xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision b30b9eb7a8823c1b3bbcd1bf9452e743a17d9223)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/CodeGen/MachineVerifier.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeCalc.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConvergenceVerifier.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/PseudoSourceValue.h"
54 #include "llvm/CodeGen/RegisterBank.h"
55 #include "llvm/CodeGen/RegisterBankInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGenTypes/LowLevelType.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/EHPersonalities.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/InlineAsm.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCAsmInfo.h"
73 #include "llvm/MC/MCDwarf.h"
74 #include "llvm/MC/MCInstrDesc.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCTargetOptions.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/MathExtras.h"
81 #include "llvm/Support/ModRef.h"
82 #include "llvm/Support/raw_ostream.h"
83 #include "llvm/Target/TargetMachine.h"
84 #include <algorithm>
85 #include <cassert>
86 #include <cstddef>
87 #include <cstdint>
88 #include <iterator>
89 #include <string>
90 #include <utility>
91 
92 using namespace llvm;
93 
94 namespace {
95 
96   struct MachineVerifier {
97     MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b)
98         : MFAM(&MFAM), Banner(b) {}
99 
100     MachineVerifier(Pass *pass, const char *b) : PASS(pass), Banner(b) {}
101 
102     MachineVerifier(const char *b, LiveVariables *LiveVars,
103                     LiveIntervals *LiveInts, LiveStacks *LiveStks,
104                     SlotIndexes *Indexes)
105         : Banner(b), LiveVars(LiveVars), LiveInts(LiveInts), LiveStks(LiveStks),
106           Indexes(Indexes) {}
107 
108     unsigned verify(const MachineFunction &MF);
109 
110     MachineFunctionAnalysisManager *MFAM = nullptr;
111     Pass *const PASS = nullptr;
112     const char *Banner;
113     const MachineFunction *MF = nullptr;
114     const TargetMachine *TM = nullptr;
115     const TargetInstrInfo *TII = nullptr;
116     const TargetRegisterInfo *TRI = nullptr;
117     const MachineRegisterInfo *MRI = nullptr;
118     const RegisterBankInfo *RBI = nullptr;
119 
120     unsigned foundErrors = 0;
121 
122     // Avoid querying the MachineFunctionProperties for each operand.
123     bool isFunctionRegBankSelected = false;
124     bool isFunctionSelected = false;
125     bool isFunctionTracksDebugUserValues = false;
126 
127     using RegVector = SmallVector<Register, 16>;
128     using RegMaskVector = SmallVector<const uint32_t *, 4>;
129     using RegSet = DenseSet<Register>;
130     using RegMap = DenseMap<Register, const MachineInstr *>;
131     using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
132 
133     const MachineInstr *FirstNonPHI = nullptr;
134     const MachineInstr *FirstTerminator = nullptr;
135     BlockSet FunctionBlocks;
136 
137     BitVector regsReserved;
138     RegSet regsLive;
139     RegVector regsDefined, regsDead, regsKilled;
140     RegMaskVector regMasks;
141 
142     SlotIndex lastIndex;
143 
144     // Add Reg and any sub-registers to RV
145     void addRegWithSubRegs(RegVector &RV, Register Reg) {
146       RV.push_back(Reg);
147       if (Reg.isPhysical())
148         append_range(RV, TRI->subregs(Reg.asMCReg()));
149     }
150 
151     struct BBInfo {
152       // Is this MBB reachable from the MF entry point?
153       bool reachable = false;
154 
155       // Vregs that must be live in because they are used without being
156       // defined. Map value is the user. vregsLiveIn doesn't include regs
157       // that only are used by PHI nodes.
158       RegMap vregsLiveIn;
159 
160       // Regs killed in MBB. They may be defined again, and will then be in both
161       // regsKilled and regsLiveOut.
162       RegSet regsKilled;
163 
164       // Regs defined in MBB and live out. Note that vregs passing through may
165       // be live out without being mentioned here.
166       RegSet regsLiveOut;
167 
168       // Vregs that pass through MBB untouched. This set is disjoint from
169       // regsKilled and regsLiveOut.
170       RegSet vregsPassed;
171 
172       // Vregs that must pass through MBB because they are needed by a successor
173       // block. This set is disjoint from regsLiveOut.
174       RegSet vregsRequired;
175 
176       // Set versions of block's predecessor and successor lists.
177       BlockSet Preds, Succs;
178 
179       BBInfo() = default;
180 
181       // Add register to vregsRequired if it belongs there. Return true if
182       // anything changed.
183       bool addRequired(Register Reg) {
184         if (!Reg.isVirtual())
185           return false;
186         if (regsLiveOut.count(Reg))
187           return false;
188         return vregsRequired.insert(Reg).second;
189       }
190 
191       // Same for a full set.
192       bool addRequired(const RegSet &RS) {
193         bool Changed = false;
194         for (Register Reg : RS)
195           Changed |= addRequired(Reg);
196         return Changed;
197       }
198 
199       // Same for a full map.
200       bool addRequired(const RegMap &RM) {
201         bool Changed = false;
202         for (const auto &I : RM)
203           Changed |= addRequired(I.first);
204         return Changed;
205       }
206 
207       // Live-out registers are either in regsLiveOut or vregsPassed.
208       bool isLiveOut(Register Reg) const {
209         return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
210       }
211     };
212 
213     // Extra register info per MBB.
214     DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap;
215 
216     bool isReserved(Register Reg) {
217       return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
218     }
219 
220     bool isAllocatable(Register Reg) const {
221       return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
222              !regsReserved.test(Reg.id());
223     }
224 
225     // Analysis information if available
226     LiveVariables *LiveVars = nullptr;
227     LiveIntervals *LiveInts = nullptr;
228     LiveStacks *LiveStks = nullptr;
229     SlotIndexes *Indexes = nullptr;
230 
231     // This is calculated only when trying to verify convergence control tokens.
232     // Similar to the LLVM IR verifier, we calculate this locally instead of
233     // relying on the pass manager.
234     MachineDominatorTree DT;
235 
236     void visitMachineFunctionBefore();
237     void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
238     void visitMachineBundleBefore(const MachineInstr *MI);
239 
240     /// Verify that all of \p MI's virtual register operands are scalars.
241     /// \returns True if all virtual register operands are scalar. False
242     /// otherwise.
243     bool verifyAllRegOpsScalar(const MachineInstr &MI,
244                                const MachineRegisterInfo &MRI);
245     bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
246 
247     bool verifyGIntrinsicSideEffects(const MachineInstr *MI);
248     bool verifyGIntrinsicConvergence(const MachineInstr *MI);
249     void verifyPreISelGenericInstruction(const MachineInstr *MI);
250 
251     void visitMachineInstrBefore(const MachineInstr *MI);
252     void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
253     void visitMachineBundleAfter(const MachineInstr *MI);
254     void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
255     void visitMachineFunctionAfter();
256 
257     void report(const char *msg, const MachineFunction *MF);
258     void report(const char *msg, const MachineBasicBlock *MBB);
259     void report(const char *msg, const MachineInstr *MI);
260     void report(const char *msg, const MachineOperand *MO, unsigned MONum,
261                 LLT MOVRegType = LLT{});
262     void report(const Twine &Msg, const MachineInstr *MI);
263 
264     void report_context(const LiveInterval &LI) const;
265     void report_context(const LiveRange &LR, Register VRegUnit,
266                         LaneBitmask LaneMask) const;
267     void report_context(const LiveRange::Segment &S) const;
268     void report_context(const VNInfo &VNI) const;
269     void report_context(SlotIndex Pos) const;
270     void report_context(MCPhysReg PhysReg) const;
271     void report_context_liverange(const LiveRange &LR) const;
272     void report_context_lanemask(LaneBitmask LaneMask) const;
273     void report_context_vreg(Register VReg) const;
274     void report_context_vreg_regunit(Register VRegOrUnit) const;
275 
276     void verifyInlineAsm(const MachineInstr *MI);
277 
278     void checkLiveness(const MachineOperand *MO, unsigned MONum);
279     void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
280                             SlotIndex UseIdx, const LiveRange &LR,
281                             Register VRegOrUnit,
282                             LaneBitmask LaneMask = LaneBitmask::getNone());
283     void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
284                             SlotIndex DefIdx, const LiveRange &LR,
285                             Register VRegOrUnit, bool SubRangeCheck = false,
286                             LaneBitmask LaneMask = LaneBitmask::getNone());
287 
288     void markReachable(const MachineBasicBlock *MBB);
289     void calcRegsPassed();
290     void checkPHIOps(const MachineBasicBlock &MBB);
291 
292     void calcRegsRequired();
293     void verifyLiveVariables();
294     void verifyLiveIntervals();
295     void verifyLiveInterval(const LiveInterval&);
296     void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
297                               LaneBitmask);
298     void verifyLiveRangeSegment(const LiveRange &,
299                                 const LiveRange::const_iterator I, Register,
300                                 LaneBitmask);
301     void verifyLiveRange(const LiveRange &, Register,
302                          LaneBitmask LaneMask = LaneBitmask::getNone());
303 
304     void verifyStackFrame();
305 
306     void verifySlotIndexes() const;
307     void verifyProperties(const MachineFunction &MF);
308   };
309 
310   struct MachineVerifierLegacyPass : public MachineFunctionPass {
311     static char ID; // Pass ID, replacement for typeid
312 
313     const std::string Banner;
314 
315     MachineVerifierLegacyPass(std::string banner = std::string())
316         : MachineFunctionPass(ID), Banner(std::move(banner)) {
317       initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
318     }
319 
320     void getAnalysisUsage(AnalysisUsage &AU) const override {
321       AU.addUsedIfAvailable<LiveStacks>();
322       AU.addUsedIfAvailable<LiveVariablesWrapperPass>();
323       AU.addUsedIfAvailable<SlotIndexesWrapperPass>();
324       AU.addUsedIfAvailable<LiveIntervalsWrapperPass>();
325       AU.setPreservesAll();
326       MachineFunctionPass::getAnalysisUsage(AU);
327     }
328 
329     bool runOnMachineFunction(MachineFunction &MF) override {
330       // Skip functions that have known verification problems.
331       // FIXME: Remove this mechanism when all problematic passes have been
332       // fixed.
333       if (MF.getProperties().hasProperty(
334               MachineFunctionProperties::Property::FailsVerification))
335         return false;
336 
337       unsigned FoundErrors = MachineVerifier(this, Banner.c_str()).verify(MF);
338       if (FoundErrors)
339         report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
340       return false;
341     }
342   };
343 
344 } // end anonymous namespace
345 
346 PreservedAnalyses
347 MachineVerifierPass::run(MachineFunction &MF,
348                          MachineFunctionAnalysisManager &MFAM) {
349   // Skip functions that have known verification problems.
350   // FIXME: Remove this mechanism when all problematic passes have been
351   // fixed.
352   if (MF.getProperties().hasProperty(
353           MachineFunctionProperties::Property::FailsVerification))
354     return PreservedAnalyses::all();
355   unsigned FoundErrors = MachineVerifier(MFAM, Banner.c_str()).verify(MF);
356   if (FoundErrors)
357     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
358   return PreservedAnalyses::all();
359 }
360 
361 char MachineVerifierLegacyPass::ID = 0;
362 
363 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier",
364                 "Verify generated machine code", false, false)
365 
366 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
367   return new MachineVerifierLegacyPass(Banner);
368 }
369 
370 void llvm::verifyMachineFunction(const std::string &Banner,
371                                  const MachineFunction &MF) {
372   // TODO: Use MFAM after porting below analyses.
373   // LiveVariables *LiveVars;
374   // LiveIntervals *LiveInts;
375   // LiveStacks *LiveStks;
376   // SlotIndexes *Indexes;
377   unsigned FoundErrors = MachineVerifier(nullptr, Banner.c_str()).verify(MF);
378   if (FoundErrors)
379     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
380 }
381 
382 bool MachineFunction::verify(Pass *p, const char *Banner, bool AbortOnErrors)
383     const {
384   MachineFunction &MF = const_cast<MachineFunction&>(*this);
385   unsigned FoundErrors = MachineVerifier(p, Banner).verify(MF);
386   if (AbortOnErrors && FoundErrors)
387     report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors.");
388   return FoundErrors == 0;
389 }
390 
391 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
392                              const char *Banner, bool AbortOnErrors) const {
393   MachineFunction &MF = const_cast<MachineFunction &>(*this);
394   unsigned FoundErrors =
395       MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes).verify(MF);
396   if (AbortOnErrors && FoundErrors)
397     report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors.");
398   return FoundErrors == 0;
399 }
400 
401 void MachineVerifier::verifySlotIndexes() const {
402   if (Indexes == nullptr)
403     return;
404 
405   // Ensure the IdxMBB list is sorted by slot indexes.
406   SlotIndex Last;
407   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
408        E = Indexes->MBBIndexEnd(); I != E; ++I) {
409     assert(!Last.isValid() || I->first > Last);
410     Last = I->first;
411   }
412 }
413 
414 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
415   // If a pass has introduced virtual registers without clearing the
416   // NoVRegs property (or set it without allocating the vregs)
417   // then report an error.
418   if (MF.getProperties().hasProperty(
419           MachineFunctionProperties::Property::NoVRegs) &&
420       MRI->getNumVirtRegs())
421     report("Function has NoVRegs property but there are VReg operands", &MF);
422 }
423 
424 unsigned MachineVerifier::verify(const MachineFunction &MF) {
425   foundErrors = 0;
426 
427   this->MF = &MF;
428   TM = &MF.getTarget();
429   TII = MF.getSubtarget().getInstrInfo();
430   TRI = MF.getSubtarget().getRegisterInfo();
431   RBI = MF.getSubtarget().getRegBankInfo();
432   MRI = &MF.getRegInfo();
433 
434   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
435       MachineFunctionProperties::Property::FailedISel);
436 
437   // If we're mid-GlobalISel and we already triggered the fallback path then
438   // it's expected that the MIR is somewhat broken but that's ok since we'll
439   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
440   if (isFunctionFailedISel)
441     return foundErrors;
442 
443   isFunctionRegBankSelected = MF.getProperties().hasProperty(
444       MachineFunctionProperties::Property::RegBankSelected);
445   isFunctionSelected = MF.getProperties().hasProperty(
446       MachineFunctionProperties::Property::Selected);
447   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
448       MachineFunctionProperties::Property::TracksDebugUserValues);
449 
450   if (PASS) {
451     auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
452     LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr;
453     // We don't want to verify LiveVariables if LiveIntervals is available.
454     auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>();
455     if (!LiveInts)
456       LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr;
457     LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>();
458     auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>();
459     Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr;
460   }
461   if (MFAM) {
462     MachineFunction &Func = const_cast<MachineFunction &>(MF);
463     LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func);
464     if (!LiveInts)
465       LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func);
466     // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func);
467     Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func);
468   }
469 
470   verifySlotIndexes();
471 
472   verifyProperties(MF);
473 
474   visitMachineFunctionBefore();
475   for (const MachineBasicBlock &MBB : MF) {
476     visitMachineBasicBlockBefore(&MBB);
477     // Keep track of the current bundle header.
478     const MachineInstr *CurBundle = nullptr;
479     // Do we expect the next instruction to be part of the same bundle?
480     bool InBundle = false;
481 
482     for (const MachineInstr &MI : MBB.instrs()) {
483       if (MI.getParent() != &MBB) {
484         report("Bad instruction parent pointer", &MBB);
485         errs() << "Instruction: " << MI;
486         continue;
487       }
488 
489       // Check for consistent bundle flags.
490       if (InBundle && !MI.isBundledWithPred())
491         report("Missing BundledPred flag, "
492                "BundledSucc was set on predecessor",
493                &MI);
494       if (!InBundle && MI.isBundledWithPred())
495         report("BundledPred flag is set, "
496                "but BundledSucc not set on predecessor",
497                &MI);
498 
499       // Is this a bundle header?
500       if (!MI.isInsideBundle()) {
501         if (CurBundle)
502           visitMachineBundleAfter(CurBundle);
503         CurBundle = &MI;
504         visitMachineBundleBefore(CurBundle);
505       } else if (!CurBundle)
506         report("No bundle header", &MI);
507       visitMachineInstrBefore(&MI);
508       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
509         const MachineOperand &Op = MI.getOperand(I);
510         if (Op.getParent() != &MI) {
511           // Make sure to use correct addOperand / removeOperand / ChangeTo
512           // functions when replacing operands of a MachineInstr.
513           report("Instruction has operand with wrong parent set", &MI);
514         }
515 
516         visitMachineOperand(&Op, I);
517       }
518 
519       // Was this the last bundled instruction?
520       InBundle = MI.isBundledWithSucc();
521     }
522     if (CurBundle)
523       visitMachineBundleAfter(CurBundle);
524     if (InBundle)
525       report("BundledSucc flag set on last instruction in block", &MBB.back());
526     visitMachineBasicBlockAfter(&MBB);
527   }
528   visitMachineFunctionAfter();
529 
530   // Clean up.
531   regsLive.clear();
532   regsDefined.clear();
533   regsDead.clear();
534   regsKilled.clear();
535   regMasks.clear();
536   MBBInfoMap.clear();
537 
538   return foundErrors;
539 }
540 
541 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
542   assert(MF);
543   errs() << '\n';
544   if (!foundErrors++) {
545     if (Banner)
546       errs() << "# " << Banner << '\n';
547     if (LiveInts != nullptr)
548       LiveInts->print(errs());
549     else
550       MF->print(errs(), Indexes);
551   }
552   errs() << "*** Bad machine code: " << msg << " ***\n"
553       << "- function:    " << MF->getName() << "\n";
554 }
555 
556 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
557   assert(MBB);
558   report(msg, MBB->getParent());
559   errs() << "- basic block: " << printMBBReference(*MBB) << ' '
560          << MBB->getName() << " (" << (const void *)MBB << ')';
561   if (Indexes)
562     errs() << " [" << Indexes->getMBBStartIdx(MBB)
563         << ';' <<  Indexes->getMBBEndIdx(MBB) << ')';
564   errs() << '\n';
565 }
566 
567 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
568   assert(MI);
569   report(msg, MI->getParent());
570   errs() << "- instruction: ";
571   if (Indexes && Indexes->hasIndex(*MI))
572     errs() << Indexes->getInstructionIndex(*MI) << '\t';
573   MI->print(errs(), /*IsStandalone=*/true);
574 }
575 
576 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
577                              unsigned MONum, LLT MOVRegType) {
578   assert(MO);
579   report(msg, MO->getParent());
580   errs() << "- operand " << MONum << ":   ";
581   MO->print(errs(), MOVRegType, TRI);
582   errs() << "\n";
583 }
584 
585 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
586   report(Msg.str().c_str(), MI);
587 }
588 
589 void MachineVerifier::report_context(SlotIndex Pos) const {
590   errs() << "- at:          " << Pos << '\n';
591 }
592 
593 void MachineVerifier::report_context(const LiveInterval &LI) const {
594   errs() << "- interval:    " << LI << '\n';
595 }
596 
597 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
598                                      LaneBitmask LaneMask) const {
599   report_context_liverange(LR);
600   report_context_vreg_regunit(VRegUnit);
601   if (LaneMask.any())
602     report_context_lanemask(LaneMask);
603 }
604 
605 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
606   errs() << "- segment:     " << S << '\n';
607 }
608 
609 void MachineVerifier::report_context(const VNInfo &VNI) const {
610   errs() << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
611 }
612 
613 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
614   errs() << "- liverange:   " << LR << '\n';
615 }
616 
617 void MachineVerifier::report_context(MCPhysReg PReg) const {
618   errs() << "- p. register: " << printReg(PReg, TRI) << '\n';
619 }
620 
621 void MachineVerifier::report_context_vreg(Register VReg) const {
622   errs() << "- v. register: " << printReg(VReg, TRI) << '\n';
623 }
624 
625 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
626   if (VRegOrUnit.isVirtual()) {
627     report_context_vreg(VRegOrUnit);
628   } else {
629     errs() << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
630   }
631 }
632 
633 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
634   errs() << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
635 }
636 
637 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
638   BBInfo &MInfo = MBBInfoMap[MBB];
639   if (!MInfo.reachable) {
640     MInfo.reachable = true;
641     for (const MachineBasicBlock *Succ : MBB->successors())
642       markReachable(Succ);
643   }
644 }
645 
646 void MachineVerifier::visitMachineFunctionBefore() {
647   lastIndex = SlotIndex();
648   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
649                                            : TRI->getReservedRegs(*MF);
650 
651   if (!MF->empty())
652     markReachable(&MF->front());
653 
654   // Build a set of the basic blocks in the function.
655   FunctionBlocks.clear();
656   for (const auto &MBB : *MF) {
657     FunctionBlocks.insert(&MBB);
658     BBInfo &MInfo = MBBInfoMap[&MBB];
659 
660     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
661     if (MInfo.Preds.size() != MBB.pred_size())
662       report("MBB has duplicate entries in its predecessor list.", &MBB);
663 
664     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
665     if (MInfo.Succs.size() != MBB.succ_size())
666       report("MBB has duplicate entries in its successor list.", &MBB);
667   }
668 
669   // Check that the register use lists are sane.
670   MRI->verifyUseLists();
671 
672   if (!MF->empty())
673     verifyStackFrame();
674 }
675 
676 void
677 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
678   FirstTerminator = nullptr;
679   FirstNonPHI = nullptr;
680 
681   if (!MF->getProperties().hasProperty(
682       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
683     // If this block has allocatable physical registers live-in, check that
684     // it is an entry block or landing pad.
685     for (const auto &LI : MBB->liveins()) {
686       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
687           MBB->getIterator() != MBB->getParent()->begin() &&
688           !MBB->isInlineAsmBrIndirectTarget()) {
689         report("MBB has allocatable live-in, but isn't entry, landing-pad, or "
690                "inlineasm-br-indirect-target.",
691                MBB);
692         report_context(LI.PhysReg);
693       }
694     }
695   }
696 
697   if (MBB->isIRBlockAddressTaken()) {
698     if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
699       report("ir-block-address-taken is associated with basic block not used by "
700              "a blockaddress.",
701              MBB);
702   }
703 
704   // Count the number of landing pad successors.
705   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
706   for (const auto *succ : MBB->successors()) {
707     if (succ->isEHPad())
708       LandingPadSuccs.insert(succ);
709     if (!FunctionBlocks.count(succ))
710       report("MBB has successor that isn't part of the function.", MBB);
711     if (!MBBInfoMap[succ].Preds.count(MBB)) {
712       report("Inconsistent CFG", MBB);
713       errs() << "MBB is not in the predecessor list of the successor "
714              << printMBBReference(*succ) << ".\n";
715     }
716   }
717 
718   // Check the predecessor list.
719   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
720     if (!FunctionBlocks.count(Pred))
721       report("MBB has predecessor that isn't part of the function.", MBB);
722     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
723       report("Inconsistent CFG", MBB);
724       errs() << "MBB is not in the successor list of the predecessor "
725              << printMBBReference(*Pred) << ".\n";
726     }
727   }
728 
729   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
730   const BasicBlock *BB = MBB->getBasicBlock();
731   const Function &F = MF->getFunction();
732   if (LandingPadSuccs.size() > 1 &&
733       !(AsmInfo &&
734         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
735         BB && isa<SwitchInst>(BB->getTerminator())) &&
736       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
737     report("MBB has more than one landing pad successor", MBB);
738 
739   // Call analyzeBranch. If it succeeds, there several more conditions to check.
740   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
741   SmallVector<MachineOperand, 4> Cond;
742   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
743                           Cond)) {
744     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
745     // check whether its answers match up with reality.
746     if (!TBB && !FBB) {
747       // Block falls through to its successor.
748       if (!MBB->empty() && MBB->back().isBarrier() &&
749           !TII->isPredicated(MBB->back())) {
750         report("MBB exits via unconditional fall-through but ends with a "
751                "barrier instruction!", MBB);
752       }
753       if (!Cond.empty()) {
754         report("MBB exits via unconditional fall-through but has a condition!",
755                MBB);
756       }
757     } else if (TBB && !FBB && Cond.empty()) {
758       // Block unconditionally branches somewhere.
759       if (MBB->empty()) {
760         report("MBB exits via unconditional branch but doesn't contain "
761                "any instructions!", MBB);
762       } else if (!MBB->back().isBarrier()) {
763         report("MBB exits via unconditional branch but doesn't end with a "
764                "barrier instruction!", MBB);
765       } else if (!MBB->back().isTerminator()) {
766         report("MBB exits via unconditional branch but the branch isn't a "
767                "terminator instruction!", MBB);
768       }
769     } else if (TBB && !FBB && !Cond.empty()) {
770       // Block conditionally branches somewhere, otherwise falls through.
771       if (MBB->empty()) {
772         report("MBB exits via conditional branch/fall-through but doesn't "
773                "contain any instructions!", MBB);
774       } else if (MBB->back().isBarrier()) {
775         report("MBB exits via conditional branch/fall-through but ends with a "
776                "barrier instruction!", MBB);
777       } else if (!MBB->back().isTerminator()) {
778         report("MBB exits via conditional branch/fall-through but the branch "
779                "isn't a terminator instruction!", MBB);
780       }
781     } else if (TBB && FBB) {
782       // Block conditionally branches somewhere, otherwise branches
783       // somewhere else.
784       if (MBB->empty()) {
785         report("MBB exits via conditional branch/branch but doesn't "
786                "contain any instructions!", MBB);
787       } else if (!MBB->back().isBarrier()) {
788         report("MBB exits via conditional branch/branch but doesn't end with a "
789                "barrier instruction!", MBB);
790       } else if (!MBB->back().isTerminator()) {
791         report("MBB exits via conditional branch/branch but the branch "
792                "isn't a terminator instruction!", MBB);
793       }
794       if (Cond.empty()) {
795         report("MBB exits via conditional branch/branch but there's no "
796                "condition!", MBB);
797       }
798     } else {
799       report("analyzeBranch returned invalid data!", MBB);
800     }
801 
802     // Now check that the successors match up with the answers reported by
803     // analyzeBranch.
804     if (TBB && !MBB->isSuccessor(TBB))
805       report("MBB exits via jump or conditional branch, but its target isn't a "
806              "CFG successor!",
807              MBB);
808     if (FBB && !MBB->isSuccessor(FBB))
809       report("MBB exits via conditional branch, but its target isn't a CFG "
810              "successor!",
811              MBB);
812 
813     // There might be a fallthrough to the next block if there's either no
814     // unconditional true branch, or if there's a condition, and one of the
815     // branches is missing.
816     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
817 
818     // A conditional fallthrough must be an actual CFG successor, not
819     // unreachable. (Conversely, an unconditional fallthrough might not really
820     // be a successor, because the block might end in unreachable.)
821     if (!Cond.empty() && !FBB) {
822       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
823       if (MBBI == MF->end()) {
824         report("MBB conditionally falls through out of function!", MBB);
825       } else if (!MBB->isSuccessor(&*MBBI))
826         report("MBB exits via conditional branch/fall-through but the CFG "
827                "successors don't match the actual successors!",
828                MBB);
829     }
830 
831     // Verify that there aren't any extra un-accounted-for successors.
832     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
833       // If this successor is one of the branch targets, it's okay.
834       if (SuccMBB == TBB || SuccMBB == FBB)
835         continue;
836       // If we might have a fallthrough, and the successor is the fallthrough
837       // block, that's also ok.
838       if (Fallthrough && SuccMBB == MBB->getNextNode())
839         continue;
840       // Also accept successors which are for exception-handling or might be
841       // inlineasm_br targets.
842       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
843         continue;
844       report("MBB has unexpected successors which are not branch targets, "
845              "fallthrough, EHPads, or inlineasm_br targets.",
846              MBB);
847     }
848   }
849 
850   regsLive.clear();
851   if (MRI->tracksLiveness()) {
852     for (const auto &LI : MBB->liveins()) {
853       if (!Register::isPhysicalRegister(LI.PhysReg)) {
854         report("MBB live-in list contains non-physical register", MBB);
855         continue;
856       }
857       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
858         regsLive.insert(SubReg);
859     }
860   }
861 
862   const MachineFrameInfo &MFI = MF->getFrameInfo();
863   BitVector PR = MFI.getPristineRegs(*MF);
864   for (unsigned I : PR.set_bits()) {
865     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
866       regsLive.insert(SubReg);
867   }
868 
869   regsKilled.clear();
870   regsDefined.clear();
871 
872   if (Indexes)
873     lastIndex = Indexes->getMBBStartIdx(MBB);
874 }
875 
876 // This function gets called for all bundle headers, including normal
877 // stand-alone unbundled instructions.
878 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
879   if (Indexes && Indexes->hasIndex(*MI)) {
880     SlotIndex idx = Indexes->getInstructionIndex(*MI);
881     if (!(idx > lastIndex)) {
882       report("Instruction index out of order", MI);
883       errs() << "Last instruction was at " << lastIndex << '\n';
884     }
885     lastIndex = idx;
886   }
887 
888   // Ensure non-terminators don't follow terminators.
889   if (MI->isTerminator()) {
890     if (!FirstTerminator)
891       FirstTerminator = MI;
892   } else if (FirstTerminator) {
893     // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
894     // precede non-terminators.
895     if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
896       report("Non-terminator instruction after the first terminator", MI);
897       errs() << "First terminator was:\t" << *FirstTerminator;
898     }
899   }
900 }
901 
902 // The operands on an INLINEASM instruction must follow a template.
903 // Verify that the flag operands make sense.
904 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
905   // The first two operands on INLINEASM are the asm string and global flags.
906   if (MI->getNumOperands() < 2) {
907     report("Too few operands on inline asm", MI);
908     return;
909   }
910   if (!MI->getOperand(0).isSymbol())
911     report("Asm string must be an external symbol", MI);
912   if (!MI->getOperand(1).isImm())
913     report("Asm flags must be an immediate", MI);
914   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
915   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
916   // and Extra_IsConvergent = 32.
917   if (!isUInt<6>(MI->getOperand(1).getImm()))
918     report("Unknown asm flags", &MI->getOperand(1), 1);
919 
920   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
921 
922   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
923   unsigned NumOps;
924   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
925     const MachineOperand &MO = MI->getOperand(OpNo);
926     // There may be implicit ops after the fixed operands.
927     if (!MO.isImm())
928       break;
929     const InlineAsm::Flag F(MO.getImm());
930     NumOps = 1 + F.getNumOperandRegisters();
931   }
932 
933   if (OpNo > MI->getNumOperands())
934     report("Missing operands in last group", MI);
935 
936   // An optional MDNode follows the groups.
937   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
938     ++OpNo;
939 
940   // All trailing operands must be implicit registers.
941   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
942     const MachineOperand &MO = MI->getOperand(OpNo);
943     if (!MO.isReg() || !MO.isImplicit())
944       report("Expected implicit register after groups", &MO, OpNo);
945   }
946 
947   if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
948     const MachineBasicBlock *MBB = MI->getParent();
949 
950     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
951          i != e; ++i) {
952       const MachineOperand &MO = MI->getOperand(i);
953 
954       if (!MO.isMBB())
955         continue;
956 
957       // Check the successor & predecessor lists look ok, assume they are
958       // not. Find the indirect target without going through the successors.
959       const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
960       if (!IndirectTargetMBB) {
961         report("INLINEASM_BR indirect target does not exist", &MO, i);
962         break;
963       }
964 
965       if (!MBB->isSuccessor(IndirectTargetMBB))
966         report("INLINEASM_BR indirect target missing from successor list", &MO,
967                i);
968 
969       if (!IndirectTargetMBB->isPredecessor(MBB))
970         report("INLINEASM_BR indirect target predecessor list missing parent",
971                &MO, i);
972     }
973   }
974 }
975 
976 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
977                                             const MachineRegisterInfo &MRI) {
978   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
979         if (!Op.isReg())
980           return false;
981         const auto Reg = Op.getReg();
982         if (Reg.isPhysical())
983           return false;
984         return !MRI.getType(Reg).isScalar();
985       }))
986     return true;
987   report("All register operands must have scalar types", &MI);
988   return false;
989 }
990 
991 /// Check that types are consistent when two operands need to have the same
992 /// number of vector elements.
993 /// \return true if the types are valid.
994 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
995                                                const MachineInstr *MI) {
996   if (Ty0.isVector() != Ty1.isVector()) {
997     report("operand types must be all-vector or all-scalar", MI);
998     // Generally we try to report as many issues as possible at once, but in
999     // this case it's not clear what should we be comparing the size of the
1000     // scalar with: the size of the whole vector or its lane. Instead of
1001     // making an arbitrary choice and emitting not so helpful message, let's
1002     // avoid the extra noise and stop here.
1003     return false;
1004   }
1005 
1006   if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) {
1007     report("operand types must preserve number of vector elements", MI);
1008     return false;
1009   }
1010 
1011   return true;
1012 }
1013 
1014 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) {
1015   auto Opcode = MI->getOpcode();
1016   bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC ||
1017                        Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT;
1018   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1019   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1020     AttributeList Attrs = Intrinsic::getAttributes(
1021         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1022     bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
1023     if (NoSideEffects && DeclHasSideEffects) {
1024       report(Twine(TII->getName(Opcode),
1025                    " used with intrinsic that accesses memory"),
1026              MI);
1027       return false;
1028     }
1029     if (!NoSideEffects && !DeclHasSideEffects) {
1030       report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI);
1031       return false;
1032     }
1033   }
1034 
1035   return true;
1036 }
1037 
1038 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) {
1039   auto Opcode = MI->getOpcode();
1040   bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC ||
1041                        Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
1042   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1043   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1044     AttributeList Attrs = Intrinsic::getAttributes(
1045         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1046     bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent);
1047     if (NotConvergent && DeclIsConvergent) {
1048       report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"),
1049              MI);
1050       return false;
1051     }
1052     if (!NotConvergent && !DeclIsConvergent) {
1053       report(
1054           Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"),
1055           MI);
1056       return false;
1057     }
1058   }
1059 
1060   return true;
1061 }
1062 
1063 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
1064   if (isFunctionSelected)
1065     report("Unexpected generic instruction in a Selected function", MI);
1066 
1067   const MCInstrDesc &MCID = MI->getDesc();
1068   unsigned NumOps = MI->getNumOperands();
1069 
1070   // Branches must reference a basic block if they are not indirect
1071   if (MI->isBranch() && !MI->isIndirectBranch()) {
1072     bool HasMBB = false;
1073     for (const MachineOperand &Op : MI->operands()) {
1074       if (Op.isMBB()) {
1075         HasMBB = true;
1076         break;
1077       }
1078     }
1079 
1080     if (!HasMBB) {
1081       report("Branch instruction is missing a basic block operand or "
1082              "isIndirectBranch property",
1083              MI);
1084     }
1085   }
1086 
1087   // Check types.
1088   SmallVector<LLT, 4> Types;
1089   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
1090        I != E; ++I) {
1091     if (!MCID.operands()[I].isGenericType())
1092       continue;
1093     // Generic instructions specify type equality constraints between some of
1094     // their operands. Make sure these are consistent.
1095     size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
1096     Types.resize(std::max(TypeIdx + 1, Types.size()));
1097 
1098     const MachineOperand *MO = &MI->getOperand(I);
1099     if (!MO->isReg()) {
1100       report("generic instruction must use register operands", MI);
1101       continue;
1102     }
1103 
1104     LLT OpTy = MRI->getType(MO->getReg());
1105     // Don't report a type mismatch if there is no actual mismatch, only a
1106     // type missing, to reduce noise:
1107     if (OpTy.isValid()) {
1108       // Only the first valid type for a type index will be printed: don't
1109       // overwrite it later so it's always clear which type was expected:
1110       if (!Types[TypeIdx].isValid())
1111         Types[TypeIdx] = OpTy;
1112       else if (Types[TypeIdx] != OpTy)
1113         report("Type mismatch in generic instruction", MO, I, OpTy);
1114     } else {
1115       // Generic instructions must have types attached to their operands.
1116       report("Generic instruction is missing a virtual register type", MO, I);
1117     }
1118   }
1119 
1120   // Generic opcodes must not have physical register operands.
1121   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1122     const MachineOperand *MO = &MI->getOperand(I);
1123     if (MO->isReg() && MO->getReg().isPhysical())
1124       report("Generic instruction cannot have physical register", MO, I);
1125   }
1126 
1127   // Avoid out of bounds in checks below. This was already reported earlier.
1128   if (MI->getNumOperands() < MCID.getNumOperands())
1129     return;
1130 
1131   StringRef ErrorInfo;
1132   if (!TII->verifyInstruction(*MI, ErrorInfo))
1133     report(ErrorInfo.data(), MI);
1134 
1135   // Verify properties of various specific instruction types
1136   unsigned Opc = MI->getOpcode();
1137   switch (Opc) {
1138   case TargetOpcode::G_ASSERT_SEXT:
1139   case TargetOpcode::G_ASSERT_ZEXT: {
1140     std::string OpcName =
1141         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1142     if (!MI->getOperand(2).isImm()) {
1143       report(Twine(OpcName, " expects an immediate operand #2"), MI);
1144       break;
1145     }
1146 
1147     Register Dst = MI->getOperand(0).getReg();
1148     Register Src = MI->getOperand(1).getReg();
1149     LLT SrcTy = MRI->getType(Src);
1150     int64_t Imm = MI->getOperand(2).getImm();
1151     if (Imm <= 0) {
1152       report(Twine(OpcName, " size must be >= 1"), MI);
1153       break;
1154     }
1155 
1156     if (Imm >= SrcTy.getScalarSizeInBits()) {
1157       report(Twine(OpcName, " size must be less than source bit width"), MI);
1158       break;
1159     }
1160 
1161     const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1162     const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1163 
1164     // Allow only the source bank to be set.
1165     if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1166       report(Twine(OpcName, " cannot change register bank"), MI);
1167       break;
1168     }
1169 
1170     // Don't allow a class change. Do allow member class->regbank.
1171     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1172     if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1173       report(
1174           Twine(OpcName, " source and destination register classes must match"),
1175           MI);
1176       break;
1177     }
1178 
1179     break;
1180   }
1181 
1182   case TargetOpcode::G_CONSTANT:
1183   case TargetOpcode::G_FCONSTANT: {
1184     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1185     if (DstTy.isVector())
1186       report("Instruction cannot use a vector result type", MI);
1187 
1188     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1189       if (!MI->getOperand(1).isCImm()) {
1190         report("G_CONSTANT operand must be cimm", MI);
1191         break;
1192       }
1193 
1194       const ConstantInt *CI = MI->getOperand(1).getCImm();
1195       if (CI->getBitWidth() != DstTy.getSizeInBits())
1196         report("inconsistent constant size", MI);
1197     } else {
1198       if (!MI->getOperand(1).isFPImm()) {
1199         report("G_FCONSTANT operand must be fpimm", MI);
1200         break;
1201       }
1202       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1203 
1204       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1205           DstTy.getSizeInBits()) {
1206         report("inconsistent constant size", MI);
1207       }
1208     }
1209 
1210     break;
1211   }
1212   case TargetOpcode::G_LOAD:
1213   case TargetOpcode::G_STORE:
1214   case TargetOpcode::G_ZEXTLOAD:
1215   case TargetOpcode::G_SEXTLOAD: {
1216     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1217     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1218     if (!PtrTy.isPointer())
1219       report("Generic memory instruction must access a pointer", MI);
1220 
1221     // Generic loads and stores must have a single MachineMemOperand
1222     // describing that access.
1223     if (!MI->hasOneMemOperand()) {
1224       report("Generic instruction accessing memory must have one mem operand",
1225              MI);
1226     } else {
1227       const MachineMemOperand &MMO = **MI->memoperands_begin();
1228       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1229           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1230         if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(),
1231                                 ValTy.getSizeInBits()))
1232           report("Generic extload must have a narrower memory type", MI);
1233       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1234         if (TypeSize::isKnownGT(MMO.getSize().getValue(),
1235                                 ValTy.getSizeInBytes()))
1236           report("load memory size cannot exceed result size", MI);
1237       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1238         if (TypeSize::isKnownLT(ValTy.getSizeInBytes(),
1239                                 MMO.getSize().getValue()))
1240           report("store memory size cannot exceed value size", MI);
1241       }
1242 
1243       const AtomicOrdering Order = MMO.getSuccessOrdering();
1244       if (Opc == TargetOpcode::G_STORE) {
1245         if (Order == AtomicOrdering::Acquire ||
1246             Order == AtomicOrdering::AcquireRelease)
1247           report("atomic store cannot use acquire ordering", MI);
1248 
1249       } else {
1250         if (Order == AtomicOrdering::Release ||
1251             Order == AtomicOrdering::AcquireRelease)
1252           report("atomic load cannot use release ordering", MI);
1253       }
1254     }
1255 
1256     break;
1257   }
1258   case TargetOpcode::G_PHI: {
1259     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1260     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1261                                     [this, &DstTy](const MachineOperand &MO) {
1262                                       if (!MO.isReg())
1263                                         return true;
1264                                       LLT Ty = MRI->getType(MO.getReg());
1265                                       if (!Ty.isValid() || (Ty != DstTy))
1266                                         return false;
1267                                       return true;
1268                                     }))
1269       report("Generic Instruction G_PHI has operands with incompatible/missing "
1270              "types",
1271              MI);
1272     break;
1273   }
1274   case TargetOpcode::G_BITCAST: {
1275     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1276     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1277     if (!DstTy.isValid() || !SrcTy.isValid())
1278       break;
1279 
1280     if (SrcTy.isPointer() != DstTy.isPointer())
1281       report("bitcast cannot convert between pointers and other types", MI);
1282 
1283     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1284       report("bitcast sizes must match", MI);
1285 
1286     if (SrcTy == DstTy)
1287       report("bitcast must change the type", MI);
1288 
1289     break;
1290   }
1291   case TargetOpcode::G_INTTOPTR:
1292   case TargetOpcode::G_PTRTOINT:
1293   case TargetOpcode::G_ADDRSPACE_CAST: {
1294     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1295     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1296     if (!DstTy.isValid() || !SrcTy.isValid())
1297       break;
1298 
1299     verifyVectorElementMatch(DstTy, SrcTy, MI);
1300 
1301     DstTy = DstTy.getScalarType();
1302     SrcTy = SrcTy.getScalarType();
1303 
1304     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1305       if (!DstTy.isPointer())
1306         report("inttoptr result type must be a pointer", MI);
1307       if (SrcTy.isPointer())
1308         report("inttoptr source type must not be a pointer", MI);
1309     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1310       if (!SrcTy.isPointer())
1311         report("ptrtoint source type must be a pointer", MI);
1312       if (DstTy.isPointer())
1313         report("ptrtoint result type must not be a pointer", MI);
1314     } else {
1315       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1316       if (!SrcTy.isPointer() || !DstTy.isPointer())
1317         report("addrspacecast types must be pointers", MI);
1318       else {
1319         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1320           report("addrspacecast must convert different address spaces", MI);
1321       }
1322     }
1323 
1324     break;
1325   }
1326   case TargetOpcode::G_PTR_ADD: {
1327     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1328     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1329     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1330     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1331       break;
1332 
1333     if (!PtrTy.isPointerOrPointerVector())
1334       report("gep first operand must be a pointer", MI);
1335 
1336     if (OffsetTy.isPointerOrPointerVector())
1337       report("gep offset operand must not be a pointer", MI);
1338 
1339     if (PtrTy.isPointerOrPointerVector()) {
1340       const DataLayout &DL = MF->getDataLayout();
1341       unsigned AS = PtrTy.getAddressSpace();
1342       unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8;
1343       if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) {
1344         report("gep offset operand must match index size for address space",
1345                MI);
1346       }
1347     }
1348 
1349     // TODO: Is the offset allowed to be a scalar with a vector?
1350     break;
1351   }
1352   case TargetOpcode::G_PTRMASK: {
1353     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1354     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1355     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1356     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1357       break;
1358 
1359     if (!DstTy.isPointerOrPointerVector())
1360       report("ptrmask result type must be a pointer", MI);
1361 
1362     if (!MaskTy.getScalarType().isScalar())
1363       report("ptrmask mask type must be an integer", MI);
1364 
1365     verifyVectorElementMatch(DstTy, MaskTy, MI);
1366     break;
1367   }
1368   case TargetOpcode::G_SEXT:
1369   case TargetOpcode::G_ZEXT:
1370   case TargetOpcode::G_ANYEXT:
1371   case TargetOpcode::G_TRUNC:
1372   case TargetOpcode::G_FPEXT:
1373   case TargetOpcode::G_FPTRUNC: {
1374     // Number of operands and presense of types is already checked (and
1375     // reported in case of any issues), so no need to report them again. As
1376     // we're trying to report as many issues as possible at once, however, the
1377     // instructions aren't guaranteed to have the right number of operands or
1378     // types attached to them at this point
1379     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1380     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1381     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1382     if (!DstTy.isValid() || !SrcTy.isValid())
1383       break;
1384 
1385     if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector())
1386       report("Generic extend/truncate can not operate on pointers", MI);
1387 
1388     verifyVectorElementMatch(DstTy, SrcTy, MI);
1389 
1390     unsigned DstSize = DstTy.getScalarSizeInBits();
1391     unsigned SrcSize = SrcTy.getScalarSizeInBits();
1392     switch (MI->getOpcode()) {
1393     default:
1394       if (DstSize <= SrcSize)
1395         report("Generic extend has destination type no larger than source", MI);
1396       break;
1397     case TargetOpcode::G_TRUNC:
1398     case TargetOpcode::G_FPTRUNC:
1399       if (DstSize >= SrcSize)
1400         report("Generic truncate has destination type no smaller than source",
1401                MI);
1402       break;
1403     }
1404     break;
1405   }
1406   case TargetOpcode::G_SELECT: {
1407     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1408     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1409     if (!SelTy.isValid() || !CondTy.isValid())
1410       break;
1411 
1412     // Scalar condition select on a vector is valid.
1413     if (CondTy.isVector())
1414       verifyVectorElementMatch(SelTy, CondTy, MI);
1415     break;
1416   }
1417   case TargetOpcode::G_MERGE_VALUES: {
1418     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1419     // e.g. s2N = MERGE sN, sN
1420     // Merging multiple scalars into a vector is not allowed, should use
1421     // G_BUILD_VECTOR for that.
1422     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1423     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1424     if (DstTy.isVector() || SrcTy.isVector())
1425       report("G_MERGE_VALUES cannot operate on vectors", MI);
1426 
1427     const unsigned NumOps = MI->getNumOperands();
1428     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1429       report("G_MERGE_VALUES result size is inconsistent", MI);
1430 
1431     for (unsigned I = 2; I != NumOps; ++I) {
1432       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1433         report("G_MERGE_VALUES source types do not match", MI);
1434     }
1435 
1436     break;
1437   }
1438   case TargetOpcode::G_UNMERGE_VALUES: {
1439     unsigned NumDsts = MI->getNumOperands() - 1;
1440     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1441     for (unsigned i = 1; i < NumDsts; ++i) {
1442       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) {
1443         report("G_UNMERGE_VALUES destination types do not match", MI);
1444         break;
1445       }
1446     }
1447 
1448     LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg());
1449     if (DstTy.isVector()) {
1450       // This case is the converse of G_CONCAT_VECTORS.
1451       if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() ||
1452           SrcTy.isScalableVector() != DstTy.isScalableVector() ||
1453           SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1454         report("G_UNMERGE_VALUES source operand does not match vector "
1455                "destination operands",
1456                MI);
1457     } else if (SrcTy.isVector()) {
1458       // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1459       // mismatched types as long as the total size matches:
1460       //   %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1461       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1462         report("G_UNMERGE_VALUES vector source operand does not match scalar "
1463                "destination operands",
1464                MI);
1465     } else {
1466       // This case is the converse of G_MERGE_VALUES.
1467       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1468         report("G_UNMERGE_VALUES scalar source operand does not match scalar "
1469                "destination operands",
1470                MI);
1471       }
1472     }
1473     break;
1474   }
1475   case TargetOpcode::G_BUILD_VECTOR: {
1476     // Source types must be scalars, dest type a vector. Total size of scalars
1477     // must match the dest vector size.
1478     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1479     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1480     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1481       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1482       break;
1483     }
1484 
1485     if (DstTy.getElementType() != SrcEltTy)
1486       report("G_BUILD_VECTOR result element type must match source type", MI);
1487 
1488     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1489       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1490 
1491     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1492       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1493         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1494 
1495     break;
1496   }
1497   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1498     // Source types must be scalars, dest type a vector. Scalar types must be
1499     // larger than the dest vector elt type, as this is a truncating operation.
1500     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1501     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1502     if (!DstTy.isVector() || SrcEltTy.isVector())
1503       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1504              MI);
1505     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1506       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1507         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1508                MI);
1509     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1510       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1511              "dest elt type",
1512              MI);
1513     break;
1514   }
1515   case TargetOpcode::G_CONCAT_VECTORS: {
1516     // Source types should be vectors, and total size should match the dest
1517     // vector size.
1518     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1519     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1520     if (!DstTy.isVector() || !SrcTy.isVector())
1521       report("G_CONCAT_VECTOR requires vector source and destination operands",
1522              MI);
1523 
1524     if (MI->getNumOperands() < 3)
1525       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1526 
1527     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1528       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1529         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1530     if (DstTy.getElementCount() !=
1531         SrcTy.getElementCount() * (MI->getNumOperands() - 1))
1532       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1533     break;
1534   }
1535   case TargetOpcode::G_ICMP:
1536   case TargetOpcode::G_FCMP: {
1537     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1538     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1539 
1540     if ((DstTy.isVector() != SrcTy.isVector()) ||
1541         (DstTy.isVector() &&
1542          DstTy.getElementCount() != SrcTy.getElementCount()))
1543       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1544 
1545     break;
1546   }
1547   case TargetOpcode::G_SCMP:
1548   case TargetOpcode::G_UCMP: {
1549     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1550     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1551     LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg());
1552 
1553     if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) {
1554       report("Generic scmp/ucmp does not support pointers as operands", MI);
1555       break;
1556     }
1557 
1558     if (DstTy.isPointerOrPointerVector()) {
1559       report("Generic scmp/ucmp does not support pointers as a result", MI);
1560       break;
1561     }
1562 
1563     if ((DstTy.isVector() != SrcTy.isVector()) ||
1564         (DstTy.isVector() &&
1565          DstTy.getElementCount() != SrcTy.getElementCount())) {
1566       report("Generic vector scmp/ucmp must preserve number of lanes", MI);
1567       break;
1568     }
1569 
1570     if (SrcTy != SrcTy2) {
1571       report("Generic scmp/ucmp must have same input types", MI);
1572       break;
1573     }
1574 
1575     break;
1576   }
1577   case TargetOpcode::G_EXTRACT: {
1578     const MachineOperand &SrcOp = MI->getOperand(1);
1579     if (!SrcOp.isReg()) {
1580       report("extract source must be a register", MI);
1581       break;
1582     }
1583 
1584     const MachineOperand &OffsetOp = MI->getOperand(2);
1585     if (!OffsetOp.isImm()) {
1586       report("extract offset must be a constant", MI);
1587       break;
1588     }
1589 
1590     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1591     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1592     if (SrcSize == DstSize)
1593       report("extract source must be larger than result", MI);
1594 
1595     if (DstSize + OffsetOp.getImm() > SrcSize)
1596       report("extract reads past end of register", MI);
1597     break;
1598   }
1599   case TargetOpcode::G_INSERT: {
1600     const MachineOperand &SrcOp = MI->getOperand(2);
1601     if (!SrcOp.isReg()) {
1602       report("insert source must be a register", MI);
1603       break;
1604     }
1605 
1606     const MachineOperand &OffsetOp = MI->getOperand(3);
1607     if (!OffsetOp.isImm()) {
1608       report("insert offset must be a constant", MI);
1609       break;
1610     }
1611 
1612     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1613     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1614 
1615     if (DstSize <= SrcSize)
1616       report("inserted size must be smaller than total register", MI);
1617 
1618     if (SrcSize + OffsetOp.getImm() > DstSize)
1619       report("insert writes past end of register", MI);
1620 
1621     break;
1622   }
1623   case TargetOpcode::G_JUMP_TABLE: {
1624     if (!MI->getOperand(1).isJTI())
1625       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1626     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1627     if (!DstTy.isPointer())
1628       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1629     break;
1630   }
1631   case TargetOpcode::G_BRJT: {
1632     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1633       report("G_BRJT src operand 0 must be a pointer type", MI);
1634 
1635     if (!MI->getOperand(1).isJTI())
1636       report("G_BRJT src operand 1 must be a jump table index", MI);
1637 
1638     const auto &IdxOp = MI->getOperand(2);
1639     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1640       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1641     break;
1642   }
1643   case TargetOpcode::G_INTRINSIC:
1644   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
1645   case TargetOpcode::G_INTRINSIC_CONVERGENT:
1646   case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: {
1647     // TODO: Should verify number of def and use operands, but the current
1648     // interface requires passing in IR types for mangling.
1649     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1650     if (!IntrIDOp.isIntrinsicID()) {
1651       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1652       break;
1653     }
1654 
1655     if (!verifyGIntrinsicSideEffects(MI))
1656       break;
1657     if (!verifyGIntrinsicConvergence(MI))
1658       break;
1659 
1660     break;
1661   }
1662   case TargetOpcode::G_SEXT_INREG: {
1663     if (!MI->getOperand(2).isImm()) {
1664       report("G_SEXT_INREG expects an immediate operand #2", MI);
1665       break;
1666     }
1667 
1668     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1669     int64_t Imm = MI->getOperand(2).getImm();
1670     if (Imm <= 0)
1671       report("G_SEXT_INREG size must be >= 1", MI);
1672     if (Imm >= SrcTy.getScalarSizeInBits())
1673       report("G_SEXT_INREG size must be less than source bit width", MI);
1674     break;
1675   }
1676   case TargetOpcode::G_BSWAP: {
1677     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1678     if (DstTy.getScalarSizeInBits() % 16 != 0)
1679       report("G_BSWAP size must be a multiple of 16 bits", MI);
1680     break;
1681   }
1682   case TargetOpcode::G_VSCALE: {
1683     if (!MI->getOperand(1).isCImm()) {
1684       report("G_VSCALE operand must be cimm", MI);
1685       break;
1686     }
1687     if (MI->getOperand(1).getCImm()->isZero()) {
1688       report("G_VSCALE immediate cannot be zero", MI);
1689       break;
1690     }
1691     break;
1692   }
1693   case TargetOpcode::G_INSERT_SUBVECTOR: {
1694     const MachineOperand &Src0Op = MI->getOperand(1);
1695     if (!Src0Op.isReg()) {
1696       report("G_INSERT_SUBVECTOR first source must be a register", MI);
1697       break;
1698     }
1699 
1700     const MachineOperand &Src1Op = MI->getOperand(2);
1701     if (!Src1Op.isReg()) {
1702       report("G_INSERT_SUBVECTOR second source must be a register", MI);
1703       break;
1704     }
1705 
1706     const MachineOperand &IndexOp = MI->getOperand(3);
1707     if (!IndexOp.isImm()) {
1708       report("G_INSERT_SUBVECTOR index must be an immediate", MI);
1709       break;
1710     }
1711 
1712     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1713     LLT Src1Ty = MRI->getType(Src1Op.getReg());
1714 
1715     if (!DstTy.isVector()) {
1716       report("Destination type must be a vector", MI);
1717       break;
1718     }
1719 
1720     if (!Src1Ty.isVector()) {
1721       report("Second source must be a vector", MI);
1722       break;
1723     }
1724 
1725     if (DstTy.getElementType() != Src1Ty.getElementType()) {
1726       report("Element type of vectors must be the same", MI);
1727       break;
1728     }
1729 
1730     if (Src1Ty.isScalable() != DstTy.isScalable()) {
1731       report("Vector types must both be fixed or both be scalable", MI);
1732       break;
1733     }
1734 
1735     if (ElementCount::isKnownGT(Src1Ty.getElementCount(),
1736                                 DstTy.getElementCount())) {
1737       report("Second source must be smaller than destination vector", MI);
1738       break;
1739     }
1740 
1741     uint64_t Idx = IndexOp.getImm();
1742     uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue();
1743     if (IndexOp.getImm() % Src1MinLen != 0) {
1744       report("Index must be a multiple of the second source vector's "
1745              "minimum vector length",
1746              MI);
1747       break;
1748     }
1749 
1750     uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1751     if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) {
1752       report("Subvector type and index must not cause insert to overrun the "
1753              "vector being inserted into",
1754              MI);
1755       break;
1756     }
1757 
1758     break;
1759   }
1760   case TargetOpcode::G_EXTRACT_SUBVECTOR: {
1761     const MachineOperand &SrcOp = MI->getOperand(1);
1762     if (!SrcOp.isReg()) {
1763       report("G_EXTRACT_SUBVECTOR first source must be a register", MI);
1764       break;
1765     }
1766 
1767     const MachineOperand &IndexOp = MI->getOperand(2);
1768     if (!IndexOp.isImm()) {
1769       report("G_EXTRACT_SUBVECTOR index must be an immediate", MI);
1770       break;
1771     }
1772 
1773     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1774     LLT SrcTy = MRI->getType(SrcOp.getReg());
1775 
1776     if (!DstTy.isVector()) {
1777       report("Destination type must be a vector", MI);
1778       break;
1779     }
1780 
1781     if (!SrcTy.isVector()) {
1782       report("Source must be a vector", MI);
1783       break;
1784     }
1785 
1786     if (DstTy.getElementType() != SrcTy.getElementType()) {
1787       report("Element type of vectors must be the same", MI);
1788       break;
1789     }
1790 
1791     if (SrcTy.isScalable() != DstTy.isScalable()) {
1792       report("Vector types must both be fixed or both be scalable", MI);
1793       break;
1794     }
1795 
1796     if (ElementCount::isKnownGT(DstTy.getElementCount(),
1797                                 SrcTy.getElementCount())) {
1798       report("Destination vector must be smaller than source vector", MI);
1799       break;
1800     }
1801 
1802     uint64_t Idx = IndexOp.getImm();
1803     uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1804     if (Idx % DstMinLen != 0) {
1805       report("Index must be a multiple of the destination vector's minimum "
1806              "vector length",
1807              MI);
1808       break;
1809     }
1810 
1811     uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue();
1812     if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) {
1813       report("Destination type and index must not cause extract to overrun the "
1814              "source vector",
1815              MI);
1816       break;
1817     }
1818 
1819     break;
1820   }
1821   case TargetOpcode::G_SHUFFLE_VECTOR: {
1822     const MachineOperand &MaskOp = MI->getOperand(3);
1823     if (!MaskOp.isShuffleMask()) {
1824       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1825       break;
1826     }
1827 
1828     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1829     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1830     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1831 
1832     if (Src0Ty != Src1Ty)
1833       report("Source operands must be the same type", MI);
1834 
1835     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1836       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1837 
1838     // Don't check that all operands are vector because scalars are used in
1839     // place of 1 element vectors.
1840     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1841     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1842 
1843     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1844 
1845     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1846       report("Wrong result type for shufflemask", MI);
1847 
1848     for (int Idx : MaskIdxes) {
1849       if (Idx < 0)
1850         continue;
1851 
1852       if (Idx >= 2 * SrcNumElts)
1853         report("Out of bounds shuffle index", MI);
1854     }
1855 
1856     break;
1857   }
1858 
1859   case TargetOpcode::G_SPLAT_VECTOR: {
1860     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1861     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1862 
1863     if (!DstTy.isScalableVector()) {
1864       report("Destination type must be a scalable vector", MI);
1865       break;
1866     }
1867 
1868     if (!SrcTy.isScalar() && !SrcTy.isPointer()) {
1869       report("Source type must be a scalar or pointer", MI);
1870       break;
1871     }
1872 
1873     if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(),
1874                             SrcTy.getSizeInBits())) {
1875       report("Element type of the destination must be the same size or smaller "
1876              "than the source type",
1877              MI);
1878       break;
1879     }
1880 
1881     break;
1882   }
1883   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1884     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1885     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1886     LLT IdxTy = MRI->getType(MI->getOperand(2).getReg());
1887 
1888     if (!DstTy.isScalar() && !DstTy.isPointer()) {
1889       report("Destination type must be a scalar or pointer", MI);
1890       break;
1891     }
1892 
1893     if (!SrcTy.isVector()) {
1894       report("First source must be a vector", MI);
1895       break;
1896     }
1897 
1898     auto TLI = MF->getSubtarget().getTargetLowering();
1899     if (IdxTy.getSizeInBits() !=
1900         TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) {
1901       report("Index type must match VectorIdxTy", MI);
1902       break;
1903     }
1904 
1905     break;
1906   }
1907   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1908     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1909     LLT VecTy = MRI->getType(MI->getOperand(1).getReg());
1910     LLT ScaTy = MRI->getType(MI->getOperand(2).getReg());
1911     LLT IdxTy = MRI->getType(MI->getOperand(3).getReg());
1912 
1913     if (!DstTy.isVector()) {
1914       report("Destination type must be a vector", MI);
1915       break;
1916     }
1917 
1918     if (VecTy != DstTy) {
1919       report("Destination type and vector type must match", MI);
1920       break;
1921     }
1922 
1923     if (!ScaTy.isScalar() && !ScaTy.isPointer()) {
1924       report("Inserted element must be a scalar or pointer", MI);
1925       break;
1926     }
1927 
1928     auto TLI = MF->getSubtarget().getTargetLowering();
1929     if (IdxTy.getSizeInBits() !=
1930         TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) {
1931       report("Index type must match VectorIdxTy", MI);
1932       break;
1933     }
1934 
1935     break;
1936   }
1937   case TargetOpcode::G_DYN_STACKALLOC: {
1938     const MachineOperand &DstOp = MI->getOperand(0);
1939     const MachineOperand &AllocOp = MI->getOperand(1);
1940     const MachineOperand &AlignOp = MI->getOperand(2);
1941 
1942     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
1943       report("dst operand 0 must be a pointer type", MI);
1944       break;
1945     }
1946 
1947     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
1948       report("src operand 1 must be a scalar reg type", MI);
1949       break;
1950     }
1951 
1952     if (!AlignOp.isImm()) {
1953       report("src operand 2 must be an immediate type", MI);
1954       break;
1955     }
1956     break;
1957   }
1958   case TargetOpcode::G_MEMCPY_INLINE:
1959   case TargetOpcode::G_MEMCPY:
1960   case TargetOpcode::G_MEMMOVE: {
1961     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1962     if (MMOs.size() != 2) {
1963       report("memcpy/memmove must have 2 memory operands", MI);
1964       break;
1965     }
1966 
1967     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
1968         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
1969       report("wrong memory operand types", MI);
1970       break;
1971     }
1972 
1973     if (MMOs[0]->getSize() != MMOs[1]->getSize())
1974       report("inconsistent memory operand sizes", MI);
1975 
1976     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
1977     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
1978 
1979     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
1980       report("memory instruction operand must be a pointer", MI);
1981       break;
1982     }
1983 
1984     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
1985       report("inconsistent store address space", MI);
1986     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
1987       report("inconsistent load address space", MI);
1988 
1989     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
1990       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
1991         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
1992 
1993     break;
1994   }
1995   case TargetOpcode::G_BZERO:
1996   case TargetOpcode::G_MEMSET: {
1997     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
1998     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
1999     if (MMOs.size() != 1) {
2000       report(Twine(Name, " must have 1 memory operand"), MI);
2001       break;
2002     }
2003 
2004     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
2005       report(Twine(Name, " memory operand must be a store"), MI);
2006       break;
2007     }
2008 
2009     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
2010     if (!DstPtrTy.isPointer()) {
2011       report(Twine(Name, " operand must be a pointer"), MI);
2012       break;
2013     }
2014 
2015     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
2016       report("inconsistent " + Twine(Name, " address space"), MI);
2017 
2018     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
2019         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
2020       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
2021 
2022     break;
2023   }
2024   case TargetOpcode::G_UBSANTRAP: {
2025     const MachineOperand &KindOp = MI->getOperand(0);
2026     if (!MI->getOperand(0).isImm()) {
2027       report("Crash kind must be an immediate", &KindOp, 0);
2028       break;
2029     }
2030     int64_t Kind = MI->getOperand(0).getImm();
2031     if (!isInt<8>(Kind))
2032       report("Crash kind must be 8 bit wide", &KindOp, 0);
2033     break;
2034   }
2035   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
2036   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
2037     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2038     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
2039     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
2040     if (!DstTy.isScalar())
2041       report("Vector reduction requires a scalar destination type", MI);
2042     if (!Src1Ty.isScalar())
2043       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
2044     if (!Src2Ty.isVector())
2045       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
2046     break;
2047   }
2048   case TargetOpcode::G_VECREDUCE_FADD:
2049   case TargetOpcode::G_VECREDUCE_FMUL:
2050   case TargetOpcode::G_VECREDUCE_FMAX:
2051   case TargetOpcode::G_VECREDUCE_FMIN:
2052   case TargetOpcode::G_VECREDUCE_FMAXIMUM:
2053   case TargetOpcode::G_VECREDUCE_FMINIMUM:
2054   case TargetOpcode::G_VECREDUCE_ADD:
2055   case TargetOpcode::G_VECREDUCE_MUL:
2056   case TargetOpcode::G_VECREDUCE_AND:
2057   case TargetOpcode::G_VECREDUCE_OR:
2058   case TargetOpcode::G_VECREDUCE_XOR:
2059   case TargetOpcode::G_VECREDUCE_SMAX:
2060   case TargetOpcode::G_VECREDUCE_SMIN:
2061   case TargetOpcode::G_VECREDUCE_UMAX:
2062   case TargetOpcode::G_VECREDUCE_UMIN: {
2063     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2064     if (!DstTy.isScalar())
2065       report("Vector reduction requires a scalar destination type", MI);
2066     break;
2067   }
2068 
2069   case TargetOpcode::G_SBFX:
2070   case TargetOpcode::G_UBFX: {
2071     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2072     if (DstTy.isVector()) {
2073       report("Bitfield extraction is not supported on vectors", MI);
2074       break;
2075     }
2076     break;
2077   }
2078   case TargetOpcode::G_SHL:
2079   case TargetOpcode::G_LSHR:
2080   case TargetOpcode::G_ASHR:
2081   case TargetOpcode::G_ROTR:
2082   case TargetOpcode::G_ROTL: {
2083     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
2084     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
2085     if (Src1Ty.isVector() != Src2Ty.isVector()) {
2086       report("Shifts and rotates require operands to be either all scalars or "
2087              "all vectors",
2088              MI);
2089       break;
2090     }
2091     break;
2092   }
2093   case TargetOpcode::G_LLROUND:
2094   case TargetOpcode::G_LROUND: {
2095     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2096     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
2097     if (!DstTy.isValid() || !SrcTy.isValid())
2098       break;
2099     if (SrcTy.isPointer() || DstTy.isPointer()) {
2100       StringRef Op = SrcTy.isPointer() ? "Source" : "Destination";
2101       report(Twine(Op, " operand must not be a pointer type"), MI);
2102     } else if (SrcTy.isScalar()) {
2103       verifyAllRegOpsScalar(*MI, *MRI);
2104       break;
2105     } else if (SrcTy.isVector()) {
2106       verifyVectorElementMatch(SrcTy, DstTy, MI);
2107       break;
2108     }
2109     break;
2110   }
2111   case TargetOpcode::G_IS_FPCLASS: {
2112     LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
2113     LLT DestEltTy = DestTy.getScalarType();
2114     if (!DestEltTy.isScalar()) {
2115       report("Destination must be a scalar or vector of scalars", MI);
2116       break;
2117     }
2118     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
2119     LLT SrcEltTy = SrcTy.getScalarType();
2120     if (!SrcEltTy.isScalar()) {
2121       report("Source must be a scalar or vector of scalars", MI);
2122       break;
2123     }
2124     if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
2125       break;
2126     const MachineOperand &TestMO = MI->getOperand(2);
2127     if (!TestMO.isImm()) {
2128       report("floating-point class set (operand 2) must be an immediate", MI);
2129       break;
2130     }
2131     int64_t Test = TestMO.getImm();
2132     if (Test < 0 || Test > fcAllFlags) {
2133       report("Incorrect floating-point class set (operand 2)", MI);
2134       break;
2135     }
2136     break;
2137   }
2138   case TargetOpcode::G_PREFETCH: {
2139     const MachineOperand &AddrOp = MI->getOperand(0);
2140     if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) {
2141       report("addr operand must be a pointer", &AddrOp, 0);
2142       break;
2143     }
2144     const MachineOperand &RWOp = MI->getOperand(1);
2145     if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) {
2146       report("rw operand must be an immediate 0-1", &RWOp, 1);
2147       break;
2148     }
2149     const MachineOperand &LocalityOp = MI->getOperand(2);
2150     if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) {
2151       report("locality operand must be an immediate 0-3", &LocalityOp, 2);
2152       break;
2153     }
2154     const MachineOperand &CacheTypeOp = MI->getOperand(3);
2155     if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) {
2156       report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3);
2157       break;
2158     }
2159     break;
2160   }
2161   case TargetOpcode::G_ASSERT_ALIGN: {
2162     if (MI->getOperand(2).getImm() < 1)
2163       report("alignment immediate must be >= 1", MI);
2164     break;
2165   }
2166   case TargetOpcode::G_CONSTANT_POOL: {
2167     if (!MI->getOperand(1).isCPI())
2168       report("Src operand 1 must be a constant pool index", MI);
2169     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
2170       report("Dst operand 0 must be a pointer", MI);
2171     break;
2172   }
2173   case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: {
2174     const MachineOperand &AddrOp = MI->getOperand(1);
2175     if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer())
2176       report("addr operand must be a pointer", &AddrOp, 1);
2177     break;
2178   }
2179   default:
2180     break;
2181   }
2182 }
2183 
2184 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
2185   const MCInstrDesc &MCID = MI->getDesc();
2186   if (MI->getNumOperands() < MCID.getNumOperands()) {
2187     report("Too few operands", MI);
2188     errs() << MCID.getNumOperands() << " operands expected, but "
2189            << MI->getNumOperands() << " given.\n";
2190   }
2191 
2192   if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent())
2193     report("NoConvergent flag expected only on convergent instructions.", MI);
2194 
2195   if (MI->isPHI()) {
2196     if (MF->getProperties().hasProperty(
2197             MachineFunctionProperties::Property::NoPHIs))
2198       report("Found PHI instruction with NoPHIs property set", MI);
2199 
2200     if (FirstNonPHI)
2201       report("Found PHI instruction after non-PHI", MI);
2202   } else if (FirstNonPHI == nullptr)
2203     FirstNonPHI = MI;
2204 
2205   // Check the tied operands.
2206   if (MI->isInlineAsm())
2207     verifyInlineAsm(MI);
2208 
2209   // Check that unspillable terminators define a reg and have at most one use.
2210   if (TII->isUnspillableTerminator(MI)) {
2211     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
2212       report("Unspillable Terminator does not define a reg", MI);
2213     Register Def = MI->getOperand(0).getReg();
2214     if (Def.isVirtual() &&
2215         !MF->getProperties().hasProperty(
2216             MachineFunctionProperties::Property::NoPHIs) &&
2217         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
2218       report("Unspillable Terminator expected to have at most one use!", MI);
2219   }
2220 
2221   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
2222   // DBG_VALUEs: these are convenient to use in tests, but should never get
2223   // generated.
2224   if (MI->isDebugValue() && MI->getNumOperands() == 4)
2225     if (!MI->getDebugLoc())
2226       report("Missing DebugLoc for debug instruction", MI);
2227 
2228   // Meta instructions should never be the subject of debug value tracking,
2229   // they don't create a value in the output program at all.
2230   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
2231     report("Metadata instruction should not have a value tracking number", MI);
2232 
2233   // Check the MachineMemOperands for basic consistency.
2234   for (MachineMemOperand *Op : MI->memoperands()) {
2235     if (Op->isLoad() && !MI->mayLoad())
2236       report("Missing mayLoad flag", MI);
2237     if (Op->isStore() && !MI->mayStore())
2238       report("Missing mayStore flag", MI);
2239   }
2240 
2241   // Debug values must not have a slot index.
2242   // Other instructions must have one, unless they are inside a bundle.
2243   if (LiveInts) {
2244     bool mapped = !LiveInts->isNotInMIMap(*MI);
2245     if (MI->isDebugOrPseudoInstr()) {
2246       if (mapped)
2247         report("Debug instruction has a slot index", MI);
2248     } else if (MI->isInsideBundle()) {
2249       if (mapped)
2250         report("Instruction inside bundle has a slot index", MI);
2251     } else {
2252       if (!mapped)
2253         report("Missing slot index", MI);
2254     }
2255   }
2256 
2257   unsigned Opc = MCID.getOpcode();
2258   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
2259     verifyPreISelGenericInstruction(MI);
2260     return;
2261   }
2262 
2263   StringRef ErrorInfo;
2264   if (!TII->verifyInstruction(*MI, ErrorInfo))
2265     report(ErrorInfo.data(), MI);
2266 
2267   // Verify properties of various specific instruction types
2268   switch (MI->getOpcode()) {
2269   case TargetOpcode::COPY: {
2270     const MachineOperand &DstOp = MI->getOperand(0);
2271     const MachineOperand &SrcOp = MI->getOperand(1);
2272     const Register SrcReg = SrcOp.getReg();
2273     const Register DstReg = DstOp.getReg();
2274 
2275     LLT DstTy = MRI->getType(DstReg);
2276     LLT SrcTy = MRI->getType(SrcReg);
2277     if (SrcTy.isValid() && DstTy.isValid()) {
2278       // If both types are valid, check that the types are the same.
2279       if (SrcTy != DstTy) {
2280         report("Copy Instruction is illegal with mismatching types", MI);
2281         errs() << "Def = " << DstTy << ", Src = " << SrcTy << "\n";
2282       }
2283 
2284       break;
2285     }
2286 
2287     if (!SrcTy.isValid() && !DstTy.isValid())
2288       break;
2289 
2290     // If we have only one valid type, this is likely a copy between a virtual
2291     // and physical register.
2292     TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
2293     TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
2294     if (SrcReg.isPhysical() && DstTy.isValid()) {
2295       const TargetRegisterClass *SrcRC =
2296           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
2297       if (SrcRC)
2298         SrcSize = TRI->getRegSizeInBits(*SrcRC);
2299     }
2300 
2301     if (DstReg.isPhysical() && SrcTy.isValid()) {
2302       const TargetRegisterClass *DstRC =
2303           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
2304       if (DstRC)
2305         DstSize = TRI->getRegSizeInBits(*DstRC);
2306     }
2307 
2308     // The next two checks allow COPY between physical and virtual registers,
2309     // when the virtual register has a scalable size and the physical register
2310     // has a fixed size. These checks allow COPY between *potentialy* mismatched
2311     // sizes. However, once RegisterBankSelection occurs, MachineVerifier should
2312     // be able to resolve a fixed size for the scalable vector, and at that
2313     // point this function will know for sure whether the sizes are mismatched
2314     // and correctly report a size mismatch.
2315     if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() &&
2316         !SrcSize.isScalable())
2317       break;
2318     if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() &&
2319         !DstSize.isScalable())
2320       break;
2321 
2322     if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) {
2323       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
2324         report("Copy Instruction is illegal with mismatching sizes", MI);
2325         errs() << "Def Size = " << DstSize << ", Src Size = " << SrcSize
2326                << "\n";
2327       }
2328     }
2329     break;
2330   }
2331   case TargetOpcode::STATEPOINT: {
2332     StatepointOpers SO(MI);
2333     if (!MI->getOperand(SO.getIDPos()).isImm() ||
2334         !MI->getOperand(SO.getNBytesPos()).isImm() ||
2335         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
2336       report("meta operands to STATEPOINT not constant!", MI);
2337       break;
2338     }
2339 
2340     auto VerifyStackMapConstant = [&](unsigned Offset) {
2341       if (Offset >= MI->getNumOperands()) {
2342         report("stack map constant to STATEPOINT is out of range!", MI);
2343         return;
2344       }
2345       if (!MI->getOperand(Offset - 1).isImm() ||
2346           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
2347           !MI->getOperand(Offset).isImm())
2348         report("stack map constant to STATEPOINT not well formed!", MI);
2349     };
2350     VerifyStackMapConstant(SO.getCCIdx());
2351     VerifyStackMapConstant(SO.getFlagsIdx());
2352     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
2353     VerifyStackMapConstant(SO.getNumGCPtrIdx());
2354     VerifyStackMapConstant(SO.getNumAllocaIdx());
2355     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
2356 
2357     // Verify that all explicit statepoint defs are tied to gc operands as
2358     // they are expected to be a relocation of gc operands.
2359     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
2360     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
2361     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
2362       unsigned UseOpIdx;
2363       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
2364         report("STATEPOINT defs expected to be tied", MI);
2365         break;
2366       }
2367       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
2368         report("STATEPOINT def tied to non-gc operand", MI);
2369         break;
2370       }
2371     }
2372 
2373     // TODO: verify we have properly encoded deopt arguments
2374   } break;
2375   case TargetOpcode::INSERT_SUBREG: {
2376     unsigned InsertedSize;
2377     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
2378       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
2379     else
2380       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
2381     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
2382     if (SubRegSize < InsertedSize) {
2383       report("INSERT_SUBREG expected inserted value to have equal or lesser "
2384              "size than the subreg it was inserted into", MI);
2385       break;
2386     }
2387   } break;
2388   case TargetOpcode::REG_SEQUENCE: {
2389     unsigned NumOps = MI->getNumOperands();
2390     if (!(NumOps & 1)) {
2391       report("Invalid number of operands for REG_SEQUENCE", MI);
2392       break;
2393     }
2394 
2395     for (unsigned I = 1; I != NumOps; I += 2) {
2396       const MachineOperand &RegOp = MI->getOperand(I);
2397       const MachineOperand &SubRegOp = MI->getOperand(I + 1);
2398 
2399       if (!RegOp.isReg())
2400         report("Invalid register operand for REG_SEQUENCE", &RegOp, I);
2401 
2402       if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
2403           SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
2404         report("Invalid subregister index operand for REG_SEQUENCE",
2405                &SubRegOp, I + 1);
2406       }
2407     }
2408 
2409     Register DstReg = MI->getOperand(0).getReg();
2410     if (DstReg.isPhysical())
2411       report("REG_SEQUENCE does not support physical register results", MI);
2412 
2413     if (MI->getOperand(0).getSubReg())
2414       report("Invalid subreg result for REG_SEQUENCE", MI);
2415 
2416     break;
2417   }
2418   }
2419 }
2420 
2421 void
2422 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
2423   const MachineInstr *MI = MO->getParent();
2424   const MCInstrDesc &MCID = MI->getDesc();
2425   unsigned NumDefs = MCID.getNumDefs();
2426   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
2427     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
2428 
2429   // The first MCID.NumDefs operands must be explicit register defines
2430   if (MONum < NumDefs) {
2431     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2432     if (!MO->isReg())
2433       report("Explicit definition must be a register", MO, MONum);
2434     else if (!MO->isDef() && !MCOI.isOptionalDef())
2435       report("Explicit definition marked as use", MO, MONum);
2436     else if (MO->isImplicit())
2437       report("Explicit definition marked as implicit", MO, MONum);
2438   } else if (MONum < MCID.getNumOperands()) {
2439     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2440     // Don't check if it's the last operand in a variadic instruction. See,
2441     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2442     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2443     if (!IsOptional) {
2444       if (MO->isReg()) {
2445         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2446           report("Explicit operand marked as def", MO, MONum);
2447         if (MO->isImplicit())
2448           report("Explicit operand marked as implicit", MO, MONum);
2449       }
2450 
2451       // Check that an instruction has register operands only as expected.
2452       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2453           !MO->isReg() && !MO->isFI())
2454         report("Expected a register operand.", MO, MONum);
2455       if (MO->isReg()) {
2456         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2457             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2458              !TII->isPCRelRegisterOperandLegal(*MO)))
2459           report("Expected a non-register operand.", MO, MONum);
2460       }
2461     }
2462 
2463     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
2464     if (TiedTo != -1) {
2465       if (!MO->isReg())
2466         report("Tied use must be a register", MO, MONum);
2467       else if (!MO->isTied())
2468         report("Operand should be tied", MO, MONum);
2469       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
2470         report("Tied def doesn't match MCInstrDesc", MO, MONum);
2471       else if (MO->getReg().isPhysical()) {
2472         const MachineOperand &MOTied = MI->getOperand(TiedTo);
2473         if (!MOTied.isReg())
2474           report("Tied counterpart must be a register", &MOTied, TiedTo);
2475         else if (MOTied.getReg().isPhysical() &&
2476                  MO->getReg() != MOTied.getReg())
2477           report("Tied physical registers must match.", &MOTied, TiedTo);
2478       }
2479     } else if (MO->isReg() && MO->isTied())
2480       report("Explicit operand should not be tied", MO, MONum);
2481   } else if (!MI->isVariadic()) {
2482     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2483     if (!MO->isValidExcessOperand())
2484       report("Extra explicit operand on non-variadic instruction", MO, MONum);
2485   }
2486 
2487   switch (MO->getType()) {
2488   case MachineOperand::MO_Register: {
2489     // Verify debug flag on debug instructions. Check this first because reg0
2490     // indicates an undefined debug value.
2491     if (MI->isDebugInstr() && MO->isUse()) {
2492       if (!MO->isDebug())
2493         report("Register operand must be marked debug", MO, MONum);
2494     } else if (MO->isDebug()) {
2495       report("Register operand must not be marked debug", MO, MONum);
2496     }
2497 
2498     const Register Reg = MO->getReg();
2499     if (!Reg)
2500       return;
2501     if (MRI->tracksLiveness() && !MI->isDebugInstr())
2502       checkLiveness(MO, MONum);
2503 
2504     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2505         MO->getReg().isVirtual()) // TODO: Apply to physregs too
2506       report("Undef virtual register def operands require a subregister", MO, MONum);
2507 
2508     // Verify the consistency of tied operands.
2509     if (MO->isTied()) {
2510       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
2511       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
2512       if (!OtherMO.isReg())
2513         report("Must be tied to a register", MO, MONum);
2514       if (!OtherMO.isTied())
2515         report("Missing tie flags on tied operand", MO, MONum);
2516       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
2517         report("Inconsistent tie links", MO, MONum);
2518       if (MONum < MCID.getNumDefs()) {
2519         if (OtherIdx < MCID.getNumOperands()) {
2520           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
2521             report("Explicit def tied to explicit use without tie constraint",
2522                    MO, MONum);
2523         } else {
2524           if (!OtherMO.isImplicit())
2525             report("Explicit def should be tied to implicit use", MO, MONum);
2526         }
2527       }
2528     }
2529 
2530     // Verify two-address constraints after the twoaddressinstruction pass.
2531     // Both twoaddressinstruction pass and phi-node-elimination pass call
2532     // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification
2533     // after twoaddressinstruction pass not after phi-node-elimination pass. So
2534     // we shouldn't use the IsSSA as the condition, we should based on
2535     // TiedOpsRewritten property to verify two-address constraints, this
2536     // property will be set in twoaddressinstruction pass.
2537     unsigned DefIdx;
2538     if (MF->getProperties().hasProperty(
2539             MachineFunctionProperties::Property::TiedOpsRewritten) &&
2540         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2541         Reg != MI->getOperand(DefIdx).getReg())
2542       report("Two-address instruction operands must be identical", MO, MONum);
2543 
2544     // Check register classes.
2545     unsigned SubIdx = MO->getSubReg();
2546 
2547     if (Reg.isPhysical()) {
2548       if (SubIdx) {
2549         report("Illegal subregister index for physical register", MO, MONum);
2550         return;
2551       }
2552       if (MONum < MCID.getNumOperands()) {
2553         if (const TargetRegisterClass *DRC =
2554               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2555           if (!DRC->contains(Reg)) {
2556             report("Illegal physical register for instruction", MO, MONum);
2557             errs() << printReg(Reg, TRI) << " is not a "
2558                    << TRI->getRegClassName(DRC) << " register.\n";
2559           }
2560         }
2561       }
2562       if (MO->isRenamable()) {
2563         if (MRI->isReserved(Reg)) {
2564           report("isRenamable set on reserved register", MO, MONum);
2565           return;
2566         }
2567       }
2568     } else {
2569       // Virtual register.
2570       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2571       if (!RC) {
2572         // This is a generic virtual register.
2573 
2574         // Do not allow undef uses for generic virtual registers. This ensures
2575         // getVRegDef can never fail and return null on a generic register.
2576         //
2577         // FIXME: This restriction should probably be broadened to all SSA
2578         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2579         // run on the SSA function just before phi elimination.
2580         if (MO->isUndef())
2581           report("Generic virtual register use cannot be undef", MO, MONum);
2582 
2583         // Debug value instruction is permitted to use undefined vregs.
2584         // This is a performance measure to skip the overhead of immediately
2585         // pruning unused debug operands. The final undef substitution occurs
2586         // when debug values are allocated in LDVImpl::handleDebugValue, so
2587         // these verifications always apply after this pass.
2588         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2589             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2590           // If we're post-Select, we can't have gvregs anymore.
2591           if (isFunctionSelected) {
2592             report("Generic virtual register invalid in a Selected function",
2593                    MO, MONum);
2594             return;
2595           }
2596 
2597           // The gvreg must have a type and it must not have a SubIdx.
2598           LLT Ty = MRI->getType(Reg);
2599           if (!Ty.isValid()) {
2600             report("Generic virtual register must have a valid type", MO,
2601                    MONum);
2602             return;
2603           }
2604 
2605           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2606           const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo();
2607 
2608           // If we're post-RegBankSelect, the gvreg must have a bank.
2609           if (!RegBank && isFunctionRegBankSelected) {
2610             report("Generic virtual register must have a bank in a "
2611                    "RegBankSelected function",
2612                    MO, MONum);
2613             return;
2614           }
2615 
2616           // Make sure the register fits into its register bank if any.
2617           if (RegBank && Ty.isValid() && !Ty.isScalableVector() &&
2618               RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) {
2619             report("Register bank is too small for virtual register", MO,
2620                    MONum);
2621             errs() << "Register bank " << RegBank->getName() << " too small("
2622                    << RBI->getMaximumSize(RegBank->getID()) << ") to fit "
2623                    << Ty.getSizeInBits() << "-bits\n";
2624             return;
2625           }
2626         }
2627 
2628         if (SubIdx)  {
2629           report("Generic virtual register does not allow subregister index", MO,
2630                  MONum);
2631           return;
2632         }
2633 
2634         // If this is a target specific instruction and this operand
2635         // has register class constraint, the virtual register must
2636         // comply to it.
2637         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2638             MONum < MCID.getNumOperands() &&
2639             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2640           report("Virtual register does not match instruction constraint", MO,
2641                  MONum);
2642           errs() << "Expect register class "
2643                  << TRI->getRegClassName(
2644                         TII->getRegClass(MCID, MONum, TRI, *MF))
2645                  << " but got nothing\n";
2646           return;
2647         }
2648 
2649         break;
2650       }
2651       if (SubIdx) {
2652         const TargetRegisterClass *SRC =
2653           TRI->getSubClassWithSubReg(RC, SubIdx);
2654         if (!SRC) {
2655           report("Invalid subregister index for virtual register", MO, MONum);
2656           errs() << "Register class " << TRI->getRegClassName(RC)
2657               << " does not support subreg index " << SubIdx << "\n";
2658           return;
2659         }
2660         if (RC != SRC) {
2661           report("Invalid register class for subregister index", MO, MONum);
2662           errs() << "Register class " << TRI->getRegClassName(RC)
2663               << " does not fully support subreg index " << SubIdx << "\n";
2664           return;
2665         }
2666       }
2667       if (MONum < MCID.getNumOperands()) {
2668         if (const TargetRegisterClass *DRC =
2669               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2670           if (SubIdx) {
2671             const TargetRegisterClass *SuperRC =
2672                 TRI->getLargestLegalSuperClass(RC, *MF);
2673             if (!SuperRC) {
2674               report("No largest legal super class exists.", MO, MONum);
2675               return;
2676             }
2677             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2678             if (!DRC) {
2679               report("No matching super-reg register class.", MO, MONum);
2680               return;
2681             }
2682           }
2683           if (!RC->hasSuperClassEq(DRC)) {
2684             report("Illegal virtual register for instruction", MO, MONum);
2685             errs() << "Expected a " << TRI->getRegClassName(DRC)
2686                 << " register, but got a " << TRI->getRegClassName(RC)
2687                 << " register\n";
2688           }
2689         }
2690       }
2691     }
2692     break;
2693   }
2694 
2695   case MachineOperand::MO_RegisterMask:
2696     regMasks.push_back(MO->getRegMask());
2697     break;
2698 
2699   case MachineOperand::MO_MachineBasicBlock:
2700     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2701       report("PHI operand is not in the CFG", MO, MONum);
2702     break;
2703 
2704   case MachineOperand::MO_FrameIndex:
2705     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2706         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2707       int FI = MO->getIndex();
2708       LiveInterval &LI = LiveStks->getInterval(FI);
2709       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2710 
2711       bool stores = MI->mayStore();
2712       bool loads = MI->mayLoad();
2713       // For a memory-to-memory move, we need to check if the frame
2714       // index is used for storing or loading, by inspecting the
2715       // memory operands.
2716       if (stores && loads) {
2717         for (auto *MMO : MI->memoperands()) {
2718           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2719           if (PSV == nullptr) continue;
2720           const FixedStackPseudoSourceValue *Value =
2721             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2722           if (Value == nullptr) continue;
2723           if (Value->getFrameIndex() != FI) continue;
2724 
2725           if (MMO->isStore())
2726             loads = false;
2727           else
2728             stores = false;
2729           break;
2730         }
2731         if (loads == stores)
2732           report("Missing fixed stack memoperand.", MI);
2733       }
2734       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2735         report("Instruction loads from dead spill slot", MO, MONum);
2736         errs() << "Live stack: " << LI << '\n';
2737       }
2738       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2739         report("Instruction stores to dead spill slot", MO, MONum);
2740         errs() << "Live stack: " << LI << '\n';
2741       }
2742     }
2743     break;
2744 
2745   case MachineOperand::MO_CFIIndex:
2746     if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2747       report("CFI instruction has invalid index", MO, MONum);
2748     break;
2749 
2750   default:
2751     break;
2752   }
2753 }
2754 
2755 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2756                                          unsigned MONum, SlotIndex UseIdx,
2757                                          const LiveRange &LR,
2758                                          Register VRegOrUnit,
2759                                          LaneBitmask LaneMask) {
2760   const MachineInstr *MI = MO->getParent();
2761 
2762   if (!LR.verify()) {
2763     report("invalid live range", MO, MONum);
2764     report_context_liverange(LR);
2765     report_context_vreg_regunit(VRegOrUnit);
2766     report_context(UseIdx);
2767     return;
2768   }
2769 
2770   LiveQueryResult LRQ = LR.Query(UseIdx);
2771   bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut());
2772   // Check if we have a segment at the use, note however that we only need one
2773   // live subregister range, the others may be dead.
2774   if (!HasValue && LaneMask.none()) {
2775     report("No live segment at use", MO, MONum);
2776     report_context_liverange(LR);
2777     report_context_vreg_regunit(VRegOrUnit);
2778     report_context(UseIdx);
2779   }
2780   if (MO->isKill() && !LRQ.isKill()) {
2781     report("Live range continues after kill flag", MO, MONum);
2782     report_context_liverange(LR);
2783     report_context_vreg_regunit(VRegOrUnit);
2784     if (LaneMask.any())
2785       report_context_lanemask(LaneMask);
2786     report_context(UseIdx);
2787   }
2788 }
2789 
2790 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2791                                          unsigned MONum, SlotIndex DefIdx,
2792                                          const LiveRange &LR,
2793                                          Register VRegOrUnit,
2794                                          bool SubRangeCheck,
2795                                          LaneBitmask LaneMask) {
2796   if (!LR.verify()) {
2797     report("invalid live range", MO, MONum);
2798     report_context_liverange(LR);
2799     report_context_vreg_regunit(VRegOrUnit);
2800     if (LaneMask.any())
2801       report_context_lanemask(LaneMask);
2802     report_context(DefIdx);
2803   }
2804 
2805   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2806     // The LR can correspond to the whole reg and its def slot is not obliged
2807     // to be the same as the MO' def slot. E.g. when we check here "normal"
2808     // subreg MO but there is other EC subreg MO in the same instruction so the
2809     // whole reg has EC def slot and differs from the currently checked MO' def
2810     // slot. For example:
2811     // %0 [16e,32r:0) 0@16e  L..3 [16e,32r:0) 0@16e  L..C [16r,32r:0) 0@16r
2812     // Check that there is an early-clobber def of the same superregister
2813     // somewhere is performed in visitMachineFunctionAfter()
2814     if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2815         !SlotIndex::isSameInstr(VNI->def, DefIdx) ||
2816         (VNI->def != DefIdx &&
2817          (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2818       report("Inconsistent valno->def", MO, MONum);
2819       report_context_liverange(LR);
2820       report_context_vreg_regunit(VRegOrUnit);
2821       if (LaneMask.any())
2822         report_context_lanemask(LaneMask);
2823       report_context(*VNI);
2824       report_context(DefIdx);
2825     }
2826   } else {
2827     report("No live segment at def", MO, MONum);
2828     report_context_liverange(LR);
2829     report_context_vreg_regunit(VRegOrUnit);
2830     if (LaneMask.any())
2831       report_context_lanemask(LaneMask);
2832     report_context(DefIdx);
2833   }
2834   // Check that, if the dead def flag is present, LiveInts agree.
2835   if (MO->isDead()) {
2836     LiveQueryResult LRQ = LR.Query(DefIdx);
2837     if (!LRQ.isDeadDef()) {
2838       assert(VRegOrUnit.isVirtual() && "Expecting a virtual register.");
2839       // A dead subreg def only tells us that the specific subreg is dead. There
2840       // could be other non-dead defs of other subregs, or we could have other
2841       // parts of the register being live through the instruction. So unless we
2842       // are checking liveness for a subrange it is ok for the live range to
2843       // continue, given that we have a dead def of a subregister.
2844       if (SubRangeCheck || MO->getSubReg() == 0) {
2845         report("Live range continues after dead def flag", MO, MONum);
2846         report_context_liverange(LR);
2847         report_context_vreg_regunit(VRegOrUnit);
2848         if (LaneMask.any())
2849           report_context_lanemask(LaneMask);
2850       }
2851     }
2852   }
2853 }
2854 
2855 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2856   const MachineInstr *MI = MO->getParent();
2857   const Register Reg = MO->getReg();
2858   const unsigned SubRegIdx = MO->getSubReg();
2859 
2860   const LiveInterval *LI = nullptr;
2861   if (LiveInts && Reg.isVirtual()) {
2862     if (LiveInts->hasInterval(Reg)) {
2863       LI = &LiveInts->getInterval(Reg);
2864       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2865           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2866         report("Live interval for subreg operand has no subranges", MO, MONum);
2867     } else {
2868       report("Virtual register has no live interval", MO, MONum);
2869     }
2870   }
2871 
2872   // Both use and def operands can read a register.
2873   if (MO->readsReg()) {
2874     if (MO->isKill())
2875       addRegWithSubRegs(regsKilled, Reg);
2876 
2877     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2878     // which case we have already checked that LiveVars knows any kills on the
2879     // bundle header instead).
2880     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2881         !MI->isBundledWithPred()) {
2882       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2883       if (!is_contained(VI.Kills, MI))
2884         report("Kill missing from LiveVariables", MO, MONum);
2885     }
2886 
2887     // Check LiveInts liveness and kill.
2888     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2889       SlotIndex UseIdx;
2890       if (MI->isPHI()) {
2891         // PHI use occurs on the edge, so check for live out here instead.
2892         UseIdx = LiveInts->getMBBEndIdx(
2893           MI->getOperand(MONum + 1).getMBB()).getPrevSlot();
2894       } else {
2895         UseIdx = LiveInts->getInstructionIndex(*MI);
2896       }
2897       // Check the cached regunit intervals.
2898       if (Reg.isPhysical() && !isReserved(Reg)) {
2899         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
2900           if (MRI->isReservedRegUnit(Unit))
2901             continue;
2902           if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
2903             checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit);
2904         }
2905       }
2906 
2907       if (Reg.isVirtual()) {
2908         // This is a virtual register interval.
2909         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2910 
2911         if (LI->hasSubRanges() && !MO->isDef()) {
2912           LaneBitmask MOMask = SubRegIdx != 0
2913                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2914                                    : MRI->getMaxLaneMaskForVReg(Reg);
2915           LaneBitmask LiveInMask;
2916           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2917             if ((MOMask & SR.LaneMask).none())
2918               continue;
2919             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2920             LiveQueryResult LRQ = SR.Query(UseIdx);
2921             if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()))
2922               LiveInMask |= SR.LaneMask;
2923           }
2924           // At least parts of the register has to be live at the use.
2925           if ((LiveInMask & MOMask).none()) {
2926             report("No live subrange at use", MO, MONum);
2927             report_context(*LI);
2928             report_context(UseIdx);
2929           }
2930           // For PHIs all lanes should be live
2931           if (MI->isPHI() && LiveInMask != MOMask) {
2932             report("Not all lanes of PHI source live at use", MO, MONum);
2933             report_context(*LI);
2934             report_context(UseIdx);
2935           }
2936         }
2937       }
2938     }
2939 
2940     // Use of a dead register.
2941     if (!regsLive.count(Reg)) {
2942       if (Reg.isPhysical()) {
2943         // Reserved registers may be used even when 'dead'.
2944         bool Bad = !isReserved(Reg);
2945         // We are fine if just any subregister has a defined value.
2946         if (Bad) {
2947 
2948           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
2949             if (regsLive.count(SubReg)) {
2950               Bad = false;
2951               break;
2952             }
2953           }
2954         }
2955         // If there is an additional implicit-use of a super register we stop
2956         // here. By definition we are fine if the super register is not
2957         // (completely) dead, if the complete super register is dead we will
2958         // get a report for its operand.
2959         if (Bad) {
2960           for (const MachineOperand &MOP : MI->uses()) {
2961             if (!MOP.isReg() || !MOP.isImplicit())
2962               continue;
2963 
2964             if (!MOP.getReg().isPhysical())
2965               continue;
2966 
2967             if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg))
2968               Bad = false;
2969           }
2970         }
2971         if (Bad)
2972           report("Using an undefined physical register", MO, MONum);
2973       } else if (MRI->def_empty(Reg)) {
2974         report("Reading virtual register without a def", MO, MONum);
2975       } else {
2976         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
2977         // We don't know which virtual registers are live in, so only complain
2978         // if vreg was killed in this MBB. Otherwise keep track of vregs that
2979         // must be live in. PHI instructions are handled separately.
2980         if (MInfo.regsKilled.count(Reg))
2981           report("Using a killed virtual register", MO, MONum);
2982         else if (!MI->isPHI())
2983           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
2984       }
2985     }
2986   }
2987 
2988   if (MO->isDef()) {
2989     // Register defined.
2990     // TODO: verify that earlyclobber ops are not used.
2991     if (MO->isDead())
2992       addRegWithSubRegs(regsDead, Reg);
2993     else
2994       addRegWithSubRegs(regsDefined, Reg);
2995 
2996     // Verify SSA form.
2997     if (MRI->isSSA() && Reg.isVirtual() &&
2998         std::next(MRI->def_begin(Reg)) != MRI->def_end())
2999       report("Multiple virtual register defs in SSA form", MO, MONum);
3000 
3001     // Check LiveInts for a live segment, but only for virtual registers.
3002     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
3003       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
3004       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
3005 
3006       if (Reg.isVirtual()) {
3007         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
3008 
3009         if (LI->hasSubRanges()) {
3010           LaneBitmask MOMask = SubRegIdx != 0
3011                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
3012                                    : MRI->getMaxLaneMaskForVReg(Reg);
3013           for (const LiveInterval::SubRange &SR : LI->subranges()) {
3014             if ((SR.LaneMask & MOMask).none())
3015               continue;
3016             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
3017           }
3018         }
3019       }
3020     }
3021   }
3022 }
3023 
3024 // This function gets called after visiting all instructions in a bundle. The
3025 // argument points to the bundle header.
3026 // Normal stand-alone instructions are also considered 'bundles', and this
3027 // function is called for all of them.
3028 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
3029   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
3030   set_union(MInfo.regsKilled, regsKilled);
3031   set_subtract(regsLive, regsKilled); regsKilled.clear();
3032   // Kill any masked registers.
3033   while (!regMasks.empty()) {
3034     const uint32_t *Mask = regMasks.pop_back_val();
3035     for (Register Reg : regsLive)
3036       if (Reg.isPhysical() &&
3037           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
3038         regsDead.push_back(Reg);
3039   }
3040   set_subtract(regsLive, regsDead);   regsDead.clear();
3041   set_union(regsLive, regsDefined);   regsDefined.clear();
3042 }
3043 
3044 void
3045 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
3046   MBBInfoMap[MBB].regsLiveOut = regsLive;
3047   regsLive.clear();
3048 
3049   if (Indexes) {
3050     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
3051     if (!(stop > lastIndex)) {
3052       report("Block ends before last instruction index", MBB);
3053       errs() << "Block ends at " << stop
3054           << " last instruction was at " << lastIndex << '\n';
3055     }
3056     lastIndex = stop;
3057   }
3058 }
3059 
3060 namespace {
3061 // This implements a set of registers that serves as a filter: can filter other
3062 // sets by passing through elements not in the filter and blocking those that
3063 // are. Any filter implicitly includes the full set of physical registers upon
3064 // creation, thus filtering them all out. The filter itself as a set only grows,
3065 // and needs to be as efficient as possible.
3066 struct VRegFilter {
3067   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
3068   // no duplicates. Both virtual and physical registers are fine.
3069   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
3070     SmallVector<Register, 0> VRegsBuffer;
3071     filterAndAdd(FromRegSet, VRegsBuffer);
3072   }
3073   // Filter \p FromRegSet through the filter and append passed elements into \p
3074   // ToVRegs. All elements appended are then added to the filter itself.
3075   // \returns true if anything changed.
3076   template <typename RegSetT>
3077   bool filterAndAdd(const RegSetT &FromRegSet,
3078                     SmallVectorImpl<Register> &ToVRegs) {
3079     unsigned SparseUniverse = Sparse.size();
3080     unsigned NewSparseUniverse = SparseUniverse;
3081     unsigned NewDenseSize = Dense.size();
3082     size_t Begin = ToVRegs.size();
3083     for (Register Reg : FromRegSet) {
3084       if (!Reg.isVirtual())
3085         continue;
3086       unsigned Index = Register::virtReg2Index(Reg);
3087       if (Index < SparseUniverseMax) {
3088         if (Index < SparseUniverse && Sparse.test(Index))
3089           continue;
3090         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
3091       } else {
3092         if (Dense.count(Reg))
3093           continue;
3094         ++NewDenseSize;
3095       }
3096       ToVRegs.push_back(Reg);
3097     }
3098     size_t End = ToVRegs.size();
3099     if (Begin == End)
3100       return false;
3101     // Reserving space in sets once performs better than doing so continuously
3102     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
3103     // tuned all the way down) and double iteration (the second one is over a
3104     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
3105     Sparse.resize(NewSparseUniverse);
3106     Dense.reserve(NewDenseSize);
3107     for (unsigned I = Begin; I < End; ++I) {
3108       Register Reg = ToVRegs[I];
3109       unsigned Index = Register::virtReg2Index(Reg);
3110       if (Index < SparseUniverseMax)
3111         Sparse.set(Index);
3112       else
3113         Dense.insert(Reg);
3114     }
3115     return true;
3116   }
3117 
3118 private:
3119   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
3120   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
3121   // are tracked by Dense. The only purpose of the threashold and the Dense set
3122   // is to have a reasonably growing memory usage in pathological cases (large
3123   // number of very sparse VRegFilter instances live at the same time). In
3124   // practice even in the worst-by-execution time cases having all elements
3125   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
3126   // space efficient than if tracked by Dense. The threashold is set to keep the
3127   // worst-case memory usage within 2x of figures determined empirically for
3128   // "all Dense" scenario in such worst-by-execution-time cases.
3129   BitVector Sparse;
3130   DenseSet<unsigned> Dense;
3131 };
3132 
3133 // Implements both a transfer function and a (binary, in-place) join operator
3134 // for a dataflow over register sets with set union join and filtering transfer
3135 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
3136 // Maintains out_b as its state, allowing for O(n) iteration over it at any
3137 // time, where n is the size of the set (as opposed to O(U) where U is the
3138 // universe). filter_b implicitly contains all physical registers at all times.
3139 class FilteringVRegSet {
3140   VRegFilter Filter;
3141   SmallVector<Register, 0> VRegs;
3142 
3143 public:
3144   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
3145   // Both virtual and physical registers are fine.
3146   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
3147     Filter.add(RS);
3148   }
3149   // Passes \p RS through the filter_b (transfer function) and adds what's left
3150   // to itself (out_b).
3151   template <typename RegSetT> bool add(const RegSetT &RS) {
3152     // Double-duty the Filter: to maintain VRegs a set (and the join operation
3153     // a set union) just add everything being added here to the Filter as well.
3154     return Filter.filterAndAdd(RS, VRegs);
3155   }
3156   using const_iterator = decltype(VRegs)::const_iterator;
3157   const_iterator begin() const { return VRegs.begin(); }
3158   const_iterator end() const { return VRegs.end(); }
3159   size_t size() const { return VRegs.size(); }
3160 };
3161 } // namespace
3162 
3163 // Calculate the largest possible vregsPassed sets. These are the registers that
3164 // can pass through an MBB live, but may not be live every time. It is assumed
3165 // that all vregsPassed sets are empty before the call.
3166 void MachineVerifier::calcRegsPassed() {
3167   if (MF->empty())
3168     // ReversePostOrderTraversal doesn't handle empty functions.
3169     return;
3170 
3171   for (const MachineBasicBlock *MB :
3172        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
3173     FilteringVRegSet VRegs;
3174     BBInfo &Info = MBBInfoMap[MB];
3175     assert(Info.reachable);
3176 
3177     VRegs.addToFilter(Info.regsKilled);
3178     VRegs.addToFilter(Info.regsLiveOut);
3179     for (const MachineBasicBlock *Pred : MB->predecessors()) {
3180       const BBInfo &PredInfo = MBBInfoMap[Pred];
3181       if (!PredInfo.reachable)
3182         continue;
3183 
3184       VRegs.add(PredInfo.regsLiveOut);
3185       VRegs.add(PredInfo.vregsPassed);
3186     }
3187     Info.vregsPassed.reserve(VRegs.size());
3188     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
3189   }
3190 }
3191 
3192 // Calculate the set of virtual registers that must be passed through each basic
3193 // block in order to satisfy the requirements of successor blocks. This is very
3194 // similar to calcRegsPassed, only backwards.
3195 void MachineVerifier::calcRegsRequired() {
3196   // First push live-in regs to predecessors' vregsRequired.
3197   SmallPtrSet<const MachineBasicBlock*, 8> todo;
3198   for (const auto &MBB : *MF) {
3199     BBInfo &MInfo = MBBInfoMap[&MBB];
3200     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3201       BBInfo &PInfo = MBBInfoMap[Pred];
3202       if (PInfo.addRequired(MInfo.vregsLiveIn))
3203         todo.insert(Pred);
3204     }
3205 
3206     // Handle the PHI node.
3207     for (const MachineInstr &MI : MBB.phis()) {
3208       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
3209         // Skip those Operands which are undef regs or not regs.
3210         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
3211           continue;
3212 
3213         // Get register and predecessor for one PHI edge.
3214         Register Reg = MI.getOperand(i).getReg();
3215         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
3216 
3217         BBInfo &PInfo = MBBInfoMap[Pred];
3218         if (PInfo.addRequired(Reg))
3219           todo.insert(Pred);
3220       }
3221     }
3222   }
3223 
3224   // Iteratively push vregsRequired to predecessors. This will converge to the
3225   // same final state regardless of DenseSet iteration order.
3226   while (!todo.empty()) {
3227     const MachineBasicBlock *MBB = *todo.begin();
3228     todo.erase(MBB);
3229     BBInfo &MInfo = MBBInfoMap[MBB];
3230     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3231       if (Pred == MBB)
3232         continue;
3233       BBInfo &SInfo = MBBInfoMap[Pred];
3234       if (SInfo.addRequired(MInfo.vregsRequired))
3235         todo.insert(Pred);
3236     }
3237   }
3238 }
3239 
3240 // Check PHI instructions at the beginning of MBB. It is assumed that
3241 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
3242 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
3243   BBInfo &MInfo = MBBInfoMap[&MBB];
3244 
3245   SmallPtrSet<const MachineBasicBlock*, 8> seen;
3246   for (const MachineInstr &Phi : MBB) {
3247     if (!Phi.isPHI())
3248       break;
3249     seen.clear();
3250 
3251     const MachineOperand &MODef = Phi.getOperand(0);
3252     if (!MODef.isReg() || !MODef.isDef()) {
3253       report("Expected first PHI operand to be a register def", &MODef, 0);
3254       continue;
3255     }
3256     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
3257         MODef.isEarlyClobber() || MODef.isDebug())
3258       report("Unexpected flag on PHI operand", &MODef, 0);
3259     Register DefReg = MODef.getReg();
3260     if (!DefReg.isVirtual())
3261       report("Expected first PHI operand to be a virtual register", &MODef, 0);
3262 
3263     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
3264       const MachineOperand &MO0 = Phi.getOperand(I);
3265       if (!MO0.isReg()) {
3266         report("Expected PHI operand to be a register", &MO0, I);
3267         continue;
3268       }
3269       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
3270           MO0.isDebug() || MO0.isTied())
3271         report("Unexpected flag on PHI operand", &MO0, I);
3272 
3273       const MachineOperand &MO1 = Phi.getOperand(I + 1);
3274       if (!MO1.isMBB()) {
3275         report("Expected PHI operand to be a basic block", &MO1, I + 1);
3276         continue;
3277       }
3278 
3279       const MachineBasicBlock &Pre = *MO1.getMBB();
3280       if (!Pre.isSuccessor(&MBB)) {
3281         report("PHI input is not a predecessor block", &MO1, I + 1);
3282         continue;
3283       }
3284 
3285       if (MInfo.reachable) {
3286         seen.insert(&Pre);
3287         BBInfo &PrInfo = MBBInfoMap[&Pre];
3288         if (!MO0.isUndef() && PrInfo.reachable &&
3289             !PrInfo.isLiveOut(MO0.getReg()))
3290           report("PHI operand is not live-out from predecessor", &MO0, I);
3291       }
3292     }
3293 
3294     // Did we see all predecessors?
3295     if (MInfo.reachable) {
3296       for (MachineBasicBlock *Pred : MBB.predecessors()) {
3297         if (!seen.count(Pred)) {
3298           report("Missing PHI operand", &Phi);
3299           errs() << printMBBReference(*Pred)
3300                  << " is a predecessor according to the CFG.\n";
3301         }
3302       }
3303     }
3304   }
3305 }
3306 
3307 static void
3308 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT,
3309                          std::function<void(const Twine &Message)> FailureCB) {
3310   MachineConvergenceVerifier CV;
3311   CV.initialize(&errs(), FailureCB, MF);
3312 
3313   for (const auto &MBB : MF) {
3314     CV.visit(MBB);
3315     for (const auto &MI : MBB.instrs())
3316       CV.visit(MI);
3317   }
3318 
3319   if (CV.sawTokens()) {
3320     DT.recalculate(const_cast<MachineFunction &>(MF));
3321     CV.verify(DT);
3322   }
3323 }
3324 
3325 void MachineVerifier::visitMachineFunctionAfter() {
3326   auto FailureCB = [this](const Twine &Message) {
3327     report(Message.str().c_str(), MF);
3328   };
3329   verifyConvergenceControl(*MF, DT, FailureCB);
3330 
3331   calcRegsPassed();
3332 
3333   for (const MachineBasicBlock &MBB : *MF)
3334     checkPHIOps(MBB);
3335 
3336   // Now check liveness info if available
3337   calcRegsRequired();
3338 
3339   // Check for killed virtual registers that should be live out.
3340   for (const auto &MBB : *MF) {
3341     BBInfo &MInfo = MBBInfoMap[&MBB];
3342     for (Register VReg : MInfo.vregsRequired)
3343       if (MInfo.regsKilled.count(VReg)) {
3344         report("Virtual register killed in block, but needed live out.", &MBB);
3345         errs() << "Virtual register " << printReg(VReg)
3346                << " is used after the block.\n";
3347       }
3348   }
3349 
3350   if (!MF->empty()) {
3351     BBInfo &MInfo = MBBInfoMap[&MF->front()];
3352     for (Register VReg : MInfo.vregsRequired) {
3353       report("Virtual register defs don't dominate all uses.", MF);
3354       report_context_vreg(VReg);
3355     }
3356   }
3357 
3358   if (LiveVars)
3359     verifyLiveVariables();
3360   if (LiveInts)
3361     verifyLiveIntervals();
3362 
3363   // Check live-in list of each MBB. If a register is live into MBB, check
3364   // that the register is in regsLiveOut of each predecessor block. Since
3365   // this must come from a definition in the predecesssor or its live-in
3366   // list, this will catch a live-through case where the predecessor does not
3367   // have the register in its live-in list.  This currently only checks
3368   // registers that have no aliases, are not allocatable and are not
3369   // reserved, which could mean a condition code register for instance.
3370   if (MRI->tracksLiveness())
3371     for (const auto &MBB : *MF)
3372       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
3373         MCPhysReg LiveInReg = P.PhysReg;
3374         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
3375         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
3376           continue;
3377         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3378           BBInfo &PInfo = MBBInfoMap[Pred];
3379           if (!PInfo.regsLiveOut.count(LiveInReg)) {
3380             report("Live in register not found to be live out from predecessor.",
3381                    &MBB);
3382             errs() << TRI->getName(LiveInReg)
3383                    << " not found to be live out from "
3384                    << printMBBReference(*Pred) << "\n";
3385           }
3386         }
3387       }
3388 
3389   for (auto CSInfo : MF->getCallSitesInfo())
3390     if (!CSInfo.first->isCall())
3391       report("Call site info referencing instruction that is not call", MF);
3392 
3393   // If there's debug-info, check that we don't have any duplicate value
3394   // tracking numbers.
3395   if (MF->getFunction().getSubprogram()) {
3396     DenseSet<unsigned> SeenNumbers;
3397     for (const auto &MBB : *MF) {
3398       for (const auto &MI : MBB) {
3399         if (auto Num = MI.peekDebugInstrNum()) {
3400           auto Result = SeenNumbers.insert((unsigned)Num);
3401           if (!Result.second)
3402             report("Instruction has a duplicated value tracking number", &MI);
3403         }
3404       }
3405     }
3406   }
3407 }
3408 
3409 void MachineVerifier::verifyLiveVariables() {
3410   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
3411   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3412     Register Reg = Register::index2VirtReg(I);
3413     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3414     for (const auto &MBB : *MF) {
3415       BBInfo &MInfo = MBBInfoMap[&MBB];
3416 
3417       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
3418       if (MInfo.vregsRequired.count(Reg)) {
3419         if (!VI.AliveBlocks.test(MBB.getNumber())) {
3420           report("LiveVariables: Block missing from AliveBlocks", &MBB);
3421           errs() << "Virtual register " << printReg(Reg)
3422                  << " must be live through the block.\n";
3423         }
3424       } else {
3425         if (VI.AliveBlocks.test(MBB.getNumber())) {
3426           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
3427           errs() << "Virtual register " << printReg(Reg)
3428                  << " is not needed live through the block.\n";
3429         }
3430       }
3431     }
3432   }
3433 }
3434 
3435 void MachineVerifier::verifyLiveIntervals() {
3436   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
3437   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3438     Register Reg = Register::index2VirtReg(I);
3439 
3440     // Spilling and splitting may leave unused registers around. Skip them.
3441     if (MRI->reg_nodbg_empty(Reg))
3442       continue;
3443 
3444     if (!LiveInts->hasInterval(Reg)) {
3445       report("Missing live interval for virtual register", MF);
3446       errs() << printReg(Reg, TRI) << " still has defs or uses\n";
3447       continue;
3448     }
3449 
3450     const LiveInterval &LI = LiveInts->getInterval(Reg);
3451     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
3452     verifyLiveInterval(LI);
3453   }
3454 
3455   // Verify all the cached regunit intervals.
3456   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
3457     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
3458       verifyLiveRange(*LR, i);
3459 }
3460 
3461 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
3462                                            const VNInfo *VNI, Register Reg,
3463                                            LaneBitmask LaneMask) {
3464   if (VNI->isUnused())
3465     return;
3466 
3467   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
3468 
3469   if (!DefVNI) {
3470     report("Value not live at VNInfo def and not marked unused", MF);
3471     report_context(LR, Reg, LaneMask);
3472     report_context(*VNI);
3473     return;
3474   }
3475 
3476   if (DefVNI != VNI) {
3477     report("Live segment at def has different VNInfo", MF);
3478     report_context(LR, Reg, LaneMask);
3479     report_context(*VNI);
3480     return;
3481   }
3482 
3483   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
3484   if (!MBB) {
3485     report("Invalid VNInfo definition index", MF);
3486     report_context(LR, Reg, LaneMask);
3487     report_context(*VNI);
3488     return;
3489   }
3490 
3491   if (VNI->isPHIDef()) {
3492     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
3493       report("PHIDef VNInfo is not defined at MBB start", MBB);
3494       report_context(LR, Reg, LaneMask);
3495       report_context(*VNI);
3496     }
3497     return;
3498   }
3499 
3500   // Non-PHI def.
3501   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
3502   if (!MI) {
3503     report("No instruction at VNInfo def index", MBB);
3504     report_context(LR, Reg, LaneMask);
3505     report_context(*VNI);
3506     return;
3507   }
3508 
3509   if (Reg != 0) {
3510     bool hasDef = false;
3511     bool isEarlyClobber = false;
3512     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3513       if (!MOI->isReg() || !MOI->isDef())
3514         continue;
3515       if (Reg.isVirtual()) {
3516         if (MOI->getReg() != Reg)
3517           continue;
3518       } else {
3519         if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg))
3520           continue;
3521       }
3522       if (LaneMask.any() &&
3523           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
3524         continue;
3525       hasDef = true;
3526       if (MOI->isEarlyClobber())
3527         isEarlyClobber = true;
3528     }
3529 
3530     if (!hasDef) {
3531       report("Defining instruction does not modify register", MI);
3532       report_context(LR, Reg, LaneMask);
3533       report_context(*VNI);
3534     }
3535 
3536     // Early clobber defs begin at USE slots, but other defs must begin at
3537     // DEF slots.
3538     if (isEarlyClobber) {
3539       if (!VNI->def.isEarlyClobber()) {
3540         report("Early clobber def must be at an early-clobber slot", MBB);
3541         report_context(LR, Reg, LaneMask);
3542         report_context(*VNI);
3543       }
3544     } else if (!VNI->def.isRegister()) {
3545       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
3546       report_context(LR, Reg, LaneMask);
3547       report_context(*VNI);
3548     }
3549   }
3550 }
3551 
3552 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3553                                              const LiveRange::const_iterator I,
3554                                              Register Reg,
3555                                              LaneBitmask LaneMask) {
3556   const LiveRange::Segment &S = *I;
3557   const VNInfo *VNI = S.valno;
3558   assert(VNI && "Live segment has no valno");
3559 
3560   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
3561     report("Foreign valno in live segment", MF);
3562     report_context(LR, Reg, LaneMask);
3563     report_context(S);
3564     report_context(*VNI);
3565   }
3566 
3567   if (VNI->isUnused()) {
3568     report("Live segment valno is marked unused", MF);
3569     report_context(LR, Reg, LaneMask);
3570     report_context(S);
3571   }
3572 
3573   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
3574   if (!MBB) {
3575     report("Bad start of live segment, no basic block", MF);
3576     report_context(LR, Reg, LaneMask);
3577     report_context(S);
3578     return;
3579   }
3580   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
3581   if (S.start != MBBStartIdx && S.start != VNI->def) {
3582     report("Live segment must begin at MBB entry or valno def", MBB);
3583     report_context(LR, Reg, LaneMask);
3584     report_context(S);
3585   }
3586 
3587   const MachineBasicBlock *EndMBB =
3588     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
3589   if (!EndMBB) {
3590     report("Bad end of live segment, no basic block", MF);
3591     report_context(LR, Reg, LaneMask);
3592     report_context(S);
3593     return;
3594   }
3595 
3596   // Checks for non-live-out segments.
3597   if (S.end != LiveInts->getMBBEndIdx(EndMBB)) {
3598     // RegUnit intervals are allowed dead phis.
3599     if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def &&
3600         S.end == VNI->def.getDeadSlot())
3601       return;
3602 
3603     // The live segment is ending inside EndMBB
3604     const MachineInstr *MI =
3605         LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3606     if (!MI) {
3607       report("Live segment doesn't end at a valid instruction", EndMBB);
3608       report_context(LR, Reg, LaneMask);
3609       report_context(S);
3610       return;
3611     }
3612 
3613     // The block slot must refer to a basic block boundary.
3614     if (S.end.isBlock()) {
3615       report("Live segment ends at B slot of an instruction", EndMBB);
3616       report_context(LR, Reg, LaneMask);
3617       report_context(S);
3618     }
3619 
3620     if (S.end.isDead()) {
3621       // Segment ends on the dead slot.
3622       // That means there must be a dead def.
3623       if (!SlotIndex::isSameInstr(S.start, S.end)) {
3624         report("Live segment ending at dead slot spans instructions", EndMBB);
3625         report_context(LR, Reg, LaneMask);
3626         report_context(S);
3627       }
3628     }
3629 
3630     // After tied operands are rewritten, a live segment can only end at an
3631     // early-clobber slot if it is being redefined by an early-clobber def.
3632     // TODO: Before tied operands are rewritten, a live segment can only end at
3633     // an early-clobber slot if the last use is tied to an early-clobber def.
3634     if (MF->getProperties().hasProperty(
3635             MachineFunctionProperties::Property::TiedOpsRewritten) &&
3636         S.end.isEarlyClobber()) {
3637       if (I + 1 == LR.end() || (I + 1)->start != S.end) {
3638         report("Live segment ending at early clobber slot must be "
3639                "redefined by an EC def in the same instruction",
3640                EndMBB);
3641         report_context(LR, Reg, LaneMask);
3642         report_context(S);
3643       }
3644     }
3645 
3646     // The following checks only apply to virtual registers. Physreg liveness
3647     // is too weird to check.
3648     if (Reg.isVirtual()) {
3649       // A live segment can end with either a redefinition, a kill flag on a
3650       // use, or a dead flag on a def.
3651       bool hasRead = false;
3652       bool hasSubRegDef = false;
3653       bool hasDeadDef = false;
3654       for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3655         if (!MOI->isReg() || MOI->getReg() != Reg)
3656           continue;
3657         unsigned Sub = MOI->getSubReg();
3658         LaneBitmask SLM =
3659             Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll();
3660         if (MOI->isDef()) {
3661           if (Sub != 0) {
3662             hasSubRegDef = true;
3663             // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3664             // mask for subregister defs. Read-undef defs will be handled by
3665             // readsReg below.
3666             SLM = ~SLM;
3667           }
3668           if (MOI->isDead())
3669             hasDeadDef = true;
3670         }
3671         if (LaneMask.any() && (LaneMask & SLM).none())
3672           continue;
3673         if (MOI->readsReg())
3674           hasRead = true;
3675       }
3676       if (S.end.isDead()) {
3677         // Make sure that the corresponding machine operand for a "dead" live
3678         // range has the dead flag. We cannot perform this check for subregister
3679         // liveranges as partially dead values are allowed.
3680         if (LaneMask.none() && !hasDeadDef) {
3681           report(
3682               "Instruction ending live segment on dead slot has no dead flag",
3683               MI);
3684           report_context(LR, Reg, LaneMask);
3685           report_context(S);
3686         }
3687       } else {
3688         if (!hasRead) {
3689           // When tracking subregister liveness, the main range must start new
3690           // values on partial register writes, even if there is no read.
3691           if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3692               !hasSubRegDef) {
3693             report("Instruction ending live segment doesn't read the register",
3694                    MI);
3695             report_context(LR, Reg, LaneMask);
3696             report_context(S);
3697           }
3698         }
3699       }
3700     }
3701   }
3702 
3703   // Now check all the basic blocks in this live segment.
3704   MachineFunction::const_iterator MFI = MBB->getIterator();
3705   // Is this live segment the beginning of a non-PHIDef VN?
3706   if (S.start == VNI->def && !VNI->isPHIDef()) {
3707     // Not live-in to any blocks.
3708     if (MBB == EndMBB)
3709       return;
3710     // Skip this block.
3711     ++MFI;
3712   }
3713 
3714   SmallVector<SlotIndex, 4> Undefs;
3715   if (LaneMask.any()) {
3716     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3717     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3718   }
3719 
3720   while (true) {
3721     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3722     // We don't know how to track physregs into a landing pad.
3723     if (!Reg.isVirtual() && MFI->isEHPad()) {
3724       if (&*MFI == EndMBB)
3725         break;
3726       ++MFI;
3727       continue;
3728     }
3729 
3730     // Is VNI a PHI-def in the current block?
3731     bool IsPHI = VNI->isPHIDef() &&
3732       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3733 
3734     // Check that VNI is live-out of all predecessors.
3735     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3736       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3737       // Predecessor of landing pad live-out on last call.
3738       if (MFI->isEHPad()) {
3739         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3740           if (MI.isCall()) {
3741             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3742             break;
3743           }
3744         }
3745       }
3746       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3747 
3748       // All predecessors must have a live-out value. However for a phi
3749       // instruction with subregister intervals
3750       // only one of the subregisters (not necessarily the current one) needs to
3751       // be defined.
3752       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3753         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3754           continue;
3755         report("Register not marked live out of predecessor", Pred);
3756         report_context(LR, Reg, LaneMask);
3757         report_context(*VNI);
3758         errs() << " live into " << printMBBReference(*MFI) << '@'
3759                << LiveInts->getMBBStartIdx(&*MFI) << ", not live before "
3760                << PEnd << '\n';
3761         continue;
3762       }
3763 
3764       // Only PHI-defs can take different predecessor values.
3765       if (!IsPHI && PVNI != VNI) {
3766         report("Different value live out of predecessor", Pred);
3767         report_context(LR, Reg, LaneMask);
3768         errs() << "Valno #" << PVNI->id << " live out of "
3769                << printMBBReference(*Pred) << '@' << PEnd << "\nValno #"
3770                << VNI->id << " live into " << printMBBReference(*MFI) << '@'
3771                << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3772       }
3773     }
3774     if (&*MFI == EndMBB)
3775       break;
3776     ++MFI;
3777   }
3778 }
3779 
3780 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3781                                       LaneBitmask LaneMask) {
3782   for (const VNInfo *VNI : LR.valnos)
3783     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3784 
3785   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3786     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3787 }
3788 
3789 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3790   Register Reg = LI.reg();
3791   assert(Reg.isVirtual());
3792   verifyLiveRange(LI, Reg);
3793 
3794   if (LI.hasSubRanges()) {
3795     LaneBitmask Mask;
3796     LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3797     for (const LiveInterval::SubRange &SR : LI.subranges()) {
3798       if ((Mask & SR.LaneMask).any()) {
3799         report("Lane masks of sub ranges overlap in live interval", MF);
3800         report_context(LI);
3801       }
3802       if ((SR.LaneMask & ~MaxMask).any()) {
3803         report("Subrange lanemask is invalid", MF);
3804         report_context(LI);
3805       }
3806       if (SR.empty()) {
3807         report("Subrange must not be empty", MF);
3808         report_context(SR, LI.reg(), SR.LaneMask);
3809       }
3810       Mask |= SR.LaneMask;
3811       verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3812       if (!LI.covers(SR)) {
3813         report("A Subrange is not covered by the main range", MF);
3814         report_context(LI);
3815       }
3816     }
3817   }
3818 
3819   // Check the LI only has one connected component.
3820   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3821   unsigned NumComp = ConEQ.Classify(LI);
3822   if (NumComp > 1) {
3823     report("Multiple connected components in live interval", MF);
3824     report_context(LI);
3825     for (unsigned comp = 0; comp != NumComp; ++comp) {
3826       errs() << comp << ": valnos";
3827       for (const VNInfo *I : LI.valnos)
3828         if (comp == ConEQ.getEqClass(I))
3829           errs() << ' ' << I->id;
3830       errs() << '\n';
3831     }
3832   }
3833 }
3834 
3835 namespace {
3836 
3837   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3838   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3839   // value is zero.
3840   // We use a bool plus an integer to capture the stack state.
3841   struct StackStateOfBB {
3842     StackStateOfBB() = default;
3843     StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) :
3844       EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3845       ExitIsSetup(ExitSetup) {}
3846 
3847     // Can be negative, which means we are setting up a frame.
3848     int EntryValue = 0;
3849     int ExitValue = 0;
3850     bool EntryIsSetup = false;
3851     bool ExitIsSetup = false;
3852   };
3853 
3854 } // end anonymous namespace
3855 
3856 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3857 /// by a FrameDestroy <n>, stack adjustments are identical on all
3858 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3859 void MachineVerifier::verifyStackFrame() {
3860   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3861   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3862   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3863     return;
3864 
3865   SmallVector<StackStateOfBB, 8> SPState;
3866   SPState.resize(MF->getNumBlockIDs());
3867   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3868 
3869   // Visit the MBBs in DFS order.
3870   for (df_ext_iterator<const MachineFunction *,
3871                        df_iterator_default_set<const MachineBasicBlock *>>
3872        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3873        DFI != DFE; ++DFI) {
3874     const MachineBasicBlock *MBB = *DFI;
3875 
3876     StackStateOfBB BBState;
3877     // Check the exit state of the DFS stack predecessor.
3878     if (DFI.getPathLength() >= 2) {
3879       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3880       assert(Reachable.count(StackPred) &&
3881              "DFS stack predecessor is already visited.\n");
3882       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3883       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3884       BBState.ExitValue = BBState.EntryValue;
3885       BBState.ExitIsSetup = BBState.EntryIsSetup;
3886     }
3887 
3888     if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) {
3889       report("Call frame size on entry does not match value computed from "
3890              "predecessor",
3891              MBB);
3892       errs() << "Call frame size on entry " << MBB->getCallFrameSize()
3893              << " does not match value computed from predecessor "
3894              << -BBState.EntryValue << '\n';
3895     }
3896 
3897     // Update stack state by checking contents of MBB.
3898     for (const auto &I : *MBB) {
3899       if (I.getOpcode() == FrameSetupOpcode) {
3900         if (BBState.ExitIsSetup)
3901           report("FrameSetup is after another FrameSetup", &I);
3902         if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
3903           report("AdjustsStack not set in presence of a frame pseudo "
3904                  "instruction.", &I);
3905         BBState.ExitValue -= TII->getFrameTotalSize(I);
3906         BBState.ExitIsSetup = true;
3907       }
3908 
3909       if (I.getOpcode() == FrameDestroyOpcode) {
3910         int Size = TII->getFrameTotalSize(I);
3911         if (!BBState.ExitIsSetup)
3912           report("FrameDestroy is not after a FrameSetup", &I);
3913         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3914                                                BBState.ExitValue;
3915         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3916           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3917           errs() << "FrameDestroy <" << Size << "> is after FrameSetup <"
3918               << AbsSPAdj << ">.\n";
3919         }
3920         if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
3921           report("AdjustsStack not set in presence of a frame pseudo "
3922                  "instruction.", &I);
3923         BBState.ExitValue += Size;
3924         BBState.ExitIsSetup = false;
3925       }
3926     }
3927     SPState[MBB->getNumber()] = BBState;
3928 
3929     // Make sure the exit state of any predecessor is consistent with the entry
3930     // state.
3931     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3932       if (Reachable.count(Pred) &&
3933           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
3934            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
3935         report("The exit stack state of a predecessor is inconsistent.", MBB);
3936         errs() << "Predecessor " << printMBBReference(*Pred)
3937                << " has exit state (" << SPState[Pred->getNumber()].ExitValue
3938                << ", " << SPState[Pred->getNumber()].ExitIsSetup << "), while "
3939                << printMBBReference(*MBB) << " has entry state ("
3940                << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
3941       }
3942     }
3943 
3944     // Make sure the entry state of any successor is consistent with the exit
3945     // state.
3946     for (const MachineBasicBlock *Succ : MBB->successors()) {
3947       if (Reachable.count(Succ) &&
3948           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
3949            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
3950         report("The entry stack state of a successor is inconsistent.", MBB);
3951         errs() << "Successor " << printMBBReference(*Succ)
3952                << " has entry state (" << SPState[Succ->getNumber()].EntryValue
3953                << ", " << SPState[Succ->getNumber()].EntryIsSetup << "), while "
3954                << printMBBReference(*MBB) << " has exit state ("
3955                << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
3956       }
3957     }
3958 
3959     // Make sure a basic block with return ends with zero stack adjustment.
3960     if (!MBB->empty() && MBB->back().isReturn()) {
3961       if (BBState.ExitIsSetup)
3962         report("A return block ends with a FrameSetup.", MBB);
3963       if (BBState.ExitValue)
3964         report("A return block ends with a nonzero stack adjustment.", MBB);
3965     }
3966   }
3967 }
3968