xref: /llvm-project/llvm/lib/CodeGen/MachineVerifier.cpp (revision 86b1b0671cafd462c0aa681e2d320ce597300f69)
1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // Pass to verify generated machine code. The following is checked:
10 //
11 // Operand counts: All explicit operands must be present.
12 //
13 // Register classes: All physical and virtual register operands must be
14 // compatible with the register class required by the instruction descriptor.
15 //
16 // Register live intervals: Registers must be defined only once, and must be
17 // defined before use.
18 //
19 // The machine code verifier is enabled with the command-line option
20 // -verify-machineinstrs.
21 //===----------------------------------------------------------------------===//
22 
23 #include "llvm/CodeGen/MachineVerifier.h"
24 #include "llvm/ADT/BitVector.h"
25 #include "llvm/ADT/DenseMap.h"
26 #include "llvm/ADT/DenseSet.h"
27 #include "llvm/ADT/DepthFirstIterator.h"
28 #include "llvm/ADT/PostOrderIterator.h"
29 #include "llvm/ADT/STLExtras.h"
30 #include "llvm/ADT/SetOperations.h"
31 #include "llvm/ADT/SmallPtrSet.h"
32 #include "llvm/ADT/SmallVector.h"
33 #include "llvm/ADT/StringRef.h"
34 #include "llvm/ADT/Twine.h"
35 #include "llvm/CodeGen/CodeGenCommonISel.h"
36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h"
37 #include "llvm/CodeGen/LiveInterval.h"
38 #include "llvm/CodeGen/LiveIntervals.h"
39 #include "llvm/CodeGen/LiveRangeCalc.h"
40 #include "llvm/CodeGen/LiveStacks.h"
41 #include "llvm/CodeGen/LiveVariables.h"
42 #include "llvm/CodeGen/MachineBasicBlock.h"
43 #include "llvm/CodeGen/MachineConvergenceVerifier.h"
44 #include "llvm/CodeGen/MachineDominators.h"
45 #include "llvm/CodeGen/MachineFrameInfo.h"
46 #include "llvm/CodeGen/MachineFunction.h"
47 #include "llvm/CodeGen/MachineFunctionPass.h"
48 #include "llvm/CodeGen/MachineInstr.h"
49 #include "llvm/CodeGen/MachineInstrBundle.h"
50 #include "llvm/CodeGen/MachineMemOperand.h"
51 #include "llvm/CodeGen/MachineOperand.h"
52 #include "llvm/CodeGen/MachineRegisterInfo.h"
53 #include "llvm/CodeGen/PseudoSourceValue.h"
54 #include "llvm/CodeGen/RegisterBank.h"
55 #include "llvm/CodeGen/RegisterBankInfo.h"
56 #include "llvm/CodeGen/SlotIndexes.h"
57 #include "llvm/CodeGen/StackMaps.h"
58 #include "llvm/CodeGen/TargetInstrInfo.h"
59 #include "llvm/CodeGen/TargetLowering.h"
60 #include "llvm/CodeGen/TargetOpcodes.h"
61 #include "llvm/CodeGen/TargetRegisterInfo.h"
62 #include "llvm/CodeGen/TargetSubtargetInfo.h"
63 #include "llvm/CodeGenTypes/LowLevelType.h"
64 #include "llvm/IR/BasicBlock.h"
65 #include "llvm/IR/Constants.h"
66 #include "llvm/IR/EHPersonalities.h"
67 #include "llvm/IR/Function.h"
68 #include "llvm/IR/InlineAsm.h"
69 #include "llvm/IR/Instructions.h"
70 #include "llvm/InitializePasses.h"
71 #include "llvm/MC/LaneBitmask.h"
72 #include "llvm/MC/MCAsmInfo.h"
73 #include "llvm/MC/MCDwarf.h"
74 #include "llvm/MC/MCInstrDesc.h"
75 #include "llvm/MC/MCRegisterInfo.h"
76 #include "llvm/MC/MCTargetOptions.h"
77 #include "llvm/Pass.h"
78 #include "llvm/Support/Casting.h"
79 #include "llvm/Support/ErrorHandling.h"
80 #include "llvm/Support/ManagedStatic.h"
81 #include "llvm/Support/MathExtras.h"
82 #include "llvm/Support/ModRef.h"
83 #include "llvm/Support/Mutex.h"
84 #include "llvm/Support/raw_ostream.h"
85 #include "llvm/Target/TargetMachine.h"
86 #include <algorithm>
87 #include <cassert>
88 #include <cstddef>
89 #include <cstdint>
90 #include <iterator>
91 #include <string>
92 #include <utility>
93 
94 using namespace llvm;
95 
96 namespace {
97 
98 /// Used the by the ReportedErrors class to guarantee only one error is reported
99 /// at one time.
100 static ManagedStatic<sys::SmartMutex<true>> ReportedErrorsLock;
101 
102 struct MachineVerifier {
103   MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b,
104                   raw_ostream *OS, bool AbortOnError = true)
105       : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b),
106         ReportedErrs(AbortOnError) {}
107 
108   MachineVerifier(Pass *pass, const char *b, raw_ostream *OS,
109                   bool AbortOnError = true)
110       : PASS(pass), OS(OS ? *OS : nulls()), Banner(b),
111         ReportedErrs(AbortOnError) {}
112 
113   MachineVerifier(const char *b, LiveVariables *LiveVars,
114                   LiveIntervals *LiveInts, LiveStacks *LiveStks,
115                   SlotIndexes *Indexes, raw_ostream *OS,
116                   bool AbortOnError = true)
117       : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars),
118         LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes),
119         ReportedErrs(AbortOnError) {}
120 
121   /// \returns true if no problems were found.
122   bool verify(const MachineFunction &MF);
123 
124   MachineFunctionAnalysisManager *MFAM = nullptr;
125   Pass *const PASS = nullptr;
126   raw_ostream &OS;
127   const char *Banner;
128   const MachineFunction *MF = nullptr;
129   const TargetMachine *TM = nullptr;
130   const TargetInstrInfo *TII = nullptr;
131   const TargetRegisterInfo *TRI = nullptr;
132   const MachineRegisterInfo *MRI = nullptr;
133   const RegisterBankInfo *RBI = nullptr;
134 
135   // Avoid querying the MachineFunctionProperties for each operand.
136   bool isFunctionRegBankSelected = false;
137   bool isFunctionSelected = false;
138   bool isFunctionTracksDebugUserValues = false;
139 
140   using RegVector = SmallVector<Register, 16>;
141   using RegMaskVector = SmallVector<const uint32_t *, 4>;
142   using RegSet = DenseSet<Register>;
143   using RegMap = DenseMap<Register, const MachineInstr *>;
144   using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>;
145 
146   const MachineInstr *FirstNonPHI = nullptr;
147   const MachineInstr *FirstTerminator = nullptr;
148   BlockSet FunctionBlocks;
149 
150   BitVector regsReserved;
151   RegSet regsLive;
152   RegVector regsDefined, regsDead, regsKilled;
153   RegMaskVector regMasks;
154 
155   SlotIndex lastIndex;
156 
157   // Add Reg and any sub-registers to RV
158   void addRegWithSubRegs(RegVector &RV, Register Reg) {
159     RV.push_back(Reg);
160     if (Reg.isPhysical())
161       append_range(RV, TRI->subregs(Reg.asMCReg()));
162   }
163 
164   struct BBInfo {
165     // Is this MBB reachable from the MF entry point?
166     bool reachable = false;
167 
168     // Vregs that must be live in because they are used without being
169     // defined. Map value is the user. vregsLiveIn doesn't include regs
170     // that only are used by PHI nodes.
171     RegMap vregsLiveIn;
172 
173     // Regs killed in MBB. They may be defined again, and will then be in both
174     // regsKilled and regsLiveOut.
175     RegSet regsKilled;
176 
177     // Regs defined in MBB and live out. Note that vregs passing through may
178     // be live out without being mentioned here.
179     RegSet regsLiveOut;
180 
181     // Vregs that pass through MBB untouched. This set is disjoint from
182     // regsKilled and regsLiveOut.
183     RegSet vregsPassed;
184 
185     // Vregs that must pass through MBB because they are needed by a successor
186     // block. This set is disjoint from regsLiveOut.
187     RegSet vregsRequired;
188 
189     // Set versions of block's predecessor and successor lists.
190     BlockSet Preds, Succs;
191 
192     BBInfo() = default;
193 
194     // Add register to vregsRequired if it belongs there. Return true if
195     // anything changed.
196     bool addRequired(Register Reg) {
197       if (!Reg.isVirtual())
198         return false;
199       if (regsLiveOut.count(Reg))
200         return false;
201       return vregsRequired.insert(Reg).second;
202     }
203 
204     // Same for a full set.
205     bool addRequired(const RegSet &RS) {
206       bool Changed = false;
207       for (Register Reg : RS)
208         Changed |= addRequired(Reg);
209       return Changed;
210     }
211 
212     // Same for a full map.
213     bool addRequired(const RegMap &RM) {
214       bool Changed = false;
215       for (const auto &I : RM)
216         Changed |= addRequired(I.first);
217       return Changed;
218     }
219 
220     // Live-out registers are either in regsLiveOut or vregsPassed.
221     bool isLiveOut(Register Reg) const {
222       return regsLiveOut.count(Reg) || vregsPassed.count(Reg);
223     }
224   };
225 
226   // Extra register info per MBB.
227   DenseMap<const MachineBasicBlock *, BBInfo> MBBInfoMap;
228 
229   bool isReserved(Register Reg) {
230     return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id());
231   }
232 
233   bool isAllocatable(Register Reg) const {
234     return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) &&
235            !regsReserved.test(Reg.id());
236   }
237 
238   // Analysis information if available
239   LiveVariables *LiveVars = nullptr;
240   LiveIntervals *LiveInts = nullptr;
241   LiveStacks *LiveStks = nullptr;
242   SlotIndexes *Indexes = nullptr;
243 
244   /// A class to track the number of reported error and to guarantee that only
245   /// one error is reported at one time.
246   class ReportedErrors {
247     unsigned NumReported = 0;
248     bool AbortOnError;
249 
250   public:
251     /// \param AbortOnError -- If set, abort after printing the first error.
252     ReportedErrors(bool AbortOnError) : AbortOnError(AbortOnError) {}
253 
254     ~ReportedErrors() {
255       if (!hasError())
256         return;
257       if (AbortOnError)
258         report_fatal_error("Found " + Twine(NumReported) +
259                            " machine code errors.");
260       // Since we haven't aborted, release the lock to allow other threads to
261       // report errors.
262       ReportedErrorsLock->unlock();
263     }
264 
265     /// Increment the number of reported errors.
266     /// \returns true if this is the first reported error.
267     bool increment() {
268       // If this is the first error this thread has encountered, grab the lock
269       // to prevent other threads from reporting errors at the same time.
270       // Otherwise we assume we already have the lock.
271       if (!hasError())
272         ReportedErrorsLock->lock();
273       ++NumReported;
274       return NumReported == 1;
275     }
276 
277     /// \returns true if an error was reported.
278     bool hasError() { return NumReported; }
279   };
280   ReportedErrors ReportedErrs;
281 
282   // This is calculated only when trying to verify convergence control tokens.
283   // Similar to the LLVM IR verifier, we calculate this locally instead of
284   // relying on the pass manager.
285   MachineDominatorTree DT;
286 
287   void visitMachineFunctionBefore();
288   void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB);
289   void visitMachineBundleBefore(const MachineInstr *MI);
290 
291   /// Verify that all of \p MI's virtual register operands are scalars.
292   /// \returns True if all virtual register operands are scalar. False
293   /// otherwise.
294   bool verifyAllRegOpsScalar(const MachineInstr &MI,
295                              const MachineRegisterInfo &MRI);
296   bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI);
297 
298   bool verifyGIntrinsicSideEffects(const MachineInstr *MI);
299   bool verifyGIntrinsicConvergence(const MachineInstr *MI);
300   void verifyPreISelGenericInstruction(const MachineInstr *MI);
301 
302   void visitMachineInstrBefore(const MachineInstr *MI);
303   void visitMachineOperand(const MachineOperand *MO, unsigned MONum);
304   void visitMachineBundleAfter(const MachineInstr *MI);
305   void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB);
306   void visitMachineFunctionAfter();
307 
308   void report(const char *msg, const MachineFunction *MF);
309   void report(const char *msg, const MachineBasicBlock *MBB);
310   void report(const char *msg, const MachineInstr *MI);
311   void report(const char *msg, const MachineOperand *MO, unsigned MONum,
312               LLT MOVRegType = LLT{});
313   void report(const Twine &Msg, const MachineInstr *MI);
314 
315   void report_context(const LiveInterval &LI) const;
316   void report_context(const LiveRange &LR, Register VRegUnit,
317                       LaneBitmask LaneMask) const;
318   void report_context(const LiveRange::Segment &S) const;
319   void report_context(const VNInfo &VNI) const;
320   void report_context(SlotIndex Pos) const;
321   void report_context(MCPhysReg PhysReg) const;
322   void report_context_liverange(const LiveRange &LR) const;
323   void report_context_lanemask(LaneBitmask LaneMask) const;
324   void report_context_vreg(Register VReg) const;
325   void report_context_vreg_regunit(Register VRegOrUnit) const;
326 
327   void verifyInlineAsm(const MachineInstr *MI);
328 
329   void checkLiveness(const MachineOperand *MO, unsigned MONum);
330   void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum,
331                           SlotIndex UseIdx, const LiveRange &LR,
332                           Register VRegOrUnit,
333                           LaneBitmask LaneMask = LaneBitmask::getNone());
334   void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum,
335                           SlotIndex DefIdx, const LiveRange &LR,
336                           Register VRegOrUnit, bool SubRangeCheck = false,
337                           LaneBitmask LaneMask = LaneBitmask::getNone());
338 
339   void markReachable(const MachineBasicBlock *MBB);
340   void calcRegsPassed();
341   void checkPHIOps(const MachineBasicBlock &MBB);
342 
343   void calcRegsRequired();
344   void verifyLiveVariables();
345   void verifyLiveIntervals();
346   void verifyLiveInterval(const LiveInterval &);
347   void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register,
348                             LaneBitmask);
349   void verifyLiveRangeSegment(const LiveRange &,
350                               const LiveRange::const_iterator I, Register,
351                               LaneBitmask);
352   void verifyLiveRange(const LiveRange &, Register,
353                        LaneBitmask LaneMask = LaneBitmask::getNone());
354 
355   void verifyStackFrame();
356   // Check that the stack protector is the top-most object in the stack.
357   void verifyStackProtector();
358 
359   void verifySlotIndexes() const;
360   void verifyProperties(const MachineFunction &MF);
361 };
362 
363 struct MachineVerifierLegacyPass : public MachineFunctionPass {
364   static char ID; // Pass ID, replacement for typeid
365 
366   const std::string Banner;
367 
368   MachineVerifierLegacyPass(std::string banner = std::string())
369       : MachineFunctionPass(ID), Banner(std::move(banner)) {
370     initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry());
371   }
372 
373   void getAnalysisUsage(AnalysisUsage &AU) const override {
374     AU.addUsedIfAvailable<LiveStacksWrapperLegacy>();
375     AU.addUsedIfAvailable<LiveVariablesWrapperPass>();
376     AU.addUsedIfAvailable<SlotIndexesWrapperPass>();
377     AU.addUsedIfAvailable<LiveIntervalsWrapperPass>();
378     AU.setPreservesAll();
379     MachineFunctionPass::getAnalysisUsage(AU);
380   }
381 
382   bool runOnMachineFunction(MachineFunction &MF) override {
383     // Skip functions that have known verification problems.
384     // FIXME: Remove this mechanism when all problematic passes have been
385     // fixed.
386     if (MF.getProperties().hasProperty(
387             MachineFunctionProperties::Property::FailsVerification))
388       return false;
389 
390     MachineVerifier(this, Banner.c_str(), &errs()).verify(MF);
391     return false;
392   }
393 };
394 
395 } // end anonymous namespace
396 
397 PreservedAnalyses
398 MachineVerifierPass::run(MachineFunction &MF,
399                          MachineFunctionAnalysisManager &MFAM) {
400   // Skip functions that have known verification problems.
401   // FIXME: Remove this mechanism when all problematic passes have been
402   // fixed.
403   if (MF.getProperties().hasProperty(
404           MachineFunctionProperties::Property::FailsVerification))
405     return PreservedAnalyses::all();
406   MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF);
407   return PreservedAnalyses::all();
408 }
409 
410 char MachineVerifierLegacyPass::ID = 0;
411 
412 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier",
413                 "Verify generated machine code", false, false)
414 
415 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) {
416   return new MachineVerifierLegacyPass(Banner);
417 }
418 
419 void llvm::verifyMachineFunction(const std::string &Banner,
420                                  const MachineFunction &MF) {
421   // TODO: Use MFAM after porting below analyses.
422   // LiveVariables *LiveVars;
423   // LiveIntervals *LiveInts;
424   // LiveStacks *LiveStks;
425   // SlotIndexes *Indexes;
426   MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF);
427 }
428 
429 bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS,
430                              bool AbortOnError) const {
431   return MachineVerifier(p, Banner, OS, AbortOnError).verify(*this);
432 }
433 
434 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes,
435                              const char *Banner, raw_ostream *OS,
436                              bool AbortOnError) const {
437   return MachineVerifier(Banner, /*LiveVars=*/nullptr, LiveInts,
438                          /*LiveStks=*/nullptr, Indexes, OS, AbortOnError)
439       .verify(*this);
440 }
441 
442 void MachineVerifier::verifySlotIndexes() const {
443   if (Indexes == nullptr)
444     return;
445 
446   // Ensure the IdxMBB list is sorted by slot indexes.
447   SlotIndex Last;
448   for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(),
449        E = Indexes->MBBIndexEnd(); I != E; ++I) {
450     assert(!Last.isValid() || I->first > Last);
451     Last = I->first;
452   }
453 }
454 
455 void MachineVerifier::verifyProperties(const MachineFunction &MF) {
456   // If a pass has introduced virtual registers without clearing the
457   // NoVRegs property (or set it without allocating the vregs)
458   // then report an error.
459   if (MF.getProperties().hasProperty(
460           MachineFunctionProperties::Property::NoVRegs) &&
461       MRI->getNumVirtRegs())
462     report("Function has NoVRegs property but there are VReg operands", &MF);
463 }
464 
465 bool MachineVerifier::verify(const MachineFunction &MF) {
466   this->MF = &MF;
467   TM = &MF.getTarget();
468   TII = MF.getSubtarget().getInstrInfo();
469   TRI = MF.getSubtarget().getRegisterInfo();
470   RBI = MF.getSubtarget().getRegBankInfo();
471   MRI = &MF.getRegInfo();
472 
473   const bool isFunctionFailedISel = MF.getProperties().hasProperty(
474       MachineFunctionProperties::Property::FailedISel);
475 
476   // If we're mid-GlobalISel and we already triggered the fallback path then
477   // it's expected that the MIR is somewhat broken but that's ok since we'll
478   // reset it and clear the FailedISel attribute in ResetMachineFunctions.
479   if (isFunctionFailedISel)
480     return true;
481 
482   isFunctionRegBankSelected = MF.getProperties().hasProperty(
483       MachineFunctionProperties::Property::RegBankSelected);
484   isFunctionSelected = MF.getProperties().hasProperty(
485       MachineFunctionProperties::Property::Selected);
486   isFunctionTracksDebugUserValues = MF.getProperties().hasProperty(
487       MachineFunctionProperties::Property::TracksDebugUserValues);
488 
489   if (PASS) {
490     auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>();
491     LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr;
492     // We don't want to verify LiveVariables if LiveIntervals is available.
493     auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>();
494     if (!LiveInts)
495       LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr;
496     auto *LSWrapper = PASS->getAnalysisIfAvailable<LiveStacksWrapperLegacy>();
497     LiveStks = LSWrapper ? &LSWrapper->getLS() : nullptr;
498     auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>();
499     Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr;
500   }
501   if (MFAM) {
502     MachineFunction &Func = const_cast<MachineFunction &>(MF);
503     LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func);
504     if (!LiveInts)
505       LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func);
506     // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func);
507     Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func);
508   }
509 
510   verifySlotIndexes();
511 
512   verifyProperties(MF);
513 
514   visitMachineFunctionBefore();
515   for (const MachineBasicBlock &MBB : MF) {
516     visitMachineBasicBlockBefore(&MBB);
517     // Keep track of the current bundle header.
518     const MachineInstr *CurBundle = nullptr;
519     // Do we expect the next instruction to be part of the same bundle?
520     bool InBundle = false;
521 
522     for (const MachineInstr &MI : MBB.instrs()) {
523       if (MI.getParent() != &MBB) {
524         report("Bad instruction parent pointer", &MBB);
525         OS << "Instruction: " << MI;
526         continue;
527       }
528 
529       // Check for consistent bundle flags.
530       if (InBundle && !MI.isBundledWithPred())
531         report("Missing BundledPred flag, "
532                "BundledSucc was set on predecessor",
533                &MI);
534       if (!InBundle && MI.isBundledWithPred())
535         report("BundledPred flag is set, "
536                "but BundledSucc not set on predecessor",
537                &MI);
538 
539       // Is this a bundle header?
540       if (!MI.isInsideBundle()) {
541         if (CurBundle)
542           visitMachineBundleAfter(CurBundle);
543         CurBundle = &MI;
544         visitMachineBundleBefore(CurBundle);
545       } else if (!CurBundle)
546         report("No bundle header", &MI);
547       visitMachineInstrBefore(&MI);
548       for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
549         const MachineOperand &Op = MI.getOperand(I);
550         if (Op.getParent() != &MI) {
551           // Make sure to use correct addOperand / removeOperand / ChangeTo
552           // functions when replacing operands of a MachineInstr.
553           report("Instruction has operand with wrong parent set", &MI);
554         }
555 
556         visitMachineOperand(&Op, I);
557       }
558 
559       // Was this the last bundled instruction?
560       InBundle = MI.isBundledWithSucc();
561     }
562     if (CurBundle)
563       visitMachineBundleAfter(CurBundle);
564     if (InBundle)
565       report("BundledSucc flag set on last instruction in block", &MBB.back());
566     visitMachineBasicBlockAfter(&MBB);
567   }
568   visitMachineFunctionAfter();
569 
570   // Clean up.
571   regsLive.clear();
572   regsDefined.clear();
573   regsDead.clear();
574   regsKilled.clear();
575   regMasks.clear();
576   MBBInfoMap.clear();
577 
578   return !ReportedErrs.hasError();
579 }
580 
581 void MachineVerifier::report(const char *msg, const MachineFunction *MF) {
582   assert(MF);
583   OS << '\n';
584   if (ReportedErrs.increment()) {
585     if (Banner)
586       OS << "# " << Banner << '\n';
587 
588     if (LiveInts != nullptr)
589       LiveInts->print(OS);
590     else
591       MF->print(OS, Indexes);
592   }
593 
594   OS << "*** Bad machine code: " << msg << " ***\n"
595      << "- function:    " << MF->getName() << '\n';
596 }
597 
598 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) {
599   assert(MBB);
600   report(msg, MBB->getParent());
601   OS << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName()
602      << " (" << (const void *)MBB << ')';
603   if (Indexes)
604     OS << " [" << Indexes->getMBBStartIdx(MBB) << ';'
605        << Indexes->getMBBEndIdx(MBB) << ')';
606   OS << '\n';
607 }
608 
609 void MachineVerifier::report(const char *msg, const MachineInstr *MI) {
610   assert(MI);
611   report(msg, MI->getParent());
612   OS << "- instruction: ";
613   if (Indexes && Indexes->hasIndex(*MI))
614     OS << Indexes->getInstructionIndex(*MI) << '\t';
615   MI->print(OS, /*IsStandalone=*/true);
616 }
617 
618 void MachineVerifier::report(const char *msg, const MachineOperand *MO,
619                              unsigned MONum, LLT MOVRegType) {
620   assert(MO);
621   report(msg, MO->getParent());
622   OS << "- operand " << MONum << ":   ";
623   MO->print(OS, MOVRegType, TRI);
624   OS << '\n';
625 }
626 
627 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) {
628   report(Msg.str().c_str(), MI);
629 }
630 
631 void MachineVerifier::report_context(SlotIndex Pos) const {
632   OS << "- at:          " << Pos << '\n';
633 }
634 
635 void MachineVerifier::report_context(const LiveInterval &LI) const {
636   OS << "- interval:    " << LI << '\n';
637 }
638 
639 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit,
640                                      LaneBitmask LaneMask) const {
641   report_context_liverange(LR);
642   report_context_vreg_regunit(VRegUnit);
643   if (LaneMask.any())
644     report_context_lanemask(LaneMask);
645 }
646 
647 void MachineVerifier::report_context(const LiveRange::Segment &S) const {
648   OS << "- segment:     " << S << '\n';
649 }
650 
651 void MachineVerifier::report_context(const VNInfo &VNI) const {
652   OS << "- ValNo:       " << VNI.id << " (def " << VNI.def << ")\n";
653 }
654 
655 void MachineVerifier::report_context_liverange(const LiveRange &LR) const {
656   OS << "- liverange:   " << LR << '\n';
657 }
658 
659 void MachineVerifier::report_context(MCPhysReg PReg) const {
660   OS << "- p. register: " << printReg(PReg, TRI) << '\n';
661 }
662 
663 void MachineVerifier::report_context_vreg(Register VReg) const {
664   OS << "- v. register: " << printReg(VReg, TRI) << '\n';
665 }
666 
667 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const {
668   if (VRegOrUnit.isVirtual()) {
669     report_context_vreg(VRegOrUnit);
670   } else {
671     OS << "- regunit:     " << printRegUnit(VRegOrUnit, TRI) << '\n';
672   }
673 }
674 
675 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const {
676   OS << "- lanemask:    " << PrintLaneMask(LaneMask) << '\n';
677 }
678 
679 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) {
680   BBInfo &MInfo = MBBInfoMap[MBB];
681   if (!MInfo.reachable) {
682     MInfo.reachable = true;
683     for (const MachineBasicBlock *Succ : MBB->successors())
684       markReachable(Succ);
685   }
686 }
687 
688 void MachineVerifier::visitMachineFunctionBefore() {
689   lastIndex = SlotIndex();
690   regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs()
691                                            : TRI->getReservedRegs(*MF);
692 
693   if (!MF->empty())
694     markReachable(&MF->front());
695 
696   // Build a set of the basic blocks in the function.
697   FunctionBlocks.clear();
698   for (const auto &MBB : *MF) {
699     FunctionBlocks.insert(&MBB);
700     BBInfo &MInfo = MBBInfoMap[&MBB];
701 
702     MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end());
703     if (MInfo.Preds.size() != MBB.pred_size())
704       report("MBB has duplicate entries in its predecessor list.", &MBB);
705 
706     MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end());
707     if (MInfo.Succs.size() != MBB.succ_size())
708       report("MBB has duplicate entries in its successor list.", &MBB);
709   }
710 
711   // Check that the register use lists are sane.
712   MRI->verifyUseLists();
713 
714   if (!MF->empty()) {
715     verifyStackFrame();
716     verifyStackProtector();
717   }
718 }
719 
720 void
721 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) {
722   FirstTerminator = nullptr;
723   FirstNonPHI = nullptr;
724 
725   if (!MF->getProperties().hasProperty(
726       MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) {
727     // If this block has allocatable physical registers live-in, check that
728     // it is an entry block or landing pad.
729     for (const auto &LI : MBB->liveins()) {
730       if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() &&
731           MBB->getIterator() != MBB->getParent()->begin() &&
732           !MBB->isInlineAsmBrIndirectTarget()) {
733         report("MBB has allocatable live-in, but isn't entry, landing-pad, or "
734                "inlineasm-br-indirect-target.",
735                MBB);
736         report_context(LI.PhysReg);
737       }
738     }
739   }
740 
741   if (MBB->isIRBlockAddressTaken()) {
742     if (!MBB->getAddressTakenIRBlock()->hasAddressTaken())
743       report("ir-block-address-taken is associated with basic block not used by "
744              "a blockaddress.",
745              MBB);
746   }
747 
748   // Count the number of landing pad successors.
749   SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs;
750   for (const auto *succ : MBB->successors()) {
751     if (succ->isEHPad())
752       LandingPadSuccs.insert(succ);
753     if (!FunctionBlocks.count(succ))
754       report("MBB has successor that isn't part of the function.", MBB);
755     if (!MBBInfoMap[succ].Preds.count(MBB)) {
756       report("Inconsistent CFG", MBB);
757       OS << "MBB is not in the predecessor list of the successor "
758          << printMBBReference(*succ) << ".\n";
759     }
760   }
761 
762   // Check the predecessor list.
763   for (const MachineBasicBlock *Pred : MBB->predecessors()) {
764     if (!FunctionBlocks.count(Pred))
765       report("MBB has predecessor that isn't part of the function.", MBB);
766     if (!MBBInfoMap[Pred].Succs.count(MBB)) {
767       report("Inconsistent CFG", MBB);
768       OS << "MBB is not in the successor list of the predecessor "
769          << printMBBReference(*Pred) << ".\n";
770     }
771   }
772 
773   const MCAsmInfo *AsmInfo = TM->getMCAsmInfo();
774   const BasicBlock *BB = MBB->getBasicBlock();
775   const Function &F = MF->getFunction();
776   if (LandingPadSuccs.size() > 1 &&
777       !(AsmInfo &&
778         AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj &&
779         BB && isa<SwitchInst>(BB->getTerminator())) &&
780       !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn())))
781     report("MBB has more than one landing pad successor", MBB);
782 
783   // Call analyzeBranch. If it succeeds, there several more conditions to check.
784   MachineBasicBlock *TBB = nullptr, *FBB = nullptr;
785   SmallVector<MachineOperand, 4> Cond;
786   if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB,
787                           Cond)) {
788     // Ok, analyzeBranch thinks it knows what's going on with this block. Let's
789     // check whether its answers match up with reality.
790     if (!TBB && !FBB) {
791       // Block falls through to its successor.
792       if (!MBB->empty() && MBB->back().isBarrier() &&
793           !TII->isPredicated(MBB->back())) {
794         report("MBB exits via unconditional fall-through but ends with a "
795                "barrier instruction!", MBB);
796       }
797       if (!Cond.empty()) {
798         report("MBB exits via unconditional fall-through but has a condition!",
799                MBB);
800       }
801     } else if (TBB && !FBB && Cond.empty()) {
802       // Block unconditionally branches somewhere.
803       if (MBB->empty()) {
804         report("MBB exits via unconditional branch but doesn't contain "
805                "any instructions!", MBB);
806       } else if (!MBB->back().isBarrier()) {
807         report("MBB exits via unconditional branch but doesn't end with a "
808                "barrier instruction!", MBB);
809       } else if (!MBB->back().isTerminator()) {
810         report("MBB exits via unconditional branch but the branch isn't a "
811                "terminator instruction!", MBB);
812       }
813     } else if (TBB && !FBB && !Cond.empty()) {
814       // Block conditionally branches somewhere, otherwise falls through.
815       if (MBB->empty()) {
816         report("MBB exits via conditional branch/fall-through but doesn't "
817                "contain any instructions!", MBB);
818       } else if (MBB->back().isBarrier()) {
819         report("MBB exits via conditional branch/fall-through but ends with a "
820                "barrier instruction!", MBB);
821       } else if (!MBB->back().isTerminator()) {
822         report("MBB exits via conditional branch/fall-through but the branch "
823                "isn't a terminator instruction!", MBB);
824       }
825     } else if (TBB && FBB) {
826       // Block conditionally branches somewhere, otherwise branches
827       // somewhere else.
828       if (MBB->empty()) {
829         report("MBB exits via conditional branch/branch but doesn't "
830                "contain any instructions!", MBB);
831       } else if (!MBB->back().isBarrier()) {
832         report("MBB exits via conditional branch/branch but doesn't end with a "
833                "barrier instruction!", MBB);
834       } else if (!MBB->back().isTerminator()) {
835         report("MBB exits via conditional branch/branch but the branch "
836                "isn't a terminator instruction!", MBB);
837       }
838       if (Cond.empty()) {
839         report("MBB exits via conditional branch/branch but there's no "
840                "condition!", MBB);
841       }
842     } else {
843       report("analyzeBranch returned invalid data!", MBB);
844     }
845 
846     // Now check that the successors match up with the answers reported by
847     // analyzeBranch.
848     if (TBB && !MBB->isSuccessor(TBB))
849       report("MBB exits via jump or conditional branch, but its target isn't a "
850              "CFG successor!",
851              MBB);
852     if (FBB && !MBB->isSuccessor(FBB))
853       report("MBB exits via conditional branch, but its target isn't a CFG "
854              "successor!",
855              MBB);
856 
857     // There might be a fallthrough to the next block if there's either no
858     // unconditional true branch, or if there's a condition, and one of the
859     // branches is missing.
860     bool Fallthrough = !TBB || (!Cond.empty() && !FBB);
861 
862     // A conditional fallthrough must be an actual CFG successor, not
863     // unreachable. (Conversely, an unconditional fallthrough might not really
864     // be a successor, because the block might end in unreachable.)
865     if (!Cond.empty() && !FBB) {
866       MachineFunction::const_iterator MBBI = std::next(MBB->getIterator());
867       if (MBBI == MF->end()) {
868         report("MBB conditionally falls through out of function!", MBB);
869       } else if (!MBB->isSuccessor(&*MBBI))
870         report("MBB exits via conditional branch/fall-through but the CFG "
871                "successors don't match the actual successors!",
872                MBB);
873     }
874 
875     // Verify that there aren't any extra un-accounted-for successors.
876     for (const MachineBasicBlock *SuccMBB : MBB->successors()) {
877       // If this successor is one of the branch targets, it's okay.
878       if (SuccMBB == TBB || SuccMBB == FBB)
879         continue;
880       // If we might have a fallthrough, and the successor is the fallthrough
881       // block, that's also ok.
882       if (Fallthrough && SuccMBB == MBB->getNextNode())
883         continue;
884       // Also accept successors which are for exception-handling or might be
885       // inlineasm_br targets.
886       if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget())
887         continue;
888       report("MBB has unexpected successors which are not branch targets, "
889              "fallthrough, EHPads, or inlineasm_br targets.",
890              MBB);
891     }
892   }
893 
894   regsLive.clear();
895   if (MRI->tracksLiveness()) {
896     for (const auto &LI : MBB->liveins()) {
897       if (!Register::isPhysicalRegister(LI.PhysReg)) {
898         report("MBB live-in list contains non-physical register", MBB);
899         continue;
900       }
901       for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg))
902         regsLive.insert(SubReg);
903     }
904   }
905 
906   const MachineFrameInfo &MFI = MF->getFrameInfo();
907   BitVector PR = MFI.getPristineRegs(*MF);
908   for (unsigned I : PR.set_bits()) {
909     for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I))
910       regsLive.insert(SubReg);
911   }
912 
913   regsKilled.clear();
914   regsDefined.clear();
915 
916   if (Indexes)
917     lastIndex = Indexes->getMBBStartIdx(MBB);
918 }
919 
920 // This function gets called for all bundle headers, including normal
921 // stand-alone unbundled instructions.
922 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) {
923   if (Indexes && Indexes->hasIndex(*MI)) {
924     SlotIndex idx = Indexes->getInstructionIndex(*MI);
925     if (!(idx > lastIndex)) {
926       report("Instruction index out of order", MI);
927       OS << "Last instruction was at " << lastIndex << '\n';
928     }
929     lastIndex = idx;
930   }
931 
932   // Ensure non-terminators don't follow terminators.
933   if (MI->isTerminator()) {
934     if (!FirstTerminator)
935       FirstTerminator = MI;
936   } else if (FirstTerminator) {
937     // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to
938     // precede non-terminators.
939     if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) {
940       report("Non-terminator instruction after the first terminator", MI);
941       OS << "First terminator was:\t" << *FirstTerminator;
942     }
943   }
944 }
945 
946 // The operands on an INLINEASM instruction must follow a template.
947 // Verify that the flag operands make sense.
948 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) {
949   // The first two operands on INLINEASM are the asm string and global flags.
950   if (MI->getNumOperands() < 2) {
951     report("Too few operands on inline asm", MI);
952     return;
953   }
954   if (!MI->getOperand(0).isSymbol())
955     report("Asm string must be an external symbol", MI);
956   if (!MI->getOperand(1).isImm())
957     report("Asm flags must be an immediate", MI);
958   // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2,
959   // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16,
960   // and Extra_IsConvergent = 32.
961   if (!isUInt<6>(MI->getOperand(1).getImm()))
962     report("Unknown asm flags", &MI->getOperand(1), 1);
963 
964   static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed");
965 
966   unsigned OpNo = InlineAsm::MIOp_FirstOperand;
967   unsigned NumOps;
968   for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) {
969     const MachineOperand &MO = MI->getOperand(OpNo);
970     // There may be implicit ops after the fixed operands.
971     if (!MO.isImm())
972       break;
973     const InlineAsm::Flag F(MO.getImm());
974     NumOps = 1 + F.getNumOperandRegisters();
975   }
976 
977   if (OpNo > MI->getNumOperands())
978     report("Missing operands in last group", MI);
979 
980   // An optional MDNode follows the groups.
981   if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata())
982     ++OpNo;
983 
984   // All trailing operands must be implicit registers.
985   for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) {
986     const MachineOperand &MO = MI->getOperand(OpNo);
987     if (!MO.isReg() || !MO.isImplicit())
988       report("Expected implicit register after groups", &MO, OpNo);
989   }
990 
991   if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) {
992     const MachineBasicBlock *MBB = MI->getParent();
993 
994     for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands();
995          i != e; ++i) {
996       const MachineOperand &MO = MI->getOperand(i);
997 
998       if (!MO.isMBB())
999         continue;
1000 
1001       // Check the successor & predecessor lists look ok, assume they are
1002       // not. Find the indirect target without going through the successors.
1003       const MachineBasicBlock *IndirectTargetMBB = MO.getMBB();
1004       if (!IndirectTargetMBB) {
1005         report("INLINEASM_BR indirect target does not exist", &MO, i);
1006         break;
1007       }
1008 
1009       if (!MBB->isSuccessor(IndirectTargetMBB))
1010         report("INLINEASM_BR indirect target missing from successor list", &MO,
1011                i);
1012 
1013       if (!IndirectTargetMBB->isPredecessor(MBB))
1014         report("INLINEASM_BR indirect target predecessor list missing parent",
1015                &MO, i);
1016     }
1017   }
1018 }
1019 
1020 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI,
1021                                             const MachineRegisterInfo &MRI) {
1022   if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) {
1023         if (!Op.isReg())
1024           return false;
1025         const auto Reg = Op.getReg();
1026         if (Reg.isPhysical())
1027           return false;
1028         return !MRI.getType(Reg).isScalar();
1029       }))
1030     return true;
1031   report("All register operands must have scalar types", &MI);
1032   return false;
1033 }
1034 
1035 /// Check that types are consistent when two operands need to have the same
1036 /// number of vector elements.
1037 /// \return true if the types are valid.
1038 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1,
1039                                                const MachineInstr *MI) {
1040   if (Ty0.isVector() != Ty1.isVector()) {
1041     report("operand types must be all-vector or all-scalar", MI);
1042     // Generally we try to report as many issues as possible at once, but in
1043     // this case it's not clear what should we be comparing the size of the
1044     // scalar with: the size of the whole vector or its lane. Instead of
1045     // making an arbitrary choice and emitting not so helpful message, let's
1046     // avoid the extra noise and stop here.
1047     return false;
1048   }
1049 
1050   if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) {
1051     report("operand types must preserve number of vector elements", MI);
1052     return false;
1053   }
1054 
1055   return true;
1056 }
1057 
1058 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) {
1059   auto Opcode = MI->getOpcode();
1060   bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC ||
1061                        Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT;
1062   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1063   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1064     AttributeList Attrs = Intrinsic::getAttributes(
1065         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1066     bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory();
1067     if (NoSideEffects && DeclHasSideEffects) {
1068       report(Twine(TII->getName(Opcode),
1069                    " used with intrinsic that accesses memory"),
1070              MI);
1071       return false;
1072     }
1073     if (!NoSideEffects && !DeclHasSideEffects) {
1074       report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI);
1075       return false;
1076     }
1077   }
1078 
1079   return true;
1080 }
1081 
1082 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) {
1083   auto Opcode = MI->getOpcode();
1084   bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC ||
1085                        Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS;
1086   unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID();
1087   if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) {
1088     AttributeList Attrs = Intrinsic::getAttributes(
1089         MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID));
1090     bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent);
1091     if (NotConvergent && DeclIsConvergent) {
1092       report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"),
1093              MI);
1094       return false;
1095     }
1096     if (!NotConvergent && !DeclIsConvergent) {
1097       report(
1098           Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"),
1099           MI);
1100       return false;
1101     }
1102   }
1103 
1104   return true;
1105 }
1106 
1107 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) {
1108   if (isFunctionSelected)
1109     report("Unexpected generic instruction in a Selected function", MI);
1110 
1111   const MCInstrDesc &MCID = MI->getDesc();
1112   unsigned NumOps = MI->getNumOperands();
1113 
1114   // Branches must reference a basic block if they are not indirect
1115   if (MI->isBranch() && !MI->isIndirectBranch()) {
1116     bool HasMBB = false;
1117     for (const MachineOperand &Op : MI->operands()) {
1118       if (Op.isMBB()) {
1119         HasMBB = true;
1120         break;
1121       }
1122     }
1123 
1124     if (!HasMBB) {
1125       report("Branch instruction is missing a basic block operand or "
1126              "isIndirectBranch property",
1127              MI);
1128     }
1129   }
1130 
1131   // Check types.
1132   SmallVector<LLT, 4> Types;
1133   for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps);
1134        I != E; ++I) {
1135     if (!MCID.operands()[I].isGenericType())
1136       continue;
1137     // Generic instructions specify type equality constraints between some of
1138     // their operands. Make sure these are consistent.
1139     size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex();
1140     Types.resize(std::max(TypeIdx + 1, Types.size()));
1141 
1142     const MachineOperand *MO = &MI->getOperand(I);
1143     if (!MO->isReg()) {
1144       report("generic instruction must use register operands", MI);
1145       continue;
1146     }
1147 
1148     LLT OpTy = MRI->getType(MO->getReg());
1149     // Don't report a type mismatch if there is no actual mismatch, only a
1150     // type missing, to reduce noise:
1151     if (OpTy.isValid()) {
1152       // Only the first valid type for a type index will be printed: don't
1153       // overwrite it later so it's always clear which type was expected:
1154       if (!Types[TypeIdx].isValid())
1155         Types[TypeIdx] = OpTy;
1156       else if (Types[TypeIdx] != OpTy)
1157         report("Type mismatch in generic instruction", MO, I, OpTy);
1158     } else {
1159       // Generic instructions must have types attached to their operands.
1160       report("Generic instruction is missing a virtual register type", MO, I);
1161     }
1162   }
1163 
1164   // Generic opcodes must not have physical register operands.
1165   for (unsigned I = 0; I < MI->getNumOperands(); ++I) {
1166     const MachineOperand *MO = &MI->getOperand(I);
1167     if (MO->isReg() && MO->getReg().isPhysical())
1168       report("Generic instruction cannot have physical register", MO, I);
1169   }
1170 
1171   // Avoid out of bounds in checks below. This was already reported earlier.
1172   if (MI->getNumOperands() < MCID.getNumOperands())
1173     return;
1174 
1175   StringRef ErrorInfo;
1176   if (!TII->verifyInstruction(*MI, ErrorInfo))
1177     report(ErrorInfo.data(), MI);
1178 
1179   // Verify properties of various specific instruction types
1180   unsigned Opc = MI->getOpcode();
1181   switch (Opc) {
1182   case TargetOpcode::G_ASSERT_SEXT:
1183   case TargetOpcode::G_ASSERT_ZEXT: {
1184     std::string OpcName =
1185         Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT";
1186     if (!MI->getOperand(2).isImm()) {
1187       report(Twine(OpcName, " expects an immediate operand #2"), MI);
1188       break;
1189     }
1190 
1191     Register Dst = MI->getOperand(0).getReg();
1192     Register Src = MI->getOperand(1).getReg();
1193     LLT SrcTy = MRI->getType(Src);
1194     int64_t Imm = MI->getOperand(2).getImm();
1195     if (Imm <= 0) {
1196       report(Twine(OpcName, " size must be >= 1"), MI);
1197       break;
1198     }
1199 
1200     if (Imm >= SrcTy.getScalarSizeInBits()) {
1201       report(Twine(OpcName, " size must be less than source bit width"), MI);
1202       break;
1203     }
1204 
1205     const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI);
1206     const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI);
1207 
1208     // Allow only the source bank to be set.
1209     if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) {
1210       report(Twine(OpcName, " cannot change register bank"), MI);
1211       break;
1212     }
1213 
1214     // Don't allow a class change. Do allow member class->regbank.
1215     const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst);
1216     if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) {
1217       report(
1218           Twine(OpcName, " source and destination register classes must match"),
1219           MI);
1220       break;
1221     }
1222 
1223     break;
1224   }
1225 
1226   case TargetOpcode::G_CONSTANT:
1227   case TargetOpcode::G_FCONSTANT: {
1228     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1229     if (DstTy.isVector())
1230       report("Instruction cannot use a vector result type", MI);
1231 
1232     if (MI->getOpcode() == TargetOpcode::G_CONSTANT) {
1233       if (!MI->getOperand(1).isCImm()) {
1234         report("G_CONSTANT operand must be cimm", MI);
1235         break;
1236       }
1237 
1238       const ConstantInt *CI = MI->getOperand(1).getCImm();
1239       if (CI->getBitWidth() != DstTy.getSizeInBits())
1240         report("inconsistent constant size", MI);
1241     } else {
1242       if (!MI->getOperand(1).isFPImm()) {
1243         report("G_FCONSTANT operand must be fpimm", MI);
1244         break;
1245       }
1246       const ConstantFP *CF = MI->getOperand(1).getFPImm();
1247 
1248       if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) !=
1249           DstTy.getSizeInBits()) {
1250         report("inconsistent constant size", MI);
1251       }
1252     }
1253 
1254     break;
1255   }
1256   case TargetOpcode::G_LOAD:
1257   case TargetOpcode::G_STORE:
1258   case TargetOpcode::G_ZEXTLOAD:
1259   case TargetOpcode::G_SEXTLOAD: {
1260     LLT ValTy = MRI->getType(MI->getOperand(0).getReg());
1261     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1262     if (!PtrTy.isPointer())
1263       report("Generic memory instruction must access a pointer", MI);
1264 
1265     // Generic loads and stores must have a single MachineMemOperand
1266     // describing that access.
1267     if (!MI->hasOneMemOperand()) {
1268       report("Generic instruction accessing memory must have one mem operand",
1269              MI);
1270     } else {
1271       const MachineMemOperand &MMO = **MI->memoperands_begin();
1272       if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD ||
1273           MI->getOpcode() == TargetOpcode::G_SEXTLOAD) {
1274         if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(),
1275                                 ValTy.getSizeInBits()))
1276           report("Generic extload must have a narrower memory type", MI);
1277       } else if (MI->getOpcode() == TargetOpcode::G_LOAD) {
1278         if (TypeSize::isKnownGT(MMO.getSize().getValue(),
1279                                 ValTy.getSizeInBytes()))
1280           report("load memory size cannot exceed result size", MI);
1281       } else if (MI->getOpcode() == TargetOpcode::G_STORE) {
1282         if (TypeSize::isKnownLT(ValTy.getSizeInBytes(),
1283                                 MMO.getSize().getValue()))
1284           report("store memory size cannot exceed value size", MI);
1285       }
1286 
1287       const AtomicOrdering Order = MMO.getSuccessOrdering();
1288       if (Opc == TargetOpcode::G_STORE) {
1289         if (Order == AtomicOrdering::Acquire ||
1290             Order == AtomicOrdering::AcquireRelease)
1291           report("atomic store cannot use acquire ordering", MI);
1292 
1293       } else {
1294         if (Order == AtomicOrdering::Release ||
1295             Order == AtomicOrdering::AcquireRelease)
1296           report("atomic load cannot use release ordering", MI);
1297       }
1298     }
1299 
1300     break;
1301   }
1302   case TargetOpcode::G_PHI: {
1303     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1304     if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()),
1305                                     [this, &DstTy](const MachineOperand &MO) {
1306                                       if (!MO.isReg())
1307                                         return true;
1308                                       LLT Ty = MRI->getType(MO.getReg());
1309                                       if (!Ty.isValid() || (Ty != DstTy))
1310                                         return false;
1311                                       return true;
1312                                     }))
1313       report("Generic Instruction G_PHI has operands with incompatible/missing "
1314              "types",
1315              MI);
1316     break;
1317   }
1318   case TargetOpcode::G_BITCAST: {
1319     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1320     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1321     if (!DstTy.isValid() || !SrcTy.isValid())
1322       break;
1323 
1324     if (SrcTy.isPointer() != DstTy.isPointer())
1325       report("bitcast cannot convert between pointers and other types", MI);
1326 
1327     if (SrcTy.getSizeInBits() != DstTy.getSizeInBits())
1328       report("bitcast sizes must match", MI);
1329 
1330     if (SrcTy == DstTy)
1331       report("bitcast must change the type", MI);
1332 
1333     break;
1334   }
1335   case TargetOpcode::G_INTTOPTR:
1336   case TargetOpcode::G_PTRTOINT:
1337   case TargetOpcode::G_ADDRSPACE_CAST: {
1338     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1339     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1340     if (!DstTy.isValid() || !SrcTy.isValid())
1341       break;
1342 
1343     verifyVectorElementMatch(DstTy, SrcTy, MI);
1344 
1345     DstTy = DstTy.getScalarType();
1346     SrcTy = SrcTy.getScalarType();
1347 
1348     if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) {
1349       if (!DstTy.isPointer())
1350         report("inttoptr result type must be a pointer", MI);
1351       if (SrcTy.isPointer())
1352         report("inttoptr source type must not be a pointer", MI);
1353     } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) {
1354       if (!SrcTy.isPointer())
1355         report("ptrtoint source type must be a pointer", MI);
1356       if (DstTy.isPointer())
1357         report("ptrtoint result type must not be a pointer", MI);
1358     } else {
1359       assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST);
1360       if (!SrcTy.isPointer() || !DstTy.isPointer())
1361         report("addrspacecast types must be pointers", MI);
1362       else {
1363         if (SrcTy.getAddressSpace() == DstTy.getAddressSpace())
1364           report("addrspacecast must convert different address spaces", MI);
1365       }
1366     }
1367 
1368     break;
1369   }
1370   case TargetOpcode::G_PTR_ADD: {
1371     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1372     LLT PtrTy = MRI->getType(MI->getOperand(1).getReg());
1373     LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg());
1374     if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid())
1375       break;
1376 
1377     if (!PtrTy.isPointerOrPointerVector())
1378       report("gep first operand must be a pointer", MI);
1379 
1380     if (OffsetTy.isPointerOrPointerVector())
1381       report("gep offset operand must not be a pointer", MI);
1382 
1383     if (PtrTy.isPointerOrPointerVector()) {
1384       const DataLayout &DL = MF->getDataLayout();
1385       unsigned AS = PtrTy.getAddressSpace();
1386       unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8;
1387       if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) {
1388         report("gep offset operand must match index size for address space",
1389                MI);
1390       }
1391     }
1392 
1393     // TODO: Is the offset allowed to be a scalar with a vector?
1394     break;
1395   }
1396   case TargetOpcode::G_PTRMASK: {
1397     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1398     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1399     LLT MaskTy = MRI->getType(MI->getOperand(2).getReg());
1400     if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid())
1401       break;
1402 
1403     if (!DstTy.isPointerOrPointerVector())
1404       report("ptrmask result type must be a pointer", MI);
1405 
1406     if (!MaskTy.getScalarType().isScalar())
1407       report("ptrmask mask type must be an integer", MI);
1408 
1409     verifyVectorElementMatch(DstTy, MaskTy, MI);
1410     break;
1411   }
1412   case TargetOpcode::G_SEXT:
1413   case TargetOpcode::G_ZEXT:
1414   case TargetOpcode::G_ANYEXT:
1415   case TargetOpcode::G_TRUNC:
1416   case TargetOpcode::G_FPEXT:
1417   case TargetOpcode::G_FPTRUNC: {
1418     // Number of operands and presense of types is already checked (and
1419     // reported in case of any issues), so no need to report them again. As
1420     // we're trying to report as many issues as possible at once, however, the
1421     // instructions aren't guaranteed to have the right number of operands or
1422     // types attached to them at this point
1423     assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}");
1424     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1425     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1426     if (!DstTy.isValid() || !SrcTy.isValid())
1427       break;
1428 
1429     if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector())
1430       report("Generic extend/truncate can not operate on pointers", MI);
1431 
1432     verifyVectorElementMatch(DstTy, SrcTy, MI);
1433 
1434     unsigned DstSize = DstTy.getScalarSizeInBits();
1435     unsigned SrcSize = SrcTy.getScalarSizeInBits();
1436     switch (MI->getOpcode()) {
1437     default:
1438       if (DstSize <= SrcSize)
1439         report("Generic extend has destination type no larger than source", MI);
1440       break;
1441     case TargetOpcode::G_TRUNC:
1442     case TargetOpcode::G_FPTRUNC:
1443       if (DstSize >= SrcSize)
1444         report("Generic truncate has destination type no smaller than source",
1445                MI);
1446       break;
1447     }
1448     break;
1449   }
1450   case TargetOpcode::G_SELECT: {
1451     LLT SelTy = MRI->getType(MI->getOperand(0).getReg());
1452     LLT CondTy = MRI->getType(MI->getOperand(1).getReg());
1453     if (!SelTy.isValid() || !CondTy.isValid())
1454       break;
1455 
1456     // Scalar condition select on a vector is valid.
1457     if (CondTy.isVector())
1458       verifyVectorElementMatch(SelTy, CondTy, MI);
1459     break;
1460   }
1461   case TargetOpcode::G_MERGE_VALUES: {
1462     // G_MERGE_VALUES should only be used to merge scalars into a larger scalar,
1463     // e.g. s2N = MERGE sN, sN
1464     // Merging multiple scalars into a vector is not allowed, should use
1465     // G_BUILD_VECTOR for that.
1466     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1467     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1468     if (DstTy.isVector() || SrcTy.isVector())
1469       report("G_MERGE_VALUES cannot operate on vectors", MI);
1470 
1471     const unsigned NumOps = MI->getNumOperands();
1472     if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1))
1473       report("G_MERGE_VALUES result size is inconsistent", MI);
1474 
1475     for (unsigned I = 2; I != NumOps; ++I) {
1476       if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy)
1477         report("G_MERGE_VALUES source types do not match", MI);
1478     }
1479 
1480     break;
1481   }
1482   case TargetOpcode::G_UNMERGE_VALUES: {
1483     unsigned NumDsts = MI->getNumOperands() - 1;
1484     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1485     for (unsigned i = 1; i < NumDsts; ++i) {
1486       if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) {
1487         report("G_UNMERGE_VALUES destination types do not match", MI);
1488         break;
1489       }
1490     }
1491 
1492     LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg());
1493     if (DstTy.isVector()) {
1494       // This case is the converse of G_CONCAT_VECTORS.
1495       if (!SrcTy.isVector() ||
1496           (SrcTy.getScalarType() != DstTy.getScalarType() &&
1497            !SrcTy.isPointerVector()) ||
1498           SrcTy.isScalableVector() != DstTy.isScalableVector() ||
1499           SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1500         report("G_UNMERGE_VALUES source operand does not match vector "
1501                "destination operands",
1502                MI);
1503     } else if (SrcTy.isVector()) {
1504       // This case is the converse of G_BUILD_VECTOR, but relaxed to allow
1505       // mismatched types as long as the total size matches:
1506       //   %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>)
1507       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits())
1508         report("G_UNMERGE_VALUES vector source operand does not match scalar "
1509                "destination operands",
1510                MI);
1511     } else {
1512       // This case is the converse of G_MERGE_VALUES.
1513       if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) {
1514         report("G_UNMERGE_VALUES scalar source operand does not match scalar "
1515                "destination operands",
1516                MI);
1517       }
1518     }
1519     break;
1520   }
1521   case TargetOpcode::G_BUILD_VECTOR: {
1522     // Source types must be scalars, dest type a vector. Total size of scalars
1523     // must match the dest vector size.
1524     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1525     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1526     if (!DstTy.isVector() || SrcEltTy.isVector()) {
1527       report("G_BUILD_VECTOR must produce a vector from scalar operands", MI);
1528       break;
1529     }
1530 
1531     if (DstTy.getElementType() != SrcEltTy)
1532       report("G_BUILD_VECTOR result element type must match source type", MI);
1533 
1534     if (DstTy.getNumElements() != MI->getNumOperands() - 1)
1535       report("G_BUILD_VECTOR must have an operand for each elemement", MI);
1536 
1537     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1538       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1539         report("G_BUILD_VECTOR source operand types are not homogeneous", MI);
1540 
1541     break;
1542   }
1543   case TargetOpcode::G_BUILD_VECTOR_TRUNC: {
1544     // Source types must be scalars, dest type a vector. Scalar types must be
1545     // larger than the dest vector elt type, as this is a truncating operation.
1546     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1547     LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg());
1548     if (!DstTy.isVector() || SrcEltTy.isVector())
1549       report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands",
1550              MI);
1551     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1552       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1553         report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous",
1554                MI);
1555     if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits())
1556       report("G_BUILD_VECTOR_TRUNC source operand types are not larger than "
1557              "dest elt type",
1558              MI);
1559     break;
1560   }
1561   case TargetOpcode::G_CONCAT_VECTORS: {
1562     // Source types should be vectors, and total size should match the dest
1563     // vector size.
1564     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1565     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1566     if (!DstTy.isVector() || !SrcTy.isVector())
1567       report("G_CONCAT_VECTOR requires vector source and destination operands",
1568              MI);
1569 
1570     if (MI->getNumOperands() < 3)
1571       report("G_CONCAT_VECTOR requires at least 2 source operands", MI);
1572 
1573     for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2))
1574       if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg()))
1575         report("G_CONCAT_VECTOR source operand types are not homogeneous", MI);
1576     if (DstTy.getElementCount() !=
1577         SrcTy.getElementCount() * (MI->getNumOperands() - 1))
1578       report("G_CONCAT_VECTOR num dest and source elements should match", MI);
1579     break;
1580   }
1581   case TargetOpcode::G_ICMP:
1582   case TargetOpcode::G_FCMP: {
1583     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1584     LLT SrcTy = MRI->getType(MI->getOperand(2).getReg());
1585 
1586     if ((DstTy.isVector() != SrcTy.isVector()) ||
1587         (DstTy.isVector() &&
1588          DstTy.getElementCount() != SrcTy.getElementCount()))
1589       report("Generic vector icmp/fcmp must preserve number of lanes", MI);
1590 
1591     break;
1592   }
1593   case TargetOpcode::G_SCMP:
1594   case TargetOpcode::G_UCMP: {
1595     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1596     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1597 
1598     if (SrcTy.isPointerOrPointerVector()) {
1599       report("Generic scmp/ucmp does not support pointers as operands", MI);
1600       break;
1601     }
1602 
1603     if (DstTy.isPointerOrPointerVector()) {
1604       report("Generic scmp/ucmp does not support pointers as a result", MI);
1605       break;
1606     }
1607 
1608     if (DstTy.getScalarSizeInBits() < 2) {
1609       report("Result type must be at least 2 bits wide", MI);
1610       break;
1611     }
1612 
1613     if ((DstTy.isVector() != SrcTy.isVector()) ||
1614         (DstTy.isVector() &&
1615          DstTy.getElementCount() != SrcTy.getElementCount())) {
1616       report("Generic vector scmp/ucmp must preserve number of lanes", MI);
1617       break;
1618     }
1619 
1620     break;
1621   }
1622   case TargetOpcode::G_EXTRACT: {
1623     const MachineOperand &SrcOp = MI->getOperand(1);
1624     if (!SrcOp.isReg()) {
1625       report("extract source must be a register", MI);
1626       break;
1627     }
1628 
1629     const MachineOperand &OffsetOp = MI->getOperand(2);
1630     if (!OffsetOp.isImm()) {
1631       report("extract offset must be a constant", MI);
1632       break;
1633     }
1634 
1635     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1636     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1637     if (SrcSize == DstSize)
1638       report("extract source must be larger than result", MI);
1639 
1640     if (DstSize + OffsetOp.getImm() > SrcSize)
1641       report("extract reads past end of register", MI);
1642     break;
1643   }
1644   case TargetOpcode::G_INSERT: {
1645     const MachineOperand &SrcOp = MI->getOperand(2);
1646     if (!SrcOp.isReg()) {
1647       report("insert source must be a register", MI);
1648       break;
1649     }
1650 
1651     const MachineOperand &OffsetOp = MI->getOperand(3);
1652     if (!OffsetOp.isImm()) {
1653       report("insert offset must be a constant", MI);
1654       break;
1655     }
1656 
1657     unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits();
1658     unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits();
1659 
1660     if (DstSize <= SrcSize)
1661       report("inserted size must be smaller than total register", MI);
1662 
1663     if (SrcSize + OffsetOp.getImm() > DstSize)
1664       report("insert writes past end of register", MI);
1665 
1666     break;
1667   }
1668   case TargetOpcode::G_JUMP_TABLE: {
1669     if (!MI->getOperand(1).isJTI())
1670       report("G_JUMP_TABLE source operand must be a jump table index", MI);
1671     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1672     if (!DstTy.isPointer())
1673       report("G_JUMP_TABLE dest operand must have a pointer type", MI);
1674     break;
1675   }
1676   case TargetOpcode::G_BRJT: {
1677     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
1678       report("G_BRJT src operand 0 must be a pointer type", MI);
1679 
1680     if (!MI->getOperand(1).isJTI())
1681       report("G_BRJT src operand 1 must be a jump table index", MI);
1682 
1683     const auto &IdxOp = MI->getOperand(2);
1684     if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer())
1685       report("G_BRJT src operand 2 must be a scalar reg type", MI);
1686     break;
1687   }
1688   case TargetOpcode::G_INTRINSIC:
1689   case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS:
1690   case TargetOpcode::G_INTRINSIC_CONVERGENT:
1691   case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: {
1692     // TODO: Should verify number of def and use operands, but the current
1693     // interface requires passing in IR types for mangling.
1694     const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs());
1695     if (!IntrIDOp.isIntrinsicID()) {
1696       report("G_INTRINSIC first src operand must be an intrinsic ID", MI);
1697       break;
1698     }
1699 
1700     if (!verifyGIntrinsicSideEffects(MI))
1701       break;
1702     if (!verifyGIntrinsicConvergence(MI))
1703       break;
1704 
1705     break;
1706   }
1707   case TargetOpcode::G_SEXT_INREG: {
1708     if (!MI->getOperand(2).isImm()) {
1709       report("G_SEXT_INREG expects an immediate operand #2", MI);
1710       break;
1711     }
1712 
1713     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1714     int64_t Imm = MI->getOperand(2).getImm();
1715     if (Imm <= 0)
1716       report("G_SEXT_INREG size must be >= 1", MI);
1717     if (Imm >= SrcTy.getScalarSizeInBits())
1718       report("G_SEXT_INREG size must be less than source bit width", MI);
1719     break;
1720   }
1721   case TargetOpcode::G_BSWAP: {
1722     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1723     if (DstTy.getScalarSizeInBits() % 16 != 0)
1724       report("G_BSWAP size must be a multiple of 16 bits", MI);
1725     break;
1726   }
1727   case TargetOpcode::G_VSCALE: {
1728     if (!MI->getOperand(1).isCImm()) {
1729       report("G_VSCALE operand must be cimm", MI);
1730       break;
1731     }
1732     if (MI->getOperand(1).getCImm()->isZero()) {
1733       report("G_VSCALE immediate cannot be zero", MI);
1734       break;
1735     }
1736     break;
1737   }
1738   case TargetOpcode::G_STEP_VECTOR: {
1739     if (!MI->getOperand(1).isCImm()) {
1740       report("operand must be cimm", MI);
1741       break;
1742     }
1743 
1744     if (!MI->getOperand(1).getCImm()->getValue().isStrictlyPositive()) {
1745       report("step must be > 0", MI);
1746       break;
1747     }
1748 
1749     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1750     if (!DstTy.isScalableVector()) {
1751       report("Destination type must be a scalable vector", MI);
1752       break;
1753     }
1754 
1755     // <vscale x 2 x p0>
1756     if (!DstTy.getElementType().isScalar()) {
1757       report("Destination element type must be scalar", MI);
1758       break;
1759     }
1760 
1761     if (MI->getOperand(1).getCImm()->getBitWidth() !=
1762         DstTy.getElementType().getScalarSizeInBits()) {
1763       report("step bitwidth differs from result type element bitwidth", MI);
1764       break;
1765     }
1766     break;
1767   }
1768   case TargetOpcode::G_INSERT_SUBVECTOR: {
1769     const MachineOperand &Src0Op = MI->getOperand(1);
1770     if (!Src0Op.isReg()) {
1771       report("G_INSERT_SUBVECTOR first source must be a register", MI);
1772       break;
1773     }
1774 
1775     const MachineOperand &Src1Op = MI->getOperand(2);
1776     if (!Src1Op.isReg()) {
1777       report("G_INSERT_SUBVECTOR second source must be a register", MI);
1778       break;
1779     }
1780 
1781     const MachineOperand &IndexOp = MI->getOperand(3);
1782     if (!IndexOp.isImm()) {
1783       report("G_INSERT_SUBVECTOR index must be an immediate", MI);
1784       break;
1785     }
1786 
1787     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1788     LLT Src1Ty = MRI->getType(Src1Op.getReg());
1789 
1790     if (!DstTy.isVector()) {
1791       report("Destination type must be a vector", MI);
1792       break;
1793     }
1794 
1795     if (!Src1Ty.isVector()) {
1796       report("Second source must be a vector", MI);
1797       break;
1798     }
1799 
1800     if (DstTy.getElementType() != Src1Ty.getElementType()) {
1801       report("Element type of vectors must be the same", MI);
1802       break;
1803     }
1804 
1805     if (Src1Ty.isScalable() != DstTy.isScalable()) {
1806       report("Vector types must both be fixed or both be scalable", MI);
1807       break;
1808     }
1809 
1810     if (ElementCount::isKnownGT(Src1Ty.getElementCount(),
1811                                 DstTy.getElementCount())) {
1812       report("Second source must be smaller than destination vector", MI);
1813       break;
1814     }
1815 
1816     uint64_t Idx = IndexOp.getImm();
1817     uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue();
1818     if (IndexOp.getImm() % Src1MinLen != 0) {
1819       report("Index must be a multiple of the second source vector's "
1820              "minimum vector length",
1821              MI);
1822       break;
1823     }
1824 
1825     uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1826     if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) {
1827       report("Subvector type and index must not cause insert to overrun the "
1828              "vector being inserted into",
1829              MI);
1830       break;
1831     }
1832 
1833     break;
1834   }
1835   case TargetOpcode::G_EXTRACT_SUBVECTOR: {
1836     const MachineOperand &SrcOp = MI->getOperand(1);
1837     if (!SrcOp.isReg()) {
1838       report("G_EXTRACT_SUBVECTOR first source must be a register", MI);
1839       break;
1840     }
1841 
1842     const MachineOperand &IndexOp = MI->getOperand(2);
1843     if (!IndexOp.isImm()) {
1844       report("G_EXTRACT_SUBVECTOR index must be an immediate", MI);
1845       break;
1846     }
1847 
1848     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1849     LLT SrcTy = MRI->getType(SrcOp.getReg());
1850 
1851     if (!DstTy.isVector()) {
1852       report("Destination type must be a vector", MI);
1853       break;
1854     }
1855 
1856     if (!SrcTy.isVector()) {
1857       report("Source must be a vector", MI);
1858       break;
1859     }
1860 
1861     if (DstTy.getElementType() != SrcTy.getElementType()) {
1862       report("Element type of vectors must be the same", MI);
1863       break;
1864     }
1865 
1866     if (SrcTy.isScalable() != DstTy.isScalable()) {
1867       report("Vector types must both be fixed or both be scalable", MI);
1868       break;
1869     }
1870 
1871     if (ElementCount::isKnownGT(DstTy.getElementCount(),
1872                                 SrcTy.getElementCount())) {
1873       report("Destination vector must be smaller than source vector", MI);
1874       break;
1875     }
1876 
1877     uint64_t Idx = IndexOp.getImm();
1878     uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue();
1879     if (Idx % DstMinLen != 0) {
1880       report("Index must be a multiple of the destination vector's minimum "
1881              "vector length",
1882              MI);
1883       break;
1884     }
1885 
1886     uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue();
1887     if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) {
1888       report("Destination type and index must not cause extract to overrun the "
1889              "source vector",
1890              MI);
1891       break;
1892     }
1893 
1894     break;
1895   }
1896   case TargetOpcode::G_SHUFFLE_VECTOR: {
1897     const MachineOperand &MaskOp = MI->getOperand(3);
1898     if (!MaskOp.isShuffleMask()) {
1899       report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI);
1900       break;
1901     }
1902 
1903     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1904     LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg());
1905     LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg());
1906 
1907     if (Src0Ty != Src1Ty)
1908       report("Source operands must be the same type", MI);
1909 
1910     if (Src0Ty.getScalarType() != DstTy.getScalarType())
1911       report("G_SHUFFLE_VECTOR cannot change element type", MI);
1912 
1913     // Don't check that all operands are vector because scalars are used in
1914     // place of 1 element vectors.
1915     int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1;
1916     int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1;
1917 
1918     ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask();
1919 
1920     if (static_cast<int>(MaskIdxes.size()) != DstNumElts)
1921       report("Wrong result type for shufflemask", MI);
1922 
1923     for (int Idx : MaskIdxes) {
1924       if (Idx < 0)
1925         continue;
1926 
1927       if (Idx >= 2 * SrcNumElts)
1928         report("Out of bounds shuffle index", MI);
1929     }
1930 
1931     break;
1932   }
1933 
1934   case TargetOpcode::G_SPLAT_VECTOR: {
1935     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1936     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1937 
1938     if (!DstTy.isScalableVector()) {
1939       report("Destination type must be a scalable vector", MI);
1940       break;
1941     }
1942 
1943     if (!SrcTy.isScalar() && !SrcTy.isPointer()) {
1944       report("Source type must be a scalar or pointer", MI);
1945       break;
1946     }
1947 
1948     if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(),
1949                             SrcTy.getSizeInBits())) {
1950       report("Element type of the destination must be the same size or smaller "
1951              "than the source type",
1952              MI);
1953       break;
1954     }
1955 
1956     break;
1957   }
1958   case TargetOpcode::G_EXTRACT_VECTOR_ELT: {
1959     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1960     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
1961     LLT IdxTy = MRI->getType(MI->getOperand(2).getReg());
1962 
1963     if (!DstTy.isScalar() && !DstTy.isPointer()) {
1964       report("Destination type must be a scalar or pointer", MI);
1965       break;
1966     }
1967 
1968     if (!SrcTy.isVector()) {
1969       report("First source must be a vector", MI);
1970       break;
1971     }
1972 
1973     auto TLI = MF->getSubtarget().getTargetLowering();
1974     if (IdxTy.getSizeInBits() !=
1975         TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) {
1976       report("Index type must match VectorIdxTy", MI);
1977       break;
1978     }
1979 
1980     break;
1981   }
1982   case TargetOpcode::G_INSERT_VECTOR_ELT: {
1983     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
1984     LLT VecTy = MRI->getType(MI->getOperand(1).getReg());
1985     LLT ScaTy = MRI->getType(MI->getOperand(2).getReg());
1986     LLT IdxTy = MRI->getType(MI->getOperand(3).getReg());
1987 
1988     if (!DstTy.isVector()) {
1989       report("Destination type must be a vector", MI);
1990       break;
1991     }
1992 
1993     if (VecTy != DstTy) {
1994       report("Destination type and vector type must match", MI);
1995       break;
1996     }
1997 
1998     if (!ScaTy.isScalar() && !ScaTy.isPointer()) {
1999       report("Inserted element must be a scalar or pointer", MI);
2000       break;
2001     }
2002 
2003     auto TLI = MF->getSubtarget().getTargetLowering();
2004     if (IdxTy.getSizeInBits() !=
2005         TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) {
2006       report("Index type must match VectorIdxTy", MI);
2007       break;
2008     }
2009 
2010     break;
2011   }
2012   case TargetOpcode::G_DYN_STACKALLOC: {
2013     const MachineOperand &DstOp = MI->getOperand(0);
2014     const MachineOperand &AllocOp = MI->getOperand(1);
2015     const MachineOperand &AlignOp = MI->getOperand(2);
2016 
2017     if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) {
2018       report("dst operand 0 must be a pointer type", MI);
2019       break;
2020     }
2021 
2022     if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) {
2023       report("src operand 1 must be a scalar reg type", MI);
2024       break;
2025     }
2026 
2027     if (!AlignOp.isImm()) {
2028       report("src operand 2 must be an immediate type", MI);
2029       break;
2030     }
2031     break;
2032   }
2033   case TargetOpcode::G_MEMCPY_INLINE:
2034   case TargetOpcode::G_MEMCPY:
2035   case TargetOpcode::G_MEMMOVE: {
2036     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
2037     if (MMOs.size() != 2) {
2038       report("memcpy/memmove must have 2 memory operands", MI);
2039       break;
2040     }
2041 
2042     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) ||
2043         (MMOs[1]->isStore() || !MMOs[1]->isLoad())) {
2044       report("wrong memory operand types", MI);
2045       break;
2046     }
2047 
2048     if (MMOs[0]->getSize() != MMOs[1]->getSize())
2049       report("inconsistent memory operand sizes", MI);
2050 
2051     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
2052     LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg());
2053 
2054     if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) {
2055       report("memory instruction operand must be a pointer", MI);
2056       break;
2057     }
2058 
2059     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
2060       report("inconsistent store address space", MI);
2061     if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace())
2062       report("inconsistent load address space", MI);
2063 
2064     if (Opc != TargetOpcode::G_MEMCPY_INLINE)
2065       if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL))
2066         report("'tail' flag (operand 3) must be an immediate 0 or 1", MI);
2067 
2068     break;
2069   }
2070   case TargetOpcode::G_BZERO:
2071   case TargetOpcode::G_MEMSET: {
2072     ArrayRef<MachineMemOperand *> MMOs = MI->memoperands();
2073     std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero";
2074     if (MMOs.size() != 1) {
2075       report(Twine(Name, " must have 1 memory operand"), MI);
2076       break;
2077     }
2078 
2079     if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) {
2080       report(Twine(Name, " memory operand must be a store"), MI);
2081       break;
2082     }
2083 
2084     LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg());
2085     if (!DstPtrTy.isPointer()) {
2086       report(Twine(Name, " operand must be a pointer"), MI);
2087       break;
2088     }
2089 
2090     if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace())
2091       report("inconsistent " + Twine(Name, " address space"), MI);
2092 
2093     if (!MI->getOperand(MI->getNumOperands() - 1).isImm() ||
2094         (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL))
2095       report("'tail' flag (last operand) must be an immediate 0 or 1", MI);
2096 
2097     break;
2098   }
2099   case TargetOpcode::G_UBSANTRAP: {
2100     const MachineOperand &KindOp = MI->getOperand(0);
2101     if (!MI->getOperand(0).isImm()) {
2102       report("Crash kind must be an immediate", &KindOp, 0);
2103       break;
2104     }
2105     int64_t Kind = MI->getOperand(0).getImm();
2106     if (!isInt<8>(Kind))
2107       report("Crash kind must be 8 bit wide", &KindOp, 0);
2108     break;
2109   }
2110   case TargetOpcode::G_VECREDUCE_SEQ_FADD:
2111   case TargetOpcode::G_VECREDUCE_SEQ_FMUL: {
2112     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2113     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
2114     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
2115     if (!DstTy.isScalar())
2116       report("Vector reduction requires a scalar destination type", MI);
2117     if (!Src1Ty.isScalar())
2118       report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI);
2119     if (!Src2Ty.isVector())
2120       report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI);
2121     break;
2122   }
2123   case TargetOpcode::G_VECREDUCE_FADD:
2124   case TargetOpcode::G_VECREDUCE_FMUL:
2125   case TargetOpcode::G_VECREDUCE_FMAX:
2126   case TargetOpcode::G_VECREDUCE_FMIN:
2127   case TargetOpcode::G_VECREDUCE_FMAXIMUM:
2128   case TargetOpcode::G_VECREDUCE_FMINIMUM:
2129   case TargetOpcode::G_VECREDUCE_ADD:
2130   case TargetOpcode::G_VECREDUCE_MUL:
2131   case TargetOpcode::G_VECREDUCE_AND:
2132   case TargetOpcode::G_VECREDUCE_OR:
2133   case TargetOpcode::G_VECREDUCE_XOR:
2134   case TargetOpcode::G_VECREDUCE_SMAX:
2135   case TargetOpcode::G_VECREDUCE_SMIN:
2136   case TargetOpcode::G_VECREDUCE_UMAX:
2137   case TargetOpcode::G_VECREDUCE_UMIN: {
2138     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2139     if (!DstTy.isScalar())
2140       report("Vector reduction requires a scalar destination type", MI);
2141     break;
2142   }
2143 
2144   case TargetOpcode::G_SBFX:
2145   case TargetOpcode::G_UBFX: {
2146     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2147     if (DstTy.isVector()) {
2148       report("Bitfield extraction is not supported on vectors", MI);
2149       break;
2150     }
2151     break;
2152   }
2153   case TargetOpcode::G_SHL:
2154   case TargetOpcode::G_LSHR:
2155   case TargetOpcode::G_ASHR:
2156   case TargetOpcode::G_ROTR:
2157   case TargetOpcode::G_ROTL: {
2158     LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg());
2159     LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg());
2160     if (Src1Ty.isVector() != Src2Ty.isVector()) {
2161       report("Shifts and rotates require operands to be either all scalars or "
2162              "all vectors",
2163              MI);
2164       break;
2165     }
2166     break;
2167   }
2168   case TargetOpcode::G_LLROUND:
2169   case TargetOpcode::G_LROUND: {
2170     LLT DstTy = MRI->getType(MI->getOperand(0).getReg());
2171     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
2172     if (!DstTy.isValid() || !SrcTy.isValid())
2173       break;
2174     if (SrcTy.isPointer() || DstTy.isPointer()) {
2175       StringRef Op = SrcTy.isPointer() ? "Source" : "Destination";
2176       report(Twine(Op, " operand must not be a pointer type"), MI);
2177     } else if (SrcTy.isScalar()) {
2178       verifyAllRegOpsScalar(*MI, *MRI);
2179       break;
2180     } else if (SrcTy.isVector()) {
2181       verifyVectorElementMatch(SrcTy, DstTy, MI);
2182       break;
2183     }
2184     break;
2185   }
2186   case TargetOpcode::G_IS_FPCLASS: {
2187     LLT DestTy = MRI->getType(MI->getOperand(0).getReg());
2188     LLT DestEltTy = DestTy.getScalarType();
2189     if (!DestEltTy.isScalar()) {
2190       report("Destination must be a scalar or vector of scalars", MI);
2191       break;
2192     }
2193     LLT SrcTy = MRI->getType(MI->getOperand(1).getReg());
2194     LLT SrcEltTy = SrcTy.getScalarType();
2195     if (!SrcEltTy.isScalar()) {
2196       report("Source must be a scalar or vector of scalars", MI);
2197       break;
2198     }
2199     if (!verifyVectorElementMatch(DestTy, SrcTy, MI))
2200       break;
2201     const MachineOperand &TestMO = MI->getOperand(2);
2202     if (!TestMO.isImm()) {
2203       report("floating-point class set (operand 2) must be an immediate", MI);
2204       break;
2205     }
2206     int64_t Test = TestMO.getImm();
2207     if (Test < 0 || Test > fcAllFlags) {
2208       report("Incorrect floating-point class set (operand 2)", MI);
2209       break;
2210     }
2211     break;
2212   }
2213   case TargetOpcode::G_PREFETCH: {
2214     const MachineOperand &AddrOp = MI->getOperand(0);
2215     if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) {
2216       report("addr operand must be a pointer", &AddrOp, 0);
2217       break;
2218     }
2219     const MachineOperand &RWOp = MI->getOperand(1);
2220     if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) {
2221       report("rw operand must be an immediate 0-1", &RWOp, 1);
2222       break;
2223     }
2224     const MachineOperand &LocalityOp = MI->getOperand(2);
2225     if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) {
2226       report("locality operand must be an immediate 0-3", &LocalityOp, 2);
2227       break;
2228     }
2229     const MachineOperand &CacheTypeOp = MI->getOperand(3);
2230     if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) {
2231       report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3);
2232       break;
2233     }
2234     break;
2235   }
2236   case TargetOpcode::G_ASSERT_ALIGN: {
2237     if (MI->getOperand(2).getImm() < 1)
2238       report("alignment immediate must be >= 1", MI);
2239     break;
2240   }
2241   case TargetOpcode::G_CONSTANT_POOL: {
2242     if (!MI->getOperand(1).isCPI())
2243       report("Src operand 1 must be a constant pool index", MI);
2244     if (!MRI->getType(MI->getOperand(0).getReg()).isPointer())
2245       report("Dst operand 0 must be a pointer", MI);
2246     break;
2247   }
2248   case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: {
2249     const MachineOperand &AddrOp = MI->getOperand(1);
2250     if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer())
2251       report("addr operand must be a pointer", &AddrOp, 1);
2252     break;
2253   }
2254   default:
2255     break;
2256   }
2257 }
2258 
2259 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) {
2260   const MCInstrDesc &MCID = MI->getDesc();
2261   if (MI->getNumOperands() < MCID.getNumOperands()) {
2262     report("Too few operands", MI);
2263     OS << MCID.getNumOperands() << " operands expected, but "
2264        << MI->getNumOperands() << " given.\n";
2265   }
2266 
2267   if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent())
2268     report("NoConvergent flag expected only on convergent instructions.", MI);
2269 
2270   if (MI->isPHI()) {
2271     if (MF->getProperties().hasProperty(
2272             MachineFunctionProperties::Property::NoPHIs))
2273       report("Found PHI instruction with NoPHIs property set", MI);
2274 
2275     if (FirstNonPHI)
2276       report("Found PHI instruction after non-PHI", MI);
2277   } else if (FirstNonPHI == nullptr)
2278     FirstNonPHI = MI;
2279 
2280   // Check the tied operands.
2281   if (MI->isInlineAsm())
2282     verifyInlineAsm(MI);
2283 
2284   // Check that unspillable terminators define a reg and have at most one use.
2285   if (TII->isUnspillableTerminator(MI)) {
2286     if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef())
2287       report("Unspillable Terminator does not define a reg", MI);
2288     Register Def = MI->getOperand(0).getReg();
2289     if (Def.isVirtual() &&
2290         !MF->getProperties().hasProperty(
2291             MachineFunctionProperties::Property::NoPHIs) &&
2292         std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1)
2293       report("Unspillable Terminator expected to have at most one use!", MI);
2294   }
2295 
2296   // A fully-formed DBG_VALUE must have a location. Ignore partially formed
2297   // DBG_VALUEs: these are convenient to use in tests, but should never get
2298   // generated.
2299   if (MI->isDebugValue() && MI->getNumOperands() == 4)
2300     if (!MI->getDebugLoc())
2301       report("Missing DebugLoc for debug instruction", MI);
2302 
2303   // Meta instructions should never be the subject of debug value tracking,
2304   // they don't create a value in the output program at all.
2305   if (MI->isMetaInstruction() && MI->peekDebugInstrNum())
2306     report("Metadata instruction should not have a value tracking number", MI);
2307 
2308   // Check the MachineMemOperands for basic consistency.
2309   for (MachineMemOperand *Op : MI->memoperands()) {
2310     if (Op->isLoad() && !MI->mayLoad())
2311       report("Missing mayLoad flag", MI);
2312     if (Op->isStore() && !MI->mayStore())
2313       report("Missing mayStore flag", MI);
2314   }
2315 
2316   // Debug values must not have a slot index.
2317   // Other instructions must have one, unless they are inside a bundle.
2318   if (LiveInts) {
2319     bool mapped = !LiveInts->isNotInMIMap(*MI);
2320     if (MI->isDebugOrPseudoInstr()) {
2321       if (mapped)
2322         report("Debug instruction has a slot index", MI);
2323     } else if (MI->isInsideBundle()) {
2324       if (mapped)
2325         report("Instruction inside bundle has a slot index", MI);
2326     } else {
2327       if (!mapped)
2328         report("Missing slot index", MI);
2329     }
2330   }
2331 
2332   unsigned Opc = MCID.getOpcode();
2333   if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) {
2334     verifyPreISelGenericInstruction(MI);
2335     return;
2336   }
2337 
2338   StringRef ErrorInfo;
2339   if (!TII->verifyInstruction(*MI, ErrorInfo))
2340     report(ErrorInfo.data(), MI);
2341 
2342   // Verify properties of various specific instruction types
2343   switch (MI->getOpcode()) {
2344   case TargetOpcode::COPY: {
2345     const MachineOperand &DstOp = MI->getOperand(0);
2346     const MachineOperand &SrcOp = MI->getOperand(1);
2347     const Register SrcReg = SrcOp.getReg();
2348     const Register DstReg = DstOp.getReg();
2349 
2350     LLT DstTy = MRI->getType(DstReg);
2351     LLT SrcTy = MRI->getType(SrcReg);
2352     if (SrcTy.isValid() && DstTy.isValid()) {
2353       // If both types are valid, check that the types are the same.
2354       if (SrcTy != DstTy) {
2355         report("Copy Instruction is illegal with mismatching types", MI);
2356         OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n';
2357       }
2358 
2359       break;
2360     }
2361 
2362     if (!SrcTy.isValid() && !DstTy.isValid())
2363       break;
2364 
2365     // If we have only one valid type, this is likely a copy between a virtual
2366     // and physical register.
2367     TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI);
2368     TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI);
2369     if (SrcReg.isPhysical() && DstTy.isValid()) {
2370       const TargetRegisterClass *SrcRC =
2371           TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy);
2372       if (SrcRC)
2373         SrcSize = TRI->getRegSizeInBits(*SrcRC);
2374     }
2375 
2376     if (DstReg.isPhysical() && SrcTy.isValid()) {
2377       const TargetRegisterClass *DstRC =
2378           TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy);
2379       if (DstRC)
2380         DstSize = TRI->getRegSizeInBits(*DstRC);
2381     }
2382 
2383     // The next two checks allow COPY between physical and virtual registers,
2384     // when the virtual register has a scalable size and the physical register
2385     // has a fixed size. These checks allow COPY between *potentialy* mismatched
2386     // sizes. However, once RegisterBankSelection occurs, MachineVerifier should
2387     // be able to resolve a fixed size for the scalable vector, and at that
2388     // point this function will know for sure whether the sizes are mismatched
2389     // and correctly report a size mismatch.
2390     if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() &&
2391         !SrcSize.isScalable())
2392       break;
2393     if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() &&
2394         !DstSize.isScalable())
2395       break;
2396 
2397     if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) {
2398       if (!DstOp.getSubReg() && !SrcOp.getSubReg()) {
2399         report("Copy Instruction is illegal with mismatching sizes", MI);
2400         OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n';
2401       }
2402     }
2403     break;
2404   }
2405   case TargetOpcode::STATEPOINT: {
2406     StatepointOpers SO(MI);
2407     if (!MI->getOperand(SO.getIDPos()).isImm() ||
2408         !MI->getOperand(SO.getNBytesPos()).isImm() ||
2409         !MI->getOperand(SO.getNCallArgsPos()).isImm()) {
2410       report("meta operands to STATEPOINT not constant!", MI);
2411       break;
2412     }
2413 
2414     auto VerifyStackMapConstant = [&](unsigned Offset) {
2415       if (Offset >= MI->getNumOperands()) {
2416         report("stack map constant to STATEPOINT is out of range!", MI);
2417         return;
2418       }
2419       if (!MI->getOperand(Offset - 1).isImm() ||
2420           MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp ||
2421           !MI->getOperand(Offset).isImm())
2422         report("stack map constant to STATEPOINT not well formed!", MI);
2423     };
2424     VerifyStackMapConstant(SO.getCCIdx());
2425     VerifyStackMapConstant(SO.getFlagsIdx());
2426     VerifyStackMapConstant(SO.getNumDeoptArgsIdx());
2427     VerifyStackMapConstant(SO.getNumGCPtrIdx());
2428     VerifyStackMapConstant(SO.getNumAllocaIdx());
2429     VerifyStackMapConstant(SO.getNumGcMapEntriesIdx());
2430 
2431     // Verify that all explicit statepoint defs are tied to gc operands as
2432     // they are expected to be a relocation of gc operands.
2433     unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx();
2434     unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2;
2435     for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) {
2436       unsigned UseOpIdx;
2437       if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) {
2438         report("STATEPOINT defs expected to be tied", MI);
2439         break;
2440       }
2441       if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) {
2442         report("STATEPOINT def tied to non-gc operand", MI);
2443         break;
2444       }
2445     }
2446 
2447     // TODO: verify we have properly encoded deopt arguments
2448   } break;
2449   case TargetOpcode::INSERT_SUBREG: {
2450     unsigned InsertedSize;
2451     if (unsigned SubIdx = MI->getOperand(2).getSubReg())
2452       InsertedSize = TRI->getSubRegIdxSize(SubIdx);
2453     else
2454       InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI);
2455     unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm());
2456     if (SubRegSize < InsertedSize) {
2457       report("INSERT_SUBREG expected inserted value to have equal or lesser "
2458              "size than the subreg it was inserted into", MI);
2459       break;
2460     }
2461   } break;
2462   case TargetOpcode::REG_SEQUENCE: {
2463     unsigned NumOps = MI->getNumOperands();
2464     if (!(NumOps & 1)) {
2465       report("Invalid number of operands for REG_SEQUENCE", MI);
2466       break;
2467     }
2468 
2469     for (unsigned I = 1; I != NumOps; I += 2) {
2470       const MachineOperand &RegOp = MI->getOperand(I);
2471       const MachineOperand &SubRegOp = MI->getOperand(I + 1);
2472 
2473       if (!RegOp.isReg())
2474         report("Invalid register operand for REG_SEQUENCE", &RegOp, I);
2475 
2476       if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 ||
2477           SubRegOp.getImm() >= TRI->getNumSubRegIndices()) {
2478         report("Invalid subregister index operand for REG_SEQUENCE",
2479                &SubRegOp, I + 1);
2480       }
2481     }
2482 
2483     Register DstReg = MI->getOperand(0).getReg();
2484     if (DstReg.isPhysical())
2485       report("REG_SEQUENCE does not support physical register results", MI);
2486 
2487     if (MI->getOperand(0).getSubReg())
2488       report("Invalid subreg result for REG_SEQUENCE", MI);
2489 
2490     break;
2491   }
2492   }
2493 }
2494 
2495 void
2496 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) {
2497   const MachineInstr *MI = MO->getParent();
2498   const MCInstrDesc &MCID = MI->getDesc();
2499   unsigned NumDefs = MCID.getNumDefs();
2500   if (MCID.getOpcode() == TargetOpcode::PATCHPOINT)
2501     NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0;
2502 
2503   // The first MCID.NumDefs operands must be explicit register defines
2504   if (MONum < NumDefs) {
2505     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2506     if (!MO->isReg())
2507       report("Explicit definition must be a register", MO, MONum);
2508     else if (!MO->isDef() && !MCOI.isOptionalDef())
2509       report("Explicit definition marked as use", MO, MONum);
2510     else if (MO->isImplicit())
2511       report("Explicit definition marked as implicit", MO, MONum);
2512   } else if (MONum < MCID.getNumOperands()) {
2513     const MCOperandInfo &MCOI = MCID.operands()[MONum];
2514     // Don't check if it's the last operand in a variadic instruction. See,
2515     // e.g., LDM_RET in the arm back end. Check non-variadic operands only.
2516     bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1;
2517     if (!IsOptional) {
2518       if (MO->isReg()) {
2519         if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs())
2520           report("Explicit operand marked as def", MO, MONum);
2521         if (MO->isImplicit())
2522           report("Explicit operand marked as implicit", MO, MONum);
2523       }
2524 
2525       // Check that an instruction has register operands only as expected.
2526       if (MCOI.OperandType == MCOI::OPERAND_REGISTER &&
2527           !MO->isReg() && !MO->isFI())
2528         report("Expected a register operand.", MO, MONum);
2529       if (MO->isReg()) {
2530         if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE ||
2531             (MCOI.OperandType == MCOI::OPERAND_PCREL &&
2532              !TII->isPCRelRegisterOperandLegal(*MO)))
2533           report("Expected a non-register operand.", MO, MONum);
2534       }
2535     }
2536 
2537     int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO);
2538     if (TiedTo != -1) {
2539       if (!MO->isReg())
2540         report("Tied use must be a register", MO, MONum);
2541       else if (!MO->isTied())
2542         report("Operand should be tied", MO, MONum);
2543       else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum))
2544         report("Tied def doesn't match MCInstrDesc", MO, MONum);
2545       else if (MO->getReg().isPhysical()) {
2546         const MachineOperand &MOTied = MI->getOperand(TiedTo);
2547         if (!MOTied.isReg())
2548           report("Tied counterpart must be a register", &MOTied, TiedTo);
2549         else if (MOTied.getReg().isPhysical() &&
2550                  MO->getReg() != MOTied.getReg())
2551           report("Tied physical registers must match.", &MOTied, TiedTo);
2552       }
2553     } else if (MO->isReg() && MO->isTied())
2554       report("Explicit operand should not be tied", MO, MONum);
2555   } else if (!MI->isVariadic()) {
2556     // ARM adds %reg0 operands to indicate predicates. We'll allow that.
2557     if (!MO->isValidExcessOperand())
2558       report("Extra explicit operand on non-variadic instruction", MO, MONum);
2559   }
2560 
2561   switch (MO->getType()) {
2562   case MachineOperand::MO_Register: {
2563     // Verify debug flag on debug instructions. Check this first because reg0
2564     // indicates an undefined debug value.
2565     if (MI->isDebugInstr() && MO->isUse()) {
2566       if (!MO->isDebug())
2567         report("Register operand must be marked debug", MO, MONum);
2568     } else if (MO->isDebug()) {
2569       report("Register operand must not be marked debug", MO, MONum);
2570     }
2571 
2572     const Register Reg = MO->getReg();
2573     if (!Reg)
2574       return;
2575     if (MRI->tracksLiveness() && !MI->isDebugInstr())
2576       checkLiveness(MO, MONum);
2577 
2578     if (MO->isDef() && MO->isUndef() && !MO->getSubReg() &&
2579         MO->getReg().isVirtual()) // TODO: Apply to physregs too
2580       report("Undef virtual register def operands require a subregister", MO, MONum);
2581 
2582     // Verify the consistency of tied operands.
2583     if (MO->isTied()) {
2584       unsigned OtherIdx = MI->findTiedOperandIdx(MONum);
2585       const MachineOperand &OtherMO = MI->getOperand(OtherIdx);
2586       if (!OtherMO.isReg())
2587         report("Must be tied to a register", MO, MONum);
2588       if (!OtherMO.isTied())
2589         report("Missing tie flags on tied operand", MO, MONum);
2590       if (MI->findTiedOperandIdx(OtherIdx) != MONum)
2591         report("Inconsistent tie links", MO, MONum);
2592       if (MONum < MCID.getNumDefs()) {
2593         if (OtherIdx < MCID.getNumOperands()) {
2594           if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO))
2595             report("Explicit def tied to explicit use without tie constraint",
2596                    MO, MONum);
2597         } else {
2598           if (!OtherMO.isImplicit())
2599             report("Explicit def should be tied to implicit use", MO, MONum);
2600         }
2601       }
2602     }
2603 
2604     // Verify two-address constraints after the twoaddressinstruction pass.
2605     // Both twoaddressinstruction pass and phi-node-elimination pass call
2606     // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification
2607     // after twoaddressinstruction pass not after phi-node-elimination pass. So
2608     // we shouldn't use the IsSSA as the condition, we should based on
2609     // TiedOpsRewritten property to verify two-address constraints, this
2610     // property will be set in twoaddressinstruction pass.
2611     unsigned DefIdx;
2612     if (MF->getProperties().hasProperty(
2613             MachineFunctionProperties::Property::TiedOpsRewritten) &&
2614         MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) &&
2615         Reg != MI->getOperand(DefIdx).getReg())
2616       report("Two-address instruction operands must be identical", MO, MONum);
2617 
2618     // Check register classes.
2619     unsigned SubIdx = MO->getSubReg();
2620 
2621     if (Reg.isPhysical()) {
2622       if (SubIdx) {
2623         report("Illegal subregister index for physical register", MO, MONum);
2624         return;
2625       }
2626       if (MONum < MCID.getNumOperands()) {
2627         if (const TargetRegisterClass *DRC =
2628               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2629           if (!DRC->contains(Reg)) {
2630             report("Illegal physical register for instruction", MO, MONum);
2631             OS << printReg(Reg, TRI) << " is not a "
2632                << TRI->getRegClassName(DRC) << " register.\n";
2633           }
2634         }
2635       }
2636       if (MO->isRenamable()) {
2637         if (MRI->isReserved(Reg)) {
2638           report("isRenamable set on reserved register", MO, MONum);
2639           return;
2640         }
2641       }
2642     } else {
2643       // Virtual register.
2644       const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg);
2645       if (!RC) {
2646         // This is a generic virtual register.
2647 
2648         // Do not allow undef uses for generic virtual registers. This ensures
2649         // getVRegDef can never fail and return null on a generic register.
2650         //
2651         // FIXME: This restriction should probably be broadened to all SSA
2652         // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still
2653         // run on the SSA function just before phi elimination.
2654         if (MO->isUndef())
2655           report("Generic virtual register use cannot be undef", MO, MONum);
2656 
2657         // Debug value instruction is permitted to use undefined vregs.
2658         // This is a performance measure to skip the overhead of immediately
2659         // pruning unused debug operands. The final undef substitution occurs
2660         // when debug values are allocated in LDVImpl::handleDebugValue, so
2661         // these verifications always apply after this pass.
2662         if (isFunctionTracksDebugUserValues || !MO->isUse() ||
2663             !MI->isDebugValue() || !MRI->def_empty(Reg)) {
2664           // If we're post-Select, we can't have gvregs anymore.
2665           if (isFunctionSelected) {
2666             report("Generic virtual register invalid in a Selected function",
2667                    MO, MONum);
2668             return;
2669           }
2670 
2671           // The gvreg must have a type and it must not have a SubIdx.
2672           LLT Ty = MRI->getType(Reg);
2673           if (!Ty.isValid()) {
2674             report("Generic virtual register must have a valid type", MO,
2675                    MONum);
2676             return;
2677           }
2678 
2679           const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg);
2680           const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo();
2681 
2682           // If we're post-RegBankSelect, the gvreg must have a bank.
2683           if (!RegBank && isFunctionRegBankSelected) {
2684             report("Generic virtual register must have a bank in a "
2685                    "RegBankSelected function",
2686                    MO, MONum);
2687             return;
2688           }
2689 
2690           // Make sure the register fits into its register bank if any.
2691           if (RegBank && Ty.isValid() && !Ty.isScalableVector() &&
2692               RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) {
2693             report("Register bank is too small for virtual register", MO,
2694                    MONum);
2695             OS << "Register bank " << RegBank->getName() << " too small("
2696                << RBI->getMaximumSize(RegBank->getID()) << ") to fit "
2697                << Ty.getSizeInBits() << "-bits\n";
2698             return;
2699           }
2700         }
2701 
2702         if (SubIdx)  {
2703           report("Generic virtual register does not allow subregister index", MO,
2704                  MONum);
2705           return;
2706         }
2707 
2708         // If this is a target specific instruction and this operand
2709         // has register class constraint, the virtual register must
2710         // comply to it.
2711         if (!isPreISelGenericOpcode(MCID.getOpcode()) &&
2712             MONum < MCID.getNumOperands() &&
2713             TII->getRegClass(MCID, MONum, TRI, *MF)) {
2714           report("Virtual register does not match instruction constraint", MO,
2715                  MONum);
2716           OS << "Expect register class "
2717              << TRI->getRegClassName(TII->getRegClass(MCID, MONum, TRI, *MF))
2718              << " but got nothing\n";
2719           return;
2720         }
2721 
2722         break;
2723       }
2724       if (SubIdx) {
2725         const TargetRegisterClass *SRC =
2726           TRI->getSubClassWithSubReg(RC, SubIdx);
2727         if (!SRC) {
2728           report("Invalid subregister index for virtual register", MO, MONum);
2729           OS << "Register class " << TRI->getRegClassName(RC)
2730              << " does not support subreg index " << SubIdx << '\n';
2731           return;
2732         }
2733         if (RC != SRC) {
2734           report("Invalid register class for subregister index", MO, MONum);
2735           OS << "Register class " << TRI->getRegClassName(RC)
2736              << " does not fully support subreg index " << SubIdx << '\n';
2737           return;
2738         }
2739       }
2740       if (MONum < MCID.getNumOperands()) {
2741         if (const TargetRegisterClass *DRC =
2742               TII->getRegClass(MCID, MONum, TRI, *MF)) {
2743           if (SubIdx) {
2744             const TargetRegisterClass *SuperRC =
2745                 TRI->getLargestLegalSuperClass(RC, *MF);
2746             if (!SuperRC) {
2747               report("No largest legal super class exists.", MO, MONum);
2748               return;
2749             }
2750             DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx);
2751             if (!DRC) {
2752               report("No matching super-reg register class.", MO, MONum);
2753               return;
2754             }
2755           }
2756           if (!RC->hasSuperClassEq(DRC)) {
2757             report("Illegal virtual register for instruction", MO, MONum);
2758             OS << "Expected a " << TRI->getRegClassName(DRC)
2759                << " register, but got a " << TRI->getRegClassName(RC)
2760                << " register\n";
2761           }
2762         }
2763       }
2764     }
2765     break;
2766   }
2767 
2768   case MachineOperand::MO_RegisterMask:
2769     regMasks.push_back(MO->getRegMask());
2770     break;
2771 
2772   case MachineOperand::MO_MachineBasicBlock:
2773     if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent()))
2774       report("PHI operand is not in the CFG", MO, MONum);
2775     break;
2776 
2777   case MachineOperand::MO_FrameIndex:
2778     if (LiveStks && LiveStks->hasInterval(MO->getIndex()) &&
2779         LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2780       int FI = MO->getIndex();
2781       LiveInterval &LI = LiveStks->getInterval(FI);
2782       SlotIndex Idx = LiveInts->getInstructionIndex(*MI);
2783 
2784       bool stores = MI->mayStore();
2785       bool loads = MI->mayLoad();
2786       // For a memory-to-memory move, we need to check if the frame
2787       // index is used for storing or loading, by inspecting the
2788       // memory operands.
2789       if (stores && loads) {
2790         for (auto *MMO : MI->memoperands()) {
2791           const PseudoSourceValue *PSV = MMO->getPseudoValue();
2792           if (PSV == nullptr) continue;
2793           const FixedStackPseudoSourceValue *Value =
2794             dyn_cast<FixedStackPseudoSourceValue>(PSV);
2795           if (Value == nullptr) continue;
2796           if (Value->getFrameIndex() != FI) continue;
2797 
2798           if (MMO->isStore())
2799             loads = false;
2800           else
2801             stores = false;
2802           break;
2803         }
2804         if (loads == stores)
2805           report("Missing fixed stack memoperand.", MI);
2806       }
2807       if (loads && !LI.liveAt(Idx.getRegSlot(true))) {
2808         report("Instruction loads from dead spill slot", MO, MONum);
2809         OS << "Live stack: " << LI << '\n';
2810       }
2811       if (stores && !LI.liveAt(Idx.getRegSlot())) {
2812         report("Instruction stores to dead spill slot", MO, MONum);
2813         OS << "Live stack: " << LI << '\n';
2814       }
2815     }
2816     break;
2817 
2818   case MachineOperand::MO_CFIIndex:
2819     if (MO->getCFIIndex() >= MF->getFrameInstructions().size())
2820       report("CFI instruction has invalid index", MO, MONum);
2821     break;
2822 
2823   default:
2824     break;
2825   }
2826 }
2827 
2828 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO,
2829                                          unsigned MONum, SlotIndex UseIdx,
2830                                          const LiveRange &LR,
2831                                          Register VRegOrUnit,
2832                                          LaneBitmask LaneMask) {
2833   const MachineInstr *MI = MO->getParent();
2834 
2835   if (!LR.verify()) {
2836     report("invalid live range", MO, MONum);
2837     report_context_liverange(LR);
2838     report_context_vreg_regunit(VRegOrUnit);
2839     report_context(UseIdx);
2840     return;
2841   }
2842 
2843   LiveQueryResult LRQ = LR.Query(UseIdx);
2844   bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut());
2845   // Check if we have a segment at the use, note however that we only need one
2846   // live subregister range, the others may be dead.
2847   if (!HasValue && LaneMask.none()) {
2848     report("No live segment at use", MO, MONum);
2849     report_context_liverange(LR);
2850     report_context_vreg_regunit(VRegOrUnit);
2851     report_context(UseIdx);
2852   }
2853   if (MO->isKill() && !LRQ.isKill()) {
2854     report("Live range continues after kill flag", MO, MONum);
2855     report_context_liverange(LR);
2856     report_context_vreg_regunit(VRegOrUnit);
2857     if (LaneMask.any())
2858       report_context_lanemask(LaneMask);
2859     report_context(UseIdx);
2860   }
2861 }
2862 
2863 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO,
2864                                          unsigned MONum, SlotIndex DefIdx,
2865                                          const LiveRange &LR,
2866                                          Register VRegOrUnit,
2867                                          bool SubRangeCheck,
2868                                          LaneBitmask LaneMask) {
2869   if (!LR.verify()) {
2870     report("invalid live range", MO, MONum);
2871     report_context_liverange(LR);
2872     report_context_vreg_regunit(VRegOrUnit);
2873     if (LaneMask.any())
2874       report_context_lanemask(LaneMask);
2875     report_context(DefIdx);
2876   }
2877 
2878   if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) {
2879     // The LR can correspond to the whole reg and its def slot is not obliged
2880     // to be the same as the MO' def slot. E.g. when we check here "normal"
2881     // subreg MO but there is other EC subreg MO in the same instruction so the
2882     // whole reg has EC def slot and differs from the currently checked MO' def
2883     // slot. For example:
2884     // %0 [16e,32r:0) 0@16e  L..3 [16e,32r:0) 0@16e  L..C [16r,32r:0) 0@16r
2885     // Check that there is an early-clobber def of the same superregister
2886     // somewhere is performed in visitMachineFunctionAfter()
2887     if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) ||
2888         !SlotIndex::isSameInstr(VNI->def, DefIdx) ||
2889         (VNI->def != DefIdx &&
2890          (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) {
2891       report("Inconsistent valno->def", MO, MONum);
2892       report_context_liverange(LR);
2893       report_context_vreg_regunit(VRegOrUnit);
2894       if (LaneMask.any())
2895         report_context_lanemask(LaneMask);
2896       report_context(*VNI);
2897       report_context(DefIdx);
2898     }
2899   } else {
2900     report("No live segment at def", MO, MONum);
2901     report_context_liverange(LR);
2902     report_context_vreg_regunit(VRegOrUnit);
2903     if (LaneMask.any())
2904       report_context_lanemask(LaneMask);
2905     report_context(DefIdx);
2906   }
2907   // Check that, if the dead def flag is present, LiveInts agree.
2908   if (MO->isDead()) {
2909     LiveQueryResult LRQ = LR.Query(DefIdx);
2910     if (!LRQ.isDeadDef()) {
2911       assert(VRegOrUnit.isVirtual() && "Expecting a virtual register.");
2912       // A dead subreg def only tells us that the specific subreg is dead. There
2913       // could be other non-dead defs of other subregs, or we could have other
2914       // parts of the register being live through the instruction. So unless we
2915       // are checking liveness for a subrange it is ok for the live range to
2916       // continue, given that we have a dead def of a subregister.
2917       if (SubRangeCheck || MO->getSubReg() == 0) {
2918         report("Live range continues after dead def flag", MO, MONum);
2919         report_context_liverange(LR);
2920         report_context_vreg_regunit(VRegOrUnit);
2921         if (LaneMask.any())
2922           report_context_lanemask(LaneMask);
2923       }
2924     }
2925   }
2926 }
2927 
2928 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) {
2929   const MachineInstr *MI = MO->getParent();
2930   const Register Reg = MO->getReg();
2931   const unsigned SubRegIdx = MO->getSubReg();
2932 
2933   const LiveInterval *LI = nullptr;
2934   if (LiveInts && Reg.isVirtual()) {
2935     if (LiveInts->hasInterval(Reg)) {
2936       LI = &LiveInts->getInterval(Reg);
2937       if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() &&
2938           !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg))
2939         report("Live interval for subreg operand has no subranges", MO, MONum);
2940     } else {
2941       report("Virtual register has no live interval", MO, MONum);
2942     }
2943   }
2944 
2945   // Both use and def operands can read a register.
2946   if (MO->readsReg()) {
2947     if (MO->isKill())
2948       addRegWithSubRegs(regsKilled, Reg);
2949 
2950     // Check that LiveVars knows this kill (unless we are inside a bundle, in
2951     // which case we have already checked that LiveVars knows any kills on the
2952     // bundle header instead).
2953     if (LiveVars && Reg.isVirtual() && MO->isKill() &&
2954         !MI->isBundledWithPred()) {
2955       LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
2956       if (!is_contained(VI.Kills, MI))
2957         report("Kill missing from LiveVariables", MO, MONum);
2958     }
2959 
2960     // Check LiveInts liveness and kill.
2961     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
2962       SlotIndex UseIdx;
2963       if (MI->isPHI()) {
2964         // PHI use occurs on the edge, so check for live out here instead.
2965         UseIdx = LiveInts->getMBBEndIdx(
2966           MI->getOperand(MONum + 1).getMBB()).getPrevSlot();
2967       } else {
2968         UseIdx = LiveInts->getInstructionIndex(*MI);
2969       }
2970       // Check the cached regunit intervals.
2971       if (Reg.isPhysical() && !isReserved(Reg)) {
2972         for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) {
2973           if (MRI->isReservedRegUnit(Unit))
2974             continue;
2975           if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit))
2976             checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit);
2977         }
2978       }
2979 
2980       if (Reg.isVirtual()) {
2981         // This is a virtual register interval.
2982         checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg);
2983 
2984         if (LI->hasSubRanges() && !MO->isDef()) {
2985           LaneBitmask MOMask = SubRegIdx != 0
2986                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
2987                                    : MRI->getMaxLaneMaskForVReg(Reg);
2988           LaneBitmask LiveInMask;
2989           for (const LiveInterval::SubRange &SR : LI->subranges()) {
2990             if ((MOMask & SR.LaneMask).none())
2991               continue;
2992             checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask);
2993             LiveQueryResult LRQ = SR.Query(UseIdx);
2994             if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()))
2995               LiveInMask |= SR.LaneMask;
2996           }
2997           // At least parts of the register has to be live at the use.
2998           if ((LiveInMask & MOMask).none()) {
2999             report("No live subrange at use", MO, MONum);
3000             report_context(*LI);
3001             report_context(UseIdx);
3002           }
3003           // For PHIs all lanes should be live
3004           if (MI->isPHI() && LiveInMask != MOMask) {
3005             report("Not all lanes of PHI source live at use", MO, MONum);
3006             report_context(*LI);
3007             report_context(UseIdx);
3008           }
3009         }
3010       }
3011     }
3012 
3013     // Use of a dead register.
3014     if (!regsLive.count(Reg)) {
3015       if (Reg.isPhysical()) {
3016         // Reserved registers may be used even when 'dead'.
3017         bool Bad = !isReserved(Reg);
3018         // We are fine if just any subregister has a defined value.
3019         if (Bad) {
3020 
3021           for (const MCPhysReg &SubReg : TRI->subregs(Reg)) {
3022             if (regsLive.count(SubReg)) {
3023               Bad = false;
3024               break;
3025             }
3026           }
3027         }
3028         // If there is an additional implicit-use of a super register we stop
3029         // here. By definition we are fine if the super register is not
3030         // (completely) dead, if the complete super register is dead we will
3031         // get a report for its operand.
3032         if (Bad) {
3033           for (const MachineOperand &MOP : MI->uses()) {
3034             if (!MOP.isReg() || !MOP.isImplicit())
3035               continue;
3036 
3037             if (!MOP.getReg().isPhysical())
3038               continue;
3039 
3040             if (MOP.getReg() != Reg &&
3041                 all_of(TRI->regunits(Reg), [&](const MCRegUnit RegUnit) {
3042                   return llvm::is_contained(TRI->regunits(MOP.getReg()),
3043                                             RegUnit);
3044                 }))
3045               Bad = false;
3046           }
3047         }
3048         if (Bad)
3049           report("Using an undefined physical register", MO, MONum);
3050       } else if (MRI->def_empty(Reg)) {
3051         report("Reading virtual register without a def", MO, MONum);
3052       } else {
3053         BBInfo &MInfo = MBBInfoMap[MI->getParent()];
3054         // We don't know which virtual registers are live in, so only complain
3055         // if vreg was killed in this MBB. Otherwise keep track of vregs that
3056         // must be live in. PHI instructions are handled separately.
3057         if (MInfo.regsKilled.count(Reg))
3058           report("Using a killed virtual register", MO, MONum);
3059         else if (!MI->isPHI())
3060           MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI));
3061       }
3062     }
3063   }
3064 
3065   if (MO->isDef()) {
3066     // Register defined.
3067     // TODO: verify that earlyclobber ops are not used.
3068     if (MO->isDead())
3069       addRegWithSubRegs(regsDead, Reg);
3070     else
3071       addRegWithSubRegs(regsDefined, Reg);
3072 
3073     // Verify SSA form.
3074     if (MRI->isSSA() && Reg.isVirtual() &&
3075         std::next(MRI->def_begin(Reg)) != MRI->def_end())
3076       report("Multiple virtual register defs in SSA form", MO, MONum);
3077 
3078     // Check LiveInts for a live segment, but only for virtual registers.
3079     if (LiveInts && !LiveInts->isNotInMIMap(*MI)) {
3080       SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI);
3081       DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber());
3082 
3083       if (Reg.isVirtual()) {
3084         checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg);
3085 
3086         if (LI->hasSubRanges()) {
3087           LaneBitmask MOMask = SubRegIdx != 0
3088                                    ? TRI->getSubRegIndexLaneMask(SubRegIdx)
3089                                    : MRI->getMaxLaneMaskForVReg(Reg);
3090           for (const LiveInterval::SubRange &SR : LI->subranges()) {
3091             if ((SR.LaneMask & MOMask).none())
3092               continue;
3093             checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask);
3094           }
3095         }
3096       }
3097     }
3098   }
3099 }
3100 
3101 // This function gets called after visiting all instructions in a bundle. The
3102 // argument points to the bundle header.
3103 // Normal stand-alone instructions are also considered 'bundles', and this
3104 // function is called for all of them.
3105 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) {
3106   BBInfo &MInfo = MBBInfoMap[MI->getParent()];
3107   set_union(MInfo.regsKilled, regsKilled);
3108   set_subtract(regsLive, regsKilled); regsKilled.clear();
3109   // Kill any masked registers.
3110   while (!regMasks.empty()) {
3111     const uint32_t *Mask = regMasks.pop_back_val();
3112     for (Register Reg : regsLive)
3113       if (Reg.isPhysical() &&
3114           MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg()))
3115         regsDead.push_back(Reg);
3116   }
3117   set_subtract(regsLive, regsDead);   regsDead.clear();
3118   set_union(regsLive, regsDefined);   regsDefined.clear();
3119 }
3120 
3121 void
3122 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) {
3123   MBBInfoMap[MBB].regsLiveOut = regsLive;
3124   regsLive.clear();
3125 
3126   if (Indexes) {
3127     SlotIndex stop = Indexes->getMBBEndIdx(MBB);
3128     if (!(stop > lastIndex)) {
3129       report("Block ends before last instruction index", MBB);
3130       OS << "Block ends at " << stop << " last instruction was at " << lastIndex
3131          << '\n';
3132     }
3133     lastIndex = stop;
3134   }
3135 }
3136 
3137 namespace {
3138 // This implements a set of registers that serves as a filter: can filter other
3139 // sets by passing through elements not in the filter and blocking those that
3140 // are. Any filter implicitly includes the full set of physical registers upon
3141 // creation, thus filtering them all out. The filter itself as a set only grows,
3142 // and needs to be as efficient as possible.
3143 struct VRegFilter {
3144   // Add elements to the filter itself. \pre Input set \p FromRegSet must have
3145   // no duplicates. Both virtual and physical registers are fine.
3146   template <typename RegSetT> void add(const RegSetT &FromRegSet) {
3147     SmallVector<Register, 0> VRegsBuffer;
3148     filterAndAdd(FromRegSet, VRegsBuffer);
3149   }
3150   // Filter \p FromRegSet through the filter and append passed elements into \p
3151   // ToVRegs. All elements appended are then added to the filter itself.
3152   // \returns true if anything changed.
3153   template <typename RegSetT>
3154   bool filterAndAdd(const RegSetT &FromRegSet,
3155                     SmallVectorImpl<Register> &ToVRegs) {
3156     unsigned SparseUniverse = Sparse.size();
3157     unsigned NewSparseUniverse = SparseUniverse;
3158     unsigned NewDenseSize = Dense.size();
3159     size_t Begin = ToVRegs.size();
3160     for (Register Reg : FromRegSet) {
3161       if (!Reg.isVirtual())
3162         continue;
3163       unsigned Index = Register::virtReg2Index(Reg);
3164       if (Index < SparseUniverseMax) {
3165         if (Index < SparseUniverse && Sparse.test(Index))
3166           continue;
3167         NewSparseUniverse = std::max(NewSparseUniverse, Index + 1);
3168       } else {
3169         if (Dense.count(Reg))
3170           continue;
3171         ++NewDenseSize;
3172       }
3173       ToVRegs.push_back(Reg);
3174     }
3175     size_t End = ToVRegs.size();
3176     if (Begin == End)
3177       return false;
3178     // Reserving space in sets once performs better than doing so continuously
3179     // and pays easily for double look-ups (even in Dense with SparseUniverseMax
3180     // tuned all the way down) and double iteration (the second one is over a
3181     // SmallVector, which is a lot cheaper compared to DenseSet or BitVector).
3182     Sparse.resize(NewSparseUniverse);
3183     Dense.reserve(NewDenseSize);
3184     for (unsigned I = Begin; I < End; ++I) {
3185       Register Reg = ToVRegs[I];
3186       unsigned Index = Register::virtReg2Index(Reg);
3187       if (Index < SparseUniverseMax)
3188         Sparse.set(Index);
3189       else
3190         Dense.insert(Reg);
3191     }
3192     return true;
3193   }
3194 
3195 private:
3196   static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8;
3197   // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound
3198   // are tracked by Dense. The only purpose of the threashold and the Dense set
3199   // is to have a reasonably growing memory usage in pathological cases (large
3200   // number of very sparse VRegFilter instances live at the same time). In
3201   // practice even in the worst-by-execution time cases having all elements
3202   // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more
3203   // space efficient than if tracked by Dense. The threashold is set to keep the
3204   // worst-case memory usage within 2x of figures determined empirically for
3205   // "all Dense" scenario in such worst-by-execution-time cases.
3206   BitVector Sparse;
3207   DenseSet<unsigned> Dense;
3208 };
3209 
3210 // Implements both a transfer function and a (binary, in-place) join operator
3211 // for a dataflow over register sets with set union join and filtering transfer
3212 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time.
3213 // Maintains out_b as its state, allowing for O(n) iteration over it at any
3214 // time, where n is the size of the set (as opposed to O(U) where U is the
3215 // universe). filter_b implicitly contains all physical registers at all times.
3216 class FilteringVRegSet {
3217   VRegFilter Filter;
3218   SmallVector<Register, 0> VRegs;
3219 
3220 public:
3221   // Set-up the filter_b. \pre Input register set \p RS must have no duplicates.
3222   // Both virtual and physical registers are fine.
3223   template <typename RegSetT> void addToFilter(const RegSetT &RS) {
3224     Filter.add(RS);
3225   }
3226   // Passes \p RS through the filter_b (transfer function) and adds what's left
3227   // to itself (out_b).
3228   template <typename RegSetT> bool add(const RegSetT &RS) {
3229     // Double-duty the Filter: to maintain VRegs a set (and the join operation
3230     // a set union) just add everything being added here to the Filter as well.
3231     return Filter.filterAndAdd(RS, VRegs);
3232   }
3233   using const_iterator = decltype(VRegs)::const_iterator;
3234   const_iterator begin() const { return VRegs.begin(); }
3235   const_iterator end() const { return VRegs.end(); }
3236   size_t size() const { return VRegs.size(); }
3237 };
3238 } // namespace
3239 
3240 // Calculate the largest possible vregsPassed sets. These are the registers that
3241 // can pass through an MBB live, but may not be live every time. It is assumed
3242 // that all vregsPassed sets are empty before the call.
3243 void MachineVerifier::calcRegsPassed() {
3244   if (MF->empty())
3245     // ReversePostOrderTraversal doesn't handle empty functions.
3246     return;
3247 
3248   for (const MachineBasicBlock *MB :
3249        ReversePostOrderTraversal<const MachineFunction *>(MF)) {
3250     FilteringVRegSet VRegs;
3251     BBInfo &Info = MBBInfoMap[MB];
3252     assert(Info.reachable);
3253 
3254     VRegs.addToFilter(Info.regsKilled);
3255     VRegs.addToFilter(Info.regsLiveOut);
3256     for (const MachineBasicBlock *Pred : MB->predecessors()) {
3257       const BBInfo &PredInfo = MBBInfoMap[Pred];
3258       if (!PredInfo.reachable)
3259         continue;
3260 
3261       VRegs.add(PredInfo.regsLiveOut);
3262       VRegs.add(PredInfo.vregsPassed);
3263     }
3264     Info.vregsPassed.reserve(VRegs.size());
3265     Info.vregsPassed.insert(VRegs.begin(), VRegs.end());
3266   }
3267 }
3268 
3269 // Calculate the set of virtual registers that must be passed through each basic
3270 // block in order to satisfy the requirements of successor blocks. This is very
3271 // similar to calcRegsPassed, only backwards.
3272 void MachineVerifier::calcRegsRequired() {
3273   // First push live-in regs to predecessors' vregsRequired.
3274   SmallPtrSet<const MachineBasicBlock*, 8> todo;
3275   for (const auto &MBB : *MF) {
3276     BBInfo &MInfo = MBBInfoMap[&MBB];
3277     for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3278       BBInfo &PInfo = MBBInfoMap[Pred];
3279       if (PInfo.addRequired(MInfo.vregsLiveIn))
3280         todo.insert(Pred);
3281     }
3282 
3283     // Handle the PHI node.
3284     for (const MachineInstr &MI : MBB.phis()) {
3285       for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) {
3286         // Skip those Operands which are undef regs or not regs.
3287         if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg())
3288           continue;
3289 
3290         // Get register and predecessor for one PHI edge.
3291         Register Reg = MI.getOperand(i).getReg();
3292         const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB();
3293 
3294         BBInfo &PInfo = MBBInfoMap[Pred];
3295         if (PInfo.addRequired(Reg))
3296           todo.insert(Pred);
3297       }
3298     }
3299   }
3300 
3301   // Iteratively push vregsRequired to predecessors. This will converge to the
3302   // same final state regardless of DenseSet iteration order.
3303   while (!todo.empty()) {
3304     const MachineBasicBlock *MBB = *todo.begin();
3305     todo.erase(MBB);
3306     BBInfo &MInfo = MBBInfoMap[MBB];
3307     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
3308       if (Pred == MBB)
3309         continue;
3310       BBInfo &SInfo = MBBInfoMap[Pred];
3311       if (SInfo.addRequired(MInfo.vregsRequired))
3312         todo.insert(Pred);
3313     }
3314   }
3315 }
3316 
3317 // Check PHI instructions at the beginning of MBB. It is assumed that
3318 // calcRegsPassed has been run so BBInfo::isLiveOut is valid.
3319 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) {
3320   BBInfo &MInfo = MBBInfoMap[&MBB];
3321 
3322   SmallPtrSet<const MachineBasicBlock*, 8> seen;
3323   for (const MachineInstr &Phi : MBB) {
3324     if (!Phi.isPHI())
3325       break;
3326     seen.clear();
3327 
3328     const MachineOperand &MODef = Phi.getOperand(0);
3329     if (!MODef.isReg() || !MODef.isDef()) {
3330       report("Expected first PHI operand to be a register def", &MODef, 0);
3331       continue;
3332     }
3333     if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() ||
3334         MODef.isEarlyClobber() || MODef.isDebug())
3335       report("Unexpected flag on PHI operand", &MODef, 0);
3336     Register DefReg = MODef.getReg();
3337     if (!DefReg.isVirtual())
3338       report("Expected first PHI operand to be a virtual register", &MODef, 0);
3339 
3340     for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) {
3341       const MachineOperand &MO0 = Phi.getOperand(I);
3342       if (!MO0.isReg()) {
3343         report("Expected PHI operand to be a register", &MO0, I);
3344         continue;
3345       }
3346       if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() ||
3347           MO0.isDebug() || MO0.isTied())
3348         report("Unexpected flag on PHI operand", &MO0, I);
3349 
3350       const MachineOperand &MO1 = Phi.getOperand(I + 1);
3351       if (!MO1.isMBB()) {
3352         report("Expected PHI operand to be a basic block", &MO1, I + 1);
3353         continue;
3354       }
3355 
3356       const MachineBasicBlock &Pre = *MO1.getMBB();
3357       if (!Pre.isSuccessor(&MBB)) {
3358         report("PHI input is not a predecessor block", &MO1, I + 1);
3359         continue;
3360       }
3361 
3362       if (MInfo.reachable) {
3363         seen.insert(&Pre);
3364         BBInfo &PrInfo = MBBInfoMap[&Pre];
3365         if (!MO0.isUndef() && PrInfo.reachable &&
3366             !PrInfo.isLiveOut(MO0.getReg()))
3367           report("PHI operand is not live-out from predecessor", &MO0, I);
3368       }
3369     }
3370 
3371     // Did we see all predecessors?
3372     if (MInfo.reachable) {
3373       for (MachineBasicBlock *Pred : MBB.predecessors()) {
3374         if (!seen.count(Pred)) {
3375           report("Missing PHI operand", &Phi);
3376           OS << printMBBReference(*Pred)
3377              << " is a predecessor according to the CFG.\n";
3378         }
3379       }
3380     }
3381   }
3382 }
3383 
3384 static void
3385 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT,
3386                          std::function<void(const Twine &Message)> FailureCB,
3387                          raw_ostream &OS) {
3388   MachineConvergenceVerifier CV;
3389   CV.initialize(&OS, FailureCB, MF);
3390 
3391   for (const auto &MBB : MF) {
3392     CV.visit(MBB);
3393     for (const auto &MI : MBB.instrs())
3394       CV.visit(MI);
3395   }
3396 
3397   if (CV.sawTokens()) {
3398     DT.recalculate(const_cast<MachineFunction &>(MF));
3399     CV.verify(DT);
3400   }
3401 }
3402 
3403 void MachineVerifier::visitMachineFunctionAfter() {
3404   auto FailureCB = [this](const Twine &Message) {
3405     report(Message.str().c_str(), MF);
3406   };
3407   verifyConvergenceControl(*MF, DT, FailureCB, OS);
3408 
3409   calcRegsPassed();
3410 
3411   for (const MachineBasicBlock &MBB : *MF)
3412     checkPHIOps(MBB);
3413 
3414   // Now check liveness info if available
3415   calcRegsRequired();
3416 
3417   // Check for killed virtual registers that should be live out.
3418   for (const auto &MBB : *MF) {
3419     BBInfo &MInfo = MBBInfoMap[&MBB];
3420     for (Register VReg : MInfo.vregsRequired)
3421       if (MInfo.regsKilled.count(VReg)) {
3422         report("Virtual register killed in block, but needed live out.", &MBB);
3423         OS << "Virtual register " << printReg(VReg)
3424            << " is used after the block.\n";
3425       }
3426   }
3427 
3428   if (!MF->empty()) {
3429     BBInfo &MInfo = MBBInfoMap[&MF->front()];
3430     for (Register VReg : MInfo.vregsRequired) {
3431       report("Virtual register defs don't dominate all uses.", MF);
3432       report_context_vreg(VReg);
3433     }
3434   }
3435 
3436   if (LiveVars)
3437     verifyLiveVariables();
3438   if (LiveInts)
3439     verifyLiveIntervals();
3440 
3441   // Check live-in list of each MBB. If a register is live into MBB, check
3442   // that the register is in regsLiveOut of each predecessor block. Since
3443   // this must come from a definition in the predecesssor or its live-in
3444   // list, this will catch a live-through case where the predecessor does not
3445   // have the register in its live-in list.  This currently only checks
3446   // registers that have no aliases, are not allocatable and are not
3447   // reserved, which could mean a condition code register for instance.
3448   if (MRI->tracksLiveness())
3449     for (const auto &MBB : *MF)
3450       for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) {
3451         MCPhysReg LiveInReg = P.PhysReg;
3452         bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid();
3453         if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg))
3454           continue;
3455         for (const MachineBasicBlock *Pred : MBB.predecessors()) {
3456           BBInfo &PInfo = MBBInfoMap[Pred];
3457           if (!PInfo.regsLiveOut.count(LiveInReg)) {
3458             report("Live in register not found to be live out from predecessor.",
3459                    &MBB);
3460             OS << TRI->getName(LiveInReg) << " not found to be live out from "
3461                << printMBBReference(*Pred) << '\n';
3462           }
3463         }
3464       }
3465 
3466   for (auto CSInfo : MF->getCallSitesInfo())
3467     if (!CSInfo.first->isCall())
3468       report("Call site info referencing instruction that is not call", MF);
3469 
3470   // If there's debug-info, check that we don't have any duplicate value
3471   // tracking numbers.
3472   if (MF->getFunction().getSubprogram()) {
3473     DenseSet<unsigned> SeenNumbers;
3474     for (const auto &MBB : *MF) {
3475       for (const auto &MI : MBB) {
3476         if (auto Num = MI.peekDebugInstrNum()) {
3477           auto Result = SeenNumbers.insert((unsigned)Num);
3478           if (!Result.second)
3479             report("Instruction has a duplicated value tracking number", &MI);
3480         }
3481       }
3482     }
3483   }
3484 }
3485 
3486 void MachineVerifier::verifyLiveVariables() {
3487   assert(LiveVars && "Don't call verifyLiveVariables without LiveVars");
3488   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3489     Register Reg = Register::index2VirtReg(I);
3490     LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg);
3491     for (const auto &MBB : *MF) {
3492       BBInfo &MInfo = MBBInfoMap[&MBB];
3493 
3494       // Our vregsRequired should be identical to LiveVariables' AliveBlocks
3495       if (MInfo.vregsRequired.count(Reg)) {
3496         if (!VI.AliveBlocks.test(MBB.getNumber())) {
3497           report("LiveVariables: Block missing from AliveBlocks", &MBB);
3498           OS << "Virtual register " << printReg(Reg)
3499              << " must be live through the block.\n";
3500         }
3501       } else {
3502         if (VI.AliveBlocks.test(MBB.getNumber())) {
3503           report("LiveVariables: Block should not be in AliveBlocks", &MBB);
3504           OS << "Virtual register " << printReg(Reg)
3505              << " is not needed live through the block.\n";
3506         }
3507       }
3508     }
3509   }
3510 }
3511 
3512 void MachineVerifier::verifyLiveIntervals() {
3513   assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts");
3514   for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) {
3515     Register Reg = Register::index2VirtReg(I);
3516 
3517     // Spilling and splitting may leave unused registers around. Skip them.
3518     if (MRI->reg_nodbg_empty(Reg))
3519       continue;
3520 
3521     if (!LiveInts->hasInterval(Reg)) {
3522       report("Missing live interval for virtual register", MF);
3523       OS << printReg(Reg, TRI) << " still has defs or uses\n";
3524       continue;
3525     }
3526 
3527     const LiveInterval &LI = LiveInts->getInterval(Reg);
3528     assert(Reg == LI.reg() && "Invalid reg to interval mapping");
3529     verifyLiveInterval(LI);
3530   }
3531 
3532   // Verify all the cached regunit intervals.
3533   for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i)
3534     if (const LiveRange *LR = LiveInts->getCachedRegUnit(i))
3535       verifyLiveRange(*LR, i);
3536 }
3537 
3538 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR,
3539                                            const VNInfo *VNI, Register Reg,
3540                                            LaneBitmask LaneMask) {
3541   if (VNI->isUnused())
3542     return;
3543 
3544   const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def);
3545 
3546   if (!DefVNI) {
3547     report("Value not live at VNInfo def and not marked unused", MF);
3548     report_context(LR, Reg, LaneMask);
3549     report_context(*VNI);
3550     return;
3551   }
3552 
3553   if (DefVNI != VNI) {
3554     report("Live segment at def has different VNInfo", MF);
3555     report_context(LR, Reg, LaneMask);
3556     report_context(*VNI);
3557     return;
3558   }
3559 
3560   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def);
3561   if (!MBB) {
3562     report("Invalid VNInfo definition index", MF);
3563     report_context(LR, Reg, LaneMask);
3564     report_context(*VNI);
3565     return;
3566   }
3567 
3568   if (VNI->isPHIDef()) {
3569     if (VNI->def != LiveInts->getMBBStartIdx(MBB)) {
3570       report("PHIDef VNInfo is not defined at MBB start", MBB);
3571       report_context(LR, Reg, LaneMask);
3572       report_context(*VNI);
3573     }
3574     return;
3575   }
3576 
3577   // Non-PHI def.
3578   const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def);
3579   if (!MI) {
3580     report("No instruction at VNInfo def index", MBB);
3581     report_context(LR, Reg, LaneMask);
3582     report_context(*VNI);
3583     return;
3584   }
3585 
3586   if (Reg != 0) {
3587     bool hasDef = false;
3588     bool isEarlyClobber = false;
3589     for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3590       if (!MOI->isReg() || !MOI->isDef())
3591         continue;
3592       if (Reg.isVirtual()) {
3593         if (MOI->getReg() != Reg)
3594           continue;
3595       } else {
3596         if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg))
3597           continue;
3598       }
3599       if (LaneMask.any() &&
3600           (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none())
3601         continue;
3602       hasDef = true;
3603       if (MOI->isEarlyClobber())
3604         isEarlyClobber = true;
3605     }
3606 
3607     if (!hasDef) {
3608       report("Defining instruction does not modify register", MI);
3609       report_context(LR, Reg, LaneMask);
3610       report_context(*VNI);
3611     }
3612 
3613     // Early clobber defs begin at USE slots, but other defs must begin at
3614     // DEF slots.
3615     if (isEarlyClobber) {
3616       if (!VNI->def.isEarlyClobber()) {
3617         report("Early clobber def must be at an early-clobber slot", MBB);
3618         report_context(LR, Reg, LaneMask);
3619         report_context(*VNI);
3620       }
3621     } else if (!VNI->def.isRegister()) {
3622       report("Non-PHI, non-early clobber def must be at a register slot", MBB);
3623       report_context(LR, Reg, LaneMask);
3624       report_context(*VNI);
3625     }
3626   }
3627 }
3628 
3629 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR,
3630                                              const LiveRange::const_iterator I,
3631                                              Register Reg,
3632                                              LaneBitmask LaneMask) {
3633   const LiveRange::Segment &S = *I;
3634   const VNInfo *VNI = S.valno;
3635   assert(VNI && "Live segment has no valno");
3636 
3637   if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) {
3638     report("Foreign valno in live segment", MF);
3639     report_context(LR, Reg, LaneMask);
3640     report_context(S);
3641     report_context(*VNI);
3642   }
3643 
3644   if (VNI->isUnused()) {
3645     report("Live segment valno is marked unused", MF);
3646     report_context(LR, Reg, LaneMask);
3647     report_context(S);
3648   }
3649 
3650   const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start);
3651   if (!MBB) {
3652     report("Bad start of live segment, no basic block", MF);
3653     report_context(LR, Reg, LaneMask);
3654     report_context(S);
3655     return;
3656   }
3657   SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB);
3658   if (S.start != MBBStartIdx && S.start != VNI->def) {
3659     report("Live segment must begin at MBB entry or valno def", MBB);
3660     report_context(LR, Reg, LaneMask);
3661     report_context(S);
3662   }
3663 
3664   const MachineBasicBlock *EndMBB =
3665     LiveInts->getMBBFromIndex(S.end.getPrevSlot());
3666   if (!EndMBB) {
3667     report("Bad end of live segment, no basic block", MF);
3668     report_context(LR, Reg, LaneMask);
3669     report_context(S);
3670     return;
3671   }
3672 
3673   // Checks for non-live-out segments.
3674   if (S.end != LiveInts->getMBBEndIdx(EndMBB)) {
3675     // RegUnit intervals are allowed dead phis.
3676     if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def &&
3677         S.end == VNI->def.getDeadSlot())
3678       return;
3679 
3680     // The live segment is ending inside EndMBB
3681     const MachineInstr *MI =
3682         LiveInts->getInstructionFromIndex(S.end.getPrevSlot());
3683     if (!MI) {
3684       report("Live segment doesn't end at a valid instruction", EndMBB);
3685       report_context(LR, Reg, LaneMask);
3686       report_context(S);
3687       return;
3688     }
3689 
3690     // The block slot must refer to a basic block boundary.
3691     if (S.end.isBlock()) {
3692       report("Live segment ends at B slot of an instruction", EndMBB);
3693       report_context(LR, Reg, LaneMask);
3694       report_context(S);
3695     }
3696 
3697     if (S.end.isDead()) {
3698       // Segment ends on the dead slot.
3699       // That means there must be a dead def.
3700       if (!SlotIndex::isSameInstr(S.start, S.end)) {
3701         report("Live segment ending at dead slot spans instructions", EndMBB);
3702         report_context(LR, Reg, LaneMask);
3703         report_context(S);
3704       }
3705     }
3706 
3707     // After tied operands are rewritten, a live segment can only end at an
3708     // early-clobber slot if it is being redefined by an early-clobber def.
3709     // TODO: Before tied operands are rewritten, a live segment can only end at
3710     // an early-clobber slot if the last use is tied to an early-clobber def.
3711     if (MF->getProperties().hasProperty(
3712             MachineFunctionProperties::Property::TiedOpsRewritten) &&
3713         S.end.isEarlyClobber()) {
3714       if (I + 1 == LR.end() || (I + 1)->start != S.end) {
3715         report("Live segment ending at early clobber slot must be "
3716                "redefined by an EC def in the same instruction",
3717                EndMBB);
3718         report_context(LR, Reg, LaneMask);
3719         report_context(S);
3720       }
3721     }
3722 
3723     // The following checks only apply to virtual registers. Physreg liveness
3724     // is too weird to check.
3725     if (Reg.isVirtual()) {
3726       // A live segment can end with either a redefinition, a kill flag on a
3727       // use, or a dead flag on a def.
3728       bool hasRead = false;
3729       bool hasSubRegDef = false;
3730       bool hasDeadDef = false;
3731       for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) {
3732         if (!MOI->isReg() || MOI->getReg() != Reg)
3733           continue;
3734         unsigned Sub = MOI->getSubReg();
3735         LaneBitmask SLM =
3736             Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll();
3737         if (MOI->isDef()) {
3738           if (Sub != 0) {
3739             hasSubRegDef = true;
3740             // An operand %0:sub0 reads %0:sub1..n. Invert the lane
3741             // mask for subregister defs. Read-undef defs will be handled by
3742             // readsReg below.
3743             SLM = ~SLM;
3744           }
3745           if (MOI->isDead())
3746             hasDeadDef = true;
3747         }
3748         if (LaneMask.any() && (LaneMask & SLM).none())
3749           continue;
3750         if (MOI->readsReg())
3751           hasRead = true;
3752       }
3753       if (S.end.isDead()) {
3754         // Make sure that the corresponding machine operand for a "dead" live
3755         // range has the dead flag. We cannot perform this check for subregister
3756         // liveranges as partially dead values are allowed.
3757         if (LaneMask.none() && !hasDeadDef) {
3758           report(
3759               "Instruction ending live segment on dead slot has no dead flag",
3760               MI);
3761           report_context(LR, Reg, LaneMask);
3762           report_context(S);
3763         }
3764       } else {
3765         if (!hasRead) {
3766           // When tracking subregister liveness, the main range must start new
3767           // values on partial register writes, even if there is no read.
3768           if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() ||
3769               !hasSubRegDef) {
3770             report("Instruction ending live segment doesn't read the register",
3771                    MI);
3772             report_context(LR, Reg, LaneMask);
3773             report_context(S);
3774           }
3775         }
3776       }
3777     }
3778   }
3779 
3780   // Now check all the basic blocks in this live segment.
3781   MachineFunction::const_iterator MFI = MBB->getIterator();
3782   // Is this live segment the beginning of a non-PHIDef VN?
3783   if (S.start == VNI->def && !VNI->isPHIDef()) {
3784     // Not live-in to any blocks.
3785     if (MBB == EndMBB)
3786       return;
3787     // Skip this block.
3788     ++MFI;
3789   }
3790 
3791   SmallVector<SlotIndex, 4> Undefs;
3792   if (LaneMask.any()) {
3793     LiveInterval &OwnerLI = LiveInts->getInterval(Reg);
3794     OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes);
3795   }
3796 
3797   while (true) {
3798     assert(LiveInts->isLiveInToMBB(LR, &*MFI));
3799     // We don't know how to track physregs into a landing pad.
3800     if (!Reg.isVirtual() && MFI->isEHPad()) {
3801       if (&*MFI == EndMBB)
3802         break;
3803       ++MFI;
3804       continue;
3805     }
3806 
3807     // Is VNI a PHI-def in the current block?
3808     bool IsPHI = VNI->isPHIDef() &&
3809       VNI->def == LiveInts->getMBBStartIdx(&*MFI);
3810 
3811     // Check that VNI is live-out of all predecessors.
3812     for (const MachineBasicBlock *Pred : MFI->predecessors()) {
3813       SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred);
3814       // Predecessor of landing pad live-out on last call.
3815       if (MFI->isEHPad()) {
3816         for (const MachineInstr &MI : llvm::reverse(*Pred)) {
3817           if (MI.isCall()) {
3818             PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex();
3819             break;
3820           }
3821         }
3822       }
3823       const VNInfo *PVNI = LR.getVNInfoBefore(PEnd);
3824 
3825       // All predecessors must have a live-out value. However for a phi
3826       // instruction with subregister intervals
3827       // only one of the subregisters (not necessarily the current one) needs to
3828       // be defined.
3829       if (!PVNI && (LaneMask.none() || !IsPHI)) {
3830         if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes))
3831           continue;
3832         report("Register not marked live out of predecessor", Pred);
3833         report_context(LR, Reg, LaneMask);
3834         report_context(*VNI);
3835         OS << " live into " << printMBBReference(*MFI) << '@'
3836            << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd
3837            << '\n';
3838         continue;
3839       }
3840 
3841       // Only PHI-defs can take different predecessor values.
3842       if (!IsPHI && PVNI != VNI) {
3843         report("Different value live out of predecessor", Pred);
3844         report_context(LR, Reg, LaneMask);
3845         OS << "Valno #" << PVNI->id << " live out of "
3846            << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id
3847            << " live into " << printMBBReference(*MFI) << '@'
3848            << LiveInts->getMBBStartIdx(&*MFI) << '\n';
3849       }
3850     }
3851     if (&*MFI == EndMBB)
3852       break;
3853     ++MFI;
3854   }
3855 }
3856 
3857 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg,
3858                                       LaneBitmask LaneMask) {
3859   for (const VNInfo *VNI : LR.valnos)
3860     verifyLiveRangeValue(LR, VNI, Reg, LaneMask);
3861 
3862   for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I)
3863     verifyLiveRangeSegment(LR, I, Reg, LaneMask);
3864 }
3865 
3866 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) {
3867   Register Reg = LI.reg();
3868   assert(Reg.isVirtual());
3869   verifyLiveRange(LI, Reg);
3870 
3871   if (LI.hasSubRanges()) {
3872     LaneBitmask Mask;
3873     LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg);
3874     for (const LiveInterval::SubRange &SR : LI.subranges()) {
3875       if ((Mask & SR.LaneMask).any()) {
3876         report("Lane masks of sub ranges overlap in live interval", MF);
3877         report_context(LI);
3878       }
3879       if ((SR.LaneMask & ~MaxMask).any()) {
3880         report("Subrange lanemask is invalid", MF);
3881         report_context(LI);
3882       }
3883       if (SR.empty()) {
3884         report("Subrange must not be empty", MF);
3885         report_context(SR, LI.reg(), SR.LaneMask);
3886       }
3887       Mask |= SR.LaneMask;
3888       verifyLiveRange(SR, LI.reg(), SR.LaneMask);
3889       if (!LI.covers(SR)) {
3890         report("A Subrange is not covered by the main range", MF);
3891         report_context(LI);
3892       }
3893     }
3894   }
3895 
3896   // Check the LI only has one connected component.
3897   ConnectedVNInfoEqClasses ConEQ(*LiveInts);
3898   unsigned NumComp = ConEQ.Classify(LI);
3899   if (NumComp > 1) {
3900     report("Multiple connected components in live interval", MF);
3901     report_context(LI);
3902     for (unsigned comp = 0; comp != NumComp; ++comp) {
3903       OS << comp << ": valnos";
3904       for (const VNInfo *I : LI.valnos)
3905         if (comp == ConEQ.getEqClass(I))
3906           OS << ' ' << I->id;
3907       OS << '\n';
3908     }
3909   }
3910 }
3911 
3912 namespace {
3913 
3914   // FrameSetup and FrameDestroy can have zero adjustment, so using a single
3915   // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the
3916   // value is zero.
3917   // We use a bool plus an integer to capture the stack state.
3918 struct StackStateOfBB {
3919   StackStateOfBB() = default;
3920   StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup)
3921       : EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup),
3922         ExitIsSetup(ExitSetup) {}
3923 
3924   // Can be negative, which means we are setting up a frame.
3925   int EntryValue = 0;
3926   int ExitValue = 0;
3927   bool EntryIsSetup = false;
3928   bool ExitIsSetup = false;
3929 };
3930 
3931 } // end anonymous namespace
3932 
3933 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed
3934 /// by a FrameDestroy <n>, stack adjustments are identical on all
3935 /// CFG edges to a merge point, and frame is destroyed at end of a return block.
3936 void MachineVerifier::verifyStackFrame() {
3937   unsigned FrameSetupOpcode   = TII->getCallFrameSetupOpcode();
3938   unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode();
3939   if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u)
3940     return;
3941 
3942   SmallVector<StackStateOfBB, 8> SPState;
3943   SPState.resize(MF->getNumBlockIDs());
3944   df_iterator_default_set<const MachineBasicBlock*> Reachable;
3945 
3946   // Visit the MBBs in DFS order.
3947   for (df_ext_iterator<const MachineFunction *,
3948                        df_iterator_default_set<const MachineBasicBlock *>>
3949        DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable);
3950        DFI != DFE; ++DFI) {
3951     const MachineBasicBlock *MBB = *DFI;
3952 
3953     StackStateOfBB BBState;
3954     // Check the exit state of the DFS stack predecessor.
3955     if (DFI.getPathLength() >= 2) {
3956       const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2);
3957       assert(Reachable.count(StackPred) &&
3958              "DFS stack predecessor is already visited.\n");
3959       BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue;
3960       BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup;
3961       BBState.ExitValue = BBState.EntryValue;
3962       BBState.ExitIsSetup = BBState.EntryIsSetup;
3963     }
3964 
3965     if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) {
3966       report("Call frame size on entry does not match value computed from "
3967              "predecessor",
3968              MBB);
3969       OS << "Call frame size on entry " << MBB->getCallFrameSize()
3970          << " does not match value computed from predecessor "
3971          << -BBState.EntryValue << '\n';
3972     }
3973 
3974     // Update stack state by checking contents of MBB.
3975     for (const auto &I : *MBB) {
3976       if (I.getOpcode() == FrameSetupOpcode) {
3977         if (BBState.ExitIsSetup)
3978           report("FrameSetup is after another FrameSetup", &I);
3979         if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
3980           report("AdjustsStack not set in presence of a frame pseudo "
3981                  "instruction.", &I);
3982         BBState.ExitValue -= TII->getFrameTotalSize(I);
3983         BBState.ExitIsSetup = true;
3984       }
3985 
3986       if (I.getOpcode() == FrameDestroyOpcode) {
3987         int Size = TII->getFrameTotalSize(I);
3988         if (!BBState.ExitIsSetup)
3989           report("FrameDestroy is not after a FrameSetup", &I);
3990         int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue :
3991                                                BBState.ExitValue;
3992         if (BBState.ExitIsSetup && AbsSPAdj != Size) {
3993           report("FrameDestroy <n> is after FrameSetup <m>", &I);
3994           OS << "FrameDestroy <" << Size << "> is after FrameSetup <"
3995              << AbsSPAdj << ">.\n";
3996         }
3997         if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack())
3998           report("AdjustsStack not set in presence of a frame pseudo "
3999                  "instruction.", &I);
4000         BBState.ExitValue += Size;
4001         BBState.ExitIsSetup = false;
4002       }
4003     }
4004     SPState[MBB->getNumber()] = BBState;
4005 
4006     // Make sure the exit state of any predecessor is consistent with the entry
4007     // state.
4008     for (const MachineBasicBlock *Pred : MBB->predecessors()) {
4009       if (Reachable.count(Pred) &&
4010           (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue ||
4011            SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) {
4012         report("The exit stack state of a predecessor is inconsistent.", MBB);
4013         OS << "Predecessor " << printMBBReference(*Pred) << " has exit state ("
4014            << SPState[Pred->getNumber()].ExitValue << ", "
4015            << SPState[Pred->getNumber()].ExitIsSetup << "), while "
4016            << printMBBReference(*MBB) << " has entry state ("
4017            << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n";
4018       }
4019     }
4020 
4021     // Make sure the entry state of any successor is consistent with the exit
4022     // state.
4023     for (const MachineBasicBlock *Succ : MBB->successors()) {
4024       if (Reachable.count(Succ) &&
4025           (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue ||
4026            SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) {
4027         report("The entry stack state of a successor is inconsistent.", MBB);
4028         OS << "Successor " << printMBBReference(*Succ) << " has entry state ("
4029            << SPState[Succ->getNumber()].EntryValue << ", "
4030            << SPState[Succ->getNumber()].EntryIsSetup << "), while "
4031            << printMBBReference(*MBB) << " has exit state ("
4032            << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n";
4033       }
4034     }
4035 
4036     // Make sure a basic block with return ends with zero stack adjustment.
4037     if (!MBB->empty() && MBB->back().isReturn()) {
4038       if (BBState.ExitIsSetup)
4039         report("A return block ends with a FrameSetup.", MBB);
4040       if (BBState.ExitValue)
4041         report("A return block ends with a nonzero stack adjustment.", MBB);
4042     }
4043   }
4044 }
4045 
4046 void MachineVerifier::verifyStackProtector() {
4047   const MachineFrameInfo &MFI = MF->getFrameInfo();
4048   if (!MFI.hasStackProtectorIndex())
4049     return;
4050   // Only applicable when the offsets of frame objects have been determined,
4051   // which is indicated by a non-zero stack size.
4052   if (!MFI.getStackSize())
4053     return;
4054   const TargetFrameLowering &TFI = *MF->getSubtarget().getFrameLowering();
4055   bool StackGrowsDown =
4056       TFI.getStackGrowthDirection() == TargetFrameLowering::StackGrowsDown;
4057   // Collect the frame indices of the callee-saved registers which are spilled
4058   // to the stack. These are the registers that are stored above the stack
4059   // protector.
4060   SmallSet<unsigned, 4> CalleeSavedFrameIndices;
4061   if (MFI.isCalleeSavedInfoValid()) {
4062     for (const CalleeSavedInfo &Info : MFI.getCalleeSavedInfo()) {
4063       if (!Info.isSpilledToReg())
4064         CalleeSavedFrameIndices.insert(Info.getFrameIdx());
4065     }
4066   }
4067   unsigned FI = MFI.getStackProtectorIndex();
4068   int64_t SPStart = MFI.getObjectOffset(FI);
4069   int64_t SPEnd = SPStart + MFI.getObjectSize(FI);
4070   for (unsigned I = 0, E = MFI.getObjectIndexEnd(); I != E; ++I) {
4071     if (I == FI)
4072       continue;
4073     // Variable-sized objects do not have a fixed offset.
4074     if (MFI.isVariableSizedObjectIndex(I))
4075       continue;
4076     if (CalleeSavedFrameIndices.contains(I))
4077       continue;
4078     int64_t ObjStart = MFI.getObjectOffset(I);
4079     int64_t ObjEnd = ObjStart + MFI.getObjectSize(I);
4080     if (SPStart < ObjEnd && ObjStart < SPEnd) {
4081       report("Stack protector overlaps with another stack object", MF);
4082       break;
4083     }
4084     if ((StackGrowsDown && SPStart <= ObjStart) ||
4085         (!StackGrowsDown && SPStart >= ObjStart)) {
4086       report("Stack protector is not the top-most object on the stack", MF);
4087       break;
4088     }
4089   }
4090 }
4091