1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/MachineVerifier.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeCalc.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConvergenceVerifier.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/PseudoSourceValue.h" 54 #include "llvm/CodeGen/RegisterBank.h" 55 #include "llvm/CodeGen/RegisterBankInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGenTypes/LowLevelType.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/EHPersonalities.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/InlineAsm.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCAsmInfo.h" 73 #include "llvm/MC/MCDwarf.h" 74 #include "llvm/MC/MCInstrDesc.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCTargetOptions.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/ModRef.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <string> 90 #include <utility> 91 92 using namespace llvm; 93 94 namespace { 95 96 struct MachineVerifier { 97 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b) 98 : MFAM(&MFAM), Banner(b) {} 99 100 MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {} 101 102 MachineVerifier(const char *b, LiveVariables *LiveVars, 103 LiveIntervals *LiveInts, LiveStacks *LiveStks, 104 SlotIndexes *Indexes) 105 : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks), 106 Indexes(Indexes) {} 107 108 unsigned verify(const MachineFunction &MF); 109 110 MachineFunctionAnalysisManager *MFAM = nullptr; 111 Pass *const PASS = nullptr; 112 const char *Banner; 113 const MachineFunction *MF = nullptr; 114 const TargetMachine *TM = nullptr; 115 const TargetInstrInfo *TII = nullptr; 116 const TargetRegisterInfo *TRI = nullptr; 117 const MachineRegisterInfo *MRI = nullptr; 118 const RegisterBankInfo *RBI = nullptr; 119 120 unsigned foundErrors = 0; 121 122 // Avoid querying the MachineFunctionProperties for each operand. 123 bool isFunctionRegBankSelected = false; 124 bool isFunctionSelected = false; 125 bool isFunctionTracksDebugUserValues = false; 126 127 using RegVector = SmallVector<Register, 16>; 128 using RegMaskVector = SmallVector<const uint32_t *, 4>; 129 using RegSet = DenseSet<Register>; 130 using RegMap = DenseMap<Register, const MachineInstr *>; 131 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 132 133 const MachineInstr *FirstNonPHI = nullptr; 134 const MachineInstr *FirstTerminator = nullptr; 135 BlockSet FunctionBlocks; 136 137 BitVector regsReserved; 138 RegSet regsLive; 139 RegVector regsDefined, regsDead, regsKilled; 140 RegMaskVector regMasks; 141 142 SlotIndex lastIndex; 143 144 // Add Reg and any sub-registers to RV 145 void addRegWithSubRegs(RegVector &RV, Register Reg) { 146 RV.push_back(Reg); 147 if (Reg.isPhysical()) 148 append_range(RV, TRI->subregs(Reg.asMCReg())); 149 } 150 151 struct BBInfo { 152 // Is this MBB reachable from the MF entry point? 153 bool reachable = false; 154 155 // Vregs that must be live in because they are used without being 156 // defined. Map value is the user. vregsLiveIn doesn't include regs 157 // that only are used by PHI nodes. 158 RegMap vregsLiveIn; 159 160 // Regs killed in MBB. They may be defined again, and will then be in both 161 // regsKilled and regsLiveOut. 162 RegSet regsKilled; 163 164 // Regs defined in MBB and live out. Note that vregs passing through may 165 // be live out without being mentioned here. 166 RegSet regsLiveOut; 167 168 // Vregs that pass through MBB untouched. This set is disjoint from 169 // regsKilled and regsLiveOut. 170 RegSet vregsPassed; 171 172 // Vregs that must pass through MBB because they are needed by a successor 173 // block. This set is disjoint from regsLiveOut. 174 RegSet vregsRequired; 175 176 // Set versions of block's predecessor and successor lists. 177 BlockSet Preds, Succs; 178 179 BBInfo() = default; 180 181 // Add register to vregsRequired if it belongs there. Return true if 182 // anything changed. 183 bool addRequired(Register Reg) { 184 if (!Reg.isVirtual()) 185 return false; 186 if (regsLiveOut.count(Reg)) 187 return false; 188 return vregsRequired.insert(Reg).second; 189 } 190 191 // Same for a full set. 192 bool addRequired(const RegSet &RS) { 193 bool Changed = false; 194 for (Register Reg : RS) 195 Changed |= addRequired(Reg); 196 return Changed; 197 } 198 199 // Same for a full map. 200 bool addRequired(const RegMap &RM) { 201 bool Changed = false; 202 for (const auto &I : RM) 203 Changed |= addRequired(I.first); 204 return Changed; 205 } 206 207 // Live-out registers are either in regsLiveOut or vregsPassed. 208 bool isLiveOut(Register Reg) const { 209 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 210 } 211 }; 212 213 // Extra register info per MBB. 214 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 215 216 bool isReserved(Register Reg) { 217 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 218 } 219 220 bool isAllocatable(Register Reg) const { 221 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 222 !regsReserved.test(Reg.id()); 223 } 224 225 // Analysis information if available 226 LiveVariables *LiveVars = nullptr; 227 LiveIntervals *LiveInts = nullptr; 228 LiveStacks *LiveStks = nullptr; 229 SlotIndexes *Indexes = nullptr; 230 231 // This is calculated only when trying to verify convergence control tokens. 232 // Similar to the LLVM IR verifier, we calculate this locally instead of 233 // relying on the pass manager. 234 MachineDominatorTree DT; 235 236 void visitMachineFunctionBefore(); 237 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 238 void visitMachineBundleBefore(const MachineInstr *MI); 239 240 /// Verify that all of \p MI's virtual register operands are scalars. 241 /// \returns True if all virtual register operands are scalar. False 242 /// otherwise. 243 bool verifyAllRegOpsScalar(const MachineInstr &MI, 244 const MachineRegisterInfo &MRI); 245 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 246 247 bool verifyGIntrinsicSideEffects(const MachineInstr *MI); 248 bool verifyGIntrinsicConvergence(const MachineInstr *MI); 249 void verifyPreISelGenericInstruction(const MachineInstr *MI); 250 251 void visitMachineInstrBefore(const MachineInstr *MI); 252 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 253 void visitMachineBundleAfter(const MachineInstr *MI); 254 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 255 void visitMachineFunctionAfter(); 256 257 void report(const char *msg, const MachineFunction *MF); 258 void report(const char *msg, const MachineBasicBlock *MBB); 259 void report(const char *msg, const MachineInstr *MI); 260 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 261 LLT MOVRegType = LLT{}); 262 void report(const Twine &Msg, const MachineInstr *MI); 263 264 void report_context(const LiveInterval &LI) const; 265 void report_context(const LiveRange &LR, Register VRegUnit, 266 LaneBitmask LaneMask) const; 267 void report_context(const LiveRange::Segment &S) const; 268 void report_context(const VNInfo &VNI) const; 269 void report_context(SlotIndex Pos) const; 270 void report_context(MCPhysReg PhysReg) const; 271 void report_context_liverange(const LiveRange &LR) const; 272 void report_context_lanemask(LaneBitmask LaneMask) const; 273 void report_context_vreg(Register VReg) const; 274 void report_context_vreg_regunit(Register VRegOrUnit) const; 275 276 void verifyInlineAsm(const MachineInstr *MI); 277 278 void checkLiveness(const MachineOperand *MO, unsigned MONum); 279 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 280 SlotIndex UseIdx, const LiveRange &LR, 281 Register VRegOrUnit, 282 LaneBitmask LaneMask = LaneBitmask::getNone()); 283 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 284 SlotIndex DefIdx, const LiveRange &LR, 285 Register VRegOrUnit, bool SubRangeCheck = false, 286 LaneBitmask LaneMask = LaneBitmask::getNone()); 287 288 void markReachable(const MachineBasicBlock *MBB); 289 void calcRegsPassed(); 290 void checkPHIOps(const MachineBasicBlock &MBB); 291 292 void calcRegsRequired(); 293 void verifyLiveVariables(); 294 void verifyLiveIntervals(); 295 void verifyLiveInterval(const LiveInterval&); 296 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 297 LaneBitmask); 298 void verifyLiveRangeSegment(const LiveRange &, 299 const LiveRange::const_iterator I, Register, 300 LaneBitmask); 301 void verifyLiveRange(const LiveRange &, Register, 302 LaneBitmask LaneMask = LaneBitmask::getNone()); 303 304 void verifyStackFrame(); 305 306 void verifySlotIndexes() const; 307 void verifyProperties(const MachineFunction &MF); 308 }; 309 310 struct MachineVerifierLegacyPass : public MachineFunctionPass { 311 static char ID; // Pass ID, replacement for typeid 312 313 const std::string Banner; 314 315 MachineVerifierLegacyPass(std::string banner = std::string()) 316 : MachineFunctionPass(ID), Banner(std::move(banner)) { 317 initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 318 } 319 320 void getAnalysisUsage(AnalysisUsage &AU) const override { 321 AU.addUsedIfAvailable<LiveStacks>(); 322 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 323 AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); 324 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); 325 AU.setPreservesAll(); 326 MachineFunctionPass::getAnalysisUsage(AU); 327 } 328 329 bool runOnMachineFunction(MachineFunction &MF) override { 330 // Skip functions that have known verification problems. 331 // FIXME: Remove this mechanism when all problematic passes have been 332 // fixed. 333 if (MF.getProperties().hasProperty( 334 MachineFunctionProperties::Property::FailsVerification)) 335 return false; 336 337 unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF); 338 if (FoundErrors) 339 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 340 return false; 341 } 342 }; 343 344 } // end anonymous namespace 345 346 PreservedAnalyses 347 MachineVerifierPass::run(MachineFunction &MF, 348 MachineFunctionAnalysisManager &MFAM) { 349 // Skip functions that have known verification problems. 350 // FIXME: Remove this mechanism when all problematic passes have been 351 // fixed. 352 if (MF.getProperties().hasProperty( 353 MachineFunctionProperties::Property::FailsVerification)) 354 return PreservedAnalyses::all(); 355 unsigned FoundErrors = MachineVerifier(MFAM, Banner.c_str()).verify(MF); 356 if (FoundErrors) 357 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 358 return PreservedAnalyses::all(); 359 } 360 361 char MachineVerifierLegacyPass::ID = 0; 362 363 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", 364 "Verify generated machine code", false, false) 365 366 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 367 return new MachineVerifierLegacyPass(Banner); 368 } 369 370 void llvm::verifyMachineFunction(const std::string &Banner, 371 const MachineFunction &MF) { 372 // TODO: Use MFAM after porting below analyses. 373 // LiveVariables *LiveVars; 374 // LiveIntervals *LiveInts; 375 // LiveStacks *LiveStks; 376 // SlotIndexes *Indexes; 377 unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF); 378 if (FoundErrors) 379 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 380 } 381 382 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors) 383 const { 384 MachineFunction &MF = const_cast<MachineFunction&>(*this); 385 unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF); 386 if (AbortOnErrors && FoundErrors) 387 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 388 return FoundErrors == 0; 389 } 390 391 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 392 const char *Banner, bool AbortOnErrors) const { 393 MachineFunction &MF = const_cast<MachineFunction &>(*this); 394 unsigned FoundErrors = 395 MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF); 396 if (AbortOnErrors && FoundErrors) 397 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 398 return FoundErrors == 0; 399 } 400 401 void MachineVerifier::verifySlotIndexes() const { 402 if (Indexes == nullptr) 403 return; 404 405 // Ensure the IdxMBB list is sorted by slot indexes. 406 SlotIndex Last; 407 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 408 E = Indexes->MBBIndexEnd(); I != E; ++I) { 409 assert(!Last.isValid() || I->first > Last); 410 Last = I->first; 411 } 412 } 413 414 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 415 // If a pass has introduced virtual registers without clearing the 416 // NoVRegs property (or set it without allocating the vregs) 417 // then report an error. 418 if (MF.getProperties().hasProperty( 419 MachineFunctionProperties::Property::NoVRegs) && 420 MRI->getNumVirtRegs()) 421 report("Function has NoVRegs property but there are VReg operands", &MF); 422 } 423 424 unsigned MachineVerifier::verify(const MachineFunction &MF) { 425 foundErrors = 0; 426 427 this->MF = &MF; 428 TM = &MF.getTarget(); 429 TII = MF.getSubtarget().getInstrInfo(); 430 TRI = MF.getSubtarget().getRegisterInfo(); 431 RBI = MF.getSubtarget().getRegBankInfo(); 432 MRI = &MF.getRegInfo(); 433 434 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 435 MachineFunctionProperties::Property::FailedISel); 436 437 // If we're mid-GlobalISel and we already triggered the fallback path then 438 // it's expected that the MIR is somewhat broken but that's ok since we'll 439 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 440 if (isFunctionFailedISel) 441 return foundErrors; 442 443 isFunctionRegBankSelected = MF.getProperties().hasProperty( 444 MachineFunctionProperties::Property::RegBankSelected); 445 isFunctionSelected = MF.getProperties().hasProperty( 446 MachineFunctionProperties::Property::Selected); 447 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 448 MachineFunctionProperties::Property::TracksDebugUserValues); 449 450 if (PASS) { 451 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 452 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; 453 // We don't want to verify LiveVariables if LiveIntervals is available. 454 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 455 if (!LiveInts) 456 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; 457 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 458 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 459 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 460 } 461 if (MFAM) { 462 MachineFunction &Func = const_cast<MachineFunction &>(MF); 463 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func); 464 if (!LiveInts) 465 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func); 466 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); 467 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func); 468 } 469 470 verifySlotIndexes(); 471 472 verifyProperties(MF); 473 474 visitMachineFunctionBefore(); 475 for (const MachineBasicBlock &MBB : MF) { 476 visitMachineBasicBlockBefore(&MBB); 477 // Keep track of the current bundle header. 478 const MachineInstr *CurBundle = nullptr; 479 // Do we expect the next instruction to be part of the same bundle? 480 bool InBundle = false; 481 482 for (const MachineInstr &MI : MBB.instrs()) { 483 if (MI.getParent() != &MBB) { 484 report("Bad instruction parent pointer", &MBB); 485 errs() << "Instruction: " << MI; 486 continue; 487 } 488 489 // Check for consistent bundle flags. 490 if (InBundle && !MI.isBundledWithPred()) 491 report("Missing BundledPred flag, " 492 "BundledSucc was set on predecessor", 493 &MI); 494 if (!InBundle && MI.isBundledWithPred()) 495 report("BundledPred flag is set, " 496 "but BundledSucc not set on predecessor", 497 &MI); 498 499 // Is this a bundle header? 500 if (!MI.isInsideBundle()) { 501 if (CurBundle) 502 visitMachineBundleAfter(CurBundle); 503 CurBundle = &MI; 504 visitMachineBundleBefore(CurBundle); 505 } else if (!CurBundle) 506 report("No bundle header", &MI); 507 visitMachineInstrBefore(&MI); 508 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 509 const MachineOperand &Op = MI.getOperand(I); 510 if (Op.getParent() != &MI) { 511 // Make sure to use correct addOperand / removeOperand / ChangeTo 512 // functions when replacing operands of a MachineInstr. 513 report("Instruction has operand with wrong parent set", &MI); 514 } 515 516 visitMachineOperand(&Op, I); 517 } 518 519 // Was this the last bundled instruction? 520 InBundle = MI.isBundledWithSucc(); 521 } 522 if (CurBundle) 523 visitMachineBundleAfter(CurBundle); 524 if (InBundle) 525 report("BundledSucc flag set on last instruction in block", &MBB.back()); 526 visitMachineBasicBlockAfter(&MBB); 527 } 528 visitMachineFunctionAfter(); 529 530 // Clean up. 531 regsLive.clear(); 532 regsDefined.clear(); 533 regsDead.clear(); 534 regsKilled.clear(); 535 regMasks.clear(); 536 MBBInfoMap.clear(); 537 538 return foundErrors; 539 } 540 541 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 542 assert(MF); 543 errs() << '\n'; 544 if (!foundErrors++) { 545 if (Banner) 546 errs() << "# " << Banner << '\n'; 547 if (LiveInts != nullptr) 548 LiveInts->print(errs()); 549 else 550 MF->print(errs(), Indexes); 551 } 552 errs() << "*** Bad machine code: " << msg << " ***\n" 553 << "- function: " << MF->getName() << "\n"; 554 } 555 556 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 557 assert(MBB); 558 report(msg, MBB->getParent()); 559 errs() << "- basic block: " << printMBBReference(*MBB) << ' ' 560 << MBB->getName() << " (" << (const void *)MBB << ')'; 561 if (Indexes) 562 errs() << " [" << Indexes->getMBBStartIdx(MBB) 563 << ';' << Indexes->getMBBEndIdx(MBB) << ')'; 564 errs() << '\n'; 565 } 566 567 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 568 assert(MI); 569 report(msg, MI->getParent()); 570 errs() << "- instruction: "; 571 if (Indexes && Indexes->hasIndex(*MI)) 572 errs() << Indexes->getInstructionIndex(*MI) << '\t'; 573 MI->print(errs(), /*IsStandalone=*/true); 574 } 575 576 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 577 unsigned MONum, LLT MOVRegType) { 578 assert(MO); 579 report(msg, MO->getParent()); 580 errs() << "- operand " << MONum << ": "; 581 MO->print(errs(), MOVRegType, TRI); 582 errs() << "\n"; 583 } 584 585 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 586 report(Msg.str().c_str(), MI); 587 } 588 589 void MachineVerifier::report_context(SlotIndex Pos) const { 590 errs() << "- at: " << Pos << '\n'; 591 } 592 593 void MachineVerifier::report_context(const LiveInterval &LI) const { 594 errs() << "- interval: " << LI << '\n'; 595 } 596 597 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 598 LaneBitmask LaneMask) const { 599 report_context_liverange(LR); 600 report_context_vreg_regunit(VRegUnit); 601 if (LaneMask.any()) 602 report_context_lanemask(LaneMask); 603 } 604 605 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 606 errs() << "- segment: " << S << '\n'; 607 } 608 609 void MachineVerifier::report_context(const VNInfo &VNI) const { 610 errs() << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 611 } 612 613 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 614 errs() << "- liverange: " << LR << '\n'; 615 } 616 617 void MachineVerifier::report_context(MCPhysReg PReg) const { 618 errs() << "- p. register: " << printReg(PReg, TRI) << '\n'; 619 } 620 621 void MachineVerifier::report_context_vreg(Register VReg) const { 622 errs() << "- v. register: " << printReg(VReg, TRI) << '\n'; 623 } 624 625 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 626 if (VRegOrUnit.isVirtual()) { 627 report_context_vreg(VRegOrUnit); 628 } else { 629 errs() << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 630 } 631 } 632 633 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 634 errs() << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 635 } 636 637 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 638 BBInfo &MInfo = MBBInfoMap[MBB]; 639 if (!MInfo.reachable) { 640 MInfo.reachable = true; 641 for (const MachineBasicBlock *Succ : MBB->successors()) 642 markReachable(Succ); 643 } 644 } 645 646 void MachineVerifier::visitMachineFunctionBefore() { 647 lastIndex = SlotIndex(); 648 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 649 : TRI->getReservedRegs(*MF); 650 651 if (!MF->empty()) 652 markReachable(&MF->front()); 653 654 // Build a set of the basic blocks in the function. 655 FunctionBlocks.clear(); 656 for (const auto &MBB : *MF) { 657 FunctionBlocks.insert(&MBB); 658 BBInfo &MInfo = MBBInfoMap[&MBB]; 659 660 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 661 if (MInfo.Preds.size() != MBB.pred_size()) 662 report("MBB has duplicate entries in its predecessor list.", &MBB); 663 664 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 665 if (MInfo.Succs.size() != MBB.succ_size()) 666 report("MBB has duplicate entries in its successor list.", &MBB); 667 } 668 669 // Check that the register use lists are sane. 670 MRI->verifyUseLists(); 671 672 if (!MF->empty()) 673 verifyStackFrame(); 674 } 675 676 void 677 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 678 FirstTerminator = nullptr; 679 FirstNonPHI = nullptr; 680 681 if (!MF->getProperties().hasProperty( 682 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 683 // If this block has allocatable physical registers live-in, check that 684 // it is an entry block or landing pad. 685 for (const auto &LI : MBB->liveins()) { 686 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 687 MBB->getIterator() != MBB->getParent()->begin() && 688 !MBB->isInlineAsmBrIndirectTarget()) { 689 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 690 "inlineasm-br-indirect-target.", 691 MBB); 692 report_context(LI.PhysReg); 693 } 694 } 695 } 696 697 if (MBB->isIRBlockAddressTaken()) { 698 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 699 report("ir-block-address-taken is associated with basic block not used by " 700 "a blockaddress.", 701 MBB); 702 } 703 704 // Count the number of landing pad successors. 705 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 706 for (const auto *succ : MBB->successors()) { 707 if (succ->isEHPad()) 708 LandingPadSuccs.insert(succ); 709 if (!FunctionBlocks.count(succ)) 710 report("MBB has successor that isn't part of the function.", MBB); 711 if (!MBBInfoMap[succ].Preds.count(MBB)) { 712 report("Inconsistent CFG", MBB); 713 errs() << "MBB is not in the predecessor list of the successor " 714 << printMBBReference(*succ) << ".\n"; 715 } 716 } 717 718 // Check the predecessor list. 719 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 720 if (!FunctionBlocks.count(Pred)) 721 report("MBB has predecessor that isn't part of the function.", MBB); 722 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 723 report("Inconsistent CFG", MBB); 724 errs() << "MBB is not in the successor list of the predecessor " 725 << printMBBReference(*Pred) << ".\n"; 726 } 727 } 728 729 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 730 const BasicBlock *BB = MBB->getBasicBlock(); 731 const Function &F = MF->getFunction(); 732 if (LandingPadSuccs.size() > 1 && 733 !(AsmInfo && 734 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 735 BB && isa<SwitchInst>(BB->getTerminator())) && 736 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 737 report("MBB has more than one landing pad successor", MBB); 738 739 // Call analyzeBranch. If it succeeds, there several more conditions to check. 740 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 741 SmallVector<MachineOperand, 4> Cond; 742 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 743 Cond)) { 744 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 745 // check whether its answers match up with reality. 746 if (!TBB && !FBB) { 747 // Block falls through to its successor. 748 if (!MBB->empty() && MBB->back().isBarrier() && 749 !TII->isPredicated(MBB->back())) { 750 report("MBB exits via unconditional fall-through but ends with a " 751 "barrier instruction!", MBB); 752 } 753 if (!Cond.empty()) { 754 report("MBB exits via unconditional fall-through but has a condition!", 755 MBB); 756 } 757 } else if (TBB && !FBB && Cond.empty()) { 758 // Block unconditionally branches somewhere. 759 if (MBB->empty()) { 760 report("MBB exits via unconditional branch but doesn't contain " 761 "any instructions!", MBB); 762 } else if (!MBB->back().isBarrier()) { 763 report("MBB exits via unconditional branch but doesn't end with a " 764 "barrier instruction!", MBB); 765 } else if (!MBB->back().isTerminator()) { 766 report("MBB exits via unconditional branch but the branch isn't a " 767 "terminator instruction!", MBB); 768 } 769 } else if (TBB && !FBB && !Cond.empty()) { 770 // Block conditionally branches somewhere, otherwise falls through. 771 if (MBB->empty()) { 772 report("MBB exits via conditional branch/fall-through but doesn't " 773 "contain any instructions!", MBB); 774 } else if (MBB->back().isBarrier()) { 775 report("MBB exits via conditional branch/fall-through but ends with a " 776 "barrier instruction!", MBB); 777 } else if (!MBB->back().isTerminator()) { 778 report("MBB exits via conditional branch/fall-through but the branch " 779 "isn't a terminator instruction!", MBB); 780 } 781 } else if (TBB && FBB) { 782 // Block conditionally branches somewhere, otherwise branches 783 // somewhere else. 784 if (MBB->empty()) { 785 report("MBB exits via conditional branch/branch but doesn't " 786 "contain any instructions!", MBB); 787 } else if (!MBB->back().isBarrier()) { 788 report("MBB exits via conditional branch/branch but doesn't end with a " 789 "barrier instruction!", MBB); 790 } else if (!MBB->back().isTerminator()) { 791 report("MBB exits via conditional branch/branch but the branch " 792 "isn't a terminator instruction!", MBB); 793 } 794 if (Cond.empty()) { 795 report("MBB exits via conditional branch/branch but there's no " 796 "condition!", MBB); 797 } 798 } else { 799 report("analyzeBranch returned invalid data!", MBB); 800 } 801 802 // Now check that the successors match up with the answers reported by 803 // analyzeBranch. 804 if (TBB && !MBB->isSuccessor(TBB)) 805 report("MBB exits via jump or conditional branch, but its target isn't a " 806 "CFG successor!", 807 MBB); 808 if (FBB && !MBB->isSuccessor(FBB)) 809 report("MBB exits via conditional branch, but its target isn't a CFG " 810 "successor!", 811 MBB); 812 813 // There might be a fallthrough to the next block if there's either no 814 // unconditional true branch, or if there's a condition, and one of the 815 // branches is missing. 816 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 817 818 // A conditional fallthrough must be an actual CFG successor, not 819 // unreachable. (Conversely, an unconditional fallthrough might not really 820 // be a successor, because the block might end in unreachable.) 821 if (!Cond.empty() && !FBB) { 822 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 823 if (MBBI == MF->end()) { 824 report("MBB conditionally falls through out of function!", MBB); 825 } else if (!MBB->isSuccessor(&*MBBI)) 826 report("MBB exits via conditional branch/fall-through but the CFG " 827 "successors don't match the actual successors!", 828 MBB); 829 } 830 831 // Verify that there aren't any extra un-accounted-for successors. 832 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 833 // If this successor is one of the branch targets, it's okay. 834 if (SuccMBB == TBB || SuccMBB == FBB) 835 continue; 836 // If we might have a fallthrough, and the successor is the fallthrough 837 // block, that's also ok. 838 if (Fallthrough && SuccMBB == MBB->getNextNode()) 839 continue; 840 // Also accept successors which are for exception-handling or might be 841 // inlineasm_br targets. 842 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 843 continue; 844 report("MBB has unexpected successors which are not branch targets, " 845 "fallthrough, EHPads, or inlineasm_br targets.", 846 MBB); 847 } 848 } 849 850 regsLive.clear(); 851 if (MRI->tracksLiveness()) { 852 for (const auto &LI : MBB->liveins()) { 853 if (!Register::isPhysicalRegister(LI.PhysReg)) { 854 report("MBB live-in list contains non-physical register", MBB); 855 continue; 856 } 857 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 858 regsLive.insert(SubReg); 859 } 860 } 861 862 const MachineFrameInfo &MFI = MF->getFrameInfo(); 863 BitVector PR = MFI.getPristineRegs(*MF); 864 for (unsigned I : PR.set_bits()) { 865 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 866 regsLive.insert(SubReg); 867 } 868 869 regsKilled.clear(); 870 regsDefined.clear(); 871 872 if (Indexes) 873 lastIndex = Indexes->getMBBStartIdx(MBB); 874 } 875 876 // This function gets called for all bundle headers, including normal 877 // stand-alone unbundled instructions. 878 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 879 if (Indexes && Indexes->hasIndex(*MI)) { 880 SlotIndex idx = Indexes->getInstructionIndex(*MI); 881 if (!(idx > lastIndex)) { 882 report("Instruction index out of order", MI); 883 errs() << "Last instruction was at " << lastIndex << '\n'; 884 } 885 lastIndex = idx; 886 } 887 888 // Ensure non-terminators don't follow terminators. 889 if (MI->isTerminator()) { 890 if (!FirstTerminator) 891 FirstTerminator = MI; 892 } else if (FirstTerminator) { 893 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 894 // precede non-terminators. 895 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 896 report("Non-terminator instruction after the first terminator", MI); 897 errs() << "First terminator was:\t" << *FirstTerminator; 898 } 899 } 900 } 901 902 // The operands on an INLINEASM instruction must follow a template. 903 // Verify that the flag operands make sense. 904 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 905 // The first two operands on INLINEASM are the asm string and global flags. 906 if (MI->getNumOperands() < 2) { 907 report("Too few operands on inline asm", MI); 908 return; 909 } 910 if (!MI->getOperand(0).isSymbol()) 911 report("Asm string must be an external symbol", MI); 912 if (!MI->getOperand(1).isImm()) 913 report("Asm flags must be an immediate", MI); 914 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 915 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 916 // and Extra_IsConvergent = 32. 917 if (!isUInt<6>(MI->getOperand(1).getImm())) 918 report("Unknown asm flags", &MI->getOperand(1), 1); 919 920 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 921 922 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 923 unsigned NumOps; 924 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 925 const MachineOperand &MO = MI->getOperand(OpNo); 926 // There may be implicit ops after the fixed operands. 927 if (!MO.isImm()) 928 break; 929 const InlineAsm::Flag F(MO.getImm()); 930 NumOps = 1 + F.getNumOperandRegisters(); 931 } 932 933 if (OpNo > MI->getNumOperands()) 934 report("Missing operands in last group", MI); 935 936 // An optional MDNode follows the groups. 937 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 938 ++OpNo; 939 940 // All trailing operands must be implicit registers. 941 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 942 const MachineOperand &MO = MI->getOperand(OpNo); 943 if (!MO.isReg() || !MO.isImplicit()) 944 report("Expected implicit register after groups", &MO, OpNo); 945 } 946 947 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 948 const MachineBasicBlock *MBB = MI->getParent(); 949 950 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 951 i != e; ++i) { 952 const MachineOperand &MO = MI->getOperand(i); 953 954 if (!MO.isMBB()) 955 continue; 956 957 // Check the successor & predecessor lists look ok, assume they are 958 // not. Find the indirect target without going through the successors. 959 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 960 if (!IndirectTargetMBB) { 961 report("INLINEASM_BR indirect target does not exist", &MO, i); 962 break; 963 } 964 965 if (!MBB->isSuccessor(IndirectTargetMBB)) 966 report("INLINEASM_BR indirect target missing from successor list", &MO, 967 i); 968 969 if (!IndirectTargetMBB->isPredecessor(MBB)) 970 report("INLINEASM_BR indirect target predecessor list missing parent", 971 &MO, i); 972 } 973 } 974 } 975 976 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 977 const MachineRegisterInfo &MRI) { 978 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 979 if (!Op.isReg()) 980 return false; 981 const auto Reg = Op.getReg(); 982 if (Reg.isPhysical()) 983 return false; 984 return !MRI.getType(Reg).isScalar(); 985 })) 986 return true; 987 report("All register operands must have scalar types", &MI); 988 return false; 989 } 990 991 /// Check that types are consistent when two operands need to have the same 992 /// number of vector elements. 993 /// \return true if the types are valid. 994 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 995 const MachineInstr *MI) { 996 if (Ty0.isVector() != Ty1.isVector()) { 997 report("operand types must be all-vector or all-scalar", MI); 998 // Generally we try to report as many issues as possible at once, but in 999 // this case it's not clear what should we be comparing the size of the 1000 // scalar with: the size of the whole vector or its lane. Instead of 1001 // making an arbitrary choice and emitting not so helpful message, let's 1002 // avoid the extra noise and stop here. 1003 return false; 1004 } 1005 1006 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { 1007 report("operand types must preserve number of vector elements", MI); 1008 return false; 1009 } 1010 1011 return true; 1012 } 1013 1014 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { 1015 auto Opcode = MI->getOpcode(); 1016 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || 1017 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; 1018 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1019 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1020 AttributeList Attrs = Intrinsic::getAttributes( 1021 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1022 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1023 if (NoSideEffects && DeclHasSideEffects) { 1024 report(Twine(TII->getName(Opcode), 1025 " used with intrinsic that accesses memory"), 1026 MI); 1027 return false; 1028 } 1029 if (!NoSideEffects && !DeclHasSideEffects) { 1030 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); 1031 return false; 1032 } 1033 } 1034 1035 return true; 1036 } 1037 1038 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { 1039 auto Opcode = MI->getOpcode(); 1040 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || 1041 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; 1042 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1043 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1044 AttributeList Attrs = Intrinsic::getAttributes( 1045 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1046 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); 1047 if (NotConvergent && DeclIsConvergent) { 1048 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), 1049 MI); 1050 return false; 1051 } 1052 if (!NotConvergent && !DeclIsConvergent) { 1053 report( 1054 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), 1055 MI); 1056 return false; 1057 } 1058 } 1059 1060 return true; 1061 } 1062 1063 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 1064 if (isFunctionSelected) 1065 report("Unexpected generic instruction in a Selected function", MI); 1066 1067 const MCInstrDesc &MCID = MI->getDesc(); 1068 unsigned NumOps = MI->getNumOperands(); 1069 1070 // Branches must reference a basic block if they are not indirect 1071 if (MI->isBranch() && !MI->isIndirectBranch()) { 1072 bool HasMBB = false; 1073 for (const MachineOperand &Op : MI->operands()) { 1074 if (Op.isMBB()) { 1075 HasMBB = true; 1076 break; 1077 } 1078 } 1079 1080 if (!HasMBB) { 1081 report("Branch instruction is missing a basic block operand or " 1082 "isIndirectBranch property", 1083 MI); 1084 } 1085 } 1086 1087 // Check types. 1088 SmallVector<LLT, 4> Types; 1089 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 1090 I != E; ++I) { 1091 if (!MCID.operands()[I].isGenericType()) 1092 continue; 1093 // Generic instructions specify type equality constraints between some of 1094 // their operands. Make sure these are consistent. 1095 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 1096 Types.resize(std::max(TypeIdx + 1, Types.size())); 1097 1098 const MachineOperand *MO = &MI->getOperand(I); 1099 if (!MO->isReg()) { 1100 report("generic instruction must use register operands", MI); 1101 continue; 1102 } 1103 1104 LLT OpTy = MRI->getType(MO->getReg()); 1105 // Don't report a type mismatch if there is no actual mismatch, only a 1106 // type missing, to reduce noise: 1107 if (OpTy.isValid()) { 1108 // Only the first valid type for a type index will be printed: don't 1109 // overwrite it later so it's always clear which type was expected: 1110 if (!Types[TypeIdx].isValid()) 1111 Types[TypeIdx] = OpTy; 1112 else if (Types[TypeIdx] != OpTy) 1113 report("Type mismatch in generic instruction", MO, I, OpTy); 1114 } else { 1115 // Generic instructions must have types attached to their operands. 1116 report("Generic instruction is missing a virtual register type", MO, I); 1117 } 1118 } 1119 1120 // Generic opcodes must not have physical register operands. 1121 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1122 const MachineOperand *MO = &MI->getOperand(I); 1123 if (MO->isReg() && MO->getReg().isPhysical()) 1124 report("Generic instruction cannot have physical register", MO, I); 1125 } 1126 1127 // Avoid out of bounds in checks below. This was already reported earlier. 1128 if (MI->getNumOperands() < MCID.getNumOperands()) 1129 return; 1130 1131 StringRef ErrorInfo; 1132 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1133 report(ErrorInfo.data(), MI); 1134 1135 // Verify properties of various specific instruction types 1136 unsigned Opc = MI->getOpcode(); 1137 switch (Opc) { 1138 case TargetOpcode::G_ASSERT_SEXT: 1139 case TargetOpcode::G_ASSERT_ZEXT: { 1140 std::string OpcName = 1141 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1142 if (!MI->getOperand(2).isImm()) { 1143 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1144 break; 1145 } 1146 1147 Register Dst = MI->getOperand(0).getReg(); 1148 Register Src = MI->getOperand(1).getReg(); 1149 LLT SrcTy = MRI->getType(Src); 1150 int64_t Imm = MI->getOperand(2).getImm(); 1151 if (Imm <= 0) { 1152 report(Twine(OpcName, " size must be >= 1"), MI); 1153 break; 1154 } 1155 1156 if (Imm >= SrcTy.getScalarSizeInBits()) { 1157 report(Twine(OpcName, " size must be less than source bit width"), MI); 1158 break; 1159 } 1160 1161 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1162 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1163 1164 // Allow only the source bank to be set. 1165 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1166 report(Twine(OpcName, " cannot change register bank"), MI); 1167 break; 1168 } 1169 1170 // Don't allow a class change. Do allow member class->regbank. 1171 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1172 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1173 report( 1174 Twine(OpcName, " source and destination register classes must match"), 1175 MI); 1176 break; 1177 } 1178 1179 break; 1180 } 1181 1182 case TargetOpcode::G_CONSTANT: 1183 case TargetOpcode::G_FCONSTANT: { 1184 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1185 if (DstTy.isVector()) 1186 report("Instruction cannot use a vector result type", MI); 1187 1188 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1189 if (!MI->getOperand(1).isCImm()) { 1190 report("G_CONSTANT operand must be cimm", MI); 1191 break; 1192 } 1193 1194 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1195 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1196 report("inconsistent constant size", MI); 1197 } else { 1198 if (!MI->getOperand(1).isFPImm()) { 1199 report("G_FCONSTANT operand must be fpimm", MI); 1200 break; 1201 } 1202 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1203 1204 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1205 DstTy.getSizeInBits()) { 1206 report("inconsistent constant size", MI); 1207 } 1208 } 1209 1210 break; 1211 } 1212 case TargetOpcode::G_LOAD: 1213 case TargetOpcode::G_STORE: 1214 case TargetOpcode::G_ZEXTLOAD: 1215 case TargetOpcode::G_SEXTLOAD: { 1216 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1217 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1218 if (!PtrTy.isPointer()) 1219 report("Generic memory instruction must access a pointer", MI); 1220 1221 // Generic loads and stores must have a single MachineMemOperand 1222 // describing that access. 1223 if (!MI->hasOneMemOperand()) { 1224 report("Generic instruction accessing memory must have one mem operand", 1225 MI); 1226 } else { 1227 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1228 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1229 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1230 if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), 1231 ValTy.getSizeInBits())) 1232 report("Generic extload must have a narrower memory type", MI); 1233 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1234 if (TypeSize::isKnownGT(MMO.getSize().getValue(), 1235 ValTy.getSizeInBytes())) 1236 report("load memory size cannot exceed result size", MI); 1237 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1238 if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), 1239 MMO.getSize().getValue())) 1240 report("store memory size cannot exceed value size", MI); 1241 } 1242 1243 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1244 if (Opc == TargetOpcode::G_STORE) { 1245 if (Order == AtomicOrdering::Acquire || 1246 Order == AtomicOrdering::AcquireRelease) 1247 report("atomic store cannot use acquire ordering", MI); 1248 1249 } else { 1250 if (Order == AtomicOrdering::Release || 1251 Order == AtomicOrdering::AcquireRelease) 1252 report("atomic load cannot use release ordering", MI); 1253 } 1254 } 1255 1256 break; 1257 } 1258 case TargetOpcode::G_PHI: { 1259 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1260 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1261 [this, &DstTy](const MachineOperand &MO) { 1262 if (!MO.isReg()) 1263 return true; 1264 LLT Ty = MRI->getType(MO.getReg()); 1265 if (!Ty.isValid() || (Ty != DstTy)) 1266 return false; 1267 return true; 1268 })) 1269 report("Generic Instruction G_PHI has operands with incompatible/missing " 1270 "types", 1271 MI); 1272 break; 1273 } 1274 case TargetOpcode::G_BITCAST: { 1275 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1276 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1277 if (!DstTy.isValid() || !SrcTy.isValid()) 1278 break; 1279 1280 if (SrcTy.isPointer() != DstTy.isPointer()) 1281 report("bitcast cannot convert between pointers and other types", MI); 1282 1283 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1284 report("bitcast sizes must match", MI); 1285 1286 if (SrcTy == DstTy) 1287 report("bitcast must change the type", MI); 1288 1289 break; 1290 } 1291 case TargetOpcode::G_INTTOPTR: 1292 case TargetOpcode::G_PTRTOINT: 1293 case TargetOpcode::G_ADDRSPACE_CAST: { 1294 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1295 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1296 if (!DstTy.isValid() || !SrcTy.isValid()) 1297 break; 1298 1299 verifyVectorElementMatch(DstTy, SrcTy, MI); 1300 1301 DstTy = DstTy.getScalarType(); 1302 SrcTy = SrcTy.getScalarType(); 1303 1304 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1305 if (!DstTy.isPointer()) 1306 report("inttoptr result type must be a pointer", MI); 1307 if (SrcTy.isPointer()) 1308 report("inttoptr source type must not be a pointer", MI); 1309 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1310 if (!SrcTy.isPointer()) 1311 report("ptrtoint source type must be a pointer", MI); 1312 if (DstTy.isPointer()) 1313 report("ptrtoint result type must not be a pointer", MI); 1314 } else { 1315 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1316 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1317 report("addrspacecast types must be pointers", MI); 1318 else { 1319 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1320 report("addrspacecast must convert different address spaces", MI); 1321 } 1322 } 1323 1324 break; 1325 } 1326 case TargetOpcode::G_PTR_ADD: { 1327 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1328 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1329 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1330 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1331 break; 1332 1333 if (!PtrTy.isPointerOrPointerVector()) 1334 report("gep first operand must be a pointer", MI); 1335 1336 if (OffsetTy.isPointerOrPointerVector()) 1337 report("gep offset operand must not be a pointer", MI); 1338 1339 if (PtrTy.isPointerOrPointerVector()) { 1340 const DataLayout &DL = MF->getDataLayout(); 1341 unsigned AS = PtrTy.getAddressSpace(); 1342 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 1343 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { 1344 report("gep offset operand must match index size for address space", 1345 MI); 1346 } 1347 } 1348 1349 // TODO: Is the offset allowed to be a scalar with a vector? 1350 break; 1351 } 1352 case TargetOpcode::G_PTRMASK: { 1353 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1354 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1355 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1356 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1357 break; 1358 1359 if (!DstTy.isPointerOrPointerVector()) 1360 report("ptrmask result type must be a pointer", MI); 1361 1362 if (!MaskTy.getScalarType().isScalar()) 1363 report("ptrmask mask type must be an integer", MI); 1364 1365 verifyVectorElementMatch(DstTy, MaskTy, MI); 1366 break; 1367 } 1368 case TargetOpcode::G_SEXT: 1369 case TargetOpcode::G_ZEXT: 1370 case TargetOpcode::G_ANYEXT: 1371 case TargetOpcode::G_TRUNC: 1372 case TargetOpcode::G_FPEXT: 1373 case TargetOpcode::G_FPTRUNC: { 1374 // Number of operands and presense of types is already checked (and 1375 // reported in case of any issues), so no need to report them again. As 1376 // we're trying to report as many issues as possible at once, however, the 1377 // instructions aren't guaranteed to have the right number of operands or 1378 // types attached to them at this point 1379 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1380 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1381 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1382 if (!DstTy.isValid() || !SrcTy.isValid()) 1383 break; 1384 1385 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) 1386 report("Generic extend/truncate can not operate on pointers", MI); 1387 1388 verifyVectorElementMatch(DstTy, SrcTy, MI); 1389 1390 unsigned DstSize = DstTy.getScalarSizeInBits(); 1391 unsigned SrcSize = SrcTy.getScalarSizeInBits(); 1392 switch (MI->getOpcode()) { 1393 default: 1394 if (DstSize <= SrcSize) 1395 report("Generic extend has destination type no larger than source", MI); 1396 break; 1397 case TargetOpcode::G_TRUNC: 1398 case TargetOpcode::G_FPTRUNC: 1399 if (DstSize >= SrcSize) 1400 report("Generic truncate has destination type no smaller than source", 1401 MI); 1402 break; 1403 } 1404 break; 1405 } 1406 case TargetOpcode::G_SELECT: { 1407 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1408 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1409 if (!SelTy.isValid() || !CondTy.isValid()) 1410 break; 1411 1412 // Scalar condition select on a vector is valid. 1413 if (CondTy.isVector()) 1414 verifyVectorElementMatch(SelTy, CondTy, MI); 1415 break; 1416 } 1417 case TargetOpcode::G_MERGE_VALUES: { 1418 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1419 // e.g. s2N = MERGE sN, sN 1420 // Merging multiple scalars into a vector is not allowed, should use 1421 // G_BUILD_VECTOR for that. 1422 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1423 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1424 if (DstTy.isVector() || SrcTy.isVector()) 1425 report("G_MERGE_VALUES cannot operate on vectors", MI); 1426 1427 const unsigned NumOps = MI->getNumOperands(); 1428 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1429 report("G_MERGE_VALUES result size is inconsistent", MI); 1430 1431 for (unsigned I = 2; I != NumOps; ++I) { 1432 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1433 report("G_MERGE_VALUES source types do not match", MI); 1434 } 1435 1436 break; 1437 } 1438 case TargetOpcode::G_UNMERGE_VALUES: { 1439 unsigned NumDsts = MI->getNumOperands() - 1; 1440 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1441 for (unsigned i = 1; i < NumDsts; ++i) { 1442 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1443 report("G_UNMERGE_VALUES destination types do not match", MI); 1444 break; 1445 } 1446 } 1447 1448 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1449 if (DstTy.isVector()) { 1450 // This case is the converse of G_CONCAT_VECTORS. 1451 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || 1452 SrcTy.isScalableVector() != DstTy.isScalableVector() || 1453 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1454 report("G_UNMERGE_VALUES source operand does not match vector " 1455 "destination operands", 1456 MI); 1457 } else if (SrcTy.isVector()) { 1458 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1459 // mismatched types as long as the total size matches: 1460 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1461 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1462 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1463 "destination operands", 1464 MI); 1465 } else { 1466 // This case is the converse of G_MERGE_VALUES. 1467 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1468 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1469 "destination operands", 1470 MI); 1471 } 1472 } 1473 break; 1474 } 1475 case TargetOpcode::G_BUILD_VECTOR: { 1476 // Source types must be scalars, dest type a vector. Total size of scalars 1477 // must match the dest vector size. 1478 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1479 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1480 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1481 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1482 break; 1483 } 1484 1485 if (DstTy.getElementType() != SrcEltTy) 1486 report("G_BUILD_VECTOR result element type must match source type", MI); 1487 1488 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1489 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1490 1491 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1492 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1493 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1494 1495 break; 1496 } 1497 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1498 // Source types must be scalars, dest type a vector. Scalar types must be 1499 // larger than the dest vector elt type, as this is a truncating operation. 1500 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1501 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1502 if (!DstTy.isVector() || SrcEltTy.isVector()) 1503 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1504 MI); 1505 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1506 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1507 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1508 MI); 1509 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1510 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1511 "dest elt type", 1512 MI); 1513 break; 1514 } 1515 case TargetOpcode::G_CONCAT_VECTORS: { 1516 // Source types should be vectors, and total size should match the dest 1517 // vector size. 1518 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1519 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1520 if (!DstTy.isVector() || !SrcTy.isVector()) 1521 report("G_CONCAT_VECTOR requires vector source and destination operands", 1522 MI); 1523 1524 if (MI->getNumOperands() < 3) 1525 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1526 1527 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1528 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1529 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1530 if (DstTy.getElementCount() != 1531 SrcTy.getElementCount() * (MI->getNumOperands() - 1)) 1532 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1533 break; 1534 } 1535 case TargetOpcode::G_ICMP: 1536 case TargetOpcode::G_FCMP: { 1537 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1538 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1539 1540 if ((DstTy.isVector() != SrcTy.isVector()) || 1541 (DstTy.isVector() && 1542 DstTy.getElementCount() != SrcTy.getElementCount())) 1543 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1544 1545 break; 1546 } 1547 case TargetOpcode::G_SCMP: 1548 case TargetOpcode::G_UCMP: { 1549 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1550 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1551 LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg()); 1552 1553 if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { 1554 report("Generic scmp/ucmp does not support pointers as operands", MI); 1555 break; 1556 } 1557 1558 if (DstTy.isPointerOrPointerVector()) { 1559 report("Generic scmp/ucmp does not support pointers as a result", MI); 1560 break; 1561 } 1562 1563 if ((DstTy.isVector() != SrcTy.isVector()) || 1564 (DstTy.isVector() && 1565 DstTy.getElementCount() != SrcTy.getElementCount())) { 1566 report("Generic vector scmp/ucmp must preserve number of lanes", MI); 1567 break; 1568 } 1569 1570 if (SrcTy != SrcTy2) { 1571 report("Generic scmp/ucmp must have same input types", MI); 1572 break; 1573 } 1574 1575 break; 1576 } 1577 case TargetOpcode::G_EXTRACT: { 1578 const MachineOperand &SrcOp = MI->getOperand(1); 1579 if (!SrcOp.isReg()) { 1580 report("extract source must be a register", MI); 1581 break; 1582 } 1583 1584 const MachineOperand &OffsetOp = MI->getOperand(2); 1585 if (!OffsetOp.isImm()) { 1586 report("extract offset must be a constant", MI); 1587 break; 1588 } 1589 1590 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1591 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1592 if (SrcSize == DstSize) 1593 report("extract source must be larger than result", MI); 1594 1595 if (DstSize + OffsetOp.getImm() > SrcSize) 1596 report("extract reads past end of register", MI); 1597 break; 1598 } 1599 case TargetOpcode::G_INSERT: { 1600 const MachineOperand &SrcOp = MI->getOperand(2); 1601 if (!SrcOp.isReg()) { 1602 report("insert source must be a register", MI); 1603 break; 1604 } 1605 1606 const MachineOperand &OffsetOp = MI->getOperand(3); 1607 if (!OffsetOp.isImm()) { 1608 report("insert offset must be a constant", MI); 1609 break; 1610 } 1611 1612 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1613 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1614 1615 if (DstSize <= SrcSize) 1616 report("inserted size must be smaller than total register", MI); 1617 1618 if (SrcSize + OffsetOp.getImm() > DstSize) 1619 report("insert writes past end of register", MI); 1620 1621 break; 1622 } 1623 case TargetOpcode::G_JUMP_TABLE: { 1624 if (!MI->getOperand(1).isJTI()) 1625 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1626 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1627 if (!DstTy.isPointer()) 1628 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1629 break; 1630 } 1631 case TargetOpcode::G_BRJT: { 1632 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1633 report("G_BRJT src operand 0 must be a pointer type", MI); 1634 1635 if (!MI->getOperand(1).isJTI()) 1636 report("G_BRJT src operand 1 must be a jump table index", MI); 1637 1638 const auto &IdxOp = MI->getOperand(2); 1639 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1640 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1641 break; 1642 } 1643 case TargetOpcode::G_INTRINSIC: 1644 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: 1645 case TargetOpcode::G_INTRINSIC_CONVERGENT: 1646 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { 1647 // TODO: Should verify number of def and use operands, but the current 1648 // interface requires passing in IR types for mangling. 1649 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1650 if (!IntrIDOp.isIntrinsicID()) { 1651 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1652 break; 1653 } 1654 1655 if (!verifyGIntrinsicSideEffects(MI)) 1656 break; 1657 if (!verifyGIntrinsicConvergence(MI)) 1658 break; 1659 1660 break; 1661 } 1662 case TargetOpcode::G_SEXT_INREG: { 1663 if (!MI->getOperand(2).isImm()) { 1664 report("G_SEXT_INREG expects an immediate operand #2", MI); 1665 break; 1666 } 1667 1668 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1669 int64_t Imm = MI->getOperand(2).getImm(); 1670 if (Imm <= 0) 1671 report("G_SEXT_INREG size must be >= 1", MI); 1672 if (Imm >= SrcTy.getScalarSizeInBits()) 1673 report("G_SEXT_INREG size must be less than source bit width", MI); 1674 break; 1675 } 1676 case TargetOpcode::G_BSWAP: { 1677 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1678 if (DstTy.getScalarSizeInBits() % 16 != 0) 1679 report("G_BSWAP size must be a multiple of 16 bits", MI); 1680 break; 1681 } 1682 case TargetOpcode::G_VSCALE: { 1683 if (!MI->getOperand(1).isCImm()) { 1684 report("G_VSCALE operand must be cimm", MI); 1685 break; 1686 } 1687 if (MI->getOperand(1).getCImm()->isZero()) { 1688 report("G_VSCALE immediate cannot be zero", MI); 1689 break; 1690 } 1691 break; 1692 } 1693 case TargetOpcode::G_INSERT_SUBVECTOR: { 1694 const MachineOperand &Src0Op = MI->getOperand(1); 1695 if (!Src0Op.isReg()) { 1696 report("G_INSERT_SUBVECTOR first source must be a register", MI); 1697 break; 1698 } 1699 1700 const MachineOperand &Src1Op = MI->getOperand(2); 1701 if (!Src1Op.isReg()) { 1702 report("G_INSERT_SUBVECTOR second source must be a register", MI); 1703 break; 1704 } 1705 1706 const MachineOperand &IndexOp = MI->getOperand(3); 1707 if (!IndexOp.isImm()) { 1708 report("G_INSERT_SUBVECTOR index must be an immediate", MI); 1709 break; 1710 } 1711 1712 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1713 LLT Src1Ty = MRI->getType(Src1Op.getReg()); 1714 1715 if (!DstTy.isVector()) { 1716 report("Destination type must be a vector", MI); 1717 break; 1718 } 1719 1720 if (!Src1Ty.isVector()) { 1721 report("Second source must be a vector", MI); 1722 break; 1723 } 1724 1725 if (DstTy.getElementType() != Src1Ty.getElementType()) { 1726 report("Element type of vectors must be the same", MI); 1727 break; 1728 } 1729 1730 if (Src1Ty.isScalable() != DstTy.isScalable()) { 1731 report("Vector types must both be fixed or both be scalable", MI); 1732 break; 1733 } 1734 1735 if (ElementCount::isKnownGT(Src1Ty.getElementCount(), 1736 DstTy.getElementCount())) { 1737 report("Second source must be smaller than destination vector", MI); 1738 break; 1739 } 1740 1741 uint64_t Idx = IndexOp.getImm(); 1742 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); 1743 if (IndexOp.getImm() % Src1MinLen != 0) { 1744 report("Index must be a multiple of the second source vector's " 1745 "minimum vector length", 1746 MI); 1747 break; 1748 } 1749 1750 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1751 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { 1752 report("Subvector type and index must not cause insert to overrun the " 1753 "vector being inserted into", 1754 MI); 1755 break; 1756 } 1757 1758 break; 1759 } 1760 case TargetOpcode::G_EXTRACT_SUBVECTOR: { 1761 const MachineOperand &SrcOp = MI->getOperand(1); 1762 if (!SrcOp.isReg()) { 1763 report("G_EXTRACT_SUBVECTOR first source must be a register", MI); 1764 break; 1765 } 1766 1767 const MachineOperand &IndexOp = MI->getOperand(2); 1768 if (!IndexOp.isImm()) { 1769 report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); 1770 break; 1771 } 1772 1773 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1774 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1775 1776 if (!DstTy.isVector()) { 1777 report("Destination type must be a vector", MI); 1778 break; 1779 } 1780 1781 if (!SrcTy.isVector()) { 1782 report("Source must be a vector", MI); 1783 break; 1784 } 1785 1786 if (DstTy.getElementType() != SrcTy.getElementType()) { 1787 report("Element type of vectors must be the same", MI); 1788 break; 1789 } 1790 1791 if (SrcTy.isScalable() != DstTy.isScalable()) { 1792 report("Vector types must both be fixed or both be scalable", MI); 1793 break; 1794 } 1795 1796 if (ElementCount::isKnownGT(DstTy.getElementCount(), 1797 SrcTy.getElementCount())) { 1798 report("Destination vector must be smaller than source vector", MI); 1799 break; 1800 } 1801 1802 uint64_t Idx = IndexOp.getImm(); 1803 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1804 if (Idx % DstMinLen != 0) { 1805 report("Index must be a multiple of the destination vector's minimum " 1806 "vector length", 1807 MI); 1808 break; 1809 } 1810 1811 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); 1812 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { 1813 report("Destination type and index must not cause extract to overrun the " 1814 "source vector", 1815 MI); 1816 break; 1817 } 1818 1819 break; 1820 } 1821 case TargetOpcode::G_SHUFFLE_VECTOR: { 1822 const MachineOperand &MaskOp = MI->getOperand(3); 1823 if (!MaskOp.isShuffleMask()) { 1824 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1825 break; 1826 } 1827 1828 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1829 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1830 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1831 1832 if (Src0Ty != Src1Ty) 1833 report("Source operands must be the same type", MI); 1834 1835 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1836 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1837 1838 // Don't check that all operands are vector because scalars are used in 1839 // place of 1 element vectors. 1840 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1841 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1842 1843 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1844 1845 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1846 report("Wrong result type for shufflemask", MI); 1847 1848 for (int Idx : MaskIdxes) { 1849 if (Idx < 0) 1850 continue; 1851 1852 if (Idx >= 2 * SrcNumElts) 1853 report("Out of bounds shuffle index", MI); 1854 } 1855 1856 break; 1857 } 1858 1859 case TargetOpcode::G_SPLAT_VECTOR: { 1860 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1861 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1862 1863 if (!DstTy.isScalableVector()) { 1864 report("Destination type must be a scalable vector", MI); 1865 break; 1866 } 1867 1868 if (!SrcTy.isScalar() && !SrcTy.isPointer()) { 1869 report("Source type must be a scalar or pointer", MI); 1870 break; 1871 } 1872 1873 if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), 1874 SrcTy.getSizeInBits())) { 1875 report("Element type of the destination must be the same size or smaller " 1876 "than the source type", 1877 MI); 1878 break; 1879 } 1880 1881 break; 1882 } 1883 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1884 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1885 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1886 LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); 1887 1888 if (!DstTy.isScalar() && !DstTy.isPointer()) { 1889 report("Destination type must be a scalar or pointer", MI); 1890 break; 1891 } 1892 1893 if (!SrcTy.isVector()) { 1894 report("First source must be a vector", MI); 1895 break; 1896 } 1897 1898 auto TLI = MF->getSubtarget().getTargetLowering(); 1899 if (IdxTy.getSizeInBits() != 1900 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1901 report("Index type must match VectorIdxTy", MI); 1902 break; 1903 } 1904 1905 break; 1906 } 1907 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1908 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1909 LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); 1910 LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); 1911 LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); 1912 1913 if (!DstTy.isVector()) { 1914 report("Destination type must be a vector", MI); 1915 break; 1916 } 1917 1918 if (VecTy != DstTy) { 1919 report("Destination type and vector type must match", MI); 1920 break; 1921 } 1922 1923 if (!ScaTy.isScalar() && !ScaTy.isPointer()) { 1924 report("Inserted element must be a scalar or pointer", MI); 1925 break; 1926 } 1927 1928 auto TLI = MF->getSubtarget().getTargetLowering(); 1929 if (IdxTy.getSizeInBits() != 1930 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1931 report("Index type must match VectorIdxTy", MI); 1932 break; 1933 } 1934 1935 break; 1936 } 1937 case TargetOpcode::G_DYN_STACKALLOC: { 1938 const MachineOperand &DstOp = MI->getOperand(0); 1939 const MachineOperand &AllocOp = MI->getOperand(1); 1940 const MachineOperand &AlignOp = MI->getOperand(2); 1941 1942 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1943 report("dst operand 0 must be a pointer type", MI); 1944 break; 1945 } 1946 1947 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1948 report("src operand 1 must be a scalar reg type", MI); 1949 break; 1950 } 1951 1952 if (!AlignOp.isImm()) { 1953 report("src operand 2 must be an immediate type", MI); 1954 break; 1955 } 1956 break; 1957 } 1958 case TargetOpcode::G_MEMCPY_INLINE: 1959 case TargetOpcode::G_MEMCPY: 1960 case TargetOpcode::G_MEMMOVE: { 1961 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1962 if (MMOs.size() != 2) { 1963 report("memcpy/memmove must have 2 memory operands", MI); 1964 break; 1965 } 1966 1967 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1968 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1969 report("wrong memory operand types", MI); 1970 break; 1971 } 1972 1973 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1974 report("inconsistent memory operand sizes", MI); 1975 1976 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1977 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1978 1979 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1980 report("memory instruction operand must be a pointer", MI); 1981 break; 1982 } 1983 1984 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1985 report("inconsistent store address space", MI); 1986 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1987 report("inconsistent load address space", MI); 1988 1989 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 1990 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 1991 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 1992 1993 break; 1994 } 1995 case TargetOpcode::G_BZERO: 1996 case TargetOpcode::G_MEMSET: { 1997 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1998 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 1999 if (MMOs.size() != 1) { 2000 report(Twine(Name, " must have 1 memory operand"), MI); 2001 break; 2002 } 2003 2004 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 2005 report(Twine(Name, " memory operand must be a store"), MI); 2006 break; 2007 } 2008 2009 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2010 if (!DstPtrTy.isPointer()) { 2011 report(Twine(Name, " operand must be a pointer"), MI); 2012 break; 2013 } 2014 2015 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2016 report("inconsistent " + Twine(Name, " address space"), MI); 2017 2018 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 2019 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 2020 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 2021 2022 break; 2023 } 2024 case TargetOpcode::G_UBSANTRAP: { 2025 const MachineOperand &KindOp = MI->getOperand(0); 2026 if (!MI->getOperand(0).isImm()) { 2027 report("Crash kind must be an immediate", &KindOp, 0); 2028 break; 2029 } 2030 int64_t Kind = MI->getOperand(0).getImm(); 2031 if (!isInt<8>(Kind)) 2032 report("Crash kind must be 8 bit wide", &KindOp, 0); 2033 break; 2034 } 2035 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 2036 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 2037 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2038 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2039 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2040 if (!DstTy.isScalar()) 2041 report("Vector reduction requires a scalar destination type", MI); 2042 if (!Src1Ty.isScalar()) 2043 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 2044 if (!Src2Ty.isVector()) 2045 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 2046 break; 2047 } 2048 case TargetOpcode::G_VECREDUCE_FADD: 2049 case TargetOpcode::G_VECREDUCE_FMUL: 2050 case TargetOpcode::G_VECREDUCE_FMAX: 2051 case TargetOpcode::G_VECREDUCE_FMIN: 2052 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 2053 case TargetOpcode::G_VECREDUCE_FMINIMUM: 2054 case TargetOpcode::G_VECREDUCE_ADD: 2055 case TargetOpcode::G_VECREDUCE_MUL: 2056 case TargetOpcode::G_VECREDUCE_AND: 2057 case TargetOpcode::G_VECREDUCE_OR: 2058 case TargetOpcode::G_VECREDUCE_XOR: 2059 case TargetOpcode::G_VECREDUCE_SMAX: 2060 case TargetOpcode::G_VECREDUCE_SMIN: 2061 case TargetOpcode::G_VECREDUCE_UMAX: 2062 case TargetOpcode::G_VECREDUCE_UMIN: { 2063 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2064 if (!DstTy.isScalar()) 2065 report("Vector reduction requires a scalar destination type", MI); 2066 break; 2067 } 2068 2069 case TargetOpcode::G_SBFX: 2070 case TargetOpcode::G_UBFX: { 2071 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2072 if (DstTy.isVector()) { 2073 report("Bitfield extraction is not supported on vectors", MI); 2074 break; 2075 } 2076 break; 2077 } 2078 case TargetOpcode::G_SHL: 2079 case TargetOpcode::G_LSHR: 2080 case TargetOpcode::G_ASHR: 2081 case TargetOpcode::G_ROTR: 2082 case TargetOpcode::G_ROTL: { 2083 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2084 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2085 if (Src1Ty.isVector() != Src2Ty.isVector()) { 2086 report("Shifts and rotates require operands to be either all scalars or " 2087 "all vectors", 2088 MI); 2089 break; 2090 } 2091 break; 2092 } 2093 case TargetOpcode::G_LLROUND: 2094 case TargetOpcode::G_LROUND: { 2095 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2096 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2097 if (!DstTy.isValid() || !SrcTy.isValid()) 2098 break; 2099 if (SrcTy.isPointer() || DstTy.isPointer()) { 2100 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination"; 2101 report(Twine(Op, " operand must not be a pointer type"), MI); 2102 } else if (SrcTy.isScalar()) { 2103 verifyAllRegOpsScalar(*MI, *MRI); 2104 break; 2105 } else if (SrcTy.isVector()) { 2106 verifyVectorElementMatch(SrcTy, DstTy, MI); 2107 break; 2108 } 2109 break; 2110 } 2111 case TargetOpcode::G_IS_FPCLASS: { 2112 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 2113 LLT DestEltTy = DestTy.getScalarType(); 2114 if (!DestEltTy.isScalar()) { 2115 report("Destination must be a scalar or vector of scalars", MI); 2116 break; 2117 } 2118 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2119 LLT SrcEltTy = SrcTy.getScalarType(); 2120 if (!SrcEltTy.isScalar()) { 2121 report("Source must be a scalar or vector of scalars", MI); 2122 break; 2123 } 2124 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 2125 break; 2126 const MachineOperand &TestMO = MI->getOperand(2); 2127 if (!TestMO.isImm()) { 2128 report("floating-point class set (operand 2) must be an immediate", MI); 2129 break; 2130 } 2131 int64_t Test = TestMO.getImm(); 2132 if (Test < 0 || Test > fcAllFlags) { 2133 report("Incorrect floating-point class set (operand 2)", MI); 2134 break; 2135 } 2136 break; 2137 } 2138 case TargetOpcode::G_PREFETCH: { 2139 const MachineOperand &AddrOp = MI->getOperand(0); 2140 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { 2141 report("addr operand must be a pointer", &AddrOp, 0); 2142 break; 2143 } 2144 const MachineOperand &RWOp = MI->getOperand(1); 2145 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { 2146 report("rw operand must be an immediate 0-1", &RWOp, 1); 2147 break; 2148 } 2149 const MachineOperand &LocalityOp = MI->getOperand(2); 2150 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { 2151 report("locality operand must be an immediate 0-3", &LocalityOp, 2); 2152 break; 2153 } 2154 const MachineOperand &CacheTypeOp = MI->getOperand(3); 2155 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { 2156 report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); 2157 break; 2158 } 2159 break; 2160 } 2161 case TargetOpcode::G_ASSERT_ALIGN: { 2162 if (MI->getOperand(2).getImm() < 1) 2163 report("alignment immediate must be >= 1", MI); 2164 break; 2165 } 2166 case TargetOpcode::G_CONSTANT_POOL: { 2167 if (!MI->getOperand(1).isCPI()) 2168 report("Src operand 1 must be a constant pool index", MI); 2169 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 2170 report("Dst operand 0 must be a pointer", MI); 2171 break; 2172 } 2173 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { 2174 const MachineOperand &AddrOp = MI->getOperand(1); 2175 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) 2176 report("addr operand must be a pointer", &AddrOp, 1); 2177 break; 2178 } 2179 default: 2180 break; 2181 } 2182 } 2183 2184 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 2185 const MCInstrDesc &MCID = MI->getDesc(); 2186 if (MI->getNumOperands() < MCID.getNumOperands()) { 2187 report("Too few operands", MI); 2188 errs() << MCID.getNumOperands() << " operands expected, but " 2189 << MI->getNumOperands() << " given.\n"; 2190 } 2191 2192 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) 2193 report("NoConvergent flag expected only on convergent instructions.", MI); 2194 2195 if (MI->isPHI()) { 2196 if (MF->getProperties().hasProperty( 2197 MachineFunctionProperties::Property::NoPHIs)) 2198 report("Found PHI instruction with NoPHIs property set", MI); 2199 2200 if (FirstNonPHI) 2201 report("Found PHI instruction after non-PHI", MI); 2202 } else if (FirstNonPHI == nullptr) 2203 FirstNonPHI = MI; 2204 2205 // Check the tied operands. 2206 if (MI->isInlineAsm()) 2207 verifyInlineAsm(MI); 2208 2209 // Check that unspillable terminators define a reg and have at most one use. 2210 if (TII->isUnspillableTerminator(MI)) { 2211 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 2212 report("Unspillable Terminator does not define a reg", MI); 2213 Register Def = MI->getOperand(0).getReg(); 2214 if (Def.isVirtual() && 2215 !MF->getProperties().hasProperty( 2216 MachineFunctionProperties::Property::NoPHIs) && 2217 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 2218 report("Unspillable Terminator expected to have at most one use!", MI); 2219 } 2220 2221 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 2222 // DBG_VALUEs: these are convenient to use in tests, but should never get 2223 // generated. 2224 if (MI->isDebugValue() && MI->getNumOperands() == 4) 2225 if (!MI->getDebugLoc()) 2226 report("Missing DebugLoc for debug instruction", MI); 2227 2228 // Meta instructions should never be the subject of debug value tracking, 2229 // they don't create a value in the output program at all. 2230 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 2231 report("Metadata instruction should not have a value tracking number", MI); 2232 2233 // Check the MachineMemOperands for basic consistency. 2234 for (MachineMemOperand *Op : MI->memoperands()) { 2235 if (Op->isLoad() && !MI->mayLoad()) 2236 report("Missing mayLoad flag", MI); 2237 if (Op->isStore() && !MI->mayStore()) 2238 report("Missing mayStore flag", MI); 2239 } 2240 2241 // Debug values must not have a slot index. 2242 // Other instructions must have one, unless they are inside a bundle. 2243 if (LiveInts) { 2244 bool mapped = !LiveInts->isNotInMIMap(*MI); 2245 if (MI->isDebugOrPseudoInstr()) { 2246 if (mapped) 2247 report("Debug instruction has a slot index", MI); 2248 } else if (MI->isInsideBundle()) { 2249 if (mapped) 2250 report("Instruction inside bundle has a slot index", MI); 2251 } else { 2252 if (!mapped) 2253 report("Missing slot index", MI); 2254 } 2255 } 2256 2257 unsigned Opc = MCID.getOpcode(); 2258 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 2259 verifyPreISelGenericInstruction(MI); 2260 return; 2261 } 2262 2263 StringRef ErrorInfo; 2264 if (!TII->verifyInstruction(*MI, ErrorInfo)) 2265 report(ErrorInfo.data(), MI); 2266 2267 // Verify properties of various specific instruction types 2268 switch (MI->getOpcode()) { 2269 case TargetOpcode::COPY: { 2270 const MachineOperand &DstOp = MI->getOperand(0); 2271 const MachineOperand &SrcOp = MI->getOperand(1); 2272 const Register SrcReg = SrcOp.getReg(); 2273 const Register DstReg = DstOp.getReg(); 2274 2275 LLT DstTy = MRI->getType(DstReg); 2276 LLT SrcTy = MRI->getType(SrcReg); 2277 if (SrcTy.isValid() && DstTy.isValid()) { 2278 // If both types are valid, check that the types are the same. 2279 if (SrcTy != DstTy) { 2280 report("Copy Instruction is illegal with mismatching types", MI); 2281 errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n"; 2282 } 2283 2284 break; 2285 } 2286 2287 if (!SrcTy.isValid() && !DstTy.isValid()) 2288 break; 2289 2290 // If we have only one valid type, this is likely a copy between a virtual 2291 // and physical register. 2292 TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 2293 TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 2294 if (SrcReg.isPhysical() && DstTy.isValid()) { 2295 const TargetRegisterClass *SrcRC = 2296 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 2297 if (SrcRC) 2298 SrcSize = TRI->getRegSizeInBits(*SrcRC); 2299 } 2300 2301 if (DstReg.isPhysical() && SrcTy.isValid()) { 2302 const TargetRegisterClass *DstRC = 2303 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 2304 if (DstRC) 2305 DstSize = TRI->getRegSizeInBits(*DstRC); 2306 } 2307 2308 // The next two checks allow COPY between physical and virtual registers, 2309 // when the virtual register has a scalable size and the physical register 2310 // has a fixed size. These checks allow COPY between *potentialy* mismatched 2311 // sizes. However, once RegisterBankSelection occurs, MachineVerifier should 2312 // be able to resolve a fixed size for the scalable vector, and at that 2313 // point this function will know for sure whether the sizes are mismatched 2314 // and correctly report a size mismatch. 2315 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && 2316 !SrcSize.isScalable()) 2317 break; 2318 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && 2319 !DstSize.isScalable()) 2320 break; 2321 2322 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { 2323 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 2324 report("Copy Instruction is illegal with mismatching sizes", MI); 2325 errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize 2326 << "\n"; 2327 } 2328 } 2329 break; 2330 } 2331 case TargetOpcode::STATEPOINT: { 2332 StatepointOpers SO(MI); 2333 if (!MI->getOperand(SO.getIDPos()).isImm() || 2334 !MI->getOperand(SO.getNBytesPos()).isImm() || 2335 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 2336 report("meta operands to STATEPOINT not constant!", MI); 2337 break; 2338 } 2339 2340 auto VerifyStackMapConstant = [&](unsigned Offset) { 2341 if (Offset >= MI->getNumOperands()) { 2342 report("stack map constant to STATEPOINT is out of range!", MI); 2343 return; 2344 } 2345 if (!MI->getOperand(Offset - 1).isImm() || 2346 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 2347 !MI->getOperand(Offset).isImm()) 2348 report("stack map constant to STATEPOINT not well formed!", MI); 2349 }; 2350 VerifyStackMapConstant(SO.getCCIdx()); 2351 VerifyStackMapConstant(SO.getFlagsIdx()); 2352 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 2353 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 2354 VerifyStackMapConstant(SO.getNumAllocaIdx()); 2355 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 2356 2357 // Verify that all explicit statepoint defs are tied to gc operands as 2358 // they are expected to be a relocation of gc operands. 2359 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 2360 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 2361 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 2362 unsigned UseOpIdx; 2363 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 2364 report("STATEPOINT defs expected to be tied", MI); 2365 break; 2366 } 2367 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 2368 report("STATEPOINT def tied to non-gc operand", MI); 2369 break; 2370 } 2371 } 2372 2373 // TODO: verify we have properly encoded deopt arguments 2374 } break; 2375 case TargetOpcode::INSERT_SUBREG: { 2376 unsigned InsertedSize; 2377 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 2378 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 2379 else 2380 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 2381 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 2382 if (SubRegSize < InsertedSize) { 2383 report("INSERT_SUBREG expected inserted value to have equal or lesser " 2384 "size than the subreg it was inserted into", MI); 2385 break; 2386 } 2387 } break; 2388 case TargetOpcode::REG_SEQUENCE: { 2389 unsigned NumOps = MI->getNumOperands(); 2390 if (!(NumOps & 1)) { 2391 report("Invalid number of operands for REG_SEQUENCE", MI); 2392 break; 2393 } 2394 2395 for (unsigned I = 1; I != NumOps; I += 2) { 2396 const MachineOperand &RegOp = MI->getOperand(I); 2397 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 2398 2399 if (!RegOp.isReg()) 2400 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 2401 2402 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 2403 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 2404 report("Invalid subregister index operand for REG_SEQUENCE", 2405 &SubRegOp, I + 1); 2406 } 2407 } 2408 2409 Register DstReg = MI->getOperand(0).getReg(); 2410 if (DstReg.isPhysical()) 2411 report("REG_SEQUENCE does not support physical register results", MI); 2412 2413 if (MI->getOperand(0).getSubReg()) 2414 report("Invalid subreg result for REG_SEQUENCE", MI); 2415 2416 break; 2417 } 2418 } 2419 } 2420 2421 void 2422 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 2423 const MachineInstr *MI = MO->getParent(); 2424 const MCInstrDesc &MCID = MI->getDesc(); 2425 unsigned NumDefs = MCID.getNumDefs(); 2426 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 2427 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 2428 2429 // The first MCID.NumDefs operands must be explicit register defines 2430 if (MONum < NumDefs) { 2431 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2432 if (!MO->isReg()) 2433 report("Explicit definition must be a register", MO, MONum); 2434 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2435 report("Explicit definition marked as use", MO, MONum); 2436 else if (MO->isImplicit()) 2437 report("Explicit definition marked as implicit", MO, MONum); 2438 } else if (MONum < MCID.getNumOperands()) { 2439 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2440 // Don't check if it's the last operand in a variadic instruction. See, 2441 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2442 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2443 if (!IsOptional) { 2444 if (MO->isReg()) { 2445 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2446 report("Explicit operand marked as def", MO, MONum); 2447 if (MO->isImplicit()) 2448 report("Explicit operand marked as implicit", MO, MONum); 2449 } 2450 2451 // Check that an instruction has register operands only as expected. 2452 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2453 !MO->isReg() && !MO->isFI()) 2454 report("Expected a register operand.", MO, MONum); 2455 if (MO->isReg()) { 2456 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2457 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2458 !TII->isPCRelRegisterOperandLegal(*MO))) 2459 report("Expected a non-register operand.", MO, MONum); 2460 } 2461 } 2462 2463 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2464 if (TiedTo != -1) { 2465 if (!MO->isReg()) 2466 report("Tied use must be a register", MO, MONum); 2467 else if (!MO->isTied()) 2468 report("Operand should be tied", MO, MONum); 2469 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2470 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2471 else if (MO->getReg().isPhysical()) { 2472 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2473 if (!MOTied.isReg()) 2474 report("Tied counterpart must be a register", &MOTied, TiedTo); 2475 else if (MOTied.getReg().isPhysical() && 2476 MO->getReg() != MOTied.getReg()) 2477 report("Tied physical registers must match.", &MOTied, TiedTo); 2478 } 2479 } else if (MO->isReg() && MO->isTied()) 2480 report("Explicit operand should not be tied", MO, MONum); 2481 } else if (!MI->isVariadic()) { 2482 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2483 if (!MO->isValidExcessOperand()) 2484 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2485 } 2486 2487 switch (MO->getType()) { 2488 case MachineOperand::MO_Register: { 2489 // Verify debug flag on debug instructions. Check this first because reg0 2490 // indicates an undefined debug value. 2491 if (MI->isDebugInstr() && MO->isUse()) { 2492 if (!MO->isDebug()) 2493 report("Register operand must be marked debug", MO, MONum); 2494 } else if (MO->isDebug()) { 2495 report("Register operand must not be marked debug", MO, MONum); 2496 } 2497 2498 const Register Reg = MO->getReg(); 2499 if (!Reg) 2500 return; 2501 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2502 checkLiveness(MO, MONum); 2503 2504 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2505 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2506 report("Undef virtual register def operands require a subregister", MO, MONum); 2507 2508 // Verify the consistency of tied operands. 2509 if (MO->isTied()) { 2510 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2511 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2512 if (!OtherMO.isReg()) 2513 report("Must be tied to a register", MO, MONum); 2514 if (!OtherMO.isTied()) 2515 report("Missing tie flags on tied operand", MO, MONum); 2516 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2517 report("Inconsistent tie links", MO, MONum); 2518 if (MONum < MCID.getNumDefs()) { 2519 if (OtherIdx < MCID.getNumOperands()) { 2520 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2521 report("Explicit def tied to explicit use without tie constraint", 2522 MO, MONum); 2523 } else { 2524 if (!OtherMO.isImplicit()) 2525 report("Explicit def should be tied to implicit use", MO, MONum); 2526 } 2527 } 2528 } 2529 2530 // Verify two-address constraints after the twoaddressinstruction pass. 2531 // Both twoaddressinstruction pass and phi-node-elimination pass call 2532 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification 2533 // after twoaddressinstruction pass not after phi-node-elimination pass. So 2534 // we shouldn't use the IsSSA as the condition, we should based on 2535 // TiedOpsRewritten property to verify two-address constraints, this 2536 // property will be set in twoaddressinstruction pass. 2537 unsigned DefIdx; 2538 if (MF->getProperties().hasProperty( 2539 MachineFunctionProperties::Property::TiedOpsRewritten) && 2540 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2541 Reg != MI->getOperand(DefIdx).getReg()) 2542 report("Two-address instruction operands must be identical", MO, MONum); 2543 2544 // Check register classes. 2545 unsigned SubIdx = MO->getSubReg(); 2546 2547 if (Reg.isPhysical()) { 2548 if (SubIdx) { 2549 report("Illegal subregister index for physical register", MO, MONum); 2550 return; 2551 } 2552 if (MONum < MCID.getNumOperands()) { 2553 if (const TargetRegisterClass *DRC = 2554 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2555 if (!DRC->contains(Reg)) { 2556 report("Illegal physical register for instruction", MO, MONum); 2557 errs() << printReg(Reg, TRI) << " is not a " 2558 << TRI->getRegClassName(DRC) << " register.\n"; 2559 } 2560 } 2561 } 2562 if (MO->isRenamable()) { 2563 if (MRI->isReserved(Reg)) { 2564 report("isRenamable set on reserved register", MO, MONum); 2565 return; 2566 } 2567 } 2568 } else { 2569 // Virtual register. 2570 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2571 if (!RC) { 2572 // This is a generic virtual register. 2573 2574 // Do not allow undef uses for generic virtual registers. This ensures 2575 // getVRegDef can never fail and return null on a generic register. 2576 // 2577 // FIXME: This restriction should probably be broadened to all SSA 2578 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2579 // run on the SSA function just before phi elimination. 2580 if (MO->isUndef()) 2581 report("Generic virtual register use cannot be undef", MO, MONum); 2582 2583 // Debug value instruction is permitted to use undefined vregs. 2584 // This is a performance measure to skip the overhead of immediately 2585 // pruning unused debug operands. The final undef substitution occurs 2586 // when debug values are allocated in LDVImpl::handleDebugValue, so 2587 // these verifications always apply after this pass. 2588 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2589 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2590 // If we're post-Select, we can't have gvregs anymore. 2591 if (isFunctionSelected) { 2592 report("Generic virtual register invalid in a Selected function", 2593 MO, MONum); 2594 return; 2595 } 2596 2597 // The gvreg must have a type and it must not have a SubIdx. 2598 LLT Ty = MRI->getType(Reg); 2599 if (!Ty.isValid()) { 2600 report("Generic virtual register must have a valid type", MO, 2601 MONum); 2602 return; 2603 } 2604 2605 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2606 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2607 2608 // If we're post-RegBankSelect, the gvreg must have a bank. 2609 if (!RegBank && isFunctionRegBankSelected) { 2610 report("Generic virtual register must have a bank in a " 2611 "RegBankSelected function", 2612 MO, MONum); 2613 return; 2614 } 2615 2616 // Make sure the register fits into its register bank if any. 2617 if (RegBank && Ty.isValid() && !Ty.isScalableVector() && 2618 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2619 report("Register bank is too small for virtual register", MO, 2620 MONum); 2621 errs() << "Register bank " << RegBank->getName() << " too small(" 2622 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2623 << Ty.getSizeInBits() << "-bits\n"; 2624 return; 2625 } 2626 } 2627 2628 if (SubIdx) { 2629 report("Generic virtual register does not allow subregister index", MO, 2630 MONum); 2631 return; 2632 } 2633 2634 // If this is a target specific instruction and this operand 2635 // has register class constraint, the virtual register must 2636 // comply to it. 2637 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2638 MONum < MCID.getNumOperands() && 2639 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2640 report("Virtual register does not match instruction constraint", MO, 2641 MONum); 2642 errs() << "Expect register class " 2643 << TRI->getRegClassName( 2644 TII->getRegClass(MCID, MONum, TRI, *MF)) 2645 << " but got nothing\n"; 2646 return; 2647 } 2648 2649 break; 2650 } 2651 if (SubIdx) { 2652 const TargetRegisterClass *SRC = 2653 TRI->getSubClassWithSubReg(RC, SubIdx); 2654 if (!SRC) { 2655 report("Invalid subregister index for virtual register", MO, MONum); 2656 errs() << "Register class " << TRI->getRegClassName(RC) 2657 << " does not support subreg index " << SubIdx << "\n"; 2658 return; 2659 } 2660 if (RC != SRC) { 2661 report("Invalid register class for subregister index", MO, MONum); 2662 errs() << "Register class " << TRI->getRegClassName(RC) 2663 << " does not fully support subreg index " << SubIdx << "\n"; 2664 return; 2665 } 2666 } 2667 if (MONum < MCID.getNumOperands()) { 2668 if (const TargetRegisterClass *DRC = 2669 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2670 if (SubIdx) { 2671 const TargetRegisterClass *SuperRC = 2672 TRI->getLargestLegalSuperClass(RC, *MF); 2673 if (!SuperRC) { 2674 report("No largest legal super class exists.", MO, MONum); 2675 return; 2676 } 2677 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2678 if (!DRC) { 2679 report("No matching super-reg register class.", MO, MONum); 2680 return; 2681 } 2682 } 2683 if (!RC->hasSuperClassEq(DRC)) { 2684 report("Illegal virtual register for instruction", MO, MONum); 2685 errs() << "Expected a " << TRI->getRegClassName(DRC) 2686 << " register, but got a " << TRI->getRegClassName(RC) 2687 << " register\n"; 2688 } 2689 } 2690 } 2691 } 2692 break; 2693 } 2694 2695 case MachineOperand::MO_RegisterMask: 2696 regMasks.push_back(MO->getRegMask()); 2697 break; 2698 2699 case MachineOperand::MO_MachineBasicBlock: 2700 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2701 report("PHI operand is not in the CFG", MO, MONum); 2702 break; 2703 2704 case MachineOperand::MO_FrameIndex: 2705 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2706 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2707 int FI = MO->getIndex(); 2708 LiveInterval &LI = LiveStks->getInterval(FI); 2709 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2710 2711 bool stores = MI->mayStore(); 2712 bool loads = MI->mayLoad(); 2713 // For a memory-to-memory move, we need to check if the frame 2714 // index is used for storing or loading, by inspecting the 2715 // memory operands. 2716 if (stores && loads) { 2717 for (auto *MMO : MI->memoperands()) { 2718 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2719 if (PSV == nullptr) continue; 2720 const FixedStackPseudoSourceValue *Value = 2721 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2722 if (Value == nullptr) continue; 2723 if (Value->getFrameIndex() != FI) continue; 2724 2725 if (MMO->isStore()) 2726 loads = false; 2727 else 2728 stores = false; 2729 break; 2730 } 2731 if (loads == stores) 2732 report("Missing fixed stack memoperand.", MI); 2733 } 2734 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2735 report("Instruction loads from dead spill slot", MO, MONum); 2736 errs() << "Live stack: " << LI << '\n'; 2737 } 2738 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2739 report("Instruction stores to dead spill slot", MO, MONum); 2740 errs() << "Live stack: " << LI << '\n'; 2741 } 2742 } 2743 break; 2744 2745 case MachineOperand::MO_CFIIndex: 2746 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2747 report("CFI instruction has invalid index", MO, MONum); 2748 break; 2749 2750 default: 2751 break; 2752 } 2753 } 2754 2755 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2756 unsigned MONum, SlotIndex UseIdx, 2757 const LiveRange &LR, 2758 Register VRegOrUnit, 2759 LaneBitmask LaneMask) { 2760 const MachineInstr *MI = MO->getParent(); 2761 2762 if (!LR.verify()) { 2763 report("invalid live range", MO, MONum); 2764 report_context_liverange(LR); 2765 report_context_vreg_regunit(VRegOrUnit); 2766 report_context(UseIdx); 2767 return; 2768 } 2769 2770 LiveQueryResult LRQ = LR.Query(UseIdx); 2771 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); 2772 // Check if we have a segment at the use, note however that we only need one 2773 // live subregister range, the others may be dead. 2774 if (!HasValue && LaneMask.none()) { 2775 report("No live segment at use", MO, MONum); 2776 report_context_liverange(LR); 2777 report_context_vreg_regunit(VRegOrUnit); 2778 report_context(UseIdx); 2779 } 2780 if (MO->isKill() && !LRQ.isKill()) { 2781 report("Live range continues after kill flag", MO, MONum); 2782 report_context_liverange(LR); 2783 report_context_vreg_regunit(VRegOrUnit); 2784 if (LaneMask.any()) 2785 report_context_lanemask(LaneMask); 2786 report_context(UseIdx); 2787 } 2788 } 2789 2790 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2791 unsigned MONum, SlotIndex DefIdx, 2792 const LiveRange &LR, 2793 Register VRegOrUnit, 2794 bool SubRangeCheck, 2795 LaneBitmask LaneMask) { 2796 if (!LR.verify()) { 2797 report("invalid live range", MO, MONum); 2798 report_context_liverange(LR); 2799 report_context_vreg_regunit(VRegOrUnit); 2800 if (LaneMask.any()) 2801 report_context_lanemask(LaneMask); 2802 report_context(DefIdx); 2803 } 2804 2805 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2806 // The LR can correspond to the whole reg and its def slot is not obliged 2807 // to be the same as the MO' def slot. E.g. when we check here "normal" 2808 // subreg MO but there is other EC subreg MO in the same instruction so the 2809 // whole reg has EC def slot and differs from the currently checked MO' def 2810 // slot. For example: 2811 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2812 // Check that there is an early-clobber def of the same superregister 2813 // somewhere is performed in visitMachineFunctionAfter() 2814 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2815 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2816 (VNI->def != DefIdx && 2817 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2818 report("Inconsistent valno->def", MO, MONum); 2819 report_context_liverange(LR); 2820 report_context_vreg_regunit(VRegOrUnit); 2821 if (LaneMask.any()) 2822 report_context_lanemask(LaneMask); 2823 report_context(*VNI); 2824 report_context(DefIdx); 2825 } 2826 } else { 2827 report("No live segment at def", MO, MONum); 2828 report_context_liverange(LR); 2829 report_context_vreg_regunit(VRegOrUnit); 2830 if (LaneMask.any()) 2831 report_context_lanemask(LaneMask); 2832 report_context(DefIdx); 2833 } 2834 // Check that, if the dead def flag is present, LiveInts agree. 2835 if (MO->isDead()) { 2836 LiveQueryResult LRQ = LR.Query(DefIdx); 2837 if (!LRQ.isDeadDef()) { 2838 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2839 // A dead subreg def only tells us that the specific subreg is dead. There 2840 // could be other non-dead defs of other subregs, or we could have other 2841 // parts of the register being live through the instruction. So unless we 2842 // are checking liveness for a subrange it is ok for the live range to 2843 // continue, given that we have a dead def of a subregister. 2844 if (SubRangeCheck || MO->getSubReg() == 0) { 2845 report("Live range continues after dead def flag", MO, MONum); 2846 report_context_liverange(LR); 2847 report_context_vreg_regunit(VRegOrUnit); 2848 if (LaneMask.any()) 2849 report_context_lanemask(LaneMask); 2850 } 2851 } 2852 } 2853 } 2854 2855 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2856 const MachineInstr *MI = MO->getParent(); 2857 const Register Reg = MO->getReg(); 2858 const unsigned SubRegIdx = MO->getSubReg(); 2859 2860 const LiveInterval *LI = nullptr; 2861 if (LiveInts && Reg.isVirtual()) { 2862 if (LiveInts->hasInterval(Reg)) { 2863 LI = &LiveInts->getInterval(Reg); 2864 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2865 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2866 report("Live interval for subreg operand has no subranges", MO, MONum); 2867 } else { 2868 report("Virtual register has no live interval", MO, MONum); 2869 } 2870 } 2871 2872 // Both use and def operands can read a register. 2873 if (MO->readsReg()) { 2874 if (MO->isKill()) 2875 addRegWithSubRegs(regsKilled, Reg); 2876 2877 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2878 // which case we have already checked that LiveVars knows any kills on the 2879 // bundle header instead). 2880 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2881 !MI->isBundledWithPred()) { 2882 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2883 if (!is_contained(VI.Kills, MI)) 2884 report("Kill missing from LiveVariables", MO, MONum); 2885 } 2886 2887 // Check LiveInts liveness and kill. 2888 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2889 SlotIndex UseIdx; 2890 if (MI->isPHI()) { 2891 // PHI use occurs on the edge, so check for live out here instead. 2892 UseIdx = LiveInts->getMBBEndIdx( 2893 MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); 2894 } else { 2895 UseIdx = LiveInts->getInstructionIndex(*MI); 2896 } 2897 // Check the cached regunit intervals. 2898 if (Reg.isPhysical() && !isReserved(Reg)) { 2899 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2900 if (MRI->isReservedRegUnit(Unit)) 2901 continue; 2902 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2903 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); 2904 } 2905 } 2906 2907 if (Reg.isVirtual()) { 2908 // This is a virtual register interval. 2909 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2910 2911 if (LI->hasSubRanges() && !MO->isDef()) { 2912 LaneBitmask MOMask = SubRegIdx != 0 2913 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2914 : MRI->getMaxLaneMaskForVReg(Reg); 2915 LaneBitmask LiveInMask; 2916 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2917 if ((MOMask & SR.LaneMask).none()) 2918 continue; 2919 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2920 LiveQueryResult LRQ = SR.Query(UseIdx); 2921 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) 2922 LiveInMask |= SR.LaneMask; 2923 } 2924 // At least parts of the register has to be live at the use. 2925 if ((LiveInMask & MOMask).none()) { 2926 report("No live subrange at use", MO, MONum); 2927 report_context(*LI); 2928 report_context(UseIdx); 2929 } 2930 // For PHIs all lanes should be live 2931 if (MI->isPHI() && LiveInMask != MOMask) { 2932 report("Not all lanes of PHI source live at use", MO, MONum); 2933 report_context(*LI); 2934 report_context(UseIdx); 2935 } 2936 } 2937 } 2938 } 2939 2940 // Use of a dead register. 2941 if (!regsLive.count(Reg)) { 2942 if (Reg.isPhysical()) { 2943 // Reserved registers may be used even when 'dead'. 2944 bool Bad = !isReserved(Reg); 2945 // We are fine if just any subregister has a defined value. 2946 if (Bad) { 2947 2948 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2949 if (regsLive.count(SubReg)) { 2950 Bad = false; 2951 break; 2952 } 2953 } 2954 } 2955 // If there is an additional implicit-use of a super register we stop 2956 // here. By definition we are fine if the super register is not 2957 // (completely) dead, if the complete super register is dead we will 2958 // get a report for its operand. 2959 if (Bad) { 2960 for (const MachineOperand &MOP : MI->uses()) { 2961 if (!MOP.isReg() || !MOP.isImplicit()) 2962 continue; 2963 2964 if (!MOP.getReg().isPhysical()) 2965 continue; 2966 2967 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2968 Bad = false; 2969 } 2970 } 2971 if (Bad) 2972 report("Using an undefined physical register", MO, MONum); 2973 } else if (MRI->def_empty(Reg)) { 2974 report("Reading virtual register without a def", MO, MONum); 2975 } else { 2976 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2977 // We don't know which virtual registers are live in, so only complain 2978 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2979 // must be live in. PHI instructions are handled separately. 2980 if (MInfo.regsKilled.count(Reg)) 2981 report("Using a killed virtual register", MO, MONum); 2982 else if (!MI->isPHI()) 2983 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2984 } 2985 } 2986 } 2987 2988 if (MO->isDef()) { 2989 // Register defined. 2990 // TODO: verify that earlyclobber ops are not used. 2991 if (MO->isDead()) 2992 addRegWithSubRegs(regsDead, Reg); 2993 else 2994 addRegWithSubRegs(regsDefined, Reg); 2995 2996 // Verify SSA form. 2997 if (MRI->isSSA() && Reg.isVirtual() && 2998 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 2999 report("Multiple virtual register defs in SSA form", MO, MONum); 3000 3001 // Check LiveInts for a live segment, but only for virtual registers. 3002 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 3003 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 3004 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 3005 3006 if (Reg.isVirtual()) { 3007 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 3008 3009 if (LI->hasSubRanges()) { 3010 LaneBitmask MOMask = SubRegIdx != 0 3011 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 3012 : MRI->getMaxLaneMaskForVReg(Reg); 3013 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3014 if ((SR.LaneMask & MOMask).none()) 3015 continue; 3016 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 3017 } 3018 } 3019 } 3020 } 3021 } 3022 } 3023 3024 // This function gets called after visiting all instructions in a bundle. The 3025 // argument points to the bundle header. 3026 // Normal stand-alone instructions are also considered 'bundles', and this 3027 // function is called for all of them. 3028 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 3029 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3030 set_union(MInfo.regsKilled, regsKilled); 3031 set_subtract(regsLive, regsKilled); regsKilled.clear(); 3032 // Kill any masked registers. 3033 while (!regMasks.empty()) { 3034 const uint32_t *Mask = regMasks.pop_back_val(); 3035 for (Register Reg : regsLive) 3036 if (Reg.isPhysical() && 3037 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 3038 regsDead.push_back(Reg); 3039 } 3040 set_subtract(regsLive, regsDead); regsDead.clear(); 3041 set_union(regsLive, regsDefined); regsDefined.clear(); 3042 } 3043 3044 void 3045 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 3046 MBBInfoMap[MBB].regsLiveOut = regsLive; 3047 regsLive.clear(); 3048 3049 if (Indexes) { 3050 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 3051 if (!(stop > lastIndex)) { 3052 report("Block ends before last instruction index", MBB); 3053 errs() << "Block ends at " << stop 3054 << " last instruction was at " << lastIndex << '\n'; 3055 } 3056 lastIndex = stop; 3057 } 3058 } 3059 3060 namespace { 3061 // This implements a set of registers that serves as a filter: can filter other 3062 // sets by passing through elements not in the filter and blocking those that 3063 // are. Any filter implicitly includes the full set of physical registers upon 3064 // creation, thus filtering them all out. The filter itself as a set only grows, 3065 // and needs to be as efficient as possible. 3066 struct VRegFilter { 3067 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 3068 // no duplicates. Both virtual and physical registers are fine. 3069 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 3070 SmallVector<Register, 0> VRegsBuffer; 3071 filterAndAdd(FromRegSet, VRegsBuffer); 3072 } 3073 // Filter \p FromRegSet through the filter and append passed elements into \p 3074 // ToVRegs. All elements appended are then added to the filter itself. 3075 // \returns true if anything changed. 3076 template <typename RegSetT> 3077 bool filterAndAdd(const RegSetT &FromRegSet, 3078 SmallVectorImpl<Register> &ToVRegs) { 3079 unsigned SparseUniverse = Sparse.size(); 3080 unsigned NewSparseUniverse = SparseUniverse; 3081 unsigned NewDenseSize = Dense.size(); 3082 size_t Begin = ToVRegs.size(); 3083 for (Register Reg : FromRegSet) { 3084 if (!Reg.isVirtual()) 3085 continue; 3086 unsigned Index = Register::virtReg2Index(Reg); 3087 if (Index < SparseUniverseMax) { 3088 if (Index < SparseUniverse && Sparse.test(Index)) 3089 continue; 3090 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 3091 } else { 3092 if (Dense.count(Reg)) 3093 continue; 3094 ++NewDenseSize; 3095 } 3096 ToVRegs.push_back(Reg); 3097 } 3098 size_t End = ToVRegs.size(); 3099 if (Begin == End) 3100 return false; 3101 // Reserving space in sets once performs better than doing so continuously 3102 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 3103 // tuned all the way down) and double iteration (the second one is over a 3104 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 3105 Sparse.resize(NewSparseUniverse); 3106 Dense.reserve(NewDenseSize); 3107 for (unsigned I = Begin; I < End; ++I) { 3108 Register Reg = ToVRegs[I]; 3109 unsigned Index = Register::virtReg2Index(Reg); 3110 if (Index < SparseUniverseMax) 3111 Sparse.set(Index); 3112 else 3113 Dense.insert(Reg); 3114 } 3115 return true; 3116 } 3117 3118 private: 3119 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 3120 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 3121 // are tracked by Dense. The only purpose of the threashold and the Dense set 3122 // is to have a reasonably growing memory usage in pathological cases (large 3123 // number of very sparse VRegFilter instances live at the same time). In 3124 // practice even in the worst-by-execution time cases having all elements 3125 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 3126 // space efficient than if tracked by Dense. The threashold is set to keep the 3127 // worst-case memory usage within 2x of figures determined empirically for 3128 // "all Dense" scenario in such worst-by-execution-time cases. 3129 BitVector Sparse; 3130 DenseSet<unsigned> Dense; 3131 }; 3132 3133 // Implements both a transfer function and a (binary, in-place) join operator 3134 // for a dataflow over register sets with set union join and filtering transfer 3135 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 3136 // Maintains out_b as its state, allowing for O(n) iteration over it at any 3137 // time, where n is the size of the set (as opposed to O(U) where U is the 3138 // universe). filter_b implicitly contains all physical registers at all times. 3139 class FilteringVRegSet { 3140 VRegFilter Filter; 3141 SmallVector<Register, 0> VRegs; 3142 3143 public: 3144 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 3145 // Both virtual and physical registers are fine. 3146 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 3147 Filter.add(RS); 3148 } 3149 // Passes \p RS through the filter_b (transfer function) and adds what's left 3150 // to itself (out_b). 3151 template <typename RegSetT> bool add(const RegSetT &RS) { 3152 // Double-duty the Filter: to maintain VRegs a set (and the join operation 3153 // a set union) just add everything being added here to the Filter as well. 3154 return Filter.filterAndAdd(RS, VRegs); 3155 } 3156 using const_iterator = decltype(VRegs)::const_iterator; 3157 const_iterator begin() const { return VRegs.begin(); } 3158 const_iterator end() const { return VRegs.end(); } 3159 size_t size() const { return VRegs.size(); } 3160 }; 3161 } // namespace 3162 3163 // Calculate the largest possible vregsPassed sets. These are the registers that 3164 // can pass through an MBB live, but may not be live every time. It is assumed 3165 // that all vregsPassed sets are empty before the call. 3166 void MachineVerifier::calcRegsPassed() { 3167 if (MF->empty()) 3168 // ReversePostOrderTraversal doesn't handle empty functions. 3169 return; 3170 3171 for (const MachineBasicBlock *MB : 3172 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 3173 FilteringVRegSet VRegs; 3174 BBInfo &Info = MBBInfoMap[MB]; 3175 assert(Info.reachable); 3176 3177 VRegs.addToFilter(Info.regsKilled); 3178 VRegs.addToFilter(Info.regsLiveOut); 3179 for (const MachineBasicBlock *Pred : MB->predecessors()) { 3180 const BBInfo &PredInfo = MBBInfoMap[Pred]; 3181 if (!PredInfo.reachable) 3182 continue; 3183 3184 VRegs.add(PredInfo.regsLiveOut); 3185 VRegs.add(PredInfo.vregsPassed); 3186 } 3187 Info.vregsPassed.reserve(VRegs.size()); 3188 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 3189 } 3190 } 3191 3192 // Calculate the set of virtual registers that must be passed through each basic 3193 // block in order to satisfy the requirements of successor blocks. This is very 3194 // similar to calcRegsPassed, only backwards. 3195 void MachineVerifier::calcRegsRequired() { 3196 // First push live-in regs to predecessors' vregsRequired. 3197 SmallPtrSet<const MachineBasicBlock*, 8> todo; 3198 for (const auto &MBB : *MF) { 3199 BBInfo &MInfo = MBBInfoMap[&MBB]; 3200 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3201 BBInfo &PInfo = MBBInfoMap[Pred]; 3202 if (PInfo.addRequired(MInfo.vregsLiveIn)) 3203 todo.insert(Pred); 3204 } 3205 3206 // Handle the PHI node. 3207 for (const MachineInstr &MI : MBB.phis()) { 3208 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 3209 // Skip those Operands which are undef regs or not regs. 3210 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 3211 continue; 3212 3213 // Get register and predecessor for one PHI edge. 3214 Register Reg = MI.getOperand(i).getReg(); 3215 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 3216 3217 BBInfo &PInfo = MBBInfoMap[Pred]; 3218 if (PInfo.addRequired(Reg)) 3219 todo.insert(Pred); 3220 } 3221 } 3222 } 3223 3224 // Iteratively push vregsRequired to predecessors. This will converge to the 3225 // same final state regardless of DenseSet iteration order. 3226 while (!todo.empty()) { 3227 const MachineBasicBlock *MBB = *todo.begin(); 3228 todo.erase(MBB); 3229 BBInfo &MInfo = MBBInfoMap[MBB]; 3230 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3231 if (Pred == MBB) 3232 continue; 3233 BBInfo &SInfo = MBBInfoMap[Pred]; 3234 if (SInfo.addRequired(MInfo.vregsRequired)) 3235 todo.insert(Pred); 3236 } 3237 } 3238 } 3239 3240 // Check PHI instructions at the beginning of MBB. It is assumed that 3241 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 3242 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 3243 BBInfo &MInfo = MBBInfoMap[&MBB]; 3244 3245 SmallPtrSet<const MachineBasicBlock*, 8> seen; 3246 for (const MachineInstr &Phi : MBB) { 3247 if (!Phi.isPHI()) 3248 break; 3249 seen.clear(); 3250 3251 const MachineOperand &MODef = Phi.getOperand(0); 3252 if (!MODef.isReg() || !MODef.isDef()) { 3253 report("Expected first PHI operand to be a register def", &MODef, 0); 3254 continue; 3255 } 3256 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 3257 MODef.isEarlyClobber() || MODef.isDebug()) 3258 report("Unexpected flag on PHI operand", &MODef, 0); 3259 Register DefReg = MODef.getReg(); 3260 if (!DefReg.isVirtual()) 3261 report("Expected first PHI operand to be a virtual register", &MODef, 0); 3262 3263 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 3264 const MachineOperand &MO0 = Phi.getOperand(I); 3265 if (!MO0.isReg()) { 3266 report("Expected PHI operand to be a register", &MO0, I); 3267 continue; 3268 } 3269 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 3270 MO0.isDebug() || MO0.isTied()) 3271 report("Unexpected flag on PHI operand", &MO0, I); 3272 3273 const MachineOperand &MO1 = Phi.getOperand(I + 1); 3274 if (!MO1.isMBB()) { 3275 report("Expected PHI operand to be a basic block", &MO1, I + 1); 3276 continue; 3277 } 3278 3279 const MachineBasicBlock &Pre = *MO1.getMBB(); 3280 if (!Pre.isSuccessor(&MBB)) { 3281 report("PHI input is not a predecessor block", &MO1, I + 1); 3282 continue; 3283 } 3284 3285 if (MInfo.reachable) { 3286 seen.insert(&Pre); 3287 BBInfo &PrInfo = MBBInfoMap[&Pre]; 3288 if (!MO0.isUndef() && PrInfo.reachable && 3289 !PrInfo.isLiveOut(MO0.getReg())) 3290 report("PHI operand is not live-out from predecessor", &MO0, I); 3291 } 3292 } 3293 3294 // Did we see all predecessors? 3295 if (MInfo.reachable) { 3296 for (MachineBasicBlock *Pred : MBB.predecessors()) { 3297 if (!seen.count(Pred)) { 3298 report("Missing PHI operand", &Phi); 3299 errs() << printMBBReference(*Pred) 3300 << " is a predecessor according to the CFG.\n"; 3301 } 3302 } 3303 } 3304 } 3305 } 3306 3307 static void 3308 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, 3309 std::function<void(const Twine &Message)> FailureCB) { 3310 MachineConvergenceVerifier CV; 3311 CV.initialize(&errs(), FailureCB, MF); 3312 3313 for (const auto &MBB : MF) { 3314 CV.visit(MBB); 3315 for (const auto &MI : MBB.instrs()) 3316 CV.visit(MI); 3317 } 3318 3319 if (CV.sawTokens()) { 3320 DT.recalculate(const_cast<MachineFunction &>(MF)); 3321 CV.verify(DT); 3322 } 3323 } 3324 3325 void MachineVerifier::visitMachineFunctionAfter() { 3326 auto FailureCB = [this](const Twine &Message) { 3327 report(Message.str().c_str(), MF); 3328 }; 3329 verifyConvergenceControl(*MF, DT, FailureCB); 3330 3331 calcRegsPassed(); 3332 3333 for (const MachineBasicBlock &MBB : *MF) 3334 checkPHIOps(MBB); 3335 3336 // Now check liveness info if available 3337 calcRegsRequired(); 3338 3339 // Check for killed virtual registers that should be live out. 3340 for (const auto &MBB : *MF) { 3341 BBInfo &MInfo = MBBInfoMap[&MBB]; 3342 for (Register VReg : MInfo.vregsRequired) 3343 if (MInfo.regsKilled.count(VReg)) { 3344 report("Virtual register killed in block, but needed live out.", &MBB); 3345 errs() << "Virtual register " << printReg(VReg) 3346 << " is used after the block.\n"; 3347 } 3348 } 3349 3350 if (!MF->empty()) { 3351 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 3352 for (Register VReg : MInfo.vregsRequired) { 3353 report("Virtual register defs don't dominate all uses.", MF); 3354 report_context_vreg(VReg); 3355 } 3356 } 3357 3358 if (LiveVars) 3359 verifyLiveVariables(); 3360 if (LiveInts) 3361 verifyLiveIntervals(); 3362 3363 // Check live-in list of each MBB. If a register is live into MBB, check 3364 // that the register is in regsLiveOut of each predecessor block. Since 3365 // this must come from a definition in the predecesssor or its live-in 3366 // list, this will catch a live-through case where the predecessor does not 3367 // have the register in its live-in list. This currently only checks 3368 // registers that have no aliases, are not allocatable and are not 3369 // reserved, which could mean a condition code register for instance. 3370 if (MRI->tracksLiveness()) 3371 for (const auto &MBB : *MF) 3372 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 3373 MCPhysReg LiveInReg = P.PhysReg; 3374 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 3375 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 3376 continue; 3377 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3378 BBInfo &PInfo = MBBInfoMap[Pred]; 3379 if (!PInfo.regsLiveOut.count(LiveInReg)) { 3380 report("Live in register not found to be live out from predecessor.", 3381 &MBB); 3382 errs() << TRI->getName(LiveInReg) 3383 << " not found to be live out from " 3384 << printMBBReference(*Pred) << "\n"; 3385 } 3386 } 3387 } 3388 3389 for (auto CSInfo : MF->getCallSitesInfo()) 3390 if (!CSInfo.first->isCall()) 3391 report("Call site info referencing instruction that is not call", MF); 3392 3393 // If there's debug-info, check that we don't have any duplicate value 3394 // tracking numbers. 3395 if (MF->getFunction().getSubprogram()) { 3396 DenseSet<unsigned> SeenNumbers; 3397 for (const auto &MBB : *MF) { 3398 for (const auto &MI : MBB) { 3399 if (auto Num = MI.peekDebugInstrNum()) { 3400 auto Result = SeenNumbers.insert((unsigned)Num); 3401 if (!Result.second) 3402 report("Instruction has a duplicated value tracking number", &MI); 3403 } 3404 } 3405 } 3406 } 3407 } 3408 3409 void MachineVerifier::verifyLiveVariables() { 3410 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 3411 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3412 Register Reg = Register::index2VirtReg(I); 3413 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 3414 for (const auto &MBB : *MF) { 3415 BBInfo &MInfo = MBBInfoMap[&MBB]; 3416 3417 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 3418 if (MInfo.vregsRequired.count(Reg)) { 3419 if (!VI.AliveBlocks.test(MBB.getNumber())) { 3420 report("LiveVariables: Block missing from AliveBlocks", &MBB); 3421 errs() << "Virtual register " << printReg(Reg) 3422 << " must be live through the block.\n"; 3423 } 3424 } else { 3425 if (VI.AliveBlocks.test(MBB.getNumber())) { 3426 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 3427 errs() << "Virtual register " << printReg(Reg) 3428 << " is not needed live through the block.\n"; 3429 } 3430 } 3431 } 3432 } 3433 } 3434 3435 void MachineVerifier::verifyLiveIntervals() { 3436 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 3437 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3438 Register Reg = Register::index2VirtReg(I); 3439 3440 // Spilling and splitting may leave unused registers around. Skip them. 3441 if (MRI->reg_nodbg_empty(Reg)) 3442 continue; 3443 3444 if (!LiveInts->hasInterval(Reg)) { 3445 report("Missing live interval for virtual register", MF); 3446 errs() << printReg(Reg, TRI) << " still has defs or uses\n"; 3447 continue; 3448 } 3449 3450 const LiveInterval &LI = LiveInts->getInterval(Reg); 3451 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 3452 verifyLiveInterval(LI); 3453 } 3454 3455 // Verify all the cached regunit intervals. 3456 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 3457 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 3458 verifyLiveRange(*LR, i); 3459 } 3460 3461 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 3462 const VNInfo *VNI, Register Reg, 3463 LaneBitmask LaneMask) { 3464 if (VNI->isUnused()) 3465 return; 3466 3467 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 3468 3469 if (!DefVNI) { 3470 report("Value not live at VNInfo def and not marked unused", MF); 3471 report_context(LR, Reg, LaneMask); 3472 report_context(*VNI); 3473 return; 3474 } 3475 3476 if (DefVNI != VNI) { 3477 report("Live segment at def has different VNInfo", MF); 3478 report_context(LR, Reg, LaneMask); 3479 report_context(*VNI); 3480 return; 3481 } 3482 3483 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 3484 if (!MBB) { 3485 report("Invalid VNInfo definition index", MF); 3486 report_context(LR, Reg, LaneMask); 3487 report_context(*VNI); 3488 return; 3489 } 3490 3491 if (VNI->isPHIDef()) { 3492 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3493 report("PHIDef VNInfo is not defined at MBB start", MBB); 3494 report_context(LR, Reg, LaneMask); 3495 report_context(*VNI); 3496 } 3497 return; 3498 } 3499 3500 // Non-PHI def. 3501 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3502 if (!MI) { 3503 report("No instruction at VNInfo def index", MBB); 3504 report_context(LR, Reg, LaneMask); 3505 report_context(*VNI); 3506 return; 3507 } 3508 3509 if (Reg != 0) { 3510 bool hasDef = false; 3511 bool isEarlyClobber = false; 3512 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3513 if (!MOI->isReg() || !MOI->isDef()) 3514 continue; 3515 if (Reg.isVirtual()) { 3516 if (MOI->getReg() != Reg) 3517 continue; 3518 } else { 3519 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3520 continue; 3521 } 3522 if (LaneMask.any() && 3523 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3524 continue; 3525 hasDef = true; 3526 if (MOI->isEarlyClobber()) 3527 isEarlyClobber = true; 3528 } 3529 3530 if (!hasDef) { 3531 report("Defining instruction does not modify register", MI); 3532 report_context(LR, Reg, LaneMask); 3533 report_context(*VNI); 3534 } 3535 3536 // Early clobber defs begin at USE slots, but other defs must begin at 3537 // DEF slots. 3538 if (isEarlyClobber) { 3539 if (!VNI->def.isEarlyClobber()) { 3540 report("Early clobber def must be at an early-clobber slot", MBB); 3541 report_context(LR, Reg, LaneMask); 3542 report_context(*VNI); 3543 } 3544 } else if (!VNI->def.isRegister()) { 3545 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3546 report_context(LR, Reg, LaneMask); 3547 report_context(*VNI); 3548 } 3549 } 3550 } 3551 3552 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3553 const LiveRange::const_iterator I, 3554 Register Reg, 3555 LaneBitmask LaneMask) { 3556 const LiveRange::Segment &S = *I; 3557 const VNInfo *VNI = S.valno; 3558 assert(VNI && "Live segment has no valno"); 3559 3560 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3561 report("Foreign valno in live segment", MF); 3562 report_context(LR, Reg, LaneMask); 3563 report_context(S); 3564 report_context(*VNI); 3565 } 3566 3567 if (VNI->isUnused()) { 3568 report("Live segment valno is marked unused", MF); 3569 report_context(LR, Reg, LaneMask); 3570 report_context(S); 3571 } 3572 3573 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3574 if (!MBB) { 3575 report("Bad start of live segment, no basic block", MF); 3576 report_context(LR, Reg, LaneMask); 3577 report_context(S); 3578 return; 3579 } 3580 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3581 if (S.start != MBBStartIdx && S.start != VNI->def) { 3582 report("Live segment must begin at MBB entry or valno def", MBB); 3583 report_context(LR, Reg, LaneMask); 3584 report_context(S); 3585 } 3586 3587 const MachineBasicBlock *EndMBB = 3588 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3589 if (!EndMBB) { 3590 report("Bad end of live segment, no basic block", MF); 3591 report_context(LR, Reg, LaneMask); 3592 report_context(S); 3593 return; 3594 } 3595 3596 // Checks for non-live-out segments. 3597 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3598 // RegUnit intervals are allowed dead phis. 3599 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3600 S.end == VNI->def.getDeadSlot()) 3601 return; 3602 3603 // The live segment is ending inside EndMBB 3604 const MachineInstr *MI = 3605 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3606 if (!MI) { 3607 report("Live segment doesn't end at a valid instruction", EndMBB); 3608 report_context(LR, Reg, LaneMask); 3609 report_context(S); 3610 return; 3611 } 3612 3613 // The block slot must refer to a basic block boundary. 3614 if (S.end.isBlock()) { 3615 report("Live segment ends at B slot of an instruction", EndMBB); 3616 report_context(LR, Reg, LaneMask); 3617 report_context(S); 3618 } 3619 3620 if (S.end.isDead()) { 3621 // Segment ends on the dead slot. 3622 // That means there must be a dead def. 3623 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3624 report("Live segment ending at dead slot spans instructions", EndMBB); 3625 report_context(LR, Reg, LaneMask); 3626 report_context(S); 3627 } 3628 } 3629 3630 // After tied operands are rewritten, a live segment can only end at an 3631 // early-clobber slot if it is being redefined by an early-clobber def. 3632 // TODO: Before tied operands are rewritten, a live segment can only end at 3633 // an early-clobber slot if the last use is tied to an early-clobber def. 3634 if (MF->getProperties().hasProperty( 3635 MachineFunctionProperties::Property::TiedOpsRewritten) && 3636 S.end.isEarlyClobber()) { 3637 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3638 report("Live segment ending at early clobber slot must be " 3639 "redefined by an EC def in the same instruction", 3640 EndMBB); 3641 report_context(LR, Reg, LaneMask); 3642 report_context(S); 3643 } 3644 } 3645 3646 // The following checks only apply to virtual registers. Physreg liveness 3647 // is too weird to check. 3648 if (Reg.isVirtual()) { 3649 // A live segment can end with either a redefinition, a kill flag on a 3650 // use, or a dead flag on a def. 3651 bool hasRead = false; 3652 bool hasSubRegDef = false; 3653 bool hasDeadDef = false; 3654 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3655 if (!MOI->isReg() || MOI->getReg() != Reg) 3656 continue; 3657 unsigned Sub = MOI->getSubReg(); 3658 LaneBitmask SLM = 3659 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3660 if (MOI->isDef()) { 3661 if (Sub != 0) { 3662 hasSubRegDef = true; 3663 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3664 // mask for subregister defs. Read-undef defs will be handled by 3665 // readsReg below. 3666 SLM = ~SLM; 3667 } 3668 if (MOI->isDead()) 3669 hasDeadDef = true; 3670 } 3671 if (LaneMask.any() && (LaneMask & SLM).none()) 3672 continue; 3673 if (MOI->readsReg()) 3674 hasRead = true; 3675 } 3676 if (S.end.isDead()) { 3677 // Make sure that the corresponding machine operand for a "dead" live 3678 // range has the dead flag. We cannot perform this check for subregister 3679 // liveranges as partially dead values are allowed. 3680 if (LaneMask.none() && !hasDeadDef) { 3681 report( 3682 "Instruction ending live segment on dead slot has no dead flag", 3683 MI); 3684 report_context(LR, Reg, LaneMask); 3685 report_context(S); 3686 } 3687 } else { 3688 if (!hasRead) { 3689 // When tracking subregister liveness, the main range must start new 3690 // values on partial register writes, even if there is no read. 3691 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3692 !hasSubRegDef) { 3693 report("Instruction ending live segment doesn't read the register", 3694 MI); 3695 report_context(LR, Reg, LaneMask); 3696 report_context(S); 3697 } 3698 } 3699 } 3700 } 3701 } 3702 3703 // Now check all the basic blocks in this live segment. 3704 MachineFunction::const_iterator MFI = MBB->getIterator(); 3705 // Is this live segment the beginning of a non-PHIDef VN? 3706 if (S.start == VNI->def && !VNI->isPHIDef()) { 3707 // Not live-in to any blocks. 3708 if (MBB == EndMBB) 3709 return; 3710 // Skip this block. 3711 ++MFI; 3712 } 3713 3714 SmallVector<SlotIndex, 4> Undefs; 3715 if (LaneMask.any()) { 3716 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3717 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3718 } 3719 3720 while (true) { 3721 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3722 // We don't know how to track physregs into a landing pad. 3723 if (!Reg.isVirtual() && MFI->isEHPad()) { 3724 if (&*MFI == EndMBB) 3725 break; 3726 ++MFI; 3727 continue; 3728 } 3729 3730 // Is VNI a PHI-def in the current block? 3731 bool IsPHI = VNI->isPHIDef() && 3732 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3733 3734 // Check that VNI is live-out of all predecessors. 3735 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3736 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3737 // Predecessor of landing pad live-out on last call. 3738 if (MFI->isEHPad()) { 3739 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3740 if (MI.isCall()) { 3741 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3742 break; 3743 } 3744 } 3745 } 3746 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3747 3748 // All predecessors must have a live-out value. However for a phi 3749 // instruction with subregister intervals 3750 // only one of the subregisters (not necessarily the current one) needs to 3751 // be defined. 3752 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3753 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3754 continue; 3755 report("Register not marked live out of predecessor", Pred); 3756 report_context(LR, Reg, LaneMask); 3757 report_context(*VNI); 3758 errs() << " live into " << printMBBReference(*MFI) << '@' 3759 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " 3760 << PEnd << '\n'; 3761 continue; 3762 } 3763 3764 // Only PHI-defs can take different predecessor values. 3765 if (!IsPHI && PVNI != VNI) { 3766 report("Different value live out of predecessor", Pred); 3767 report_context(LR, Reg, LaneMask); 3768 errs() << "Valno #" << PVNI->id << " live out of " 3769 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" 3770 << VNI->id << " live into " << printMBBReference(*MFI) << '@' 3771 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3772 } 3773 } 3774 if (&*MFI == EndMBB) 3775 break; 3776 ++MFI; 3777 } 3778 } 3779 3780 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3781 LaneBitmask LaneMask) { 3782 for (const VNInfo *VNI : LR.valnos) 3783 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3784 3785 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3786 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3787 } 3788 3789 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3790 Register Reg = LI.reg(); 3791 assert(Reg.isVirtual()); 3792 verifyLiveRange(LI, Reg); 3793 3794 if (LI.hasSubRanges()) { 3795 LaneBitmask Mask; 3796 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3797 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3798 if ((Mask & SR.LaneMask).any()) { 3799 report("Lane masks of sub ranges overlap in live interval", MF); 3800 report_context(LI); 3801 } 3802 if ((SR.LaneMask & ~MaxMask).any()) { 3803 report("Subrange lanemask is invalid", MF); 3804 report_context(LI); 3805 } 3806 if (SR.empty()) { 3807 report("Subrange must not be empty", MF); 3808 report_context(SR, LI.reg(), SR.LaneMask); 3809 } 3810 Mask |= SR.LaneMask; 3811 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3812 if (!LI.covers(SR)) { 3813 report("A Subrange is not covered by the main range", MF); 3814 report_context(LI); 3815 } 3816 } 3817 } 3818 3819 // Check the LI only has one connected component. 3820 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3821 unsigned NumComp = ConEQ.Classify(LI); 3822 if (NumComp > 1) { 3823 report("Multiple connected components in live interval", MF); 3824 report_context(LI); 3825 for (unsigned comp = 0; comp != NumComp; ++comp) { 3826 errs() << comp << ": valnos"; 3827 for (const VNInfo *I : LI.valnos) 3828 if (comp == ConEQ.getEqClass(I)) 3829 errs() << ' ' << I->id; 3830 errs() << '\n'; 3831 } 3832 } 3833 } 3834 3835 namespace { 3836 3837 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3838 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3839 // value is zero. 3840 // We use a bool plus an integer to capture the stack state. 3841 struct StackStateOfBB { 3842 StackStateOfBB() = default; 3843 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3844 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3845 ExitIsSetup(ExitSetup) {} 3846 3847 // Can be negative, which means we are setting up a frame. 3848 int EntryValue = 0; 3849 int ExitValue = 0; 3850 bool EntryIsSetup = false; 3851 bool ExitIsSetup = false; 3852 }; 3853 3854 } // end anonymous namespace 3855 3856 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3857 /// by a FrameDestroy <n>, stack adjustments are identical on all 3858 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3859 void MachineVerifier::verifyStackFrame() { 3860 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3861 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3862 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3863 return; 3864 3865 SmallVector<StackStateOfBB, 8> SPState; 3866 SPState.resize(MF->getNumBlockIDs()); 3867 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3868 3869 // Visit the MBBs in DFS order. 3870 for (df_ext_iterator<const MachineFunction *, 3871 df_iterator_default_set<const MachineBasicBlock *>> 3872 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3873 DFI != DFE; ++DFI) { 3874 const MachineBasicBlock *MBB = *DFI; 3875 3876 StackStateOfBB BBState; 3877 // Check the exit state of the DFS stack predecessor. 3878 if (DFI.getPathLength() >= 2) { 3879 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3880 assert(Reachable.count(StackPred) && 3881 "DFS stack predecessor is already visited.\n"); 3882 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3883 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3884 BBState.ExitValue = BBState.EntryValue; 3885 BBState.ExitIsSetup = BBState.EntryIsSetup; 3886 } 3887 3888 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { 3889 report("Call frame size on entry does not match value computed from " 3890 "predecessor", 3891 MBB); 3892 errs() << "Call frame size on entry " << MBB->getCallFrameSize() 3893 << " does not match value computed from predecessor " 3894 << -BBState.EntryValue << '\n'; 3895 } 3896 3897 // Update stack state by checking contents of MBB. 3898 for (const auto &I : *MBB) { 3899 if (I.getOpcode() == FrameSetupOpcode) { 3900 if (BBState.ExitIsSetup) 3901 report("FrameSetup is after another FrameSetup", &I); 3902 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3903 report("AdjustsStack not set in presence of a frame pseudo " 3904 "instruction.", &I); 3905 BBState.ExitValue -= TII->getFrameTotalSize(I); 3906 BBState.ExitIsSetup = true; 3907 } 3908 3909 if (I.getOpcode() == FrameDestroyOpcode) { 3910 int Size = TII->getFrameTotalSize(I); 3911 if (!BBState.ExitIsSetup) 3912 report("FrameDestroy is not after a FrameSetup", &I); 3913 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3914 BBState.ExitValue; 3915 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3916 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3917 errs() << "FrameDestroy <" << Size << "> is after FrameSetup <" 3918 << AbsSPAdj << ">.\n"; 3919 } 3920 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3921 report("AdjustsStack not set in presence of a frame pseudo " 3922 "instruction.", &I); 3923 BBState.ExitValue += Size; 3924 BBState.ExitIsSetup = false; 3925 } 3926 } 3927 SPState[MBB->getNumber()] = BBState; 3928 3929 // Make sure the exit state of any predecessor is consistent with the entry 3930 // state. 3931 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3932 if (Reachable.count(Pred) && 3933 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3934 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3935 report("The exit stack state of a predecessor is inconsistent.", MBB); 3936 errs() << "Predecessor " << printMBBReference(*Pred) 3937 << " has exit state (" << SPState[Pred->getNumber()].ExitValue 3938 << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3939 << printMBBReference(*MBB) << " has entry state (" 3940 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3941 } 3942 } 3943 3944 // Make sure the entry state of any successor is consistent with the exit 3945 // state. 3946 for (const MachineBasicBlock *Succ : MBB->successors()) { 3947 if (Reachable.count(Succ) && 3948 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3949 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3950 report("The entry stack state of a successor is inconsistent.", MBB); 3951 errs() << "Successor " << printMBBReference(*Succ) 3952 << " has entry state (" << SPState[Succ->getNumber()].EntryValue 3953 << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3954 << printMBBReference(*MBB) << " has exit state (" 3955 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3956 } 3957 } 3958 3959 // Make sure a basic block with return ends with zero stack adjustment. 3960 if (!MBB->empty() && MBB->back().isReturn()) { 3961 if (BBState.ExitIsSetup) 3962 report("A return block ends with a FrameSetup.", MBB); 3963 if (BBState.ExitValue) 3964 report("A return block ends with a nonzero stack adjustment.", MBB); 3965 } 3966 } 3967 } 3968