(RS, VRegs); 3194 } 3195 using const_iterator = decltype(VRegs)::const_iterator; 3196 const_iterator begin() const { return VRegs.begin(); } 3197 const_iterator end() const { return VRegs.end(); } 3198 size_t size() const { return VRegs.size(); } 3199 }; 3200 } // namespace 3201 3202 // Calculate the largest possible vregsPassed sets. These are the registers that 3203 // can pass through an MBB live, but may not be live every time. It is assumed 3204 // that all vregsPassed sets are empty before the call. 3205 void MachineVerifier::calcRegsPassed() { 3206 if (MF->empty()) 3207 // ReversePostOrderTraversal doesn't handle empty functions. 3208 return; 3209 3210 for (const MachineBasicBlock *MB : 3211 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 3212 FilteringVRegSet VRegs; 3213 BBInfo &Info = MBBInfoMap[MB]; 3214 assert(Info.reachable); 3215 3216 VRegs.addToFilter(Info.regsKilled); 3217 VRegs.addToFilter(Info.regsLiveOut); 3218 for (const MachineBasicBlock *Pred : MB->predecessors()) { 3219 const BBInfo &PredInfo = MBBInfoMap[Pred]; 3220 if (!PredInfo.reachable) 3221 continue; 3222 3223 VRegs.add(PredInfo.regsLiveOut); 3224 VRegs.add(PredInfo.vregsPassed); 3225 } 3226 Info.vregsPassed.reserve(VRegs.size()); 3227 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 3228 } 3229 } 3230 3231 // Calculate the set of virtual registers that must be passed through each basic 3232 // block in order to satisfy the requirements of successor blocks. This is very 3233 // similar to calcRegsPassed, only backwards. 3234 void MachineVerifier::calcRegsRequired() { 3235 // First push live-in regs to predecessors' vregsRequired. 3236 SmallPtrSet<const MachineBasicBlock*, 8> todo; 3237 for (const auto &MBB : *MF) { 3238 BBInfo &MInfo = MBBInfoMap[&MBB]; 3239 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3240 BBInfo &PInfo = MBBInfoMap[Pred]; 3241 if (PInfo.addRequired(MInfo.vregsLiveIn)) 3242 todo.insert(Pred); 3243 } 3244 3245 // Handle the PHI node. 3246 for (const MachineInstr &MI : MBB.phis()) { 3247 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 3248 // Skip those Operands which are undef regs or not regs. 3249 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 3250 continue; 3251 3252 // Get register and predecessor for one PHI edge. 3253 Register Reg = MI.getOperand(i).getReg(); 3254 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 3255 3256 BBInfo &PInfo = MBBInfoMap[Pred]; 3257 if (PInfo.addRequired(Reg)) 3258 todo.insert(Pred); 3259 } 3260 } 3261 } 3262 3263 // Iteratively push vregsRequired to predecessors. This will converge to the 3264 // same final state regardless of DenseSet iteration order. 3265 while (!todo.empty()) { 3266 const MachineBasicBlock *MBB = *todo.begin(); 3267 todo.erase(MBB); 3268 BBInfo &MInfo = MBBInfoMap[MBB]; 3269 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3270 if (Pred == MBB) 3271 continue; 3272 BBInfo &SInfo = MBBInfoMap[Pred]; 3273 if (SInfo.addRequired(MInfo.vregsRequired)) 3274 todo.insert(Pred); 3275 } 3276 } 3277 } 3278 3279 // Check PHI instructions at the beginning of MBB. It is assumed that 3280 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 3281 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 3282 BBInfo &MInfo = MBBInfoMap[&MBB]; 3283 3284 SmallPtrSet<const MachineBasicBlock*, 8> seen; 3285 for (const MachineInstr &Phi : MBB) { 3286 if (!Phi.isPHI()) 3287 break; 3288 seen.clear(); 3289 3290 const MachineOperand &MODef = Phi.getOperand(0); 3291 if (!MODef.isReg() || !MODef.isDef()) { 3292 report("Expected first PHI operand to be a register def", &MODef, 0); 3293 continue; 3294 } 3295 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 3296 MODef.isEarlyClobber() || MODef.isDebug()) 3297 report("Unexpected flag on PHI operand", &MODef, 0); 3298 Register DefReg = MODef.getReg(); 3299 if (!DefReg.isVirtual()) 3300 report("Expected first PHI operand to be a virtual register", &MODef, 0); 3301 3302 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 3303 const MachineOperand &MO0 = Phi.getOperand(I); 3304 if (!MO0.isReg()) { 3305 report("Expected PHI operand to be a register", &MO0, I); 3306 continue; 3307 } 3308 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 3309 MO0.isDebug() || MO0.isTied()) 3310 report("Unexpected flag on PHI operand", &MO0, I); 3311 3312 const MachineOperand &MO1 = Phi.getOperand(I + 1); 3313 if (!MO1.isMBB()) { 3314 report("Expected PHI operand to be a basic block", &MO1, I + 1); 3315 continue; 3316 } 3317 3318 const MachineBasicBlock &Pre = *MO1.getMBB(); 3319 if (!Pre.isSuccessor(&MBB)) { 3320 report("PHI input is not a predecessor block", &MO1, I + 1); 3321 continue; 3322 } 3323 3324 if (MInfo.reachable) { 3325 seen.insert(&Pre); 3326 BBInfo &PrInfo = MBBInfoMap[&Pre]; 3327 if (!MO0.isUndef() && PrInfo.reachable && 3328 !PrInfo.isLiveOut(MO0.getReg())) 3329 report("PHI operand is not live-out from predecessor", &MO0, I); 3330 } 3331 } 3332 3333 // Did we see all predecessors? 3334 if (MInfo.reachable) { 3335 for (MachineBasicBlock *Pred : MBB.predecessors()) { 3336 if (!seen.count(Pred)) { 3337 report("Missing PHI operand", &Phi); 3338 OS << printMBBReference(*Pred) 3339 << " is a predecessor according to the CFG.\n"; 3340 } 3341 } 3342 } 3343 } 3344 } 3345 3346 static void 3347 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, 3348 std::function<void(const Twine &Message)> FailureCB, 3349 raw_ostream &OS) { 3350 MachineConvergenceVerifier CV; 3351 CV.initialize(&OS, FailureCB, MF); 3352 3353 for (const auto &MBB : MF) { 3354 CV.visit(MBB); 3355 for (const auto &MI : MBB.instrs()) 3356 CV.visit(MI); 3357 } 3358 3359 if (CV.sawTokens()) { 3360 DT.recalculate(const_cast<MachineFunction &>(MF)); 3361 CV.verify(DT); 3362 } 3363 } 3364 3365 void MachineVerifier::visitMachineFunctionAfter() { 3366 auto FailureCB = [this](const Twine &Message) { 3367 report(Message.str().c_str(), MF); 3368 }; 3369 verifyConvergenceControl(*MF, DT, FailureCB, OS); 3370 3371 calcRegsPassed(); 3372 3373 for (const MachineBasicBlock &MBB : *MF) 3374 checkPHIOps(MBB); 3375 3376 // Now check liveness info if available 3377 calcRegsRequired(); 3378 3379 // Check for killed virtual registers that should be live out. 3380 for (const auto &MBB : *MF) { 3381 BBInfo &MInfo = MBBInfoMap[&MBB]; 3382 for (Register VReg : MInfo.vregsRequired) 3383 if (MInfo.regsKilled.count(VReg)) { 3384 report("Virtual register killed in block, but needed live out.", &MBB); 3385 OS << "Virtual register " << printReg(VReg) 3386 << " is used after the block.\n"; 3387 } 3388 } 3389 3390 if (!MF->empty()) { 3391 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 3392 for (Register VReg : MInfo.vregsRequired) { 3393 report("Virtual register defs don't dominate all uses.", MF); 3394 report_context_vreg(VReg); 3395 } 3396 } 3397 3398 if (LiveVars) 3399 verifyLiveVariables(); 3400 if (LiveInts) 3401 verifyLiveIntervals(); 3402 3403 // Check live-in list of each MBB. If a register is live into MBB, check 3404 // that the register is in regsLiveOut of each predecessor block. Since 3405 // this must come from a definition in the predecesssor or its live-in 3406 // list, this will catch a live-through case where the predecessor does not 3407 // have the register in its live-in list. This currently only checks 3408 // registers that have no aliases, are not allocatable and are not 3409 // reserved, which could mean a condition code register for instance. 3410 if (MRI->tracksLiveness()) 3411 for (const auto &MBB : *MF) 3412 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 3413 MCPhysReg LiveInReg = P.PhysReg; 3414 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 3415 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 3416 continue; 3417 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3418 BBInfo &PInfo = MBBInfoMap[Pred]; 3419 if (!PInfo.regsLiveOut.count(LiveInReg)) { 3420 report("Live in register not found to be live out from predecessor.", 3421 &MBB); 3422 OS << TRI->getName(LiveInReg) << " not found to be live out from " 3423 << printMBBReference(*Pred) << '\n'; 3424 } 3425 } 3426 } 3427 3428 for (auto CSInfo : MF->getCallSitesInfo()) 3429 if (!CSInfo.first->isCall()) 3430 report("Call site info referencing instruction that is not call", MF); 3431 3432 // If there's debug-info, check that we don't have any duplicate value 3433 // tracking numbers. 3434 if (MF->getFunction().getSubprogram()) { 3435 DenseSet<unsigned> SeenNumbers; 3436 for (const auto &MBB : *MF) { 3437 for (const auto &MI : MBB) { 3438 if (auto Num = MI.peekDebugInstrNum()) { 3439 auto Result = SeenNumbers.insert((unsigned)Num); 3440 if (!Result.second) 3441 report("Instruction has a duplicated value tracking number", &MI); 3442 } 3443 } 3444 } 3445 } 3446 } 3447 3448 void MachineVerifier::verifyLiveVariables() { 3449 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 3450 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3451 Register Reg = Register::index2VirtReg(I); 3452 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 3453 for (const auto &MBB : *MF) { 3454 BBInfo &MInfo = MBBInfoMap[&MBB]; 3455 3456 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 3457 if (MInfo.vregsRequired.count(Reg)) { 3458 if (!VI.AliveBlocks.test(MBB.getNumber())) { 3459 report("LiveVariables: Block missing from AliveBlocks", &MBB); 3460 OS << "Virtual register " << printReg(Reg) 3461 << " must be live through the block.\n"; 3462 } 3463 } else { 3464 if (VI.AliveBlocks.test(MBB.getNumber())) { 3465 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 3466 OS << "Virtual register " << printReg(Reg) 3467 << " is not needed live through the block.\n"; 3468 } 3469 } 3470 } 3471 } 3472 } 3473 3474 void MachineVerifier::verifyLiveIntervals() { 3475 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 3476 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3477 Register Reg = Register::index2VirtReg(I); 3478 3479 // Spilling and splitting may leave unused registers around. Skip them. 3480 if (MRI->reg_nodbg_empty(Reg)) 3481 continue; 3482 3483 if (!LiveInts->hasInterval(Reg)) { 3484 report("Missing live interval for virtual register", MF); 3485 OS << printReg(Reg, TRI) << " still has defs or uses\n"; 3486 continue; 3487 } 3488 3489 const LiveInterval &LI = LiveInts->getInterval(Reg); 3490 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 3491 verifyLiveInterval(LI); 3492 } 3493 3494 // Verify all the cached regunit intervals. 3495 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 3496 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 3497 verifyLiveRange(*LR, i); 3498 } 3499 3500 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 3501 const VNInfo *VNI, Register Reg, 3502 LaneBitmask LaneMask) { 3503 if (VNI->isUnused()) 3504 return; 3505 3506 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 3507 3508 if (!DefVNI) { 3509 report("Value not live at VNInfo def and not marked unused", MF); 3510 report_context(LR, Reg, LaneMask); 3511 report_context(*VNI); 3512 return; 3513 } 3514 3515 if (DefVNI != VNI) { 3516 report("Live segment at def has different VNInfo", MF); 3517 report_context(LR, Reg, LaneMask); 3518 report_context(*VNI); 3519 return; 3520 } 3521 3522 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 3523 if (!MBB) { 3524 report("Invalid VNInfo definition index", MF); 3525 report_context(LR, Reg, LaneMask); 3526 report_context(*VNI); 3527 return; 3528 } 3529 3530 if (VNI->isPHIDef()) { 3531 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3532 report("PHIDef VNInfo is not defined at MBB start", MBB); 3533 report_context(LR, Reg, LaneMask); 3534 report_context(*VNI); 3535 } 3536 return; 3537 } 3538 3539 // Non-PHI def. 3540 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3541 if (!MI) { 3542 report("No instruction at VNInfo def index", MBB); 3543 report_context(LR, Reg, LaneMask); 3544 report_context(*VNI); 3545 return; 3546 } 3547 3548 if (Reg != 0) { 3549 bool hasDef = false; 3550 bool isEarlyClobber = false; 3551 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3552 if (!MOI->isReg() || !MOI->isDef()) 3553 continue; 3554 if (Reg.isVirtual()) { 3555 if (MOI->getReg() != Reg) 3556 continue; 3557 } else { 3558 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3559 continue; 3560 } 3561 if (LaneMask.any() && 3562 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3563 continue; 3564 hasDef = true; 3565 if (MOI->isEarlyClobber()) 3566 isEarlyClobber = true; 3567 } 3568 3569 if (!hasDef) { 3570 report("Defining instruction does not modify register", MI); 3571 report_context(LR, Reg, LaneMask); 3572 report_context(*VNI); 3573 } 3574 3575 // Early clobber defs begin at USE slots, but other defs must begin at 3576 // DEF slots. 3577 if (isEarlyClobber) { 3578 if (!VNI->def.isEarlyClobber()) { 3579 report("Early clobber def must be at an early-clobber slot", MBB); 3580 report_context(LR, Reg, LaneMask); 3581 report_context(*VNI); 3582 } 3583 } else if (!VNI->def.isRegister()) { 3584 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3585 report_context(LR, Reg, LaneMask); 3586 report_context(*VNI); 3587 } 3588 } 3589 } 3590 3591 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3592 const LiveRange::const_iterator I, 3593 Register Reg, 3594 LaneBitmask LaneMask) { 3595 const LiveRange::Segment &S = *I; 3596 const VNInfo *VNI = S.valno; 3597 assert(VNI && "Live segment has no valno"); 3598 3599 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3600 report("Foreign valno in live segment", MF); 3601 report_context(LR, Reg, LaneMask); 3602 report_context(S); 3603 report_context(*VNI); 3604 } 3605 3606 if (VNI->isUnused()) { 3607 report("Live segment valno is marked unused", MF); 3608 report_context(LR, Reg, LaneMask); 3609 report_context(S); 3610 } 3611 3612 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3613 if (!MBB) { 3614 report("Bad start of live segment, no basic block", MF); 3615 report_context(LR, Reg, LaneMask); 3616 report_context(S); 3617 return; 3618 } 3619 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3620 if (S.start != MBBStartIdx && S.start != VNI->def) { 3621 report("Live segment must begin at MBB entry or valno def", MBB); 3622 report_context(LR, Reg, LaneMask); 3623 report_context(S); 3624 } 3625 3626 const MachineBasicBlock *EndMBB = 3627 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3628 if (!EndMBB) { 3629 report("Bad end of live segment, no basic block", MF); 3630 report_context(LR, Reg, LaneMask); 3631 report_context(S); 3632 return; 3633 } 3634 3635 // Checks for non-live-out segments. 3636 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3637 // RegUnit intervals are allowed dead phis. 3638 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3639 S.end == VNI->def.getDeadSlot()) 3640 return; 3641 3642 // The live segment is ending inside EndMBB 3643 const MachineInstr *MI = 3644 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3645 if (!MI) { 3646 report("Live segment doesn't end at a valid instruction", EndMBB); 3647 report_context(LR, Reg, LaneMask); 3648 report_context(S); 3649 return; 3650 } 3651 3652 // The block slot must refer to a basic block boundary. 3653 if (S.end.isBlock()) { 3654 report("Live segment ends at B slot of an instruction", EndMBB); 3655 report_context(LR, Reg, LaneMask); 3656 report_context(S); 3657 } 3658 3659 if (S.end.isDead()) { 3660 // Segment ends on the dead slot. 3661 // That means there must be a dead def. 3662 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3663 report("Live segment ending at dead slot spans instructions", EndMBB); 3664 report_context(LR, Reg, LaneMask); 3665 report_context(S); 3666 } 3667 } 3668 3669 // After tied operands are rewritten, a live segment can only end at an 3670 // early-clobber slot if it is being redefined by an early-clobber def. 3671 // TODO: Before tied operands are rewritten, a live segment can only end at 3672 // an early-clobber slot if the last use is tied to an early-clobber def. 3673 if (MF->getProperties().hasProperty( 3674 MachineFunctionProperties::Property::TiedOpsRewritten) && 3675 S.end.isEarlyClobber()) { 3676 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3677 report("Live segment ending at early clobber slot must be " 3678 "redefined by an EC def in the same instruction", 3679 EndMBB); 3680 report_context(LR, Reg, LaneMask); 3681 report_context(S); 3682 } 3683 } 3684 3685 // The following checks only apply to virtual registers. Physreg liveness 3686 // is too weird to check. 3687 if (Reg.isVirtual()) { 3688 // A live segment can end with either a redefinition, a kill flag on a 3689 // use, or a dead flag on a def. 3690 bool hasRead = false; 3691 bool hasSubRegDef = false; 3692 bool hasDeadDef = false; 3693 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3694 if (!MOI->isReg() || MOI->getReg() != Reg) 3695 continue; 3696 unsigned Sub = MOI->getSubReg(); 3697 LaneBitmask SLM = 3698 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3699 if (MOI->isDef()) { 3700 if (Sub != 0) { 3701 hasSubRegDef = true; 3702 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3703 // mask for subregister defs. Read-undef defs will be handled by 3704 // readsReg below. 3705 SLM = ~SLM; 3706 } 3707 if (MOI->isDead()) 3708 hasDeadDef = true; 3709 } 3710 if (LaneMask.any() && (LaneMask & SLM).none()) 3711 continue; 3712 if (MOI->readsReg()) 3713 hasRead = true; 3714 } 3715 if (S.end.isDead()) { 3716 // Make sure that the corresponding machine operand for a "dead" live 3717 // range has the dead flag. We cannot perform this check for subregister 3718 // liveranges as partially dead values are allowed. 3719 if (LaneMask.none() && !hasDeadDef) { 3720 report( 3721 "Instruction ending live segment on dead slot has no dead flag", 3722 MI); 3723 report_context(LR, Reg, LaneMask); 3724 report_context(S); 3725 } 3726 } else { 3727 if (!hasRead) { 3728 // When tracking subregister liveness, the main range must start new 3729 // values on partial register writes, even if there is no read. 3730 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3731 !hasSubRegDef) { 3732 report("Instruction ending live segment doesn't read the register", 3733 MI); 3734 report_context(LR, Reg, LaneMask); 3735 report_context(S); 3736 } 3737 } 3738 } 3739 } 3740 } 3741 3742 // Now check all the basic blocks in this live segment. 3743 MachineFunction::const_iterator MFI = MBB->getIterator(); 3744 // Is this live segment the beginning of a non-PHIDef VN? 3745 if (S.start == VNI->def && !VNI->isPHIDef()) { 3746 // Not live-in to any blocks. 3747 if (MBB == EndMBB) 3748 return; 3749 // Skip this block. 3750 ++MFI; 3751 } 3752 3753 SmallVector<SlotIndex, 4> Undefs; 3754 if (LaneMask.any()) { 3755 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3756 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3757 } 3758 3759 while (true) { 3760 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3761 // We don't know how to track physregs into a landing pad. 3762 if (!Reg.isVirtual() && MFI->isEHPad()) { 3763 if (&*MFI == EndMBB) 3764 break; 3765 ++MFI; 3766 continue; 3767 } 3768 3769 // Is VNI a PHI-def in the current block? 3770 bool IsPHI = VNI->isPHIDef() && 3771 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3772 3773 // Check that VNI is live-out of all predecessors. 3774 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3775 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3776 // Predecessor of landing pad live-out on last call. 3777 if (MFI->isEHPad()) { 3778 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3779 if (MI.isCall()) { 3780 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3781 break; 3782 } 3783 } 3784 } 3785 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3786 3787 // All predecessors must have a live-out value. However for a phi 3788 // instruction with subregister intervals 3789 // only one of the subregisters (not necessarily the current one) needs to 3790 // be defined. 3791 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3792 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3793 continue; 3794 report("Register not marked live out of predecessor", Pred); 3795 report_context(LR, Reg, LaneMask); 3796 report_context(*VNI); 3797 OS << " live into " << printMBBReference(*MFI) << '@' 3798 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd 3799 << '\n'; 3800 continue; 3801 } 3802 3803 // Only PHI-defs can take different predecessor values. 3804 if (!IsPHI && PVNI != VNI) { 3805 report("Different value live out of predecessor", Pred); 3806 report_context(LR, Reg, LaneMask); 3807 OS << "Valno #" << PVNI->id << " live out of " 3808 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id 3809 << " live into " << printMBBReference(*MFI) << '@' 3810 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3811 } 3812 } 3813 if (&*MFI == EndMBB) 3814 break; 3815 ++MFI; 3816 } 3817 } 3818 3819 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3820 LaneBitmask LaneMask) { 3821 for (const VNInfo *VNI : LR.valnos) 3822 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3823 3824 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3825 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3826 } 3827 3828 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3829 Register Reg = LI.reg(); 3830 assert(Reg.isVirtual()); 3831 verifyLiveRange(LI, Reg); 3832 3833 if (LI.hasSubRanges()) { 3834 LaneBitmask Mask; 3835 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3836 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3837 if ((Mask & SR.LaneMask).any()) { 3838 report("Lane masks of sub ranges overlap in live interval", MF); 3839 report_context(LI); 3840 } 3841 if ((SR.LaneMask & ~MaxMask).any()) { 3842 report("Subrange lanemask is invalid", MF); 3843 report_context(LI); 3844 } 3845 if (SR.empty()) { 3846 report("Subrange must not be empty", MF); 3847 report_context(SR, LI.reg(), SR.LaneMask); 3848 } 3849 Mask |= SR.LaneMask; 3850 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3851 if (!LI.covers(SR)) { 3852 report("A Subrange is not covered by the main range", MF); 3853 report_context(LI); 3854 } 3855 } 3856 } 3857 3858 // Check the LI only has one connected component. 3859 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3860 unsigned NumComp = ConEQ.Classify(LI); 3861 if (NumComp > 1) { 3862 report("Multiple connected components in live interval", MF); 3863 report_context(LI); 3864 for (unsigned comp = 0; comp != NumComp; ++comp) { 3865 OS << comp << ": valnos"; 3866 for (const VNInfo *I : LI.valnos) 3867 if (comp == ConEQ.getEqClass(I)) 3868 OS << ' ' << I->id; 3869 OS << '\n'; 3870 } 3871 } 3872 } 3873 3874 namespace { 3875 3876 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3877 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3878 // value is zero. 3879 // We use a bool plus an integer to capture the stack state. 3880 struct StackStateOfBB { 3881 StackStateOfBB() = default; 3882 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) 3883 : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3884 ExitIsSetup(ExitSetup) {} 3885 3886 // Can be negative, which means we are setting up a frame. 3887 int EntryValue = 0; 3888 int ExitValue = 0; 3889 bool EntryIsSetup = false; 3890 bool ExitIsSetup = false; 3891 }; 3892 3893 } // end anonymous namespace 3894 3895 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3896 /// by a FrameDestroy <n>, stack adjustments are identical on all 3897 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3898 void MachineVerifier::verifyStackFrame() { 3899 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3900 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3901 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3902 return; 3903 3904 SmallVector<StackStateOfBB, 8> SPState; 3905 SPState.resize(MF->getNumBlockIDs()); 3906 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3907 3908 // Visit the MBBs in DFS order. 3909 for (df_ext_iterator<const MachineFunction *, 3910 df_iterator_default_set<const MachineBasicBlock *>> 3911 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3912 DFI != DFE; ++DFI) { 3913 const MachineBasicBlock *MBB = *DFI; 3914 3915 StackStateOfBB BBState; 3916 // Check the exit state of the DFS stack predecessor. 3917 if (DFI.getPathLength() >= 2) { 3918 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3919 assert(Reachable.count(StackPred) && 3920 "DFS stack predecessor is already visited.\n"); 3921 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3922 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3923 BBState.ExitValue = BBState.EntryValue; 3924 BBState.ExitIsSetup = BBState.EntryIsSetup; 3925 } 3926 3927 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { 3928 report("Call frame size on entry does not match value computed from " 3929 "predecessor", 3930 MBB); 3931 OS << "Call frame size on entry " << MBB->getCallFrameSize() 3932 << " does not match value computed from predecessor " 3933 << -BBState.EntryValue << '\n'; 3934 } 3935 3936 // Update stack state by checking contents of MBB. 3937 for (const auto &I : *MBB) { 3938 if (I.getOpcode() == FrameSetupOpcode) { 3939 if (BBState.ExitIsSetup) 3940 report("FrameSetup is after another FrameSetup", &I); 3941 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3942 report("AdjustsStack not set in presence of a frame pseudo " 3943 "instruction.", &I); 3944 BBState.ExitValue -= TII->getFrameTotalSize(I); 3945 BBState.ExitIsSetup = true; 3946 } 3947 3948 if (I.getOpcode() == FrameDestroyOpcode) { 3949 int Size = TII->getFrameTotalSize(I); 3950 if (!BBState.ExitIsSetup) 3951 report("FrameDestroy is not after a FrameSetup", &I); 3952 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3953 BBState.ExitValue; 3954 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3955 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3956 OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 3957 << AbsSPAdj << ">.\n"; 3958 } 3959 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3960 report("AdjustsStack not set in presence of a frame pseudo " 3961 "instruction.", &I); 3962 BBState.ExitValue += Size; 3963 BBState.ExitIsSetup = false; 3964 } 3965 } 3966 SPState[MBB->getNumber()] = BBState; 3967 3968 // Make sure the exit state of any predecessor is consistent with the entry 3969 // state. 3970 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3971 if (Reachable.count(Pred) && 3972 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3973 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3974 report("The exit stack state of a predecessor is inconsistent.", MBB); 3975 OS << "Predecessor " << printMBBReference(*Pred) << " has exit state (" 3976 << SPState[Pred->getNumber()].ExitValue << ", " 3977 << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3978 << printMBBReference(*MBB) << " has entry state (" 3979 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3980 } 3981 } 3982 3983 // Make sure the entry state of any successor is consistent with the exit 3984 // state. 3985 for (const MachineBasicBlock *Succ : MBB->successors()) { 3986 if (Reachable.count(Succ) && 3987 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3988 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3989 report("The entry stack state of a successor is inconsistent.", MBB); 3990 OS << "Successor " << printMBBReference(*Succ) << " has entry state (" 3991 << SPState[Succ->getNumber()].EntryValue << ", " 3992 << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3993 << printMBBReference(*MBB) << " has exit state (" 3994 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3995 } 3996 } 3997 3998 // Make sure a basic block with return ends with zero stack adjustment. 3999 if (!MBB->empty() && MBB->back().isReturn()) { 4000 if (BBState.ExitIsSetup) 4001 report("A return block ends with a FrameSetup.", MBB); 4002 if (BBState.ExitValue) 4003 report("A return block ends with a nonzero stack adjustment.", MBB); 4004 } 4005 } 4006 } 4007