1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/MachineVerifier.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeCalc.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConvergenceVerifier.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/PseudoSourceValue.h" 54 #include "llvm/CodeGen/RegisterBank.h" 55 #include "llvm/CodeGen/RegisterBankInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGenTypes/LowLevelType.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/EHPersonalities.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/InlineAsm.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCAsmInfo.h" 73 #include "llvm/MC/MCDwarf.h" 74 #include "llvm/MC/MCInstrDesc.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCTargetOptions.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/ManagedStatic.h" 81 #include "llvm/Support/MathExtras.h" 82 #include "llvm/Support/ModRef.h" 83 #include "llvm/Support/Mutex.h" 84 #include "llvm/Support/raw_ostream.h" 85 #include "llvm/Target/TargetMachine.h" 86 #include <algorithm> 87 #include <cassert> 88 #include <cstddef> 89 #include <cstdint> 90 #include <iterator> 91 #include <string> 92 #include <utility> 93 94 using namespace llvm; 95 96 namespace { 97 98 /// Used the by the ReportedErrors class to guarantee only one error is reported 99 /// at one time. 100 static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock; 101 102 struct MachineVerifier { 103 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, 104 raw_ostream *OS, bool AbortOnError = true) 105 : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b), 106 ReportedErrs(AbortOnError) {} 107 108 MachineVerifier(Pass *pass, const char *b, raw_ostream *OS, 109 bool AbortOnError = true) 110 : PASS(pass), OS(OS ? *OS : nulls()), Banner(b), 111 ReportedErrs(AbortOnError) {} 112 113 MachineVerifier(const char *b, LiveVariables *LiveVars, 114 LiveIntervals *LiveInts, LiveStacks *LiveStks, 115 SlotIndexes *Indexes, raw_ostream *OS, 116 bool AbortOnError = true) 117 : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), 118 LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes), 119 ReportedErrs(AbortOnError) {} 120 121 /// \returns true if no problems were found. 122 bool verify(const MachineFunction &MF); 123 124 MachineFunctionAnalysisManager *MFAM = nullptr; 125 Pass *const PASS = nullptr; 126 raw_ostream &OS; 127 const char *Banner; 128 const MachineFunction *MF = nullptr; 129 const TargetMachine *TM = nullptr; 130 const TargetInstrInfo *TII = nullptr; 131 const TargetRegisterInfo *TRI = nullptr; 132 const MachineRegisterInfo *MRI = nullptr; 133 const RegisterBankInfo *RBI = nullptr; 134 135 // Avoid querying the MachineFunctionProperties for each operand. 136 bool isFunctionRegBankSelected = false; 137 bool isFunctionSelected = false; 138 bool isFunctionTracksDebugUserValues = false; 139 140 using RegVector = SmallVector<Register, 16>; 141 using RegMaskVector = SmallVector<const uint32_t *, 4>; 142 using RegSet = DenseSet<Register>; 143 using RegMap = DenseMap<Register, const MachineInstr *>; 144 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 145 146 const MachineInstr *FirstNonPHI = nullptr; 147 const MachineInstr *FirstTerminator = nullptr; 148 BlockSet FunctionBlocks; 149 150 BitVector regsReserved; 151 RegSet regsLive; 152 RegVector regsDefined, regsDead, regsKilled; 153 RegMaskVector regMasks; 154 155 SlotIndex lastIndex; 156 157 // Add Reg and any sub-registers to RV 158 void addRegWithSubRegs(RegVector &RV, Register Reg) { 159 RV.push_back(Reg); 160 if (Reg.isPhysical()) 161 append_range(RV, TRI->subregs(Reg.asMCReg())); 162 } 163 164 struct BBInfo { 165 // Is this MBB reachable from the MF entry point? 166 bool reachable = false; 167 168 // Vregs that must be live in because they are used without being 169 // defined. Map value is the user. vregsLiveIn doesn't include regs 170 // that only are used by PHI nodes. 171 RegMap vregsLiveIn; 172 173 // Regs killed in MBB. They may be defined again, and will then be in both 174 // regsKilled and regsLiveOut. 175 RegSet regsKilled; 176 177 // Regs defined in MBB and live out. Note that vregs passing through may 178 // be live out without being mentioned here. 179 RegSet regsLiveOut; 180 181 // Vregs that pass through MBB untouched. This set is disjoint from 182 // regsKilled and regsLiveOut. 183 RegSet vregsPassed; 184 185 // Vregs that must pass through MBB because they are needed by a successor 186 // block. This set is disjoint from regsLiveOut. 187 RegSet vregsRequired; 188 189 // Set versions of block's predecessor and successor lists. 190 BlockSet Preds, Succs; 191 192 BBInfo() = default; 193 194 // Add register to vregsRequired if it belongs there. Return true if 195 // anything changed. 196 bool addRequired(Register Reg) { 197 if (!Reg.isVirtual()) 198 return false; 199 if (regsLiveOut.count(Reg)) 200 return false; 201 return vregsRequired.insert(Reg).second; 202 } 203 204 // Same for a full set. 205 bool addRequired(const RegSet &RS) { 206 bool Changed = false; 207 for (Register Reg : RS) 208 Changed |= addRequired(Reg); 209 return Changed; 210 } 211 212 // Same for a full map. 213 bool addRequired(const RegMap &RM) { 214 bool Changed = false; 215 for (const auto &I : RM) 216 Changed |= addRequired(I.first); 217 return Changed; 218 } 219 220 // Live-out registers are either in regsLiveOut or vregsPassed. 221 bool isLiveOut(Register Reg) const { 222 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 223 } 224 }; 225 226 // Extra register info per MBB. 227 DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap; 228 229 bool isReserved(Register Reg) { 230 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 231 } 232 233 bool isAllocatable(Register Reg) const { 234 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 235 !regsReserved.test(Reg.id()); 236 } 237 238 // Analysis information if available 239 LiveVariables *LiveVars = nullptr; 240 LiveIntervals *LiveInts = nullptr; 241 LiveStacks *LiveStks = nullptr; 242 SlotIndexes *Indexes = nullptr; 243 244 /// A class to track the number of reported error and to guarantee that only 245 /// one error is reported at one time. 246 class ReportedErrors { 247 unsigned NumReported = 0; 248 bool AbortOnError; 249 250 public: 251 /// \param AbortOnError -- If set, abort after printing the first error. 252 ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {} 253 254 ~ReportedErrors() { 255 if (!hasError()) 256 return; 257 if (AbortOnError) 258 report_fatal_error("Found " + Twine(NumReported) + 259 " machine code errors."); 260 // Since we haven't aborted, release the lock to allow other threads to 261 // report errors. 262 ReportedErrorsLock->unlock(); 263 } 264 265 /// Increment the number of reported errors. 266 /// \returns true if this is the first reported error. 267 bool increment() { 268 // If this is the first error this thread has encountered, grab the lock 269 // to prevent other threads from reporting errors at the same time. 270 // Otherwise we assume we already have the lock. 271 if (!hasError()) 272 ReportedErrorsLock->lock(); 273 ++NumReported; 274 return NumReported == 1; 275 } 276 277 /// \returns true if an error was reported. 278 bool hasError() { return NumReported; } 279 }; 280 ReportedErrors ReportedErrs; 281 282 // This is calculated only when trying to verify convergence control tokens. 283 // Similar to the LLVM IR verifier, we calculate this locally instead of 284 // relying on the pass manager. 285 MachineDominatorTree DT; 286 287 void visitMachineFunctionBefore(); 288 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 289 void visitMachineBundleBefore(const MachineInstr *MI); 290 291 /// Verify that all of \p MI's virtual register operands are scalars. 292 /// \returns True if all virtual register operands are scalar. False 293 /// otherwise. 294 bool verifyAllRegOpsScalar(const MachineInstr &MI, 295 const MachineRegisterInfo &MRI); 296 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 297 298 bool verifyGIntrinsicSideEffects(const MachineInstr *MI); 299 bool verifyGIntrinsicConvergence(const MachineInstr *MI); 300 void verifyPreISelGenericInstruction(const MachineInstr *MI); 301 302 void visitMachineInstrBefore(const MachineInstr *MI); 303 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 304 void visitMachineBundleAfter(const MachineInstr *MI); 305 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 306 void visitMachineFunctionAfter(); 307 308 void report(const char *msg, const MachineFunction *MF); 309 void report(const char *msg, const MachineBasicBlock *MBB); 310 void report(const char *msg, const MachineInstr *MI); 311 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 312 LLT MOVRegType = LLT{}); 313 void report(const Twine &Msg, const MachineInstr *MI); 314 315 void report_context(const LiveInterval &LI) const; 316 void report_context(const LiveRange &LR, Register VRegUnit, 317 LaneBitmask LaneMask) const; 318 void report_context(const LiveRange::Segment &S) const; 319 void report_context(const VNInfo &VNI) const; 320 void report_context(SlotIndex Pos) const; 321 void report_context(MCPhysReg PhysReg) const; 322 void report_context_liverange(const LiveRange &LR) const; 323 void report_context_lanemask(LaneBitmask LaneMask) const; 324 void report_context_vreg(Register VReg) const; 325 void report_context_vreg_regunit(Register VRegOrUnit) const; 326 327 void verifyInlineAsm(const MachineInstr *MI); 328 329 void checkLiveness(const MachineOperand *MO, unsigned MONum); 330 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 331 SlotIndex UseIdx, const LiveRange &LR, 332 Register VRegOrUnit, 333 LaneBitmask LaneMask = LaneBitmask::getNone()); 334 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 335 SlotIndex DefIdx, const LiveRange &LR, 336 Register VRegOrUnit, bool SubRangeCheck = false, 337 LaneBitmask LaneMask = LaneBitmask::getNone()); 338 339 void markReachable(const MachineBasicBlock *MBB); 340 void calcRegsPassed(); 341 void checkPHIOps(const MachineBasicBlock &MBB); 342 343 void calcRegsRequired(); 344 void verifyLiveVariables(); 345 void verifyLiveIntervals(); 346 void verifyLiveInterval(const LiveInterval &); 347 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 348 LaneBitmask); 349 void verifyLiveRangeSegment(const LiveRange &, 350 const LiveRange::const_iterator I, Register, 351 LaneBitmask); 352 void verifyLiveRange(const LiveRange &, Register, 353 LaneBitmask LaneMask = LaneBitmask::getNone()); 354 355 void verifyStackFrame(); 356 357 void verifySlotIndexes() const; 358 void verifyProperties(const MachineFunction &MF); 359 }; 360 361 struct MachineVerifierLegacyPass : public MachineFunctionPass { 362 static char ID; // Pass ID, replacement for typeid 363 364 const std::string Banner; 365 366 MachineVerifierLegacyPass(std::string banner = std::string()) 367 : MachineFunctionPass(ID), Banner(std::move(banner)) { 368 initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 369 } 370 371 void getAnalysisUsage(AnalysisUsage &AU) const override { 372 AU.addUsedIfAvailable<LiveStacks>(); 373 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 374 AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); 375 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); 376 AU.setPreservesAll(); 377 MachineFunctionPass::getAnalysisUsage(AU); 378 } 379 380 bool runOnMachineFunction(MachineFunction &MF) override { 381 // Skip functions that have known verification problems. 382 // FIXME: Remove this mechanism when all problematic passes have been 383 // fixed. 384 if (MF.getProperties().hasProperty( 385 MachineFunctionProperties::Property::FailsVerification)) 386 return false; 387 388 MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); 389 return false; 390 } 391 }; 392 393 } // end anonymous namespace 394 395 PreservedAnalyses 396 MachineVerifierPass::run(MachineFunction &MF, 397 MachineFunctionAnalysisManager &MFAM) { 398 // Skip functions that have known verification problems. 399 // FIXME: Remove this mechanism when all problematic passes have been 400 // fixed. 401 if (MF.getProperties().hasProperty( 402 MachineFunctionProperties::Property::FailsVerification)) 403 return PreservedAnalyses::all(); 404 MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); 405 return PreservedAnalyses::all(); 406 } 407 408 char MachineVerifierLegacyPass::ID = 0; 409 410 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", 411 "Verify generated machine code", false, false) 412 413 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 414 return new MachineVerifierLegacyPass(Banner); 415 } 416 417 void llvm::verifyMachineFunction(const std::string &Banner, 418 const MachineFunction &MF) { 419 // TODO: Use MFAM after porting below analyses. 420 // LiveVariables *LiveVars; 421 // LiveIntervals *LiveInts; 422 // LiveStacks *LiveStks; 423 // SlotIndexes *Indexes; 424 MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); 425 } 426 427 bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, 428 bool AbortOnError) const { 429 return MachineVerifier(p, Banner, OS, AbortOnError).verify(*this); 430 } 431 432 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 433 const char *Banner, raw_ostream *OS, 434 bool AbortOnError) const { 435 return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts, 436 /*LiveStks=*/nullptr, Indexes, OS, AbortOnError) 437 .verify(*this); 438 } 439 440 void MachineVerifier::verifySlotIndexes() const { 441 if (Indexes == nullptr) 442 return; 443 444 // Ensure the IdxMBB list is sorted by slot indexes. 445 SlotIndex Last; 446 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 447 E = Indexes->MBBIndexEnd(); I != E; ++I) { 448 assert(!Last.isValid() || I->first > Last); 449 Last = I->first; 450 } 451 } 452 453 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 454 // If a pass has introduced virtual registers without clearing the 455 // NoVRegs property (or set it without allocating the vregs) 456 // then report an error. 457 if (MF.getProperties().hasProperty( 458 MachineFunctionProperties::Property::NoVRegs) && 459 MRI->getNumVirtRegs()) 460 report("Function has NoVRegs property but there are VReg operands", &MF); 461 } 462 463 bool MachineVerifier::verify(const MachineFunction &MF) { 464 this->MF = &MF; 465 TM = &MF.getTarget(); 466 TII = MF.getSubtarget().getInstrInfo(); 467 TRI = MF.getSubtarget().getRegisterInfo(); 468 RBI = MF.getSubtarget().getRegBankInfo(); 469 MRI = &MF.getRegInfo(); 470 471 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 472 MachineFunctionProperties::Property::FailedISel); 473 474 // If we're mid-GlobalISel and we already triggered the fallback path then 475 // it's expected that the MIR is somewhat broken but that's ok since we'll 476 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 477 if (isFunctionFailedISel) 478 return true; 479 480 isFunctionRegBankSelected = MF.getProperties().hasProperty( 481 MachineFunctionProperties::Property::RegBankSelected); 482 isFunctionSelected = MF.getProperties().hasProperty( 483 MachineFunctionProperties::Property::Selected); 484 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 485 MachineFunctionProperties::Property::TracksDebugUserValues); 486 487 if (PASS) { 488 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 489 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; 490 // We don't want to verify LiveVariables if LiveIntervals is available. 491 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 492 if (!LiveInts) 493 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; 494 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 495 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 496 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 497 } 498 if (MFAM) { 499 MachineFunction &Func = const_cast<MachineFunction &>(MF); 500 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func); 501 if (!LiveInts) 502 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func); 503 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); 504 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func); 505 } 506 507 verifySlotIndexes(); 508 509 verifyProperties(MF); 510 511 visitMachineFunctionBefore(); 512 for (const MachineBasicBlock &MBB : MF) { 513 visitMachineBasicBlockBefore(&MBB); 514 // Keep track of the current bundle header. 515 const MachineInstr *CurBundle = nullptr; 516 // Do we expect the next instruction to be part of the same bundle? 517 bool InBundle = false; 518 519 for (const MachineInstr &MI : MBB.instrs()) { 520 if (MI.getParent() != &MBB) { 521 report("Bad instruction parent pointer", &MBB); 522 OS << "Instruction: " << MI; 523 continue; 524 } 525 526 // Check for consistent bundle flags. 527 if (InBundle && !MI.isBundledWithPred()) 528 report("Missing BundledPred flag, " 529 "BundledSucc was set on predecessor", 530 &MI); 531 if (!InBundle && MI.isBundledWithPred()) 532 report("BundledPred flag is set, " 533 "but BundledSucc not set on predecessor", 534 &MI); 535 536 // Is this a bundle header? 537 if (!MI.isInsideBundle()) { 538 if (CurBundle) 539 visitMachineBundleAfter(CurBundle); 540 CurBundle = &MI; 541 visitMachineBundleBefore(CurBundle); 542 } else if (!CurBundle) 543 report("No bundle header", &MI); 544 visitMachineInstrBefore(&MI); 545 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 546 const MachineOperand &Op = MI.getOperand(I); 547 if (Op.getParent() != &MI) { 548 // Make sure to use correct addOperand / removeOperand / ChangeTo 549 // functions when replacing operands of a MachineInstr. 550 report("Instruction has operand with wrong parent set", &MI); 551 } 552 553 visitMachineOperand(&Op, I); 554 } 555 556 // Was this the last bundled instruction? 557 InBundle = MI.isBundledWithSucc(); 558 } 559 if (CurBundle) 560 visitMachineBundleAfter(CurBundle); 561 if (InBundle) 562 report("BundledSucc flag set on last instruction in block", &MBB.back()); 563 visitMachineBasicBlockAfter(&MBB); 564 } 565 visitMachineFunctionAfter(); 566 567 // Clean up. 568 regsLive.clear(); 569 regsDefined.clear(); 570 regsDead.clear(); 571 regsKilled.clear(); 572 regMasks.clear(); 573 MBBInfoMap.clear(); 574 575 return !ReportedErrs.hasError(); 576 } 577 578 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 579 assert(MF); 580 OS << '\n'; 581 if (ReportedErrs.increment()) { 582 if (Banner) 583 OS << "# " << Banner << '\n'; 584 585 if (LiveInts != nullptr) 586 LiveInts->print(OS); 587 else 588 MF->print(OS, Indexes); 589 } 590 591 OS << "*** Bad machine code: " << msg << " ***\n" 592 << "- function: " << MF->getName() << '\n'; 593 } 594 595 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 596 assert(MBB); 597 report(msg, MBB->getParent()); 598 OS << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName() 599 << " (" << (const void *)MBB << ')'; 600 if (Indexes) 601 OS << " [" << Indexes->getMBBStartIdx(MBB) << ';' 602 << Indexes->getMBBEndIdx(MBB) << ')'; 603 OS << '\n'; 604 } 605 606 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 607 assert(MI); 608 report(msg, MI->getParent()); 609 OS << "- instruction: "; 610 if (Indexes && Indexes->hasIndex(*MI)) 611 OS << Indexes->getInstructionIndex(*MI) << '\t'; 612 MI->print(OS, /*IsStandalone=*/true); 613 } 614 615 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 616 unsigned MONum, LLT MOVRegType) { 617 assert(MO); 618 report(msg, MO->getParent()); 619 OS << "- operand " << MONum << ": "; 620 MO->print(OS, MOVRegType, TRI); 621 OS << '\n'; 622 } 623 624 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 625 report(Msg.str().c_str(), MI); 626 } 627 628 void MachineVerifier::report_context(SlotIndex Pos) const { 629 OS << "- at: " << Pos << '\n'; 630 } 631 632 void MachineVerifier::report_context(const LiveInterval &LI) const { 633 OS << "- interval: " << LI << '\n'; 634 } 635 636 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 637 LaneBitmask LaneMask) const { 638 report_context_liverange(LR); 639 report_context_vreg_regunit(VRegUnit); 640 if (LaneMask.any()) 641 report_context_lanemask(LaneMask); 642 } 643 644 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 645 OS << "- segment: " << S << '\n'; 646 } 647 648 void MachineVerifier::report_context(const VNInfo &VNI) const { 649 OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 650 } 651 652 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 653 OS << "- liverange: " << LR << '\n'; 654 } 655 656 void MachineVerifier::report_context(MCPhysReg PReg) const { 657 OS << "- p. register: " << printReg(PReg, TRI) << '\n'; 658 } 659 660 void MachineVerifier::report_context_vreg(Register VReg) const { 661 OS << "- v. register: " << printReg(VReg, TRI) << '\n'; 662 } 663 664 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 665 if (VRegOrUnit.isVirtual()) { 666 report_context_vreg(VRegOrUnit); 667 } else { 668 OS << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 669 } 670 } 671 672 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 673 OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 674 } 675 676 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 677 BBInfo &MInfo = MBBInfoMap[MBB]; 678 if (!MInfo.reachable) { 679 MInfo.reachable = true; 680 for (const MachineBasicBlock *Succ : MBB->successors()) 681 markReachable(Succ); 682 } 683 } 684 685 void MachineVerifier::visitMachineFunctionBefore() { 686 lastIndex = SlotIndex(); 687 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 688 : TRI->getReservedRegs(*MF); 689 690 if (!MF->empty()) 691 markReachable(&MF->front()); 692 693 // Build a set of the basic blocks in the function. 694 FunctionBlocks.clear(); 695 for (const auto &MBB : *MF) { 696 FunctionBlocks.insert(&MBB); 697 BBInfo &MInfo = MBBInfoMap[&MBB]; 698 699 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 700 if (MInfo.Preds.size() != MBB.pred_size()) 701 report("MBB has duplicate entries in its predecessor list.", &MBB); 702 703 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 704 if (MInfo.Succs.size() != MBB.succ_size()) 705 report("MBB has duplicate entries in its successor list.", &MBB); 706 } 707 708 // Check that the register use lists are sane. 709 MRI->verifyUseLists(); 710 711 if (!MF->empty()) 712 verifyStackFrame(); 713 } 714 715 void 716 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 717 FirstTerminator = nullptr; 718 FirstNonPHI = nullptr; 719 720 if (!MF->getProperties().hasProperty( 721 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 722 // If this block has allocatable physical registers live-in, check that 723 // it is an entry block or landing pad. 724 for (const auto &LI : MBB->liveins()) { 725 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 726 MBB->getIterator() != MBB->getParent()->begin() && 727 !MBB->isInlineAsmBrIndirectTarget()) { 728 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 729 "inlineasm-br-indirect-target.", 730 MBB); 731 report_context(LI.PhysReg); 732 } 733 } 734 } 735 736 if (MBB->isIRBlockAddressTaken()) { 737 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 738 report("ir-block-address-taken is associated with basic block not used by " 739 "a blockaddress.", 740 MBB); 741 } 742 743 // Count the number of landing pad successors. 744 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 745 for (const auto *succ : MBB->successors()) { 746 if (succ->isEHPad()) 747 LandingPadSuccs.insert(succ); 748 if (!FunctionBlocks.count(succ)) 749 report("MBB has successor that isn't part of the function.", MBB); 750 if (!MBBInfoMap[succ].Preds.count(MBB)) { 751 report("Inconsistent CFG", MBB); 752 OS << "MBB is not in the predecessor list of the successor " 753 << printMBBReference(*succ) << ".\n"; 754 } 755 } 756 757 // Check the predecessor list. 758 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 759 if (!FunctionBlocks.count(Pred)) 760 report("MBB has predecessor that isn't part of the function.", MBB); 761 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 762 report("Inconsistent CFG", MBB); 763 OS << "MBB is not in the successor list of the predecessor " 764 << printMBBReference(*Pred) << ".\n"; 765 } 766 } 767 768 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 769 const BasicBlock *BB = MBB->getBasicBlock(); 770 const Function &F = MF->getFunction(); 771 if (LandingPadSuccs.size() > 1 && 772 !(AsmInfo && 773 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 774 BB && isa<SwitchInst>(BB->getTerminator())) && 775 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 776 report("MBB has more than one landing pad successor", MBB); 777 778 // Call analyzeBranch. If it succeeds, there several more conditions to check. 779 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 780 SmallVector<MachineOperand, 4> Cond; 781 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 782 Cond)) { 783 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 784 // check whether its answers match up with reality. 785 if (!TBB && !FBB) { 786 // Block falls through to its successor. 787 if (!MBB->empty() && MBB->back().isBarrier() && 788 !TII->isPredicated(MBB->back())) { 789 report("MBB exits via unconditional fall-through but ends with a " 790 "barrier instruction!", MBB); 791 } 792 if (!Cond.empty()) { 793 report("MBB exits via unconditional fall-through but has a condition!", 794 MBB); 795 } 796 } else if (TBB && !FBB && Cond.empty()) { 797 // Block unconditionally branches somewhere. 798 if (MBB->empty()) { 799 report("MBB exits via unconditional branch but doesn't contain " 800 "any instructions!", MBB); 801 } else if (!MBB->back().isBarrier()) { 802 report("MBB exits via unconditional branch but doesn't end with a " 803 "barrier instruction!", MBB); 804 } else if (!MBB->back().isTerminator()) { 805 report("MBB exits via unconditional branch but the branch isn't a " 806 "terminator instruction!", MBB); 807 } 808 } else if (TBB && !FBB && !Cond.empty()) { 809 // Block conditionally branches somewhere, otherwise falls through. 810 if (MBB->empty()) { 811 report("MBB exits via conditional branch/fall-through but doesn't " 812 "contain any instructions!", MBB); 813 } else if (MBB->back().isBarrier()) { 814 report("MBB exits via conditional branch/fall-through but ends with a " 815 "barrier instruction!", MBB); 816 } else if (!MBB->back().isTerminator()) { 817 report("MBB exits via conditional branch/fall-through but the branch " 818 "isn't a terminator instruction!", MBB); 819 } 820 } else if (TBB && FBB) { 821 // Block conditionally branches somewhere, otherwise branches 822 // somewhere else. 823 if (MBB->empty()) { 824 report("MBB exits via conditional branch/branch but doesn't " 825 "contain any instructions!", MBB); 826 } else if (!MBB->back().isBarrier()) { 827 report("MBB exits via conditional branch/branch but doesn't end with a " 828 "barrier instruction!", MBB); 829 } else if (!MBB->back().isTerminator()) { 830 report("MBB exits via conditional branch/branch but the branch " 831 "isn't a terminator instruction!", MBB); 832 } 833 if (Cond.empty()) { 834 report("MBB exits via conditional branch/branch but there's no " 835 "condition!", MBB); 836 } 837 } else { 838 report("analyzeBranch returned invalid data!", MBB); 839 } 840 841 // Now check that the successors match up with the answers reported by 842 // analyzeBranch. 843 if (TBB && !MBB->isSuccessor(TBB)) 844 report("MBB exits via jump or conditional branch, but its target isn't a " 845 "CFG successor!", 846 MBB); 847 if (FBB && !MBB->isSuccessor(FBB)) 848 report("MBB exits via conditional branch, but its target isn't a CFG " 849 "successor!", 850 MBB); 851 852 // There might be a fallthrough to the next block if there's either no 853 // unconditional true branch, or if there's a condition, and one of the 854 // branches is missing. 855 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 856 857 // A conditional fallthrough must be an actual CFG successor, not 858 // unreachable. (Conversely, an unconditional fallthrough might not really 859 // be a successor, because the block might end in unreachable.) 860 if (!Cond.empty() && !FBB) { 861 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 862 if (MBBI == MF->end()) { 863 report("MBB conditionally falls through out of function!", MBB); 864 } else if (!MBB->isSuccessor(&*MBBI)) 865 report("MBB exits via conditional branch/fall-through but the CFG " 866 "successors don't match the actual successors!", 867 MBB); 868 } 869 870 // Verify that there aren't any extra un-accounted-for successors. 871 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 872 // If this successor is one of the branch targets, it's okay. 873 if (SuccMBB == TBB || SuccMBB == FBB) 874 continue; 875 // If we might have a fallthrough, and the successor is the fallthrough 876 // block, that's also ok. 877 if (Fallthrough && SuccMBB == MBB->getNextNode()) 878 continue; 879 // Also accept successors which are for exception-handling or might be 880 // inlineasm_br targets. 881 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 882 continue; 883 report("MBB has unexpected successors which are not branch targets, " 884 "fallthrough, EHPads, or inlineasm_br targets.", 885 MBB); 886 } 887 } 888 889 regsLive.clear(); 890 if (MRI->tracksLiveness()) { 891 for (const auto &LI : MBB->liveins()) { 892 if (!Register::isPhysicalRegister(LI.PhysReg)) { 893 report("MBB live-in list contains non-physical register", MBB); 894 continue; 895 } 896 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 897 regsLive.insert(SubReg); 898 } 899 } 900 901 const MachineFrameInfo &MFI = MF->getFrameInfo(); 902 BitVector PR = MFI.getPristineRegs(*MF); 903 for (unsigned I : PR.set_bits()) { 904 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 905 regsLive.insert(SubReg); 906 } 907 908 regsKilled.clear(); 909 regsDefined.clear(); 910 911 if (Indexes) 912 lastIndex = Indexes->getMBBStartIdx(MBB); 913 } 914 915 // This function gets called for all bundle headers, including normal 916 // stand-alone unbundled instructions. 917 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 918 if (Indexes && Indexes->hasIndex(*MI)) { 919 SlotIndex idx = Indexes->getInstructionIndex(*MI); 920 if (!(idx > lastIndex)) { 921 report("Instruction index out of order", MI); 922 OS << "Last instruction was at " << lastIndex << '\n'; 923 } 924 lastIndex = idx; 925 } 926 927 // Ensure non-terminators don't follow terminators. 928 if (MI->isTerminator()) { 929 if (!FirstTerminator) 930 FirstTerminator = MI; 931 } else if (FirstTerminator) { 932 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 933 // precede non-terminators. 934 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 935 report("Non-terminator instruction after the first terminator", MI); 936 OS << "First terminator was:\t" << *FirstTerminator; 937 } 938 } 939 } 940 941 // The operands on an INLINEASM instruction must follow a template. 942 // Verify that the flag operands make sense. 943 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 944 // The first two operands on INLINEASM are the asm string and global flags. 945 if (MI->getNumOperands() < 2) { 946 report("Too few operands on inline asm", MI); 947 return; 948 } 949 if (!MI->getOperand(0).isSymbol()) 950 report("Asm string must be an external symbol", MI); 951 if (!MI->getOperand(1).isImm()) 952 report("Asm flags must be an immediate", MI); 953 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 954 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 955 // and Extra_IsConvergent = 32. 956 if (!isUInt<6>(MI->getOperand(1).getImm())) 957 report("Unknown asm flags", &MI->getOperand(1), 1); 958 959 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 960 961 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 962 unsigned NumOps; 963 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 964 const MachineOperand &MO = MI->getOperand(OpNo); 965 // There may be implicit ops after the fixed operands. 966 if (!MO.isImm()) 967 break; 968 const InlineAsm::Flag F(MO.getImm()); 969 NumOps = 1 + F.getNumOperandRegisters(); 970 } 971 972 if (OpNo > MI->getNumOperands()) 973 report("Missing operands in last group", MI); 974 975 // An optional MDNode follows the groups. 976 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 977 ++OpNo; 978 979 // All trailing operands must be implicit registers. 980 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 981 const MachineOperand &MO = MI->getOperand(OpNo); 982 if (!MO.isReg() || !MO.isImplicit()) 983 report("Expected implicit register after groups", &MO, OpNo); 984 } 985 986 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 987 const MachineBasicBlock *MBB = MI->getParent(); 988 989 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 990 i != e; ++i) { 991 const MachineOperand &MO = MI->getOperand(i); 992 993 if (!MO.isMBB()) 994 continue; 995 996 // Check the successor & predecessor lists look ok, assume they are 997 // not. Find the indirect target without going through the successors. 998 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 999 if (!IndirectTargetMBB) { 1000 report("INLINEASM_BR indirect target does not exist", &MO, i); 1001 break; 1002 } 1003 1004 if (!MBB->isSuccessor(IndirectTargetMBB)) 1005 report("INLINEASM_BR indirect target missing from successor list", &MO, 1006 i); 1007 1008 if (!IndirectTargetMBB->isPredecessor(MBB)) 1009 report("INLINEASM_BR indirect target predecessor list missing parent", 1010 &MO, i); 1011 } 1012 } 1013 } 1014 1015 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 1016 const MachineRegisterInfo &MRI) { 1017 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 1018 if (!Op.isReg()) 1019 return false; 1020 const auto Reg = Op.getReg(); 1021 if (Reg.isPhysical()) 1022 return false; 1023 return !MRI.getType(Reg).isScalar(); 1024 })) 1025 return true; 1026 report("All register operands must have scalar types", &MI); 1027 return false; 1028 } 1029 1030 /// Check that types are consistent when two operands need to have the same 1031 /// number of vector elements. 1032 /// \return true if the types are valid. 1033 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 1034 const MachineInstr *MI) { 1035 if (Ty0.isVector() != Ty1.isVector()) { 1036 report("operand types must be all-vector or all-scalar", MI); 1037 // Generally we try to report as many issues as possible at once, but in 1038 // this case it's not clear what should we be comparing the size of the 1039 // scalar with: the size of the whole vector or its lane. Instead of 1040 // making an arbitrary choice and emitting not so helpful message, let's 1041 // avoid the extra noise and stop here. 1042 return false; 1043 } 1044 1045 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { 1046 report("operand types must preserve number of vector elements", MI); 1047 return false; 1048 } 1049 1050 return true; 1051 } 1052 1053 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { 1054 auto Opcode = MI->getOpcode(); 1055 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || 1056 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; 1057 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1058 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1059 AttributeList Attrs = Intrinsic::getAttributes( 1060 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1061 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1062 if (NoSideEffects && DeclHasSideEffects) { 1063 report(Twine(TII->getName(Opcode), 1064 " used with intrinsic that accesses memory"), 1065 MI); 1066 return false; 1067 } 1068 if (!NoSideEffects && !DeclHasSideEffects) { 1069 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); 1070 return false; 1071 } 1072 } 1073 1074 return true; 1075 } 1076 1077 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { 1078 auto Opcode = MI->getOpcode(); 1079 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || 1080 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; 1081 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1082 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1083 AttributeList Attrs = Intrinsic::getAttributes( 1084 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1085 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); 1086 if (NotConvergent && DeclIsConvergent) { 1087 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), 1088 MI); 1089 return false; 1090 } 1091 if (!NotConvergent && !DeclIsConvergent) { 1092 report( 1093 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), 1094 MI); 1095 return false; 1096 } 1097 } 1098 1099 return true; 1100 } 1101 1102 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 1103 if (isFunctionSelected) 1104 report("Unexpected generic instruction in a Selected function", MI); 1105 1106 const MCInstrDesc &MCID = MI->getDesc(); 1107 unsigned NumOps = MI->getNumOperands(); 1108 1109 // Branches must reference a basic block if they are not indirect 1110 if (MI->isBranch() && !MI->isIndirectBranch()) { 1111 bool HasMBB = false; 1112 for (const MachineOperand &Op : MI->operands()) { 1113 if (Op.isMBB()) { 1114 HasMBB = true; 1115 break; 1116 } 1117 } 1118 1119 if (!HasMBB) { 1120 report("Branch instruction is missing a basic block operand or " 1121 "isIndirectBranch property", 1122 MI); 1123 } 1124 } 1125 1126 // Check types. 1127 SmallVector<LLT, 4> Types; 1128 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 1129 I != E; ++I) { 1130 if (!MCID.operands()[I].isGenericType()) 1131 continue; 1132 // Generic instructions specify type equality constraints between some of 1133 // their operands. Make sure these are consistent. 1134 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 1135 Types.resize(std::max(TypeIdx + 1, Types.size())); 1136 1137 const MachineOperand *MO = &MI->getOperand(I); 1138 if (!MO->isReg()) { 1139 report("generic instruction must use register operands", MI); 1140 continue; 1141 } 1142 1143 LLT OpTy = MRI->getType(MO->getReg()); 1144 // Don't report a type mismatch if there is no actual mismatch, only a 1145 // type missing, to reduce noise: 1146 if (OpTy.isValid()) { 1147 // Only the first valid type for a type index will be printed: don't 1148 // overwrite it later so it's always clear which type was expected: 1149 if (!Types[TypeIdx].isValid()) 1150 Types[TypeIdx] = OpTy; 1151 else if (Types[TypeIdx] != OpTy) 1152 report("Type mismatch in generic instruction", MO, I, OpTy); 1153 } else { 1154 // Generic instructions must have types attached to their operands. 1155 report("Generic instruction is missing a virtual register type", MO, I); 1156 } 1157 } 1158 1159 // Generic opcodes must not have physical register operands. 1160 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1161 const MachineOperand *MO = &MI->getOperand(I); 1162 if (MO->isReg() && MO->getReg().isPhysical()) 1163 report("Generic instruction cannot have physical register", MO, I); 1164 } 1165 1166 // Avoid out of bounds in checks below. This was already reported earlier. 1167 if (MI->getNumOperands() < MCID.getNumOperands()) 1168 return; 1169 1170 StringRef ErrorInfo; 1171 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1172 report(ErrorInfo.data(), MI); 1173 1174 // Verify properties of various specific instruction types 1175 unsigned Opc = MI->getOpcode(); 1176 switch (Opc) { 1177 case TargetOpcode::G_ASSERT_SEXT: 1178 case TargetOpcode::G_ASSERT_ZEXT: { 1179 std::string OpcName = 1180 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1181 if (!MI->getOperand(2).isImm()) { 1182 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1183 break; 1184 } 1185 1186 Register Dst = MI->getOperand(0).getReg(); 1187 Register Src = MI->getOperand(1).getReg(); 1188 LLT SrcTy = MRI->getType(Src); 1189 int64_t Imm = MI->getOperand(2).getImm(); 1190 if (Imm <= 0) { 1191 report(Twine(OpcName, " size must be >= 1"), MI); 1192 break; 1193 } 1194 1195 if (Imm >= SrcTy.getScalarSizeInBits()) { 1196 report(Twine(OpcName, " size must be less than source bit width"), MI); 1197 break; 1198 } 1199 1200 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1201 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1202 1203 // Allow only the source bank to be set. 1204 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1205 report(Twine(OpcName, " cannot change register bank"), MI); 1206 break; 1207 } 1208 1209 // Don't allow a class change. Do allow member class->regbank. 1210 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1211 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1212 report( 1213 Twine(OpcName, " source and destination register classes must match"), 1214 MI); 1215 break; 1216 } 1217 1218 break; 1219 } 1220 1221 case TargetOpcode::G_CONSTANT: 1222 case TargetOpcode::G_FCONSTANT: { 1223 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1224 if (DstTy.isVector()) 1225 report("Instruction cannot use a vector result type", MI); 1226 1227 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1228 if (!MI->getOperand(1).isCImm()) { 1229 report("G_CONSTANT operand must be cimm", MI); 1230 break; 1231 } 1232 1233 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1234 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1235 report("inconsistent constant size", MI); 1236 } else { 1237 if (!MI->getOperand(1).isFPImm()) { 1238 report("G_FCONSTANT operand must be fpimm", MI); 1239 break; 1240 } 1241 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1242 1243 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1244 DstTy.getSizeInBits()) { 1245 report("inconsistent constant size", MI); 1246 } 1247 } 1248 1249 break; 1250 } 1251 case TargetOpcode::G_LOAD: 1252 case TargetOpcode::G_STORE: 1253 case TargetOpcode::G_ZEXTLOAD: 1254 case TargetOpcode::G_SEXTLOAD: { 1255 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1256 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1257 if (!PtrTy.isPointer()) 1258 report("Generic memory instruction must access a pointer", MI); 1259 1260 // Generic loads and stores must have a single MachineMemOperand 1261 // describing that access. 1262 if (!MI->hasOneMemOperand()) { 1263 report("Generic instruction accessing memory must have one mem operand", 1264 MI); 1265 } else { 1266 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1267 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1268 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1269 if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), 1270 ValTy.getSizeInBits())) 1271 report("Generic extload must have a narrower memory type", MI); 1272 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1273 if (TypeSize::isKnownGT(MMO.getSize().getValue(), 1274 ValTy.getSizeInBytes())) 1275 report("load memory size cannot exceed result size", MI); 1276 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1277 if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), 1278 MMO.getSize().getValue())) 1279 report("store memory size cannot exceed value size", MI); 1280 } 1281 1282 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1283 if (Opc == TargetOpcode::G_STORE) { 1284 if (Order == AtomicOrdering::Acquire || 1285 Order == AtomicOrdering::AcquireRelease) 1286 report("atomic store cannot use acquire ordering", MI); 1287 1288 } else { 1289 if (Order == AtomicOrdering::Release || 1290 Order == AtomicOrdering::AcquireRelease) 1291 report("atomic load cannot use release ordering", MI); 1292 } 1293 } 1294 1295 break; 1296 } 1297 case TargetOpcode::G_PHI: { 1298 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1299 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1300 [this, &DstTy](const MachineOperand &MO) { 1301 if (!MO.isReg()) 1302 return true; 1303 LLT Ty = MRI->getType(MO.getReg()); 1304 if (!Ty.isValid() || (Ty != DstTy)) 1305 return false; 1306 return true; 1307 })) 1308 report("Generic Instruction G_PHI has operands with incompatible/missing " 1309 "types", 1310 MI); 1311 break; 1312 } 1313 case TargetOpcode::G_BITCAST: { 1314 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1315 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1316 if (!DstTy.isValid() || !SrcTy.isValid()) 1317 break; 1318 1319 if (SrcTy.isPointer() != DstTy.isPointer()) 1320 report("bitcast cannot convert between pointers and other types", MI); 1321 1322 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1323 report("bitcast sizes must match", MI); 1324 1325 if (SrcTy == DstTy) 1326 report("bitcast must change the type", MI); 1327 1328 break; 1329 } 1330 case TargetOpcode::G_INTTOPTR: 1331 case TargetOpcode::G_PTRTOINT: 1332 case TargetOpcode::G_ADDRSPACE_CAST: { 1333 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1334 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1335 if (!DstTy.isValid() || !SrcTy.isValid()) 1336 break; 1337 1338 verifyVectorElementMatch(DstTy, SrcTy, MI); 1339 1340 DstTy = DstTy.getScalarType(); 1341 SrcTy = SrcTy.getScalarType(); 1342 1343 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1344 if (!DstTy.isPointer()) 1345 report("inttoptr result type must be a pointer", MI); 1346 if (SrcTy.isPointer()) 1347 report("inttoptr source type must not be a pointer", MI); 1348 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1349 if (!SrcTy.isPointer()) 1350 report("ptrtoint source type must be a pointer", MI); 1351 if (DstTy.isPointer()) 1352 report("ptrtoint result type must not be a pointer", MI); 1353 } else { 1354 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1355 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1356 report("addrspacecast types must be pointers", MI); 1357 else { 1358 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1359 report("addrspacecast must convert different address spaces", MI); 1360 } 1361 } 1362 1363 break; 1364 } 1365 case TargetOpcode::G_PTR_ADD: { 1366 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1367 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1368 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1369 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1370 break; 1371 1372 if (!PtrTy.isPointerOrPointerVector()) 1373 report("gep first operand must be a pointer", MI); 1374 1375 if (OffsetTy.isPointerOrPointerVector()) 1376 report("gep offset operand must not be a pointer", MI); 1377 1378 if (PtrTy.isPointerOrPointerVector()) { 1379 const DataLayout &DL = MF->getDataLayout(); 1380 unsigned AS = PtrTy.getAddressSpace(); 1381 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 1382 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { 1383 report("gep offset operand must match index size for address space", 1384 MI); 1385 } 1386 } 1387 1388 // TODO: Is the offset allowed to be a scalar with a vector? 1389 break; 1390 } 1391 case TargetOpcode::G_PTRMASK: { 1392 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1393 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1394 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1395 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1396 break; 1397 1398 if (!DstTy.isPointerOrPointerVector()) 1399 report("ptrmask result type must be a pointer", MI); 1400 1401 if (!MaskTy.getScalarType().isScalar()) 1402 report("ptrmask mask type must be an integer", MI); 1403 1404 verifyVectorElementMatch(DstTy, MaskTy, MI); 1405 break; 1406 } 1407 case TargetOpcode::G_SEXT: 1408 case TargetOpcode::G_ZEXT: 1409 case TargetOpcode::G_ANYEXT: 1410 case TargetOpcode::G_TRUNC: 1411 case TargetOpcode::G_FPEXT: 1412 case TargetOpcode::G_FPTRUNC: { 1413 // Number of operands and presense of types is already checked (and 1414 // reported in case of any issues), so no need to report them again. As 1415 // we're trying to report as many issues as possible at once, however, the 1416 // instructions aren't guaranteed to have the right number of operands or 1417 // types attached to them at this point 1418 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1419 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1420 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1421 if (!DstTy.isValid() || !SrcTy.isValid()) 1422 break; 1423 1424 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) 1425 report("Generic extend/truncate can not operate on pointers", MI); 1426 1427 verifyVectorElementMatch(DstTy, SrcTy, MI); 1428 1429 unsigned DstSize = DstTy.getScalarSizeInBits(); 1430 unsigned SrcSize = SrcTy.getScalarSizeInBits(); 1431 switch (MI->getOpcode()) { 1432 default: 1433 if (DstSize <= SrcSize) 1434 report("Generic extend has destination type no larger than source", MI); 1435 break; 1436 case TargetOpcode::G_TRUNC: 1437 case TargetOpcode::G_FPTRUNC: 1438 if (DstSize >= SrcSize) 1439 report("Generic truncate has destination type no smaller than source", 1440 MI); 1441 break; 1442 } 1443 break; 1444 } 1445 case TargetOpcode::G_SELECT: { 1446 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1447 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1448 if (!SelTy.isValid() || !CondTy.isValid()) 1449 break; 1450 1451 // Scalar condition select on a vector is valid. 1452 if (CondTy.isVector()) 1453 verifyVectorElementMatch(SelTy, CondTy, MI); 1454 break; 1455 } 1456 case TargetOpcode::G_MERGE_VALUES: { 1457 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1458 // e.g. s2N = MERGE sN, sN 1459 // Merging multiple scalars into a vector is not allowed, should use 1460 // G_BUILD_VECTOR for that. 1461 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1462 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1463 if (DstTy.isVector() || SrcTy.isVector()) 1464 report("G_MERGE_VALUES cannot operate on vectors", MI); 1465 1466 const unsigned NumOps = MI->getNumOperands(); 1467 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1468 report("G_MERGE_VALUES result size is inconsistent", MI); 1469 1470 for (unsigned I = 2; I != NumOps; ++I) { 1471 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1472 report("G_MERGE_VALUES source types do not match", MI); 1473 } 1474 1475 break; 1476 } 1477 case TargetOpcode::G_UNMERGE_VALUES: { 1478 unsigned NumDsts = MI->getNumOperands() - 1; 1479 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1480 for (unsigned i = 1; i < NumDsts; ++i) { 1481 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1482 report("G_UNMERGE_VALUES destination types do not match", MI); 1483 break; 1484 } 1485 } 1486 1487 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1488 if (DstTy.isVector()) { 1489 // This case is the converse of G_CONCAT_VECTORS. 1490 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || 1491 SrcTy.isScalableVector() != DstTy.isScalableVector() || 1492 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1493 report("G_UNMERGE_VALUES source operand does not match vector " 1494 "destination operands", 1495 MI); 1496 } else if (SrcTy.isVector()) { 1497 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1498 // mismatched types as long as the total size matches: 1499 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1500 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1501 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1502 "destination operands", 1503 MI); 1504 } else { 1505 // This case is the converse of G_MERGE_VALUES. 1506 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1507 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1508 "destination operands", 1509 MI); 1510 } 1511 } 1512 break; 1513 } 1514 case TargetOpcode::G_BUILD_VECTOR: { 1515 // Source types must be scalars, dest type a vector. Total size of scalars 1516 // must match the dest vector size. 1517 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1518 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1519 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1520 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1521 break; 1522 } 1523 1524 if (DstTy.getElementType() != SrcEltTy) 1525 report("G_BUILD_VECTOR result element type must match source type", MI); 1526 1527 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1528 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1529 1530 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1531 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1532 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1533 1534 break; 1535 } 1536 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1537 // Source types must be scalars, dest type a vector. Scalar types must be 1538 // larger than the dest vector elt type, as this is a truncating operation. 1539 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1540 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1541 if (!DstTy.isVector() || SrcEltTy.isVector()) 1542 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1543 MI); 1544 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1545 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1546 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1547 MI); 1548 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1549 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1550 "dest elt type", 1551 MI); 1552 break; 1553 } 1554 case TargetOpcode::G_CONCAT_VECTORS: { 1555 // Source types should be vectors, and total size should match the dest 1556 // vector size. 1557 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1558 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1559 if (!DstTy.isVector() || !SrcTy.isVector()) 1560 report("G_CONCAT_VECTOR requires vector source and destination operands", 1561 MI); 1562 1563 if (MI->getNumOperands() < 3) 1564 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1565 1566 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1567 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1568 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1569 if (DstTy.getElementCount() != 1570 SrcTy.getElementCount() * (MI->getNumOperands() - 1)) 1571 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1572 break; 1573 } 1574 case TargetOpcode::G_ICMP: 1575 case TargetOpcode::G_FCMP: { 1576 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1577 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1578 1579 if ((DstTy.isVector() != SrcTy.isVector()) || 1580 (DstTy.isVector() && 1581 DstTy.getElementCount() != SrcTy.getElementCount())) 1582 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1583 1584 break; 1585 } 1586 case TargetOpcode::G_SCMP: 1587 case TargetOpcode::G_UCMP: { 1588 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1589 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1590 LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg()); 1591 1592 if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { 1593 report("Generic scmp/ucmp does not support pointers as operands", MI); 1594 break; 1595 } 1596 1597 if (DstTy.isPointerOrPointerVector()) { 1598 report("Generic scmp/ucmp does not support pointers as a result", MI); 1599 break; 1600 } 1601 1602 if ((DstTy.isVector() != SrcTy.isVector()) || 1603 (DstTy.isVector() && 1604 DstTy.getElementCount() != SrcTy.getElementCount())) { 1605 report("Generic vector scmp/ucmp must preserve number of lanes", MI); 1606 break; 1607 } 1608 1609 if (SrcTy != SrcTy2) { 1610 report("Generic scmp/ucmp must have same input types", MI); 1611 break; 1612 } 1613 1614 break; 1615 } 1616 case TargetOpcode::G_EXTRACT: { 1617 const MachineOperand &SrcOp = MI->getOperand(1); 1618 if (!SrcOp.isReg()) { 1619 report("extract source must be a register", MI); 1620 break; 1621 } 1622 1623 const MachineOperand &OffsetOp = MI->getOperand(2); 1624 if (!OffsetOp.isImm()) { 1625 report("extract offset must be a constant", MI); 1626 break; 1627 } 1628 1629 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1630 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1631 if (SrcSize == DstSize) 1632 report("extract source must be larger than result", MI); 1633 1634 if (DstSize + OffsetOp.getImm() > SrcSize) 1635 report("extract reads past end of register", MI); 1636 break; 1637 } 1638 case TargetOpcode::G_INSERT: { 1639 const MachineOperand &SrcOp = MI->getOperand(2); 1640 if (!SrcOp.isReg()) { 1641 report("insert source must be a register", MI); 1642 break; 1643 } 1644 1645 const MachineOperand &OffsetOp = MI->getOperand(3); 1646 if (!OffsetOp.isImm()) { 1647 report("insert offset must be a constant", MI); 1648 break; 1649 } 1650 1651 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1652 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1653 1654 if (DstSize <= SrcSize) 1655 report("inserted size must be smaller than total register", MI); 1656 1657 if (SrcSize + OffsetOp.getImm() > DstSize) 1658 report("insert writes past end of register", MI); 1659 1660 break; 1661 } 1662 case TargetOpcode::G_JUMP_TABLE: { 1663 if (!MI->getOperand(1).isJTI()) 1664 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1665 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1666 if (!DstTy.isPointer()) 1667 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1668 break; 1669 } 1670 case TargetOpcode::G_BRJT: { 1671 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1672 report("G_BRJT src operand 0 must be a pointer type", MI); 1673 1674 if (!MI->getOperand(1).isJTI()) 1675 report("G_BRJT src operand 1 must be a jump table index", MI); 1676 1677 const auto &IdxOp = MI->getOperand(2); 1678 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1679 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1680 break; 1681 } 1682 case TargetOpcode::G_INTRINSIC: 1683 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: 1684 case TargetOpcode::G_INTRINSIC_CONVERGENT: 1685 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { 1686 // TODO: Should verify number of def and use operands, but the current 1687 // interface requires passing in IR types for mangling. 1688 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1689 if (!IntrIDOp.isIntrinsicID()) { 1690 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1691 break; 1692 } 1693 1694 if (!verifyGIntrinsicSideEffects(MI)) 1695 break; 1696 if (!verifyGIntrinsicConvergence(MI)) 1697 break; 1698 1699 break; 1700 } 1701 case TargetOpcode::G_SEXT_INREG: { 1702 if (!MI->getOperand(2).isImm()) { 1703 report("G_SEXT_INREG expects an immediate operand #2", MI); 1704 break; 1705 } 1706 1707 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1708 int64_t Imm = MI->getOperand(2).getImm(); 1709 if (Imm <= 0) 1710 report("G_SEXT_INREG size must be >= 1", MI); 1711 if (Imm >= SrcTy.getScalarSizeInBits()) 1712 report("G_SEXT_INREG size must be less than source bit width", MI); 1713 break; 1714 } 1715 case TargetOpcode::G_BSWAP: { 1716 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1717 if (DstTy.getScalarSizeInBits() % 16 != 0) 1718 report("G_BSWAP size must be a multiple of 16 bits", MI); 1719 break; 1720 } 1721 case TargetOpcode::G_VSCALE: { 1722 if (!MI->getOperand(1).isCImm()) { 1723 report("G_VSCALE operand must be cimm", MI); 1724 break; 1725 } 1726 if (MI->getOperand(1).getCImm()->isZero()) { 1727 report("G_VSCALE immediate cannot be zero", MI); 1728 break; 1729 } 1730 break; 1731 } 1732 case TargetOpcode::G_INSERT_SUBVECTOR: { 1733 const MachineOperand &Src0Op = MI->getOperand(1); 1734 if (!Src0Op.isReg()) { 1735 report("G_INSERT_SUBVECTOR first source must be a register", MI); 1736 break; 1737 } 1738 1739 const MachineOperand &Src1Op = MI->getOperand(2); 1740 if (!Src1Op.isReg()) { 1741 report("G_INSERT_SUBVECTOR second source must be a register", MI); 1742 break; 1743 } 1744 1745 const MachineOperand &IndexOp = MI->getOperand(3); 1746 if (!IndexOp.isImm()) { 1747 report("G_INSERT_SUBVECTOR index must be an immediate", MI); 1748 break; 1749 } 1750 1751 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1752 LLT Src1Ty = MRI->getType(Src1Op.getReg()); 1753 1754 if (!DstTy.isVector()) { 1755 report("Destination type must be a vector", MI); 1756 break; 1757 } 1758 1759 if (!Src1Ty.isVector()) { 1760 report("Second source must be a vector", MI); 1761 break; 1762 } 1763 1764 if (DstTy.getElementType() != Src1Ty.getElementType()) { 1765 report("Element type of vectors must be the same", MI); 1766 break; 1767 } 1768 1769 if (Src1Ty.isScalable() != DstTy.isScalable()) { 1770 report("Vector types must both be fixed or both be scalable", MI); 1771 break; 1772 } 1773 1774 if (ElementCount::isKnownGT(Src1Ty.getElementCount(), 1775 DstTy.getElementCount())) { 1776 report("Second source must be smaller than destination vector", MI); 1777 break; 1778 } 1779 1780 uint64_t Idx = IndexOp.getImm(); 1781 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); 1782 if (IndexOp.getImm() % Src1MinLen != 0) { 1783 report("Index must be a multiple of the second source vector's " 1784 "minimum vector length", 1785 MI); 1786 break; 1787 } 1788 1789 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1790 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { 1791 report("Subvector type and index must not cause insert to overrun the " 1792 "vector being inserted into", 1793 MI); 1794 break; 1795 } 1796 1797 break; 1798 } 1799 case TargetOpcode::G_EXTRACT_SUBVECTOR: { 1800 const MachineOperand &SrcOp = MI->getOperand(1); 1801 if (!SrcOp.isReg()) { 1802 report("G_EXTRACT_SUBVECTOR first source must be a register", MI); 1803 break; 1804 } 1805 1806 const MachineOperand &IndexOp = MI->getOperand(2); 1807 if (!IndexOp.isImm()) { 1808 report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); 1809 break; 1810 } 1811 1812 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1813 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1814 1815 if (!DstTy.isVector()) { 1816 report("Destination type must be a vector", MI); 1817 break; 1818 } 1819 1820 if (!SrcTy.isVector()) { 1821 report("Source must be a vector", MI); 1822 break; 1823 } 1824 1825 if (DstTy.getElementType() != SrcTy.getElementType()) { 1826 report("Element type of vectors must be the same", MI); 1827 break; 1828 } 1829 1830 if (SrcTy.isScalable() != DstTy.isScalable()) { 1831 report("Vector types must both be fixed or both be scalable", MI); 1832 break; 1833 } 1834 1835 if (ElementCount::isKnownGT(DstTy.getElementCount(), 1836 SrcTy.getElementCount())) { 1837 report("Destination vector must be smaller than source vector", MI); 1838 break; 1839 } 1840 1841 uint64_t Idx = IndexOp.getImm(); 1842 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1843 if (Idx % DstMinLen != 0) { 1844 report("Index must be a multiple of the destination vector's minimum " 1845 "vector length", 1846 MI); 1847 break; 1848 } 1849 1850 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); 1851 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { 1852 report("Destination type and index must not cause extract to overrun the " 1853 "source vector", 1854 MI); 1855 break; 1856 } 1857 1858 break; 1859 } 1860 case TargetOpcode::G_SHUFFLE_VECTOR: { 1861 const MachineOperand &MaskOp = MI->getOperand(3); 1862 if (!MaskOp.isShuffleMask()) { 1863 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1864 break; 1865 } 1866 1867 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1868 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1869 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1870 1871 if (Src0Ty != Src1Ty) 1872 report("Source operands must be the same type", MI); 1873 1874 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1875 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1876 1877 // Don't check that all operands are vector because scalars are used in 1878 // place of 1 element vectors. 1879 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1880 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1881 1882 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1883 1884 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1885 report("Wrong result type for shufflemask", MI); 1886 1887 for (int Idx : MaskIdxes) { 1888 if (Idx < 0) 1889 continue; 1890 1891 if (Idx >= 2 * SrcNumElts) 1892 report("Out of bounds shuffle index", MI); 1893 } 1894 1895 break; 1896 } 1897 1898 case TargetOpcode::G_SPLAT_VECTOR: { 1899 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1900 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1901 1902 if (!DstTy.isScalableVector()) { 1903 report("Destination type must be a scalable vector", MI); 1904 break; 1905 } 1906 1907 if (!SrcTy.isScalar() && !SrcTy.isPointer()) { 1908 report("Source type must be a scalar or pointer", MI); 1909 break; 1910 } 1911 1912 if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), 1913 SrcTy.getSizeInBits())) { 1914 report("Element type of the destination must be the same size or smaller " 1915 "than the source type", 1916 MI); 1917 break; 1918 } 1919 1920 break; 1921 } 1922 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1923 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1924 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1925 LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); 1926 1927 if (!DstTy.isScalar() && !DstTy.isPointer()) { 1928 report("Destination type must be a scalar or pointer", MI); 1929 break; 1930 } 1931 1932 if (!SrcTy.isVector()) { 1933 report("First source must be a vector", MI); 1934 break; 1935 } 1936 1937 auto TLI = MF->getSubtarget().getTargetLowering(); 1938 if (IdxTy.getSizeInBits() != 1939 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1940 report("Index type must match VectorIdxTy", MI); 1941 break; 1942 } 1943 1944 break; 1945 } 1946 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1947 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1948 LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); 1949 LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); 1950 LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); 1951 1952 if (!DstTy.isVector()) { 1953 report("Destination type must be a vector", MI); 1954 break; 1955 } 1956 1957 if (VecTy != DstTy) { 1958 report("Destination type and vector type must match", MI); 1959 break; 1960 } 1961 1962 if (!ScaTy.isScalar() && !ScaTy.isPointer()) { 1963 report("Inserted element must be a scalar or pointer", MI); 1964 break; 1965 } 1966 1967 auto TLI = MF->getSubtarget().getTargetLowering(); 1968 if (IdxTy.getSizeInBits() != 1969 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1970 report("Index type must match VectorIdxTy", MI); 1971 break; 1972 } 1973 1974 break; 1975 } 1976 case TargetOpcode::G_DYN_STACKALLOC: { 1977 const MachineOperand &DstOp = MI->getOperand(0); 1978 const MachineOperand &AllocOp = MI->getOperand(1); 1979 const MachineOperand &AlignOp = MI->getOperand(2); 1980 1981 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1982 report("dst operand 0 must be a pointer type", MI); 1983 break; 1984 } 1985 1986 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1987 report("src operand 1 must be a scalar reg type", MI); 1988 break; 1989 } 1990 1991 if (!AlignOp.isImm()) { 1992 report("src operand 2 must be an immediate type", MI); 1993 break; 1994 } 1995 break; 1996 } 1997 case TargetOpcode::G_MEMCPY_INLINE: 1998 case TargetOpcode::G_MEMCPY: 1999 case TargetOpcode::G_MEMMOVE: { 2000 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2001 if (MMOs.size() != 2) { 2002 report("memcpy/memmove must have 2 memory operands", MI); 2003 break; 2004 } 2005 2006 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 2007 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 2008 report("wrong memory operand types", MI); 2009 break; 2010 } 2011 2012 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 2013 report("inconsistent memory operand sizes", MI); 2014 2015 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2016 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 2017 2018 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 2019 report("memory instruction operand must be a pointer", MI); 2020 break; 2021 } 2022 2023 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2024 report("inconsistent store address space", MI); 2025 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 2026 report("inconsistent load address space", MI); 2027 2028 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 2029 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 2030 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 2031 2032 break; 2033 } 2034 case TargetOpcode::G_BZERO: 2035 case TargetOpcode::G_MEMSET: { 2036 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2037 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 2038 if (MMOs.size() != 1) { 2039 report(Twine(Name, " must have 1 memory operand"), MI); 2040 break; 2041 } 2042 2043 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 2044 report(Twine(Name, " memory operand must be a store"), MI); 2045 break; 2046 } 2047 2048 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2049 if (!DstPtrTy.isPointer()) { 2050 report(Twine(Name, " operand must be a pointer"), MI); 2051 break; 2052 } 2053 2054 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2055 report("inconsistent " + Twine(Name, " address space"), MI); 2056 2057 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 2058 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 2059 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 2060 2061 break; 2062 } 2063 case TargetOpcode::G_UBSANTRAP: { 2064 const MachineOperand &KindOp = MI->getOperand(0); 2065 if (!MI->getOperand(0).isImm()) { 2066 report("Crash kind must be an immediate", &KindOp, 0); 2067 break; 2068 } 2069 int64_t Kind = MI->getOperand(0).getImm(); 2070 if (!isInt<8>(Kind)) 2071 report("Crash kind must be 8 bit wide", &KindOp, 0); 2072 break; 2073 } 2074 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 2075 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 2076 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2077 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2078 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2079 if (!DstTy.isScalar()) 2080 report("Vector reduction requires a scalar destination type", MI); 2081 if (!Src1Ty.isScalar()) 2082 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 2083 if (!Src2Ty.isVector()) 2084 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 2085 break; 2086 } 2087 case TargetOpcode::G_VECREDUCE_FADD: 2088 case TargetOpcode::G_VECREDUCE_FMUL: 2089 case TargetOpcode::G_VECREDUCE_FMAX: 2090 case TargetOpcode::G_VECREDUCE_FMIN: 2091 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 2092 case TargetOpcode::G_VECREDUCE_FMINIMUM: 2093 case TargetOpcode::G_VECREDUCE_ADD: 2094 case TargetOpcode::G_VECREDUCE_MUL: 2095 case TargetOpcode::G_VECREDUCE_AND: 2096 case TargetOpcode::G_VECREDUCE_OR: 2097 case TargetOpcode::G_VECREDUCE_XOR: 2098 case TargetOpcode::G_VECREDUCE_SMAX: 2099 case TargetOpcode::G_VECREDUCE_SMIN: 2100 case TargetOpcode::G_VECREDUCE_UMAX: 2101 case TargetOpcode::G_VECREDUCE_UMIN: { 2102 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2103 if (!DstTy.isScalar()) 2104 report("Vector reduction requires a scalar destination type", MI); 2105 break; 2106 } 2107 2108 case TargetOpcode::G_SBFX: 2109 case TargetOpcode::G_UBFX: { 2110 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2111 if (DstTy.isVector()) { 2112 report("Bitfield extraction is not supported on vectors", MI); 2113 break; 2114 } 2115 break; 2116 } 2117 case TargetOpcode::G_SHL: 2118 case TargetOpcode::G_LSHR: 2119 case TargetOpcode::G_ASHR: 2120 case TargetOpcode::G_ROTR: 2121 case TargetOpcode::G_ROTL: { 2122 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2123 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2124 if (Src1Ty.isVector() != Src2Ty.isVector()) { 2125 report("Shifts and rotates require operands to be either all scalars or " 2126 "all vectors", 2127 MI); 2128 break; 2129 } 2130 break; 2131 } 2132 case TargetOpcode::G_LLROUND: 2133 case TargetOpcode::G_LROUND: { 2134 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2135 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2136 if (!DstTy.isValid() || !SrcTy.isValid()) 2137 break; 2138 if (SrcTy.isPointer() || DstTy.isPointer()) { 2139 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination"; 2140 report(Twine(Op, " operand must not be a pointer type"), MI); 2141 } else if (SrcTy.isScalar()) { 2142 verifyAllRegOpsScalar(*MI, *MRI); 2143 break; 2144 } else if (SrcTy.isVector()) { 2145 verifyVectorElementMatch(SrcTy, DstTy, MI); 2146 break; 2147 } 2148 break; 2149 } 2150 case TargetOpcode::G_IS_FPCLASS: { 2151 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 2152 LLT DestEltTy = DestTy.getScalarType(); 2153 if (!DestEltTy.isScalar()) { 2154 report("Destination must be a scalar or vector of scalars", MI); 2155 break; 2156 } 2157 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2158 LLT SrcEltTy = SrcTy.getScalarType(); 2159 if (!SrcEltTy.isScalar()) { 2160 report("Source must be a scalar or vector of scalars", MI); 2161 break; 2162 } 2163 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 2164 break; 2165 const MachineOperand &TestMO = MI->getOperand(2); 2166 if (!TestMO.isImm()) { 2167 report("floating-point class set (operand 2) must be an immediate", MI); 2168 break; 2169 } 2170 int64_t Test = TestMO.getImm(); 2171 if (Test < 0 || Test > fcAllFlags) { 2172 report("Incorrect floating-point class set (operand 2)", MI); 2173 break; 2174 } 2175 break; 2176 } 2177 case TargetOpcode::G_PREFETCH: { 2178 const MachineOperand &AddrOp = MI->getOperand(0); 2179 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { 2180 report("addr operand must be a pointer", &AddrOp, 0); 2181 break; 2182 } 2183 const MachineOperand &RWOp = MI->getOperand(1); 2184 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { 2185 report("rw operand must be an immediate 0-1", &RWOp, 1); 2186 break; 2187 } 2188 const MachineOperand &LocalityOp = MI->getOperand(2); 2189 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { 2190 report("locality operand must be an immediate 0-3", &LocalityOp, 2); 2191 break; 2192 } 2193 const MachineOperand &CacheTypeOp = MI->getOperand(3); 2194 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { 2195 report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); 2196 break; 2197 } 2198 break; 2199 } 2200 case TargetOpcode::G_ASSERT_ALIGN: { 2201 if (MI->getOperand(2).getImm() < 1) 2202 report("alignment immediate must be >= 1", MI); 2203 break; 2204 } 2205 case TargetOpcode::G_CONSTANT_POOL: { 2206 if (!MI->getOperand(1).isCPI()) 2207 report("Src operand 1 must be a constant pool index", MI); 2208 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 2209 report("Dst operand 0 must be a pointer", MI); 2210 break; 2211 } 2212 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { 2213 const MachineOperand &AddrOp = MI->getOperand(1); 2214 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) 2215 report("addr operand must be a pointer", &AddrOp, 1); 2216 break; 2217 } 2218 default: 2219 break; 2220 } 2221 } 2222 2223 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 2224 const MCInstrDesc &MCID = MI->getDesc(); 2225 if (MI->getNumOperands() < MCID.getNumOperands()) { 2226 report("Too few operands", MI); 2227 OS << MCID.getNumOperands() << " operands expected, but " 2228 << MI->getNumOperands() << " given.\n"; 2229 } 2230 2231 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) 2232 report("NoConvergent flag expected only on convergent instructions.", MI); 2233 2234 if (MI->isPHI()) { 2235 if (MF->getProperties().hasProperty( 2236 MachineFunctionProperties::Property::NoPHIs)) 2237 report("Found PHI instruction with NoPHIs property set", MI); 2238 2239 if (FirstNonPHI) 2240 report("Found PHI instruction after non-PHI", MI); 2241 } else if (FirstNonPHI == nullptr) 2242 FirstNonPHI = MI; 2243 2244 // Check the tied operands. 2245 if (MI->isInlineAsm()) 2246 verifyInlineAsm(MI); 2247 2248 // Check that unspillable terminators define a reg and have at most one use. 2249 if (TII->isUnspillableTerminator(MI)) { 2250 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 2251 report("Unspillable Terminator does not define a reg", MI); 2252 Register Def = MI->getOperand(0).getReg(); 2253 if (Def.isVirtual() && 2254 !MF->getProperties().hasProperty( 2255 MachineFunctionProperties::Property::NoPHIs) && 2256 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 2257 report("Unspillable Terminator expected to have at most one use!", MI); 2258 } 2259 2260 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 2261 // DBG_VALUEs: these are convenient to use in tests, but should never get 2262 // generated. 2263 if (MI->isDebugValue() && MI->getNumOperands() == 4) 2264 if (!MI->getDebugLoc()) 2265 report("Missing DebugLoc for debug instruction", MI); 2266 2267 // Meta instructions should never be the subject of debug value tracking, 2268 // they don't create a value in the output program at all. 2269 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 2270 report("Metadata instruction should not have a value tracking number", MI); 2271 2272 // Check the MachineMemOperands for basic consistency. 2273 for (MachineMemOperand *Op : MI->memoperands()) { 2274 if (Op->isLoad() && !MI->mayLoad()) 2275 report("Missing mayLoad flag", MI); 2276 if (Op->isStore() && !MI->mayStore()) 2277 report("Missing mayStore flag", MI); 2278 } 2279 2280 // Debug values must not have a slot index. 2281 // Other instructions must have one, unless they are inside a bundle. 2282 if (LiveInts) { 2283 bool mapped = !LiveInts->isNotInMIMap(*MI); 2284 if (MI->isDebugOrPseudoInstr()) { 2285 if (mapped) 2286 report("Debug instruction has a slot index", MI); 2287 } else if (MI->isInsideBundle()) { 2288 if (mapped) 2289 report("Instruction inside bundle has a slot index", MI); 2290 } else { 2291 if (!mapped) 2292 report("Missing slot index", MI); 2293 } 2294 } 2295 2296 unsigned Opc = MCID.getOpcode(); 2297 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 2298 verifyPreISelGenericInstruction(MI); 2299 return; 2300 } 2301 2302 StringRef ErrorInfo; 2303 if (!TII->verifyInstruction(*MI, ErrorInfo)) 2304 report(ErrorInfo.data(), MI); 2305 2306 // Verify properties of various specific instruction types 2307 switch (MI->getOpcode()) { 2308 case TargetOpcode::COPY: { 2309 const MachineOperand &DstOp = MI->getOperand(0); 2310 const MachineOperand &SrcOp = MI->getOperand(1); 2311 const Register SrcReg = SrcOp.getReg(); 2312 const Register DstReg = DstOp.getReg(); 2313 2314 LLT DstTy = MRI->getType(DstReg); 2315 LLT SrcTy = MRI->getType(SrcReg); 2316 if (SrcTy.isValid() && DstTy.isValid()) { 2317 // If both types are valid, check that the types are the same. 2318 if (SrcTy != DstTy) { 2319 report("Copy Instruction is illegal with mismatching types", MI); 2320 OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; 2321 } 2322 2323 break; 2324 } 2325 2326 if (!SrcTy.isValid() && !DstTy.isValid()) 2327 break; 2328 2329 // If we have only one valid type, this is likely a copy between a virtual 2330 // and physical register. 2331 TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 2332 TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 2333 if (SrcReg.isPhysical() && DstTy.isValid()) { 2334 const TargetRegisterClass *SrcRC = 2335 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 2336 if (SrcRC) 2337 SrcSize = TRI->getRegSizeInBits(*SrcRC); 2338 } 2339 2340 if (DstReg.isPhysical() && SrcTy.isValid()) { 2341 const TargetRegisterClass *DstRC = 2342 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 2343 if (DstRC) 2344 DstSize = TRI->getRegSizeInBits(*DstRC); 2345 } 2346 2347 // The next two checks allow COPY between physical and virtual registers, 2348 // when the virtual register has a scalable size and the physical register 2349 // has a fixed size. These checks allow COPY between *potentialy* mismatched 2350 // sizes. However, once RegisterBankSelection occurs, MachineVerifier should 2351 // be able to resolve a fixed size for the scalable vector, and at that 2352 // point this function will know for sure whether the sizes are mismatched 2353 // and correctly report a size mismatch. 2354 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && 2355 !SrcSize.isScalable()) 2356 break; 2357 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && 2358 !DstSize.isScalable()) 2359 break; 2360 2361 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { 2362 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 2363 report("Copy Instruction is illegal with mismatching sizes", MI); 2364 OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; 2365 } 2366 } 2367 break; 2368 } 2369 case TargetOpcode::STATEPOINT: { 2370 StatepointOpers SO(MI); 2371 if (!MI->getOperand(SO.getIDPos()).isImm() || 2372 !MI->getOperand(SO.getNBytesPos()).isImm() || 2373 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 2374 report("meta operands to STATEPOINT not constant!", MI); 2375 break; 2376 } 2377 2378 auto VerifyStackMapConstant = [&](unsigned Offset) { 2379 if (Offset >= MI->getNumOperands()) { 2380 report("stack map constant to STATEPOINT is out of range!", MI); 2381 return; 2382 } 2383 if (!MI->getOperand(Offset - 1).isImm() || 2384 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 2385 !MI->getOperand(Offset).isImm()) 2386 report("stack map constant to STATEPOINT not well formed!", MI); 2387 }; 2388 VerifyStackMapConstant(SO.getCCIdx()); 2389 VerifyStackMapConstant(SO.getFlagsIdx()); 2390 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 2391 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 2392 VerifyStackMapConstant(SO.getNumAllocaIdx()); 2393 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 2394 2395 // Verify that all explicit statepoint defs are tied to gc operands as 2396 // they are expected to be a relocation of gc operands. 2397 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 2398 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 2399 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 2400 unsigned UseOpIdx; 2401 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 2402 report("STATEPOINT defs expected to be tied", MI); 2403 break; 2404 } 2405 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 2406 report("STATEPOINT def tied to non-gc operand", MI); 2407 break; 2408 } 2409 } 2410 2411 // TODO: verify we have properly encoded deopt arguments 2412 } break; 2413 case TargetOpcode::INSERT_SUBREG: { 2414 unsigned InsertedSize; 2415 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 2416 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 2417 else 2418 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 2419 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 2420 if (SubRegSize < InsertedSize) { 2421 report("INSERT_SUBREG expected inserted value to have equal or lesser " 2422 "size than the subreg it was inserted into", MI); 2423 break; 2424 } 2425 } break; 2426 case TargetOpcode::REG_SEQUENCE: { 2427 unsigned NumOps = MI->getNumOperands(); 2428 if (!(NumOps & 1)) { 2429 report("Invalid number of operands for REG_SEQUENCE", MI); 2430 break; 2431 } 2432 2433 for (unsigned I = 1; I != NumOps; I += 2) { 2434 const MachineOperand &RegOp = MI->getOperand(I); 2435 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 2436 2437 if (!RegOp.isReg()) 2438 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 2439 2440 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 2441 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 2442 report("Invalid subregister index operand for REG_SEQUENCE", 2443 &SubRegOp, I + 1); 2444 } 2445 } 2446 2447 Register DstReg = MI->getOperand(0).getReg(); 2448 if (DstReg.isPhysical()) 2449 report("REG_SEQUENCE does not support physical register results", MI); 2450 2451 if (MI->getOperand(0).getSubReg()) 2452 report("Invalid subreg result for REG_SEQUENCE", MI); 2453 2454 break; 2455 } 2456 } 2457 } 2458 2459 void 2460 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 2461 const MachineInstr *MI = MO->getParent(); 2462 const MCInstrDesc &MCID = MI->getDesc(); 2463 unsigned NumDefs = MCID.getNumDefs(); 2464 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 2465 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 2466 2467 // The first MCID.NumDefs operands must be explicit register defines 2468 if (MONum < NumDefs) { 2469 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2470 if (!MO->isReg()) 2471 report("Explicit definition must be a register", MO, MONum); 2472 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2473 report("Explicit definition marked as use", MO, MONum); 2474 else if (MO->isImplicit()) 2475 report("Explicit definition marked as implicit", MO, MONum); 2476 } else if (MONum < MCID.getNumOperands()) { 2477 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2478 // Don't check if it's the last operand in a variadic instruction. See, 2479 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2480 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2481 if (!IsOptional) { 2482 if (MO->isReg()) { 2483 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2484 report("Explicit operand marked as def", MO, MONum); 2485 if (MO->isImplicit()) 2486 report("Explicit operand marked as implicit", MO, MONum); 2487 } 2488 2489 // Check that an instruction has register operands only as expected. 2490 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2491 !MO->isReg() && !MO->isFI()) 2492 report("Expected a register operand.", MO, MONum); 2493 if (MO->isReg()) { 2494 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2495 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2496 !TII->isPCRelRegisterOperandLegal(*MO))) 2497 report("Expected a non-register operand.", MO, MONum); 2498 } 2499 } 2500 2501 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2502 if (TiedTo != -1) { 2503 if (!MO->isReg()) 2504 report("Tied use must be a register", MO, MONum); 2505 else if (!MO->isTied()) 2506 report("Operand should be tied", MO, MONum); 2507 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2508 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2509 else if (MO->getReg().isPhysical()) { 2510 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2511 if (!MOTied.isReg()) 2512 report("Tied counterpart must be a register", &MOTied, TiedTo); 2513 else if (MOTied.getReg().isPhysical() && 2514 MO->getReg() != MOTied.getReg()) 2515 report("Tied physical registers must match.", &MOTied, TiedTo); 2516 } 2517 } else if (MO->isReg() && MO->isTied()) 2518 report("Explicit operand should not be tied", MO, MONum); 2519 } else if (!MI->isVariadic()) { 2520 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2521 if (!MO->isValidExcessOperand()) 2522 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2523 } 2524 2525 switch (MO->getType()) { 2526 case MachineOperand::MO_Register: { 2527 // Verify debug flag on debug instructions. Check this first because reg0 2528 // indicates an undefined debug value. 2529 if (MI->isDebugInstr() && MO->isUse()) { 2530 if (!MO->isDebug()) 2531 report("Register operand must be marked debug", MO, MONum); 2532 } else if (MO->isDebug()) { 2533 report("Register operand must not be marked debug", MO, MONum); 2534 } 2535 2536 const Register Reg = MO->getReg(); 2537 if (!Reg) 2538 return; 2539 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2540 checkLiveness(MO, MONum); 2541 2542 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2543 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2544 report("Undef virtual register def operands require a subregister", MO, MONum); 2545 2546 // Verify the consistency of tied operands. 2547 if (MO->isTied()) { 2548 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2549 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2550 if (!OtherMO.isReg()) 2551 report("Must be tied to a register", MO, MONum); 2552 if (!OtherMO.isTied()) 2553 report("Missing tie flags on tied operand", MO, MONum); 2554 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2555 report("Inconsistent tie links", MO, MONum); 2556 if (MONum < MCID.getNumDefs()) { 2557 if (OtherIdx < MCID.getNumOperands()) { 2558 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2559 report("Explicit def tied to explicit use without tie constraint", 2560 MO, MONum); 2561 } else { 2562 if (!OtherMO.isImplicit()) 2563 report("Explicit def should be tied to implicit use", MO, MONum); 2564 } 2565 } 2566 } 2567 2568 // Verify two-address constraints after the twoaddressinstruction pass. 2569 // Both twoaddressinstruction pass and phi-node-elimination pass call 2570 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification 2571 // after twoaddressinstruction pass not after phi-node-elimination pass. So 2572 // we shouldn't use the IsSSA as the condition, we should based on 2573 // TiedOpsRewritten property to verify two-address constraints, this 2574 // property will be set in twoaddressinstruction pass. 2575 unsigned DefIdx; 2576 if (MF->getProperties().hasProperty( 2577 MachineFunctionProperties::Property::TiedOpsRewritten) && 2578 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2579 Reg != MI->getOperand(DefIdx).getReg()) 2580 report("Two-address instruction operands must be identical", MO, MONum); 2581 2582 // Check register classes. 2583 unsigned SubIdx = MO->getSubReg(); 2584 2585 if (Reg.isPhysical()) { 2586 if (SubIdx) { 2587 report("Illegal subregister index for physical register", MO, MONum); 2588 return; 2589 } 2590 if (MONum < MCID.getNumOperands()) { 2591 if (const TargetRegisterClass *DRC = 2592 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2593 if (!DRC->contains(Reg)) { 2594 report("Illegal physical register for instruction", MO, MONum); 2595 OS << printReg(Reg, TRI) << " is not a " 2596 << TRI->getRegClassName(DRC) << " register.\n"; 2597 } 2598 } 2599 } 2600 if (MO->isRenamable()) { 2601 if (MRI->isReserved(Reg)) { 2602 report("isRenamable set on reserved register", MO, MONum); 2603 return; 2604 } 2605 } 2606 } else { 2607 // Virtual register. 2608 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2609 if (!RC) { 2610 // This is a generic virtual register. 2611 2612 // Do not allow undef uses for generic virtual registers. This ensures 2613 // getVRegDef can never fail and return null on a generic register. 2614 // 2615 // FIXME: This restriction should probably be broadened to all SSA 2616 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2617 // run on the SSA function just before phi elimination. 2618 if (MO->isUndef()) 2619 report("Generic virtual register use cannot be undef", MO, MONum); 2620 2621 // Debug value instruction is permitted to use undefined vregs. 2622 // This is a performance measure to skip the overhead of immediately 2623 // pruning unused debug operands. The final undef substitution occurs 2624 // when debug values are allocated in LDVImpl::handleDebugValue, so 2625 // these verifications always apply after this pass. 2626 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2627 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2628 // If we're post-Select, we can't have gvregs anymore. 2629 if (isFunctionSelected) { 2630 report("Generic virtual register invalid in a Selected function", 2631 MO, MONum); 2632 return; 2633 } 2634 2635 // The gvreg must have a type and it must not have a SubIdx. 2636 LLT Ty = MRI->getType(Reg); 2637 if (!Ty.isValid()) { 2638 report("Generic virtual register must have a valid type", MO, 2639 MONum); 2640 return; 2641 } 2642 2643 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2644 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2645 2646 // If we're post-RegBankSelect, the gvreg must have a bank. 2647 if (!RegBank && isFunctionRegBankSelected) { 2648 report("Generic virtual register must have a bank in a " 2649 "RegBankSelected function", 2650 MO, MONum); 2651 return; 2652 } 2653 2654 // Make sure the register fits into its register bank if any. 2655 if (RegBank && Ty.isValid() && !Ty.isScalableVector() && 2656 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2657 report("Register bank is too small for virtual register", MO, 2658 MONum); 2659 OS << "Register bank " << RegBank->getName() << " too small(" 2660 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2661 << Ty.getSizeInBits() << "-bits\n"; 2662 return; 2663 } 2664 } 2665 2666 if (SubIdx) { 2667 report("Generic virtual register does not allow subregister index", MO, 2668 MONum); 2669 return; 2670 } 2671 2672 // If this is a target specific instruction and this operand 2673 // has register class constraint, the virtual register must 2674 // comply to it. 2675 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2676 MONum < MCID.getNumOperands() && 2677 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2678 report("Virtual register does not match instruction constraint", MO, 2679 MONum); 2680 OS << "Expect register class " 2681 << TRI->getRegClassName(TII->getRegClass(MCID, MONum, TRI, *MF)) 2682 << " but got nothing\n"; 2683 return; 2684 } 2685 2686 break; 2687 } 2688 if (SubIdx) { 2689 const TargetRegisterClass *SRC = 2690 TRI->getSubClassWithSubReg(RC, SubIdx); 2691 if (!SRC) { 2692 report("Invalid subregister index for virtual register", MO, MONum); 2693 OS << "Register class " << TRI->getRegClassName(RC) 2694 << " does not support subreg index " << SubIdx << '\n'; 2695 return; 2696 } 2697 if (RC != SRC) { 2698 report("Invalid register class for subregister index", MO, MONum); 2699 OS << "Register class " << TRI->getRegClassName(RC) 2700 << " does not fully support subreg index " << SubIdx << '\n'; 2701 return; 2702 } 2703 } 2704 if (MONum < MCID.getNumOperands()) { 2705 if (const TargetRegisterClass *DRC = 2706 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2707 if (SubIdx) { 2708 const TargetRegisterClass *SuperRC = 2709 TRI->getLargestLegalSuperClass(RC, *MF); 2710 if (!SuperRC) { 2711 report("No largest legal super class exists.", MO, MONum); 2712 return; 2713 } 2714 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2715 if (!DRC) { 2716 report("No matching super-reg register class.", MO, MONum); 2717 return; 2718 } 2719 } 2720 if (!RC->hasSuperClassEq(DRC)) { 2721 report("Illegal virtual register for instruction", MO, MONum); 2722 OS << "Expected a " << TRI->getRegClassName(DRC) 2723 << " register, but got a " << TRI->getRegClassName(RC) 2724 << " register\n"; 2725 } 2726 } 2727 } 2728 } 2729 break; 2730 } 2731 2732 case MachineOperand::MO_RegisterMask: 2733 regMasks.push_back(MO->getRegMask()); 2734 break; 2735 2736 case MachineOperand::MO_MachineBasicBlock: 2737 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2738 report("PHI operand is not in the CFG", MO, MONum); 2739 break; 2740 2741 case MachineOperand::MO_FrameIndex: 2742 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2743 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2744 int FI = MO->getIndex(); 2745 LiveInterval &LI = LiveStks->getInterval(FI); 2746 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2747 2748 bool stores = MI->mayStore(); 2749 bool loads = MI->mayLoad(); 2750 // For a memory-to-memory move, we need to check if the frame 2751 // index is used for storing or loading, by inspecting the 2752 // memory operands. 2753 if (stores && loads) { 2754 for (auto *MMO : MI->memoperands()) { 2755 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2756 if (PSV == nullptr) continue; 2757 const FixedStackPseudoSourceValue *Value = 2758 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2759 if (Value == nullptr) continue; 2760 if (Value->getFrameIndex() != FI) continue; 2761 2762 if (MMO->isStore()) 2763 loads = false; 2764 else 2765 stores = false; 2766 break; 2767 } 2768 if (loads == stores) 2769 report("Missing fixed stack memoperand.", MI); 2770 } 2771 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2772 report("Instruction loads from dead spill slot", MO, MONum); 2773 OS << "Live stack: " << LI << '\n'; 2774 } 2775 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2776 report("Instruction stores to dead spill slot", MO, MONum); 2777 OS << "Live stack: " << LI << '\n'; 2778 } 2779 } 2780 break; 2781 2782 case MachineOperand::MO_CFIIndex: 2783 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2784 report("CFI instruction has invalid index", MO, MONum); 2785 break; 2786 2787 default: 2788 break; 2789 } 2790 } 2791 2792 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2793 unsigned MONum, SlotIndex UseIdx, 2794 const LiveRange &LR, 2795 Register VRegOrUnit, 2796 LaneBitmask LaneMask) { 2797 const MachineInstr *MI = MO->getParent(); 2798 2799 if (!LR.verify()) { 2800 report("invalid live range", MO, MONum); 2801 report_context_liverange(LR); 2802 report_context_vreg_regunit(VRegOrUnit); 2803 report_context(UseIdx); 2804 return; 2805 } 2806 2807 LiveQueryResult LRQ = LR.Query(UseIdx); 2808 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); 2809 // Check if we have a segment at the use, note however that we only need one 2810 // live subregister range, the others may be dead. 2811 if (!HasValue && LaneMask.none()) { 2812 report("No live segment at use", MO, MONum); 2813 report_context_liverange(LR); 2814 report_context_vreg_regunit(VRegOrUnit); 2815 report_context(UseIdx); 2816 } 2817 if (MO->isKill() && !LRQ.isKill()) { 2818 report("Live range continues after kill flag", MO, MONum); 2819 report_context_liverange(LR); 2820 report_context_vreg_regunit(VRegOrUnit); 2821 if (LaneMask.any()) 2822 report_context_lanemask(LaneMask); 2823 report_context(UseIdx); 2824 } 2825 } 2826 2827 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2828 unsigned MONum, SlotIndex DefIdx, 2829 const LiveRange &LR, 2830 Register VRegOrUnit, 2831 bool SubRangeCheck, 2832 LaneBitmask LaneMask) { 2833 if (!LR.verify()) { 2834 report("invalid live range", MO, MONum); 2835 report_context_liverange(LR); 2836 report_context_vreg_regunit(VRegOrUnit); 2837 if (LaneMask.any()) 2838 report_context_lanemask(LaneMask); 2839 report_context(DefIdx); 2840 } 2841 2842 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2843 // The LR can correspond to the whole reg and its def slot is not obliged 2844 // to be the same as the MO' def slot. E.g. when we check here "normal" 2845 // subreg MO but there is other EC subreg MO in the same instruction so the 2846 // whole reg has EC def slot and differs from the currently checked MO' def 2847 // slot. For example: 2848 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2849 // Check that there is an early-clobber def of the same superregister 2850 // somewhere is performed in visitMachineFunctionAfter() 2851 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2852 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2853 (VNI->def != DefIdx && 2854 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2855 report("Inconsistent valno->def", MO, MONum); 2856 report_context_liverange(LR); 2857 report_context_vreg_regunit(VRegOrUnit); 2858 if (LaneMask.any()) 2859 report_context_lanemask(LaneMask); 2860 report_context(*VNI); 2861 report_context(DefIdx); 2862 } 2863 } else { 2864 report("No live segment at def", MO, MONum); 2865 report_context_liverange(LR); 2866 report_context_vreg_regunit(VRegOrUnit); 2867 if (LaneMask.any()) 2868 report_context_lanemask(LaneMask); 2869 report_context(DefIdx); 2870 } 2871 // Check that, if the dead def flag is present, LiveInts agree. 2872 if (MO->isDead()) { 2873 LiveQueryResult LRQ = LR.Query(DefIdx); 2874 if (!LRQ.isDeadDef()) { 2875 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2876 // A dead subreg def only tells us that the specific subreg is dead. There 2877 // could be other non-dead defs of other subregs, or we could have other 2878 // parts of the register being live through the instruction. So unless we 2879 // are checking liveness for a subrange it is ok for the live range to 2880 // continue, given that we have a dead def of a subregister. 2881 if (SubRangeCheck || MO->getSubReg() == 0) { 2882 report("Live range continues after dead def flag", MO, MONum); 2883 report_context_liverange(LR); 2884 report_context_vreg_regunit(VRegOrUnit); 2885 if (LaneMask.any()) 2886 report_context_lanemask(LaneMask); 2887 } 2888 } 2889 } 2890 } 2891 2892 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2893 const MachineInstr *MI = MO->getParent(); 2894 const Register Reg = MO->getReg(); 2895 const unsigned SubRegIdx = MO->getSubReg(); 2896 2897 const LiveInterval *LI = nullptr; 2898 if (LiveInts && Reg.isVirtual()) { 2899 if (LiveInts->hasInterval(Reg)) { 2900 LI = &LiveInts->getInterval(Reg); 2901 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2902 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2903 report("Live interval for subreg operand has no subranges", MO, MONum); 2904 } else { 2905 report("Virtual register has no live interval", MO, MONum); 2906 } 2907 } 2908 2909 // Both use and def operands can read a register. 2910 if (MO->readsReg()) { 2911 if (MO->isKill()) 2912 addRegWithSubRegs(regsKilled, Reg); 2913 2914 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2915 // which case we have already checked that LiveVars knows any kills on the 2916 // bundle header instead). 2917 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2918 !MI->isBundledWithPred()) { 2919 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2920 if (!is_contained(VI.Kills, MI)) 2921 report("Kill missing from LiveVariables", MO, MONum); 2922 } 2923 2924 // Check LiveInts liveness and kill. 2925 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2926 SlotIndex UseIdx; 2927 if (MI->isPHI()) { 2928 // PHI use occurs on the edge, so check for live out here instead. 2929 UseIdx = LiveInts->getMBBEndIdx( 2930 MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); 2931 } else { 2932 UseIdx = LiveInts->getInstructionIndex(*MI); 2933 } 2934 // Check the cached regunit intervals. 2935 if (Reg.isPhysical() && !isReserved(Reg)) { 2936 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2937 if (MRI->isReservedRegUnit(Unit)) 2938 continue; 2939 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2940 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); 2941 } 2942 } 2943 2944 if (Reg.isVirtual()) { 2945 // This is a virtual register interval. 2946 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2947 2948 if (LI->hasSubRanges() && !MO->isDef()) { 2949 LaneBitmask MOMask = SubRegIdx != 0 2950 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2951 : MRI->getMaxLaneMaskForVReg(Reg); 2952 LaneBitmask LiveInMask; 2953 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2954 if ((MOMask & SR.LaneMask).none()) 2955 continue; 2956 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2957 LiveQueryResult LRQ = SR.Query(UseIdx); 2958 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) 2959 LiveInMask |= SR.LaneMask; 2960 } 2961 // At least parts of the register has to be live at the use. 2962 if ((LiveInMask & MOMask).none()) { 2963 report("No live subrange at use", MO, MONum); 2964 report_context(*LI); 2965 report_context(UseIdx); 2966 } 2967 // For PHIs all lanes should be live 2968 if (MI->isPHI() && LiveInMask != MOMask) { 2969 report("Not all lanes of PHI source live at use", MO, MONum); 2970 report_context(*LI); 2971 report_context(UseIdx); 2972 } 2973 } 2974 } 2975 } 2976 2977 // Use of a dead register. 2978 if (!regsLive.count(Reg)) { 2979 if (Reg.isPhysical()) { 2980 // Reserved registers may be used even when 'dead'. 2981 bool Bad = !isReserved(Reg); 2982 // We are fine if just any subregister has a defined value. 2983 if (Bad) { 2984 2985 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2986 if (regsLive.count(SubReg)) { 2987 Bad = false; 2988 break; 2989 } 2990 } 2991 } 2992 // If there is an additional implicit-use of a super register we stop 2993 // here. By definition we are fine if the super register is not 2994 // (completely) dead, if the complete super register is dead we will 2995 // get a report for its operand. 2996 if (Bad) { 2997 for (const MachineOperand &MOP : MI->uses()) { 2998 if (!MOP.isReg() || !MOP.isImplicit()) 2999 continue; 3000 3001 if (!MOP.getReg().isPhysical()) 3002 continue; 3003 3004 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 3005 Bad = false; 3006 } 3007 } 3008 if (Bad) 3009 report("Using an undefined physical register", MO, MONum); 3010 } else if (MRI->def_empty(Reg)) { 3011 report("Reading virtual register without a def", MO, MONum); 3012 } else { 3013 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3014 // We don't know which virtual registers are live in, so only complain 3015 // if vreg was killed in this MBB. Otherwise keep track of vregs that 3016 // must be live in. PHI instructions are handled separately. 3017 if (MInfo.regsKilled.count(Reg)) 3018 report("Using a killed virtual register", MO, MONum); 3019 else if (!MI->isPHI()) 3020 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 3021 } 3022 } 3023 } 3024 3025 if (MO->isDef()) { 3026 // Register defined. 3027 // TODO: verify that earlyclobber ops are not used. 3028 if (MO->isDead()) 3029 addRegWithSubRegs(regsDead, Reg); 3030 else 3031 addRegWithSubRegs(regsDefined, Reg); 3032 3033 // Verify SSA form. 3034 if (MRI->isSSA() && Reg.isVirtual() && 3035 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 3036 report("Multiple virtual register defs in SSA form", MO, MONum); 3037 3038 // Check LiveInts for a live segment, but only for virtual registers. 3039 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 3040 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 3041 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 3042 3043 if (Reg.isVirtual()) { 3044 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 3045 3046 if (LI->hasSubRanges()) { 3047 LaneBitmask MOMask = SubRegIdx != 0 3048 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 3049 : MRI->getMaxLaneMaskForVReg(Reg); 3050 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3051 if ((SR.LaneMask & MOMask).none()) 3052 continue; 3053 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 3054 } 3055 } 3056 } 3057 } 3058 } 3059 } 3060 3061 // This function gets called after visiting all instructions in a bundle. The 3062 // argument points to the bundle header. 3063 // Normal stand-alone instructions are also considered 'bundles', and this 3064 // function is called for all of them. 3065 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 3066 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3067 set_union(MInfo.regsKilled, regsKilled); 3068 set_subtract(regsLive, regsKilled); regsKilled.clear(); 3069 // Kill any masked registers. 3070 while (!regMasks.empty()) { 3071 const uint32_t *Mask = regMasks.pop_back_val(); 3072 for (Register Reg : regsLive) 3073 if (Reg.isPhysical() && 3074 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 3075 regsDead.push_back(Reg); 3076 } 3077 set_subtract(regsLive, regsDead); regsDead.clear(); 3078 set_union(regsLive, regsDefined); regsDefined.clear(); 3079 } 3080 3081 void 3082 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 3083 MBBInfoMap[MBB].regsLiveOut = regsLive; 3084 regsLive.clear(); 3085 3086 if (Indexes) { 3087 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 3088 if (!(stop > lastIndex)) { 3089 report("Block ends before last instruction index", MBB); 3090 OS << "Block ends at " << stop << " last instruction was at " << lastIndex 3091 << '\n'; 3092 } 3093 lastIndex = stop; 3094 } 3095 } 3096 3097 namespace { 3098 // This implements a set of registers that serves as a filter: can filter other 3099 // sets by passing through elements not in the filter and blocking those that 3100 // are. Any filter implicitly includes the full set of physical registers upon 3101 // creation, thus filtering them all out. The filter itself as a set only grows, 3102 // and needs to be as efficient as possible. 3103 struct VRegFilter { 3104 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 3105 // no duplicates. Both virtual and physical registers are fine. 3106 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 3107 SmallVector<Register, 0> VRegsBuffer; 3108 filterAndAdd(FromRegSet, VRegsBuffer); 3109 } 3110 // Filter \p FromRegSet through the filter and append passed elements into \p 3111 // ToVRegs. All elements appended are then added to the filter itself. 3112 // \returns true if anything changed. 3113 template <typename RegSetT> 3114 bool filterAndAdd(const RegSetT &FromRegSet, 3115 SmallVectorImpl<Register> &ToVRegs) { 3116 unsigned SparseUniverse = Sparse.size(); 3117 unsigned NewSparseUniverse = SparseUniverse; 3118 unsigned NewDenseSize = Dense.size(); 3119 size_t Begin = ToVRegs.size(); 3120 for (Register Reg : FromRegSet) { 3121 if (!Reg.isVirtual()) 3122 continue; 3123 unsigned Index = Register::virtReg2Index(Reg); 3124 if (Index < SparseUniverseMax) { 3125 if (Index < SparseUniverse && Sparse.test(Index)) 3126 continue; 3127 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 3128 } else { 3129 if (Dense.count(Reg)) 3130 continue; 3131 ++NewDenseSize; 3132 } 3133 ToVRegs.push_back(Reg); 3134 } 3135 size_t End = ToVRegs.size(); 3136 if (Begin == End) 3137 return false; 3138 // Reserving space in sets once performs better than doing so continuously 3139 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 3140 // tuned all the way down) and double iteration (the second one is over a 3141 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 3142 Sparse.resize(NewSparseUniverse); 3143 Dense.reserve(NewDenseSize); 3144 for (unsigned I = Begin; I < End; ++I) { 3145 Register Reg = ToVRegs[I]; 3146 unsigned Index = Register::virtReg2Index(Reg); 3147 if (Index < SparseUniverseMax) 3148 Sparse.set(Index); 3149 else 3150 Dense.insert(Reg); 3151 } 3152 return true; 3153 } 3154 3155 private: 3156 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 3157 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 3158 // are tracked by Dense. The only purpose of the threashold and the Dense set 3159 // is to have a reasonably growing memory usage in pathological cases (large 3160 // number of very sparse VRegFilter instances live at the same time). In 3161 // practice even in the worst-by-execution time cases having all elements 3162 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 3163 // space efficient than if tracked by Dense. The threashold is set to keep the 3164 // worst-case memory usage within 2x of figures determined empirically for 3165 // "all Dense" scenario in such worst-by-execution-time cases. 3166 BitVector Sparse; 3167 DenseSet<unsigned> Dense; 3168 }; 3169 3170 // Implements both a transfer function and a (binary, in-place) join operator 3171 // for a dataflow over register sets with set union join and filtering transfer 3172 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 3173 // Maintains out_b as its state, allowing for O(n) iteration over it at any 3174 // time, where n is the size of the set (as opposed to O(U) where U is the 3175 // universe). filter_b implicitly contains all physical registers at all times. 3176 class FilteringVRegSet { 3177 VRegFilter Filter; 3178 SmallVector<Register, 0> VRegs; 3179 3180 public: 3181 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 3182 // Both virtual and physical registers are fine. 3183 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 3184 Filter.add(RS); 3185 } 3186 // Passes \p RS through the filter_b (transfer function) and adds what's left 3187 // to itself (out_b). 3188 template <typename RegSetT> bool add(const RegSetT &RS) { 3189 // Double-duty the Filter: to maintain VRegs a set (and the join operation 3190 // a set union) just add everything being added here to the Filter as well. 3191 return Filter.filterAndAdd(RS, VRegs); 3192 } 3193 using const_iterator = decltype(VRegs)::const_iterator; 3194 const_iterator begin() const { return VRegs.begin(); } 3195 const_iterator end() const { return VRegs.end(); } 3196 size_t size() const { return VRegs.size(); } 3197 }; 3198 } // namespace 3199 3200 // Calculate the largest possible vregsPassed sets. These are the registers that 3201 // can pass through an MBB live, but may not be live every time. It is assumed 3202 // that all vregsPassed sets are empty before the call. 3203 void MachineVerifier::calcRegsPassed() { 3204 if (MF->empty()) 3205 // ReversePostOrderTraversal doesn't handle empty functions. 3206 return; 3207 3208 for (const MachineBasicBlock *MB : 3209 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 3210 FilteringVRegSet VRegs; 3211 BBInfo &Info = MBBInfoMap[MB]; 3212 assert(Info.reachable); 3213 3214 VRegs.addToFilter(Info.regsKilled); 3215 VRegs.addToFilter(Info.regsLiveOut); 3216 for (const MachineBasicBlock *Pred : MB->predecessors()) { 3217 const BBInfo &PredInfo = MBBInfoMap[Pred]; 3218 if (!PredInfo.reachable) 3219 continue; 3220 3221 VRegs.add(PredInfo.regsLiveOut); 3222 VRegs.add(PredInfo.vregsPassed); 3223 } 3224 Info.vregsPassed.reserve(VRegs.size()); 3225 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 3226 } 3227 } 3228 3229 // Calculate the set of virtual registers that must be passed through each basic 3230 // block in order to satisfy the requirements of successor blocks. This is very 3231 // similar to calcRegsPassed, only backwards. 3232 void MachineVerifier::calcRegsRequired() { 3233 // First push live-in regs to predecessors' vregsRequired. 3234 SmallPtrSet<const MachineBasicBlock*, 8> todo; 3235 for (const auto &MBB : *MF) { 3236 BBInfo &MInfo = MBBInfoMap[&MBB]; 3237 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3238 BBInfo &PInfo = MBBInfoMap[Pred]; 3239 if (PInfo.addRequired(MInfo.vregsLiveIn)) 3240 todo.insert(Pred); 3241 } 3242 3243 // Handle the PHI node. 3244 for (const MachineInstr &MI : MBB.phis()) { 3245 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 3246 // Skip those Operands which are undef regs or not regs. 3247 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 3248 continue; 3249 3250 // Get register and predecessor for one PHI edge. 3251 Register Reg = MI.getOperand(i).getReg(); 3252 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 3253 3254 BBInfo &PInfo = MBBInfoMap[Pred]; 3255 if (PInfo.addRequired(Reg)) 3256 todo.insert(Pred); 3257 } 3258 } 3259 } 3260 3261 // Iteratively push vregsRequired to predecessors. This will converge to the 3262 // same final state regardless of DenseSet iteration order. 3263 while (!todo.empty()) { 3264 const MachineBasicBlock *MBB = *todo.begin(); 3265 todo.erase(MBB); 3266 BBInfo &MInfo = MBBInfoMap[MBB]; 3267 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3268 if (Pred == MBB) 3269 continue; 3270 BBInfo &SInfo = MBBInfoMap[Pred]; 3271 if (SInfo.addRequired(MInfo.vregsRequired)) 3272 todo.insert(Pred); 3273 } 3274 } 3275 } 3276 3277 // Check PHI instructions at the beginning of MBB. It is assumed that 3278 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 3279 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 3280 BBInfo &MInfo = MBBInfoMap[&MBB]; 3281 3282 SmallPtrSet<const MachineBasicBlock*, 8> seen; 3283 for (const MachineInstr &Phi : MBB) { 3284 if (!Phi.isPHI()) 3285 break; 3286 seen.clear(); 3287 3288 const MachineOperand &MODef = Phi.getOperand(0); 3289 if (!MODef.isReg() || !MODef.isDef()) { 3290 report("Expected first PHI operand to be a register def", &MODef, 0); 3291 continue; 3292 } 3293 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 3294 MODef.isEarlyClobber() || MODef.isDebug()) 3295 report("Unexpected flag on PHI operand", &MODef, 0); 3296 Register DefReg = MODef.getReg(); 3297 if (!DefReg.isVirtual()) 3298 report("Expected first PHI operand to be a virtual register", &MODef, 0); 3299 3300 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 3301 const MachineOperand &MO0 = Phi.getOperand(I); 3302 if (!MO0.isReg()) { 3303 report("Expected PHI operand to be a register", &MO0, I); 3304 continue; 3305 } 3306 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 3307 MO0.isDebug() || MO0.isTied()) 3308 report("Unexpected flag on PHI operand", &MO0, I); 3309 3310 const MachineOperand &MO1 = Phi.getOperand(I + 1); 3311 if (!MO1.isMBB()) { 3312 report("Expected PHI operand to be a basic block", &MO1, I + 1); 3313 continue; 3314 } 3315 3316 const MachineBasicBlock &Pre = *MO1.getMBB(); 3317 if (!Pre.isSuccessor(&MBB)) { 3318 report("PHI input is not a predecessor block", &MO1, I + 1); 3319 continue; 3320 } 3321 3322 if (MInfo.reachable) { 3323 seen.insert(&Pre); 3324 BBInfo &PrInfo = MBBInfoMap[&Pre]; 3325 if (!MO0.isUndef() && PrInfo.reachable && 3326 !PrInfo.isLiveOut(MO0.getReg())) 3327 report("PHI operand is not live-out from predecessor", &MO0, I); 3328 } 3329 } 3330 3331 // Did we see all predecessors? 3332 if (MInfo.reachable) { 3333 for (MachineBasicBlock *Pred : MBB.predecessors()) { 3334 if (!seen.count(Pred)) { 3335 report("Missing PHI operand", &Phi); 3336 OS << printMBBReference(*Pred) 3337 << " is a predecessor according to the CFG.\n"; 3338 } 3339 } 3340 } 3341 } 3342 } 3343 3344 static void 3345 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, 3346 std::function<void(const Twine &Message)> FailureCB, 3347 raw_ostream &OS) { 3348 MachineConvergenceVerifier CV; 3349 CV.initialize(&OS, FailureCB, MF); 3350 3351 for (const auto &MBB : MF) { 3352 CV.visit(MBB); 3353 for (const auto &MI : MBB.instrs()) 3354 CV.visit(MI); 3355 } 3356 3357 if (CV.sawTokens()) { 3358 DT.recalculate(const_cast<MachineFunction &>(MF)); 3359 CV.verify(DT); 3360 } 3361 } 3362 3363 void MachineVerifier::visitMachineFunctionAfter() { 3364 auto FailureCB = [this](const Twine &Message) { 3365 report(Message.str().c_str(), MF); 3366 }; 3367 verifyConvergenceControl(*MF, DT, FailureCB, OS); 3368 3369 calcRegsPassed(); 3370 3371 for (const MachineBasicBlock &MBB : *MF) 3372 checkPHIOps(MBB); 3373 3374 // Now check liveness info if available 3375 calcRegsRequired(); 3376 3377 // Check for killed virtual registers that should be live out. 3378 for (const auto &MBB : *MF) { 3379 BBInfo &MInfo = MBBInfoMap[&MBB]; 3380 for (Register VReg : MInfo.vregsRequired) 3381 if (MInfo.regsKilled.count(VReg)) { 3382 report("Virtual register killed in block, but needed live out.", &MBB); 3383 OS << "Virtual register " << printReg(VReg) 3384 << " is used after the block.\n"; 3385 } 3386 } 3387 3388 if (!MF->empty()) { 3389 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 3390 for (Register VReg : MInfo.vregsRequired) { 3391 report("Virtual register defs don't dominate all uses.", MF); 3392 report_context_vreg(VReg); 3393 } 3394 } 3395 3396 if (LiveVars) 3397 verifyLiveVariables(); 3398 if (LiveInts) 3399 verifyLiveIntervals(); 3400 3401 // Check live-in list of each MBB. If a register is live into MBB, check 3402 // that the register is in regsLiveOut of each predecessor block. Since 3403 // this must come from a definition in the predecesssor or its live-in 3404 // list, this will catch a live-through case where the predecessor does not 3405 // have the register in its live-in list. This currently only checks 3406 // registers that have no aliases, are not allocatable and are not 3407 // reserved, which could mean a condition code register for instance. 3408 if (MRI->tracksLiveness()) 3409 for (const auto &MBB : *MF) 3410 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 3411 MCPhysReg LiveInReg = P.PhysReg; 3412 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 3413 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 3414 continue; 3415 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3416 BBInfo &PInfo = MBBInfoMap[Pred]; 3417 if (!PInfo.regsLiveOut.count(LiveInReg)) { 3418 report("Live in register not found to be live out from predecessor.", 3419 &MBB); 3420 OS << TRI->getName(LiveInReg) << " not found to be live out from " 3421 << printMBBReference(*Pred) << '\n'; 3422 } 3423 } 3424 } 3425 3426 for (auto CSInfo : MF->getCallSitesInfo()) 3427 if (!CSInfo.first->isCall()) 3428 report("Call site info referencing instruction that is not call", MF); 3429 3430 // If there's debug-info, check that we don't have any duplicate value 3431 // tracking numbers. 3432 if (MF->getFunction().getSubprogram()) { 3433 DenseSet<unsigned> SeenNumbers; 3434 for (const auto &MBB : *MF) { 3435 for (const auto &MI : MBB) { 3436 if (auto Num = MI.peekDebugInstrNum()) { 3437 auto Result = SeenNumbers.insert((unsigned)Num); 3438 if (!Result.second) 3439 report("Instruction has a duplicated value tracking number", &MI); 3440 } 3441 } 3442 } 3443 } 3444 } 3445 3446 void MachineVerifier::verifyLiveVariables() { 3447 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 3448 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3449 Register Reg = Register::index2VirtReg(I); 3450 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 3451 for (const auto &MBB : *MF) { 3452 BBInfo &MInfo = MBBInfoMap[&MBB]; 3453 3454 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 3455 if (MInfo.vregsRequired.count(Reg)) { 3456 if (!VI.AliveBlocks.test(MBB.getNumber())) { 3457 report("LiveVariables: Block missing from AliveBlocks", &MBB); 3458 OS << "Virtual register " << printReg(Reg) 3459 << " must be live through the block.\n"; 3460 } 3461 } else { 3462 if (VI.AliveBlocks.test(MBB.getNumber())) { 3463 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 3464 OS << "Virtual register " << printReg(Reg) 3465 << " is not needed live through the block.\n"; 3466 } 3467 } 3468 } 3469 } 3470 } 3471 3472 void MachineVerifier::verifyLiveIntervals() { 3473 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 3474 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3475 Register Reg = Register::index2VirtReg(I); 3476 3477 // Spilling and splitting may leave unused registers around. Skip them. 3478 if (MRI->reg_nodbg_empty(Reg)) 3479 continue; 3480 3481 if (!LiveInts->hasInterval(Reg)) { 3482 report("Missing live interval for virtual register", MF); 3483 OS << printReg(Reg, TRI) << " still has defs or uses\n"; 3484 continue; 3485 } 3486 3487 const LiveInterval &LI = LiveInts->getInterval(Reg); 3488 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 3489 verifyLiveInterval(LI); 3490 } 3491 3492 // Verify all the cached regunit intervals. 3493 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 3494 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 3495 verifyLiveRange(*LR, i); 3496 } 3497 3498 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 3499 const VNInfo *VNI, Register Reg, 3500 LaneBitmask LaneMask) { 3501 if (VNI->isUnused()) 3502 return; 3503 3504 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 3505 3506 if (!DefVNI) { 3507 report("Value not live at VNInfo def and not marked unused", MF); 3508 report_context(LR, Reg, LaneMask); 3509 report_context(*VNI); 3510 return; 3511 } 3512 3513 if (DefVNI != VNI) { 3514 report("Live segment at def has different VNInfo", MF); 3515 report_context(LR, Reg, LaneMask); 3516 report_context(*VNI); 3517 return; 3518 } 3519 3520 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 3521 if (!MBB) { 3522 report("Invalid VNInfo definition index", MF); 3523 report_context(LR, Reg, LaneMask); 3524 report_context(*VNI); 3525 return; 3526 } 3527 3528 if (VNI->isPHIDef()) { 3529 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3530 report("PHIDef VNInfo is not defined at MBB start", MBB); 3531 report_context(LR, Reg, LaneMask); 3532 report_context(*VNI); 3533 } 3534 return; 3535 } 3536 3537 // Non-PHI def. 3538 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3539 if (!MI) { 3540 report("No instruction at VNInfo def index", MBB); 3541 report_context(LR, Reg, LaneMask); 3542 report_context(*VNI); 3543 return; 3544 } 3545 3546 if (Reg != 0) { 3547 bool hasDef = false; 3548 bool isEarlyClobber = false; 3549 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3550 if (!MOI->isReg() || !MOI->isDef()) 3551 continue; 3552 if (Reg.isVirtual()) { 3553 if (MOI->getReg() != Reg) 3554 continue; 3555 } else { 3556 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3557 continue; 3558 } 3559 if (LaneMask.any() && 3560 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3561 continue; 3562 hasDef = true; 3563 if (MOI->isEarlyClobber()) 3564 isEarlyClobber = true; 3565 } 3566 3567 if (!hasDef) { 3568 report("Defining instruction does not modify register", MI); 3569 report_context(LR, Reg, LaneMask); 3570 report_context(*VNI); 3571 } 3572 3573 // Early clobber defs begin at USE slots, but other defs must begin at 3574 // DEF slots. 3575 if (isEarlyClobber) { 3576 if (!VNI->def.isEarlyClobber()) { 3577 report("Early clobber def must be at an early-clobber slot", MBB); 3578 report_context(LR, Reg, LaneMask); 3579 report_context(*VNI); 3580 } 3581 } else if (!VNI->def.isRegister()) { 3582 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3583 report_context(LR, Reg, LaneMask); 3584 report_context(*VNI); 3585 } 3586 } 3587 } 3588 3589 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3590 const LiveRange::const_iterator I, 3591 Register Reg, 3592 LaneBitmask LaneMask) { 3593 const LiveRange::Segment &S = *I; 3594 const VNInfo *VNI = S.valno; 3595 assert(VNI && "Live segment has no valno"); 3596 3597 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3598 report("Foreign valno in live segment", MF); 3599 report_context(LR, Reg, LaneMask); 3600 report_context(S); 3601 report_context(*VNI); 3602 } 3603 3604 if (VNI->isUnused()) { 3605 report("Live segment valno is marked unused", MF); 3606 report_context(LR, Reg, LaneMask); 3607 report_context(S); 3608 } 3609 3610 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3611 if (!MBB) { 3612 report("Bad start of live segment, no basic block", MF); 3613 report_context(LR, Reg, LaneMask); 3614 report_context(S); 3615 return; 3616 } 3617 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3618 if (S.start != MBBStartIdx && S.start != VNI->def) { 3619 report("Live segment must begin at MBB entry or valno def", MBB); 3620 report_context(LR, Reg, LaneMask); 3621 report_context(S); 3622 } 3623 3624 const MachineBasicBlock *EndMBB = 3625 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3626 if (!EndMBB) { 3627 report("Bad end of live segment, no basic block", MF); 3628 report_context(LR, Reg, LaneMask); 3629 report_context(S); 3630 return; 3631 } 3632 3633 // Checks for non-live-out segments. 3634 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3635 // RegUnit intervals are allowed dead phis. 3636 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3637 S.end == VNI->def.getDeadSlot()) 3638 return; 3639 3640 // The live segment is ending inside EndMBB 3641 const MachineInstr *MI = 3642 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3643 if (!MI) { 3644 report("Live segment doesn't end at a valid instruction", EndMBB); 3645 report_context(LR, Reg, LaneMask); 3646 report_context(S); 3647 return; 3648 } 3649 3650 // The block slot must refer to a basic block boundary. 3651 if (S.end.isBlock()) { 3652 report("Live segment ends at B slot of an instruction", EndMBB); 3653 report_context(LR, Reg, LaneMask); 3654 report_context(S); 3655 } 3656 3657 if (S.end.isDead()) { 3658 // Segment ends on the dead slot. 3659 // That means there must be a dead def. 3660 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3661 report("Live segment ending at dead slot spans instructions", EndMBB); 3662 report_context(LR, Reg, LaneMask); 3663 report_context(S); 3664 } 3665 } 3666 3667 // After tied operands are rewritten, a live segment can only end at an 3668 // early-clobber slot if it is being redefined by an early-clobber def. 3669 // TODO: Before tied operands are rewritten, a live segment can only end at 3670 // an early-clobber slot if the last use is tied to an early-clobber def. 3671 if (MF->getProperties().hasProperty( 3672 MachineFunctionProperties::Property::TiedOpsRewritten) && 3673 S.end.isEarlyClobber()) { 3674 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3675 report("Live segment ending at early clobber slot must be " 3676 "redefined by an EC def in the same instruction", 3677 EndMBB); 3678 report_context(LR, Reg, LaneMask); 3679 report_context(S); 3680 } 3681 } 3682 3683 // The following checks only apply to virtual registers. Physreg liveness 3684 // is too weird to check. 3685 if (Reg.isVirtual()) { 3686 // A live segment can end with either a redefinition, a kill flag on a 3687 // use, or a dead flag on a def. 3688 bool hasRead = false; 3689 bool hasSubRegDef = false; 3690 bool hasDeadDef = false; 3691 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3692 if (!MOI->isReg() || MOI->getReg() != Reg) 3693 continue; 3694 unsigned Sub = MOI->getSubReg(); 3695 LaneBitmask SLM = 3696 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3697 if (MOI->isDef()) { 3698 if (Sub != 0) { 3699 hasSubRegDef = true; 3700 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3701 // mask for subregister defs. Read-undef defs will be handled by 3702 // readsReg below. 3703 SLM = ~SLM; 3704 } 3705 if (MOI->isDead()) 3706 hasDeadDef = true; 3707 } 3708 if (LaneMask.any() && (LaneMask & SLM).none()) 3709 continue; 3710 if (MOI->readsReg()) 3711 hasRead = true; 3712 } 3713 if (S.end.isDead()) { 3714 // Make sure that the corresponding machine operand for a "dead" live 3715 // range has the dead flag. We cannot perform this check for subregister 3716 // liveranges as partially dead values are allowed. 3717 if (LaneMask.none() && !hasDeadDef) { 3718 report( 3719 "Instruction ending live segment on dead slot has no dead flag", 3720 MI); 3721 report_context(LR, Reg, LaneMask); 3722 report_context(S); 3723 } 3724 } else { 3725 if (!hasRead) { 3726 // When tracking subregister liveness, the main range must start new 3727 // values on partial register writes, even if there is no read. 3728 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3729 !hasSubRegDef) { 3730 report("Instruction ending live segment doesn't read the register", 3731 MI); 3732 report_context(LR, Reg, LaneMask); 3733 report_context(S); 3734 } 3735 } 3736 } 3737 } 3738 } 3739 3740 // Now check all the basic blocks in this live segment. 3741 MachineFunction::const_iterator MFI = MBB->getIterator(); 3742 // Is this live segment the beginning of a non-PHIDef VN? 3743 if (S.start == VNI->def && !VNI->isPHIDef()) { 3744 // Not live-in to any blocks. 3745 if (MBB == EndMBB) 3746 return; 3747 // Skip this block. 3748 ++MFI; 3749 } 3750 3751 SmallVector<SlotIndex, 4> Undefs; 3752 if (LaneMask.any()) { 3753 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3754 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3755 } 3756 3757 while (true) { 3758 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3759 // We don't know how to track physregs into a landing pad. 3760 if (!Reg.isVirtual() && MFI->isEHPad()) { 3761 if (&*MFI == EndMBB) 3762 break; 3763 ++MFI; 3764 continue; 3765 } 3766 3767 // Is VNI a PHI-def in the current block? 3768 bool IsPHI = VNI->isPHIDef() && 3769 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3770 3771 // Check that VNI is live-out of all predecessors. 3772 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3773 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3774 // Predecessor of landing pad live-out on last call. 3775 if (MFI->isEHPad()) { 3776 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3777 if (MI.isCall()) { 3778 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3779 break; 3780 } 3781 } 3782 } 3783 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3784 3785 // All predecessors must have a live-out value. However for a phi 3786 // instruction with subregister intervals 3787 // only one of the subregisters (not necessarily the current one) needs to 3788 // be defined. 3789 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3790 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3791 continue; 3792 report("Register not marked live out of predecessor", Pred); 3793 report_context(LR, Reg, LaneMask); 3794 report_context(*VNI); 3795 OS << " live into " << printMBBReference(*MFI) << '@' 3796 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd 3797 << '\n'; 3798 continue; 3799 } 3800 3801 // Only PHI-defs can take different predecessor values. 3802 if (!IsPHI && PVNI != VNI) { 3803 report("Different value live out of predecessor", Pred); 3804 report_context(LR, Reg, LaneMask); 3805 OS << "Valno #" << PVNI->id << " live out of " 3806 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id 3807 << " live into " << printMBBReference(*MFI) << '@' 3808 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3809 } 3810 } 3811 if (&*MFI == EndMBB) 3812 break; 3813 ++MFI; 3814 } 3815 } 3816 3817 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3818 LaneBitmask LaneMask) { 3819 for (const VNInfo *VNI : LR.valnos) 3820 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3821 3822 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3823 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3824 } 3825 3826 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3827 Register Reg = LI.reg(); 3828 assert(Reg.isVirtual()); 3829 verifyLiveRange(LI, Reg); 3830 3831 if (LI.hasSubRanges()) { 3832 LaneBitmask Mask; 3833 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3834 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3835 if ((Mask & SR.LaneMask).any()) { 3836 report("Lane masks of sub ranges overlap in live interval", MF); 3837 report_context(LI); 3838 } 3839 if ((SR.LaneMask & ~MaxMask).any()) { 3840 report("Subrange lanemask is invalid", MF); 3841 report_context(LI); 3842 } 3843 if (SR.empty()) { 3844 report("Subrange must not be empty", MF); 3845 report_context(SR, LI.reg(), SR.LaneMask); 3846 } 3847 Mask |= SR.LaneMask; 3848 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3849 if (!LI.covers(SR)) { 3850 report("A Subrange is not covered by the main range", MF); 3851 report_context(LI); 3852 } 3853 } 3854 } 3855 3856 // Check the LI only has one connected component. 3857 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3858 unsigned NumComp = ConEQ.Classify(LI); 3859 if (NumComp > 1) { 3860 report("Multiple connected components in live interval", MF); 3861 report_context(LI); 3862 for (unsigned comp = 0; comp != NumComp; ++comp) { 3863 OS << comp << ": valnos"; 3864 for (const VNInfo *I : LI.valnos) 3865 if (comp == ConEQ.getEqClass(I)) 3866 OS << ' ' << I->id; 3867 OS << '\n'; 3868 } 3869 } 3870 } 3871 3872 namespace { 3873 3874 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3875 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3876 // value is zero. 3877 // We use a bool plus an integer to capture the stack state. 3878 struct StackStateOfBB { 3879 StackStateOfBB() = default; 3880 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) 3881 : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3882 ExitIsSetup(ExitSetup) {} 3883 3884 // Can be negative, which means we are setting up a frame. 3885 int EntryValue = 0; 3886 int ExitValue = 0; 3887 bool EntryIsSetup = false; 3888 bool ExitIsSetup = false; 3889 }; 3890 3891 } // end anonymous namespace 3892 3893 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3894 /// by a FrameDestroy <n>, stack adjustments are identical on all 3895 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3896 void MachineVerifier::verifyStackFrame() { 3897 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3898 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3899 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3900 return; 3901 3902 SmallVector<StackStateOfBB, 8> SPState; 3903 SPState.resize(MF->getNumBlockIDs()); 3904 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3905 3906 // Visit the MBBs in DFS order. 3907 for (df_ext_iterator<const MachineFunction *, 3908 df_iterator_default_set<const MachineBasicBlock *>> 3909 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3910 DFI != DFE; ++DFI) { 3911 const MachineBasicBlock *MBB = *DFI; 3912 3913 StackStateOfBB BBState; 3914 // Check the exit state of the DFS stack predecessor. 3915 if (DFI.getPathLength() >= 2) { 3916 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3917 assert(Reachable.count(StackPred) && 3918 "DFS stack predecessor is already visited.\n"); 3919 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3920 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3921 BBState.ExitValue = BBState.EntryValue; 3922 BBState.ExitIsSetup = BBState.EntryIsSetup; 3923 } 3924 3925 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { 3926 report("Call frame size on entry does not match value computed from " 3927 "predecessor", 3928 MBB); 3929 OS << "Call frame size on entry " << MBB->getCallFrameSize() 3930 << " does not match value computed from predecessor " 3931 << -BBState.EntryValue << '\n'; 3932 } 3933 3934 // Update stack state by checking contents of MBB. 3935 for (const auto &I : *MBB) { 3936 if (I.getOpcode() == FrameSetupOpcode) { 3937 if (BBState.ExitIsSetup) 3938 report("FrameSetup is after another FrameSetup", &I); 3939 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3940 report("AdjustsStack not set in presence of a frame pseudo " 3941 "instruction.", &I); 3942 BBState.ExitValue -= TII->getFrameTotalSize(I); 3943 BBState.ExitIsSetup = true; 3944 } 3945 3946 if (I.getOpcode() == FrameDestroyOpcode) { 3947 int Size = TII->getFrameTotalSize(I); 3948 if (!BBState.ExitIsSetup) 3949 report("FrameDestroy is not after a FrameSetup", &I); 3950 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3951 BBState.ExitValue; 3952 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3953 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3954 OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 3955 << AbsSPAdj << ">.\n"; 3956 } 3957 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3958 report("AdjustsStack not set in presence of a frame pseudo " 3959 "instruction.", &I); 3960 BBState.ExitValue += Size; 3961 BBState.ExitIsSetup = false; 3962 } 3963 } 3964 SPState[MBB->getNumber()] = BBState; 3965 3966 // Make sure the exit state of any predecessor is consistent with the entry 3967 // state. 3968 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3969 if (Reachable.count(Pred) && 3970 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3971 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3972 report("The exit stack state of a predecessor is inconsistent.", MBB); 3973 OS << "Predecessor " << printMBBReference(*Pred) << " has exit state (" 3974 << SPState[Pred->getNumber()].ExitValue << ", " 3975 << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3976 << printMBBReference(*MBB) << " has entry state (" 3977 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3978 } 3979 } 3980 3981 // Make sure the entry state of any successor is consistent with the exit 3982 // state. 3983 for (const MachineBasicBlock *Succ : MBB->successors()) { 3984 if (Reachable.count(Succ) && 3985 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3986 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3987 report("The entry stack state of a successor is inconsistent.", MBB); 3988 OS << "Successor " << printMBBReference(*Succ) << " has entry state (" 3989 << SPState[Succ->getNumber()].EntryValue << ", " 3990 << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3991 << printMBBReference(*MBB) << " has exit state (" 3992 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3993 } 3994 } 3995 3996 // Make sure a basic block with return ends with zero stack adjustment. 3997 if (!MBB->empty() && MBB->back().isReturn()) { 3998 if (BBState.ExitIsSetup) 3999 report("A return block ends with a FrameSetup.", MBB); 4000 if (BBState.ExitValue) 4001 report("A return block ends with a nonzero stack adjustment.", MBB); 4002 } 4003 } 4004 } 4005