1 //===- MachineVerifier.cpp - Machine Code Verifier ------------------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // Pass to verify generated machine code. The following is checked: 10 // 11 // Operand counts: All explicit operands must be present. 12 // 13 // Register classes: All physical and virtual register operands must be 14 // compatible with the register class required by the instruction descriptor. 15 // 16 // Register live intervals: Registers must be defined only once, and must be 17 // defined before use. 18 // 19 // The machine code verifier is enabled with the command-line option 20 // -verify-machineinstrs. 21 //===----------------------------------------------------------------------===// 22 23 #include "llvm/CodeGen/MachineVerifier.h" 24 #include "llvm/ADT/BitVector.h" 25 #include "llvm/ADT/DenseMap.h" 26 #include "llvm/ADT/DenseSet.h" 27 #include "llvm/ADT/DepthFirstIterator.h" 28 #include "llvm/ADT/PostOrderIterator.h" 29 #include "llvm/ADT/STLExtras.h" 30 #include "llvm/ADT/SetOperations.h" 31 #include "llvm/ADT/SmallPtrSet.h" 32 #include "llvm/ADT/SmallVector.h" 33 #include "llvm/ADT/StringRef.h" 34 #include "llvm/ADT/Twine.h" 35 #include "llvm/CodeGen/CodeGenCommonISel.h" 36 #include "llvm/CodeGen/GlobalISel/GenericMachineInstrs.h" 37 #include "llvm/CodeGen/LiveInterval.h" 38 #include "llvm/CodeGen/LiveIntervals.h" 39 #include "llvm/CodeGen/LiveRangeCalc.h" 40 #include "llvm/CodeGen/LiveStacks.h" 41 #include "llvm/CodeGen/LiveVariables.h" 42 #include "llvm/CodeGen/MachineBasicBlock.h" 43 #include "llvm/CodeGen/MachineConvergenceVerifier.h" 44 #include "llvm/CodeGen/MachineDominators.h" 45 #include "llvm/CodeGen/MachineFrameInfo.h" 46 #include "llvm/CodeGen/MachineFunction.h" 47 #include "llvm/CodeGen/MachineFunctionPass.h" 48 #include "llvm/CodeGen/MachineInstr.h" 49 #include "llvm/CodeGen/MachineInstrBundle.h" 50 #include "llvm/CodeGen/MachineMemOperand.h" 51 #include "llvm/CodeGen/MachineOperand.h" 52 #include "llvm/CodeGen/MachineRegisterInfo.h" 53 #include "llvm/CodeGen/PseudoSourceValue.h" 54 #include "llvm/CodeGen/RegisterBank.h" 55 #include "llvm/CodeGen/RegisterBankInfo.h" 56 #include "llvm/CodeGen/SlotIndexes.h" 57 #include "llvm/CodeGen/StackMaps.h" 58 #include "llvm/CodeGen/TargetInstrInfo.h" 59 #include "llvm/CodeGen/TargetLowering.h" 60 #include "llvm/CodeGen/TargetOpcodes.h" 61 #include "llvm/CodeGen/TargetRegisterInfo.h" 62 #include "llvm/CodeGen/TargetSubtargetInfo.h" 63 #include "llvm/CodeGenTypes/LowLevelType.h" 64 #include "llvm/IR/BasicBlock.h" 65 #include "llvm/IR/Constants.h" 66 #include "llvm/IR/EHPersonalities.h" 67 #include "llvm/IR/Function.h" 68 #include "llvm/IR/InlineAsm.h" 69 #include "llvm/IR/Instructions.h" 70 #include "llvm/InitializePasses.h" 71 #include "llvm/MC/LaneBitmask.h" 72 #include "llvm/MC/MCAsmInfo.h" 73 #include "llvm/MC/MCDwarf.h" 74 #include "llvm/MC/MCInstrDesc.h" 75 #include "llvm/MC/MCRegisterInfo.h" 76 #include "llvm/MC/MCTargetOptions.h" 77 #include "llvm/Pass.h" 78 #include "llvm/Support/Casting.h" 79 #include "llvm/Support/ErrorHandling.h" 80 #include "llvm/Support/MathExtras.h" 81 #include "llvm/Support/ModRef.h" 82 #include "llvm/Support/raw_ostream.h" 83 #include "llvm/Target/TargetMachine.h" 84 #include <algorithm> 85 #include <cassert> 86 #include <cstddef> 87 #include <cstdint> 88 #include <iterator> 89 #include <string> 90 #include <utility> 91 92 using namespace llvm; 93 94 namespace { 95 96 struct MachineVerifier { 97 MachineVerifier(MachineFunctionAnalysisManager &MFAM, const char *b, 98 raw_ostream *OS) 99 : MFAM(&MFAM), OS(OS ? *OS : nulls()), Banner(b) {} 100 101 MachineVerifier(Pass *pass, const char *b, raw_ostream *OS) 102 : PASS(pass), OS(OS ? *OS : nulls()), Banner(b) {} 103 104 MachineVerifier(const char *b, LiveVariables *LiveVars, 105 LiveIntervals *LiveInts, LiveStacks *LiveStks, 106 SlotIndexes *Indexes, raw_ostream *OS) 107 : OS(OS ? *OS : nulls()), Banner(b), LiveVars(LiveVars), 108 LiveInts(LiveInts), LiveStks(LiveStks), Indexes(Indexes) {} 109 110 unsigned verify(const MachineFunction &MF); 111 112 MachineFunctionAnalysisManager *MFAM = nullptr; 113 Pass *const PASS = nullptr; 114 raw_ostream &OS; 115 const char *Banner; 116 const MachineFunction *MF = nullptr; 117 const TargetMachine *TM = nullptr; 118 const TargetInstrInfo *TII = nullptr; 119 const TargetRegisterInfo *TRI = nullptr; 120 const MachineRegisterInfo *MRI = nullptr; 121 const RegisterBankInfo *RBI = nullptr; 122 123 unsigned foundErrors = 0; 124 125 // Avoid querying the MachineFunctionProperties for each operand. 126 bool isFunctionRegBankSelected = false; 127 bool isFunctionSelected = false; 128 bool isFunctionTracksDebugUserValues = false; 129 130 using RegVector = SmallVector<Register, 16>; 131 using RegMaskVector = SmallVector<const uint32_t *, 4>; 132 using RegSet = DenseSet<Register>; 133 using RegMap = DenseMap<Register, const MachineInstr *>; 134 using BlockSet = SmallPtrSet<const MachineBasicBlock *, 8>; 135 136 const MachineInstr *FirstNonPHI = nullptr; 137 const MachineInstr *FirstTerminator = nullptr; 138 BlockSet FunctionBlocks; 139 140 BitVector regsReserved; 141 RegSet regsLive; 142 RegVector regsDefined, regsDead, regsKilled; 143 RegMaskVector regMasks; 144 145 SlotIndex lastIndex; 146 147 // Add Reg and any sub-registers to RV 148 void addRegWithSubRegs(RegVector &RV, Register Reg) { 149 RV.push_back(Reg); 150 if (Reg.isPhysical()) 151 append_range(RV, TRI->subregs(Reg.asMCReg())); 152 } 153 154 struct BBInfo { 155 // Is this MBB reachable from the MF entry point? 156 bool reachable = false; 157 158 // Vregs that must be live in because they are used without being 159 // defined. Map value is the user. vregsLiveIn doesn't include regs 160 // that only are used by PHI nodes. 161 RegMap vregsLiveIn; 162 163 // Regs killed in MBB. They may be defined again, and will then be in both 164 // regsKilled and regsLiveOut. 165 RegSet regsKilled; 166 167 // Regs defined in MBB and live out. Note that vregs passing through may 168 // be live out without being mentioned here. 169 RegSet regsLiveOut; 170 171 // Vregs that pass through MBB untouched. This set is disjoint from 172 // regsKilled and regsLiveOut. 173 RegSet vregsPassed; 174 175 // Vregs that must pass through MBB because they are needed by a successor 176 // block. This set is disjoint from regsLiveOut. 177 RegSet vregsRequired; 178 179 // Set versions of block's predecessor and successor lists. 180 BlockSet Preds, Succs; 181 182 BBInfo() = default; 183 184 // Add register to vregsRequired if it belongs there. Return true if 185 // anything changed. 186 bool addRequired(Register Reg) { 187 if (!Reg.isVirtual()) 188 return false; 189 if (regsLiveOut.count(Reg)) 190 return false; 191 return vregsRequired.insert(Reg).second; 192 } 193 194 // Same for a full set. 195 bool addRequired(const RegSet &RS) { 196 bool Changed = false; 197 for (Register Reg : RS) 198 Changed |= addRequired(Reg); 199 return Changed; 200 } 201 202 // Same for a full map. 203 bool addRequired(const RegMap &RM) { 204 bool Changed = false; 205 for (const auto &I : RM) 206 Changed |= addRequired(I.first); 207 return Changed; 208 } 209 210 // Live-out registers are either in regsLiveOut or vregsPassed. 211 bool isLiveOut(Register Reg) const { 212 return regsLiveOut.count(Reg) || vregsPassed.count(Reg); 213 } 214 }; 215 216 // Extra register info per MBB. 217 DenseMap<const MachineBasicBlock*, BBInfo> MBBInfoMap; 218 219 bool isReserved(Register Reg) { 220 return Reg.id() < regsReserved.size() && regsReserved.test(Reg.id()); 221 } 222 223 bool isAllocatable(Register Reg) const { 224 return Reg.id() < TRI->getNumRegs() && TRI->isInAllocatableClass(Reg) && 225 !regsReserved.test(Reg.id()); 226 } 227 228 // Analysis information if available 229 LiveVariables *LiveVars = nullptr; 230 LiveIntervals *LiveInts = nullptr; 231 LiveStacks *LiveStks = nullptr; 232 SlotIndexes *Indexes = nullptr; 233 234 // This is calculated only when trying to verify convergence control tokens. 235 // Similar to the LLVM IR verifier, we calculate this locally instead of 236 // relying on the pass manager. 237 MachineDominatorTree DT; 238 239 void visitMachineFunctionBefore(); 240 void visitMachineBasicBlockBefore(const MachineBasicBlock *MBB); 241 void visitMachineBundleBefore(const MachineInstr *MI); 242 243 /// Verify that all of \p MI's virtual register operands are scalars. 244 /// \returns True if all virtual register operands are scalar. False 245 /// otherwise. 246 bool verifyAllRegOpsScalar(const MachineInstr &MI, 247 const MachineRegisterInfo &MRI); 248 bool verifyVectorElementMatch(LLT Ty0, LLT Ty1, const MachineInstr *MI); 249 250 bool verifyGIntrinsicSideEffects(const MachineInstr *MI); 251 bool verifyGIntrinsicConvergence(const MachineInstr *MI); 252 void verifyPreISelGenericInstruction(const MachineInstr *MI); 253 254 void visitMachineInstrBefore(const MachineInstr *MI); 255 void visitMachineOperand(const MachineOperand *MO, unsigned MONum); 256 void visitMachineBundleAfter(const MachineInstr *MI); 257 void visitMachineBasicBlockAfter(const MachineBasicBlock *MBB); 258 void visitMachineFunctionAfter(); 259 260 void report(const char *msg, const MachineFunction *MF); 261 void report(const char *msg, const MachineBasicBlock *MBB); 262 void report(const char *msg, const MachineInstr *MI); 263 void report(const char *msg, const MachineOperand *MO, unsigned MONum, 264 LLT MOVRegType = LLT{}); 265 void report(const Twine &Msg, const MachineInstr *MI); 266 267 void report_context(const LiveInterval &LI) const; 268 void report_context(const LiveRange &LR, Register VRegUnit, 269 LaneBitmask LaneMask) const; 270 void report_context(const LiveRange::Segment &S) const; 271 void report_context(const VNInfo &VNI) const; 272 void report_context(SlotIndex Pos) const; 273 void report_context(MCPhysReg PhysReg) const; 274 void report_context_liverange(const LiveRange &LR) const; 275 void report_context_lanemask(LaneBitmask LaneMask) const; 276 void report_context_vreg(Register VReg) const; 277 void report_context_vreg_regunit(Register VRegOrUnit) const; 278 279 void verifyInlineAsm(const MachineInstr *MI); 280 281 void checkLiveness(const MachineOperand *MO, unsigned MONum); 282 void checkLivenessAtUse(const MachineOperand *MO, unsigned MONum, 283 SlotIndex UseIdx, const LiveRange &LR, 284 Register VRegOrUnit, 285 LaneBitmask LaneMask = LaneBitmask::getNone()); 286 void checkLivenessAtDef(const MachineOperand *MO, unsigned MONum, 287 SlotIndex DefIdx, const LiveRange &LR, 288 Register VRegOrUnit, bool SubRangeCheck = false, 289 LaneBitmask LaneMask = LaneBitmask::getNone()); 290 291 void markReachable(const MachineBasicBlock *MBB); 292 void calcRegsPassed(); 293 void checkPHIOps(const MachineBasicBlock &MBB); 294 295 void calcRegsRequired(); 296 void verifyLiveVariables(); 297 void verifyLiveIntervals(); 298 void verifyLiveInterval(const LiveInterval&); 299 void verifyLiveRangeValue(const LiveRange &, const VNInfo *, Register, 300 LaneBitmask); 301 void verifyLiveRangeSegment(const LiveRange &, 302 const LiveRange::const_iterator I, Register, 303 LaneBitmask); 304 void verifyLiveRange(const LiveRange &, Register, 305 LaneBitmask LaneMask = LaneBitmask::getNone()); 306 307 void verifyStackFrame(); 308 309 void verifySlotIndexes() const; 310 void verifyProperties(const MachineFunction &MF); 311 }; 312 313 struct MachineVerifierLegacyPass : public MachineFunctionPass { 314 static char ID; // Pass ID, replacement for typeid 315 316 const std::string Banner; 317 318 MachineVerifierLegacyPass(std::string banner = std::string()) 319 : MachineFunctionPass(ID), Banner(std::move(banner)) { 320 initializeMachineVerifierLegacyPassPass(*PassRegistry::getPassRegistry()); 321 } 322 323 void getAnalysisUsage(AnalysisUsage &AU) const override { 324 AU.addUsedIfAvailable<LiveStacks>(); 325 AU.addUsedIfAvailable<LiveVariablesWrapperPass>(); 326 AU.addUsedIfAvailable<SlotIndexesWrapperPass>(); 327 AU.addUsedIfAvailable<LiveIntervalsWrapperPass>(); 328 AU.setPreservesAll(); 329 MachineFunctionPass::getAnalysisUsage(AU); 330 } 331 332 bool runOnMachineFunction(MachineFunction &MF) override { 333 // Skip functions that have known verification problems. 334 // FIXME: Remove this mechanism when all problematic passes have been 335 // fixed. 336 if (MF.getProperties().hasProperty( 337 MachineFunctionProperties::Property::FailsVerification)) 338 return false; 339 340 unsigned FoundErrors = 341 MachineVerifier(this, Banner.c_str(), &errs()).verify(MF); 342 if (FoundErrors) 343 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 344 return false; 345 } 346 }; 347 348 } // end anonymous namespace 349 350 PreservedAnalyses 351 MachineVerifierPass::run(MachineFunction &MF, 352 MachineFunctionAnalysisManager &MFAM) { 353 // Skip functions that have known verification problems. 354 // FIXME: Remove this mechanism when all problematic passes have been 355 // fixed. 356 if (MF.getProperties().hasProperty( 357 MachineFunctionProperties::Property::FailsVerification)) 358 return PreservedAnalyses::all(); 359 unsigned FoundErrors = 360 MachineVerifier(MFAM, Banner.c_str(), &errs()).verify(MF); 361 if (FoundErrors) 362 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 363 return PreservedAnalyses::all(); 364 } 365 366 char MachineVerifierLegacyPass::ID = 0; 367 368 INITIALIZE_PASS(MachineVerifierLegacyPass, "machineverifier", 369 "Verify generated machine code", false, false) 370 371 FunctionPass *llvm::createMachineVerifierPass(const std::string &Banner) { 372 return new MachineVerifierLegacyPass(Banner); 373 } 374 375 void llvm::verifyMachineFunction(const std::string &Banner, 376 const MachineFunction &MF) { 377 // TODO: Use MFAM after porting below analyses. 378 // LiveVariables *LiveVars; 379 // LiveIntervals *LiveInts; 380 // LiveStacks *LiveStks; 381 // SlotIndexes *Indexes; 382 unsigned FoundErrors = 383 MachineVerifier(nullptr, Banner.c_str(), &errs()).verify(MF); 384 if (FoundErrors) 385 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 386 } 387 388 bool MachineFunction::verify(Pass *p, const char *Banner, raw_ostream *OS, 389 bool AbortOnErrors) const { 390 MachineFunction &MF = const_cast<MachineFunction&>(*this); 391 unsigned FoundErrors = MachineVerifier(p, Banner, OS).verify(MF); 392 if (AbortOnErrors && FoundErrors) 393 report_fatal_error("Found "+Twine(FoundErrors)+" machine code errors."); 394 return FoundErrors == 0; 395 } 396 397 bool MachineFunction::verify(LiveIntervals *LiveInts, SlotIndexes *Indexes, 398 const char *Banner, raw_ostream *OS, 399 bool AbortOnErrors) const { 400 MachineFunction &MF = const_cast<MachineFunction &>(*this); 401 unsigned FoundErrors = 402 MachineVerifier(Banner, nullptr, LiveInts, nullptr, Indexes, OS) 403 .verify(MF); 404 if (AbortOnErrors && FoundErrors) 405 report_fatal_error("Found " + Twine(FoundErrors) + " machine code errors."); 406 return FoundErrors == 0; 407 } 408 409 void MachineVerifier::verifySlotIndexes() const { 410 if (Indexes == nullptr) 411 return; 412 413 // Ensure the IdxMBB list is sorted by slot indexes. 414 SlotIndex Last; 415 for (SlotIndexes::MBBIndexIterator I = Indexes->MBBIndexBegin(), 416 E = Indexes->MBBIndexEnd(); I != E; ++I) { 417 assert(!Last.isValid() || I->first > Last); 418 Last = I->first; 419 } 420 } 421 422 void MachineVerifier::verifyProperties(const MachineFunction &MF) { 423 // If a pass has introduced virtual registers without clearing the 424 // NoVRegs property (or set it without allocating the vregs) 425 // then report an error. 426 if (MF.getProperties().hasProperty( 427 MachineFunctionProperties::Property::NoVRegs) && 428 MRI->getNumVirtRegs()) 429 report("Function has NoVRegs property but there are VReg operands", &MF); 430 } 431 432 unsigned MachineVerifier::verify(const MachineFunction &MF) { 433 foundErrors = 0; 434 435 this->MF = &MF; 436 TM = &MF.getTarget(); 437 TII = MF.getSubtarget().getInstrInfo(); 438 TRI = MF.getSubtarget().getRegisterInfo(); 439 RBI = MF.getSubtarget().getRegBankInfo(); 440 MRI = &MF.getRegInfo(); 441 442 const bool isFunctionFailedISel = MF.getProperties().hasProperty( 443 MachineFunctionProperties::Property::FailedISel); 444 445 // If we're mid-GlobalISel and we already triggered the fallback path then 446 // it's expected that the MIR is somewhat broken but that's ok since we'll 447 // reset it and clear the FailedISel attribute in ResetMachineFunctions. 448 if (isFunctionFailedISel) 449 return foundErrors; 450 451 isFunctionRegBankSelected = MF.getProperties().hasProperty( 452 MachineFunctionProperties::Property::RegBankSelected); 453 isFunctionSelected = MF.getProperties().hasProperty( 454 MachineFunctionProperties::Property::Selected); 455 isFunctionTracksDebugUserValues = MF.getProperties().hasProperty( 456 MachineFunctionProperties::Property::TracksDebugUserValues); 457 458 if (PASS) { 459 auto *LISWrapper = PASS->getAnalysisIfAvailable<LiveIntervalsWrapperPass>(); 460 LiveInts = LISWrapper ? &LISWrapper->getLIS() : nullptr; 461 // We don't want to verify LiveVariables if LiveIntervals is available. 462 auto *LVWrapper = PASS->getAnalysisIfAvailable<LiveVariablesWrapperPass>(); 463 if (!LiveInts) 464 LiveVars = LVWrapper ? &LVWrapper->getLV() : nullptr; 465 LiveStks = PASS->getAnalysisIfAvailable<LiveStacks>(); 466 auto *SIWrapper = PASS->getAnalysisIfAvailable<SlotIndexesWrapperPass>(); 467 Indexes = SIWrapper ? &SIWrapper->getSI() : nullptr; 468 } 469 if (MFAM) { 470 MachineFunction &Func = const_cast<MachineFunction &>(MF); 471 LiveInts = MFAM->getCachedResult<LiveIntervalsAnalysis>(Func); 472 if (!LiveInts) 473 LiveVars = MFAM->getCachedResult<LiveVariablesAnalysis>(Func); 474 // TODO: LiveStks = MFAM->getCachedResult<LiveStacksAnalysis>(Func); 475 Indexes = MFAM->getCachedResult<SlotIndexesAnalysis>(Func); 476 } 477 478 verifySlotIndexes(); 479 480 verifyProperties(MF); 481 482 visitMachineFunctionBefore(); 483 for (const MachineBasicBlock &MBB : MF) { 484 visitMachineBasicBlockBefore(&MBB); 485 // Keep track of the current bundle header. 486 const MachineInstr *CurBundle = nullptr; 487 // Do we expect the next instruction to be part of the same bundle? 488 bool InBundle = false; 489 490 for (const MachineInstr &MI : MBB.instrs()) { 491 if (MI.getParent() != &MBB) { 492 report("Bad instruction parent pointer", &MBB); 493 OS << "Instruction: " << MI; 494 continue; 495 } 496 497 // Check for consistent bundle flags. 498 if (InBundle && !MI.isBundledWithPred()) 499 report("Missing BundledPred flag, " 500 "BundledSucc was set on predecessor", 501 &MI); 502 if (!InBundle && MI.isBundledWithPred()) 503 report("BundledPred flag is set, " 504 "but BundledSucc not set on predecessor", 505 &MI); 506 507 // Is this a bundle header? 508 if (!MI.isInsideBundle()) { 509 if (CurBundle) 510 visitMachineBundleAfter(CurBundle); 511 CurBundle = &MI; 512 visitMachineBundleBefore(CurBundle); 513 } else if (!CurBundle) 514 report("No bundle header", &MI); 515 visitMachineInstrBefore(&MI); 516 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 517 const MachineOperand &Op = MI.getOperand(I); 518 if (Op.getParent() != &MI) { 519 // Make sure to use correct addOperand / removeOperand / ChangeTo 520 // functions when replacing operands of a MachineInstr. 521 report("Instruction has operand with wrong parent set", &MI); 522 } 523 524 visitMachineOperand(&Op, I); 525 } 526 527 // Was this the last bundled instruction? 528 InBundle = MI.isBundledWithSucc(); 529 } 530 if (CurBundle) 531 visitMachineBundleAfter(CurBundle); 532 if (InBundle) 533 report("BundledSucc flag set on last instruction in block", &MBB.back()); 534 visitMachineBasicBlockAfter(&MBB); 535 } 536 visitMachineFunctionAfter(); 537 538 // Clean up. 539 regsLive.clear(); 540 regsDefined.clear(); 541 regsDead.clear(); 542 regsKilled.clear(); 543 regMasks.clear(); 544 MBBInfoMap.clear(); 545 546 return foundErrors; 547 } 548 549 void MachineVerifier::report(const char *msg, const MachineFunction *MF) { 550 assert(MF); 551 OS << '\n'; 552 if (!foundErrors++) { 553 if (Banner) 554 OS << "# " << Banner << '\n'; 555 556 if (LiveInts != nullptr) 557 LiveInts->print(OS); 558 else 559 MF->print(OS, Indexes); 560 } 561 562 OS << "*** Bad machine code: " << msg << " ***\n" 563 << "- function: " << MF->getName() << '\n'; 564 } 565 566 void MachineVerifier::report(const char *msg, const MachineBasicBlock *MBB) { 567 assert(MBB); 568 report(msg, MBB->getParent()); 569 OS << "- basic block: " << printMBBReference(*MBB) << ' ' << MBB->getName() 570 << " (" << (const void *)MBB << ')'; 571 if (Indexes) 572 OS << " [" << Indexes->getMBBStartIdx(MBB) << ';' 573 << Indexes->getMBBEndIdx(MBB) << ')'; 574 OS << '\n'; 575 } 576 577 void MachineVerifier::report(const char *msg, const MachineInstr *MI) { 578 assert(MI); 579 report(msg, MI->getParent()); 580 OS << "- instruction: "; 581 if (Indexes && Indexes->hasIndex(*MI)) 582 OS << Indexes->getInstructionIndex(*MI) << '\t'; 583 MI->print(OS, /*IsStandalone=*/true); 584 } 585 586 void MachineVerifier::report(const char *msg, const MachineOperand *MO, 587 unsigned MONum, LLT MOVRegType) { 588 assert(MO); 589 report(msg, MO->getParent()); 590 OS << "- operand " << MONum << ": "; 591 MO->print(OS, MOVRegType, TRI); 592 OS << '\n'; 593 } 594 595 void MachineVerifier::report(const Twine &Msg, const MachineInstr *MI) { 596 report(Msg.str().c_str(), MI); 597 } 598 599 void MachineVerifier::report_context(SlotIndex Pos) const { 600 OS << "- at: " << Pos << '\n'; 601 } 602 603 void MachineVerifier::report_context(const LiveInterval &LI) const { 604 OS << "- interval: " << LI << '\n'; 605 } 606 607 void MachineVerifier::report_context(const LiveRange &LR, Register VRegUnit, 608 LaneBitmask LaneMask) const { 609 report_context_liverange(LR); 610 report_context_vreg_regunit(VRegUnit); 611 if (LaneMask.any()) 612 report_context_lanemask(LaneMask); 613 } 614 615 void MachineVerifier::report_context(const LiveRange::Segment &S) const { 616 OS << "- segment: " << S << '\n'; 617 } 618 619 void MachineVerifier::report_context(const VNInfo &VNI) const { 620 OS << "- ValNo: " << VNI.id << " (def " << VNI.def << ")\n"; 621 } 622 623 void MachineVerifier::report_context_liverange(const LiveRange &LR) const { 624 OS << "- liverange: " << LR << '\n'; 625 } 626 627 void MachineVerifier::report_context(MCPhysReg PReg) const { 628 OS << "- p. register: " << printReg(PReg, TRI) << '\n'; 629 } 630 631 void MachineVerifier::report_context_vreg(Register VReg) const { 632 OS << "- v. register: " << printReg(VReg, TRI) << '\n'; 633 } 634 635 void MachineVerifier::report_context_vreg_regunit(Register VRegOrUnit) const { 636 if (VRegOrUnit.isVirtual()) { 637 report_context_vreg(VRegOrUnit); 638 } else { 639 OS << "- regunit: " << printRegUnit(VRegOrUnit, TRI) << '\n'; 640 } 641 } 642 643 void MachineVerifier::report_context_lanemask(LaneBitmask LaneMask) const { 644 OS << "- lanemask: " << PrintLaneMask(LaneMask) << '\n'; 645 } 646 647 void MachineVerifier::markReachable(const MachineBasicBlock *MBB) { 648 BBInfo &MInfo = MBBInfoMap[MBB]; 649 if (!MInfo.reachable) { 650 MInfo.reachable = true; 651 for (const MachineBasicBlock *Succ : MBB->successors()) 652 markReachable(Succ); 653 } 654 } 655 656 void MachineVerifier::visitMachineFunctionBefore() { 657 lastIndex = SlotIndex(); 658 regsReserved = MRI->reservedRegsFrozen() ? MRI->getReservedRegs() 659 : TRI->getReservedRegs(*MF); 660 661 if (!MF->empty()) 662 markReachable(&MF->front()); 663 664 // Build a set of the basic blocks in the function. 665 FunctionBlocks.clear(); 666 for (const auto &MBB : *MF) { 667 FunctionBlocks.insert(&MBB); 668 BBInfo &MInfo = MBBInfoMap[&MBB]; 669 670 MInfo.Preds.insert(MBB.pred_begin(), MBB.pred_end()); 671 if (MInfo.Preds.size() != MBB.pred_size()) 672 report("MBB has duplicate entries in its predecessor list.", &MBB); 673 674 MInfo.Succs.insert(MBB.succ_begin(), MBB.succ_end()); 675 if (MInfo.Succs.size() != MBB.succ_size()) 676 report("MBB has duplicate entries in its successor list.", &MBB); 677 } 678 679 // Check that the register use lists are sane. 680 MRI->verifyUseLists(); 681 682 if (!MF->empty()) 683 verifyStackFrame(); 684 } 685 686 void 687 MachineVerifier::visitMachineBasicBlockBefore(const MachineBasicBlock *MBB) { 688 FirstTerminator = nullptr; 689 FirstNonPHI = nullptr; 690 691 if (!MF->getProperties().hasProperty( 692 MachineFunctionProperties::Property::NoPHIs) && MRI->tracksLiveness()) { 693 // If this block has allocatable physical registers live-in, check that 694 // it is an entry block or landing pad. 695 for (const auto &LI : MBB->liveins()) { 696 if (isAllocatable(LI.PhysReg) && !MBB->isEHPad() && 697 MBB->getIterator() != MBB->getParent()->begin() && 698 !MBB->isInlineAsmBrIndirectTarget()) { 699 report("MBB has allocatable live-in, but isn't entry, landing-pad, or " 700 "inlineasm-br-indirect-target.", 701 MBB); 702 report_context(LI.PhysReg); 703 } 704 } 705 } 706 707 if (MBB->isIRBlockAddressTaken()) { 708 if (!MBB->getAddressTakenIRBlock()->hasAddressTaken()) 709 report("ir-block-address-taken is associated with basic block not used by " 710 "a blockaddress.", 711 MBB); 712 } 713 714 // Count the number of landing pad successors. 715 SmallPtrSet<const MachineBasicBlock*, 4> LandingPadSuccs; 716 for (const auto *succ : MBB->successors()) { 717 if (succ->isEHPad()) 718 LandingPadSuccs.insert(succ); 719 if (!FunctionBlocks.count(succ)) 720 report("MBB has successor that isn't part of the function.", MBB); 721 if (!MBBInfoMap[succ].Preds.count(MBB)) { 722 report("Inconsistent CFG", MBB); 723 OS << "MBB is not in the predecessor list of the successor " 724 << printMBBReference(*succ) << ".\n"; 725 } 726 } 727 728 // Check the predecessor list. 729 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 730 if (!FunctionBlocks.count(Pred)) 731 report("MBB has predecessor that isn't part of the function.", MBB); 732 if (!MBBInfoMap[Pred].Succs.count(MBB)) { 733 report("Inconsistent CFG", MBB); 734 OS << "MBB is not in the successor list of the predecessor " 735 << printMBBReference(*Pred) << ".\n"; 736 } 737 } 738 739 const MCAsmInfo *AsmInfo = TM->getMCAsmInfo(); 740 const BasicBlock *BB = MBB->getBasicBlock(); 741 const Function &F = MF->getFunction(); 742 if (LandingPadSuccs.size() > 1 && 743 !(AsmInfo && 744 AsmInfo->getExceptionHandlingType() == ExceptionHandling::SjLj && 745 BB && isa<SwitchInst>(BB->getTerminator())) && 746 !isScopedEHPersonality(classifyEHPersonality(F.getPersonalityFn()))) 747 report("MBB has more than one landing pad successor", MBB); 748 749 // Call analyzeBranch. If it succeeds, there several more conditions to check. 750 MachineBasicBlock *TBB = nullptr, *FBB = nullptr; 751 SmallVector<MachineOperand, 4> Cond; 752 if (!TII->analyzeBranch(*const_cast<MachineBasicBlock *>(MBB), TBB, FBB, 753 Cond)) { 754 // Ok, analyzeBranch thinks it knows what's going on with this block. Let's 755 // check whether its answers match up with reality. 756 if (!TBB && !FBB) { 757 // Block falls through to its successor. 758 if (!MBB->empty() && MBB->back().isBarrier() && 759 !TII->isPredicated(MBB->back())) { 760 report("MBB exits via unconditional fall-through but ends with a " 761 "barrier instruction!", MBB); 762 } 763 if (!Cond.empty()) { 764 report("MBB exits via unconditional fall-through but has a condition!", 765 MBB); 766 } 767 } else if (TBB && !FBB && Cond.empty()) { 768 // Block unconditionally branches somewhere. 769 if (MBB->empty()) { 770 report("MBB exits via unconditional branch but doesn't contain " 771 "any instructions!", MBB); 772 } else if (!MBB->back().isBarrier()) { 773 report("MBB exits via unconditional branch but doesn't end with a " 774 "barrier instruction!", MBB); 775 } else if (!MBB->back().isTerminator()) { 776 report("MBB exits via unconditional branch but the branch isn't a " 777 "terminator instruction!", MBB); 778 } 779 } else if (TBB && !FBB && !Cond.empty()) { 780 // Block conditionally branches somewhere, otherwise falls through. 781 if (MBB->empty()) { 782 report("MBB exits via conditional branch/fall-through but doesn't " 783 "contain any instructions!", MBB); 784 } else if (MBB->back().isBarrier()) { 785 report("MBB exits via conditional branch/fall-through but ends with a " 786 "barrier instruction!", MBB); 787 } else if (!MBB->back().isTerminator()) { 788 report("MBB exits via conditional branch/fall-through but the branch " 789 "isn't a terminator instruction!", MBB); 790 } 791 } else if (TBB && FBB) { 792 // Block conditionally branches somewhere, otherwise branches 793 // somewhere else. 794 if (MBB->empty()) { 795 report("MBB exits via conditional branch/branch but doesn't " 796 "contain any instructions!", MBB); 797 } else if (!MBB->back().isBarrier()) { 798 report("MBB exits via conditional branch/branch but doesn't end with a " 799 "barrier instruction!", MBB); 800 } else if (!MBB->back().isTerminator()) { 801 report("MBB exits via conditional branch/branch but the branch " 802 "isn't a terminator instruction!", MBB); 803 } 804 if (Cond.empty()) { 805 report("MBB exits via conditional branch/branch but there's no " 806 "condition!", MBB); 807 } 808 } else { 809 report("analyzeBranch returned invalid data!", MBB); 810 } 811 812 // Now check that the successors match up with the answers reported by 813 // analyzeBranch. 814 if (TBB && !MBB->isSuccessor(TBB)) 815 report("MBB exits via jump or conditional branch, but its target isn't a " 816 "CFG successor!", 817 MBB); 818 if (FBB && !MBB->isSuccessor(FBB)) 819 report("MBB exits via conditional branch, but its target isn't a CFG " 820 "successor!", 821 MBB); 822 823 // There might be a fallthrough to the next block if there's either no 824 // unconditional true branch, or if there's a condition, and one of the 825 // branches is missing. 826 bool Fallthrough = !TBB || (!Cond.empty() && !FBB); 827 828 // A conditional fallthrough must be an actual CFG successor, not 829 // unreachable. (Conversely, an unconditional fallthrough might not really 830 // be a successor, because the block might end in unreachable.) 831 if (!Cond.empty() && !FBB) { 832 MachineFunction::const_iterator MBBI = std::next(MBB->getIterator()); 833 if (MBBI == MF->end()) { 834 report("MBB conditionally falls through out of function!", MBB); 835 } else if (!MBB->isSuccessor(&*MBBI)) 836 report("MBB exits via conditional branch/fall-through but the CFG " 837 "successors don't match the actual successors!", 838 MBB); 839 } 840 841 // Verify that there aren't any extra un-accounted-for successors. 842 for (const MachineBasicBlock *SuccMBB : MBB->successors()) { 843 // If this successor is one of the branch targets, it's okay. 844 if (SuccMBB == TBB || SuccMBB == FBB) 845 continue; 846 // If we might have a fallthrough, and the successor is the fallthrough 847 // block, that's also ok. 848 if (Fallthrough && SuccMBB == MBB->getNextNode()) 849 continue; 850 // Also accept successors which are for exception-handling or might be 851 // inlineasm_br targets. 852 if (SuccMBB->isEHPad() || SuccMBB->isInlineAsmBrIndirectTarget()) 853 continue; 854 report("MBB has unexpected successors which are not branch targets, " 855 "fallthrough, EHPads, or inlineasm_br targets.", 856 MBB); 857 } 858 } 859 860 regsLive.clear(); 861 if (MRI->tracksLiveness()) { 862 for (const auto &LI : MBB->liveins()) { 863 if (!Register::isPhysicalRegister(LI.PhysReg)) { 864 report("MBB live-in list contains non-physical register", MBB); 865 continue; 866 } 867 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(LI.PhysReg)) 868 regsLive.insert(SubReg); 869 } 870 } 871 872 const MachineFrameInfo &MFI = MF->getFrameInfo(); 873 BitVector PR = MFI.getPristineRegs(*MF); 874 for (unsigned I : PR.set_bits()) { 875 for (const MCPhysReg &SubReg : TRI->subregs_inclusive(I)) 876 regsLive.insert(SubReg); 877 } 878 879 regsKilled.clear(); 880 regsDefined.clear(); 881 882 if (Indexes) 883 lastIndex = Indexes->getMBBStartIdx(MBB); 884 } 885 886 // This function gets called for all bundle headers, including normal 887 // stand-alone unbundled instructions. 888 void MachineVerifier::visitMachineBundleBefore(const MachineInstr *MI) { 889 if (Indexes && Indexes->hasIndex(*MI)) { 890 SlotIndex idx = Indexes->getInstructionIndex(*MI); 891 if (!(idx > lastIndex)) { 892 report("Instruction index out of order", MI); 893 OS << "Last instruction was at " << lastIndex << '\n'; 894 } 895 lastIndex = idx; 896 } 897 898 // Ensure non-terminators don't follow terminators. 899 if (MI->isTerminator()) { 900 if (!FirstTerminator) 901 FirstTerminator = MI; 902 } else if (FirstTerminator) { 903 // For GlobalISel, G_INVOKE_REGION_START is a terminator that we allow to 904 // precede non-terminators. 905 if (FirstTerminator->getOpcode() != TargetOpcode::G_INVOKE_REGION_START) { 906 report("Non-terminator instruction after the first terminator", MI); 907 OS << "First terminator was:\t" << *FirstTerminator; 908 } 909 } 910 } 911 912 // The operands on an INLINEASM instruction must follow a template. 913 // Verify that the flag operands make sense. 914 void MachineVerifier::verifyInlineAsm(const MachineInstr *MI) { 915 // The first two operands on INLINEASM are the asm string and global flags. 916 if (MI->getNumOperands() < 2) { 917 report("Too few operands on inline asm", MI); 918 return; 919 } 920 if (!MI->getOperand(0).isSymbol()) 921 report("Asm string must be an external symbol", MI); 922 if (!MI->getOperand(1).isImm()) 923 report("Asm flags must be an immediate", MI); 924 // Allowed flags are Extra_HasSideEffects = 1, Extra_IsAlignStack = 2, 925 // Extra_AsmDialect = 4, Extra_MayLoad = 8, and Extra_MayStore = 16, 926 // and Extra_IsConvergent = 32. 927 if (!isUInt<6>(MI->getOperand(1).getImm())) 928 report("Unknown asm flags", &MI->getOperand(1), 1); 929 930 static_assert(InlineAsm::MIOp_FirstOperand == 2, "Asm format changed"); 931 932 unsigned OpNo = InlineAsm::MIOp_FirstOperand; 933 unsigned NumOps; 934 for (unsigned e = MI->getNumOperands(); OpNo < e; OpNo += NumOps) { 935 const MachineOperand &MO = MI->getOperand(OpNo); 936 // There may be implicit ops after the fixed operands. 937 if (!MO.isImm()) 938 break; 939 const InlineAsm::Flag F(MO.getImm()); 940 NumOps = 1 + F.getNumOperandRegisters(); 941 } 942 943 if (OpNo > MI->getNumOperands()) 944 report("Missing operands in last group", MI); 945 946 // An optional MDNode follows the groups. 947 if (OpNo < MI->getNumOperands() && MI->getOperand(OpNo).isMetadata()) 948 ++OpNo; 949 950 // All trailing operands must be implicit registers. 951 for (unsigned e = MI->getNumOperands(); OpNo < e; ++OpNo) { 952 const MachineOperand &MO = MI->getOperand(OpNo); 953 if (!MO.isReg() || !MO.isImplicit()) 954 report("Expected implicit register after groups", &MO, OpNo); 955 } 956 957 if (MI->getOpcode() == TargetOpcode::INLINEASM_BR) { 958 const MachineBasicBlock *MBB = MI->getParent(); 959 960 for (unsigned i = InlineAsm::MIOp_FirstOperand, e = MI->getNumOperands(); 961 i != e; ++i) { 962 const MachineOperand &MO = MI->getOperand(i); 963 964 if (!MO.isMBB()) 965 continue; 966 967 // Check the successor & predecessor lists look ok, assume they are 968 // not. Find the indirect target without going through the successors. 969 const MachineBasicBlock *IndirectTargetMBB = MO.getMBB(); 970 if (!IndirectTargetMBB) { 971 report("INLINEASM_BR indirect target does not exist", &MO, i); 972 break; 973 } 974 975 if (!MBB->isSuccessor(IndirectTargetMBB)) 976 report("INLINEASM_BR indirect target missing from successor list", &MO, 977 i); 978 979 if (!IndirectTargetMBB->isPredecessor(MBB)) 980 report("INLINEASM_BR indirect target predecessor list missing parent", 981 &MO, i); 982 } 983 } 984 } 985 986 bool MachineVerifier::verifyAllRegOpsScalar(const MachineInstr &MI, 987 const MachineRegisterInfo &MRI) { 988 if (none_of(MI.explicit_operands(), [&MRI](const MachineOperand &Op) { 989 if (!Op.isReg()) 990 return false; 991 const auto Reg = Op.getReg(); 992 if (Reg.isPhysical()) 993 return false; 994 return !MRI.getType(Reg).isScalar(); 995 })) 996 return true; 997 report("All register operands must have scalar types", &MI); 998 return false; 999 } 1000 1001 /// Check that types are consistent when two operands need to have the same 1002 /// number of vector elements. 1003 /// \return true if the types are valid. 1004 bool MachineVerifier::verifyVectorElementMatch(LLT Ty0, LLT Ty1, 1005 const MachineInstr *MI) { 1006 if (Ty0.isVector() != Ty1.isVector()) { 1007 report("operand types must be all-vector or all-scalar", MI); 1008 // Generally we try to report as many issues as possible at once, but in 1009 // this case it's not clear what should we be comparing the size of the 1010 // scalar with: the size of the whole vector or its lane. Instead of 1011 // making an arbitrary choice and emitting not so helpful message, let's 1012 // avoid the extra noise and stop here. 1013 return false; 1014 } 1015 1016 if (Ty0.isVector() && Ty0.getElementCount() != Ty1.getElementCount()) { 1017 report("operand types must preserve number of vector elements", MI); 1018 return false; 1019 } 1020 1021 return true; 1022 } 1023 1024 bool MachineVerifier::verifyGIntrinsicSideEffects(const MachineInstr *MI) { 1025 auto Opcode = MI->getOpcode(); 1026 bool NoSideEffects = Opcode == TargetOpcode::G_INTRINSIC || 1027 Opcode == TargetOpcode::G_INTRINSIC_CONVERGENT; 1028 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1029 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1030 AttributeList Attrs = Intrinsic::getAttributes( 1031 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1032 bool DeclHasSideEffects = !Attrs.getMemoryEffects().doesNotAccessMemory(); 1033 if (NoSideEffects && DeclHasSideEffects) { 1034 report(Twine(TII->getName(Opcode), 1035 " used with intrinsic that accesses memory"), 1036 MI); 1037 return false; 1038 } 1039 if (!NoSideEffects && !DeclHasSideEffects) { 1040 report(Twine(TII->getName(Opcode), " used with readnone intrinsic"), MI); 1041 return false; 1042 } 1043 } 1044 1045 return true; 1046 } 1047 1048 bool MachineVerifier::verifyGIntrinsicConvergence(const MachineInstr *MI) { 1049 auto Opcode = MI->getOpcode(); 1050 bool NotConvergent = Opcode == TargetOpcode::G_INTRINSIC || 1051 Opcode == TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS; 1052 unsigned IntrID = cast<GIntrinsic>(MI)->getIntrinsicID(); 1053 if (IntrID != 0 && IntrID < Intrinsic::num_intrinsics) { 1054 AttributeList Attrs = Intrinsic::getAttributes( 1055 MF->getFunction().getContext(), static_cast<Intrinsic::ID>(IntrID)); 1056 bool DeclIsConvergent = Attrs.hasFnAttr(Attribute::Convergent); 1057 if (NotConvergent && DeclIsConvergent) { 1058 report(Twine(TII->getName(Opcode), " used with a convergent intrinsic"), 1059 MI); 1060 return false; 1061 } 1062 if (!NotConvergent && !DeclIsConvergent) { 1063 report( 1064 Twine(TII->getName(Opcode), " used with a non-convergent intrinsic"), 1065 MI); 1066 return false; 1067 } 1068 } 1069 1070 return true; 1071 } 1072 1073 void MachineVerifier::verifyPreISelGenericInstruction(const MachineInstr *MI) { 1074 if (isFunctionSelected) 1075 report("Unexpected generic instruction in a Selected function", MI); 1076 1077 const MCInstrDesc &MCID = MI->getDesc(); 1078 unsigned NumOps = MI->getNumOperands(); 1079 1080 // Branches must reference a basic block if they are not indirect 1081 if (MI->isBranch() && !MI->isIndirectBranch()) { 1082 bool HasMBB = false; 1083 for (const MachineOperand &Op : MI->operands()) { 1084 if (Op.isMBB()) { 1085 HasMBB = true; 1086 break; 1087 } 1088 } 1089 1090 if (!HasMBB) { 1091 report("Branch instruction is missing a basic block operand or " 1092 "isIndirectBranch property", 1093 MI); 1094 } 1095 } 1096 1097 // Check types. 1098 SmallVector<LLT, 4> Types; 1099 for (unsigned I = 0, E = std::min(MCID.getNumOperands(), NumOps); 1100 I != E; ++I) { 1101 if (!MCID.operands()[I].isGenericType()) 1102 continue; 1103 // Generic instructions specify type equality constraints between some of 1104 // their operands. Make sure these are consistent. 1105 size_t TypeIdx = MCID.operands()[I].getGenericTypeIndex(); 1106 Types.resize(std::max(TypeIdx + 1, Types.size())); 1107 1108 const MachineOperand *MO = &MI->getOperand(I); 1109 if (!MO->isReg()) { 1110 report("generic instruction must use register operands", MI); 1111 continue; 1112 } 1113 1114 LLT OpTy = MRI->getType(MO->getReg()); 1115 // Don't report a type mismatch if there is no actual mismatch, only a 1116 // type missing, to reduce noise: 1117 if (OpTy.isValid()) { 1118 // Only the first valid type for a type index will be printed: don't 1119 // overwrite it later so it's always clear which type was expected: 1120 if (!Types[TypeIdx].isValid()) 1121 Types[TypeIdx] = OpTy; 1122 else if (Types[TypeIdx] != OpTy) 1123 report("Type mismatch in generic instruction", MO, I, OpTy); 1124 } else { 1125 // Generic instructions must have types attached to their operands. 1126 report("Generic instruction is missing a virtual register type", MO, I); 1127 } 1128 } 1129 1130 // Generic opcodes must not have physical register operands. 1131 for (unsigned I = 0; I < MI->getNumOperands(); ++I) { 1132 const MachineOperand *MO = &MI->getOperand(I); 1133 if (MO->isReg() && MO->getReg().isPhysical()) 1134 report("Generic instruction cannot have physical register", MO, I); 1135 } 1136 1137 // Avoid out of bounds in checks below. This was already reported earlier. 1138 if (MI->getNumOperands() < MCID.getNumOperands()) 1139 return; 1140 1141 StringRef ErrorInfo; 1142 if (!TII->verifyInstruction(*MI, ErrorInfo)) 1143 report(ErrorInfo.data(), MI); 1144 1145 // Verify properties of various specific instruction types 1146 unsigned Opc = MI->getOpcode(); 1147 switch (Opc) { 1148 case TargetOpcode::G_ASSERT_SEXT: 1149 case TargetOpcode::G_ASSERT_ZEXT: { 1150 std::string OpcName = 1151 Opc == TargetOpcode::G_ASSERT_ZEXT ? "G_ASSERT_ZEXT" : "G_ASSERT_SEXT"; 1152 if (!MI->getOperand(2).isImm()) { 1153 report(Twine(OpcName, " expects an immediate operand #2"), MI); 1154 break; 1155 } 1156 1157 Register Dst = MI->getOperand(0).getReg(); 1158 Register Src = MI->getOperand(1).getReg(); 1159 LLT SrcTy = MRI->getType(Src); 1160 int64_t Imm = MI->getOperand(2).getImm(); 1161 if (Imm <= 0) { 1162 report(Twine(OpcName, " size must be >= 1"), MI); 1163 break; 1164 } 1165 1166 if (Imm >= SrcTy.getScalarSizeInBits()) { 1167 report(Twine(OpcName, " size must be less than source bit width"), MI); 1168 break; 1169 } 1170 1171 const RegisterBank *SrcRB = RBI->getRegBank(Src, *MRI, *TRI); 1172 const RegisterBank *DstRB = RBI->getRegBank(Dst, *MRI, *TRI); 1173 1174 // Allow only the source bank to be set. 1175 if ((SrcRB && DstRB && SrcRB != DstRB) || (DstRB && !SrcRB)) { 1176 report(Twine(OpcName, " cannot change register bank"), MI); 1177 break; 1178 } 1179 1180 // Don't allow a class change. Do allow member class->regbank. 1181 const TargetRegisterClass *DstRC = MRI->getRegClassOrNull(Dst); 1182 if (DstRC && DstRC != MRI->getRegClassOrNull(Src)) { 1183 report( 1184 Twine(OpcName, " source and destination register classes must match"), 1185 MI); 1186 break; 1187 } 1188 1189 break; 1190 } 1191 1192 case TargetOpcode::G_CONSTANT: 1193 case TargetOpcode::G_FCONSTANT: { 1194 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1195 if (DstTy.isVector()) 1196 report("Instruction cannot use a vector result type", MI); 1197 1198 if (MI->getOpcode() == TargetOpcode::G_CONSTANT) { 1199 if (!MI->getOperand(1).isCImm()) { 1200 report("G_CONSTANT operand must be cimm", MI); 1201 break; 1202 } 1203 1204 const ConstantInt *CI = MI->getOperand(1).getCImm(); 1205 if (CI->getBitWidth() != DstTy.getSizeInBits()) 1206 report("inconsistent constant size", MI); 1207 } else { 1208 if (!MI->getOperand(1).isFPImm()) { 1209 report("G_FCONSTANT operand must be fpimm", MI); 1210 break; 1211 } 1212 const ConstantFP *CF = MI->getOperand(1).getFPImm(); 1213 1214 if (APFloat::getSizeInBits(CF->getValueAPF().getSemantics()) != 1215 DstTy.getSizeInBits()) { 1216 report("inconsistent constant size", MI); 1217 } 1218 } 1219 1220 break; 1221 } 1222 case TargetOpcode::G_LOAD: 1223 case TargetOpcode::G_STORE: 1224 case TargetOpcode::G_ZEXTLOAD: 1225 case TargetOpcode::G_SEXTLOAD: { 1226 LLT ValTy = MRI->getType(MI->getOperand(0).getReg()); 1227 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1228 if (!PtrTy.isPointer()) 1229 report("Generic memory instruction must access a pointer", MI); 1230 1231 // Generic loads and stores must have a single MachineMemOperand 1232 // describing that access. 1233 if (!MI->hasOneMemOperand()) { 1234 report("Generic instruction accessing memory must have one mem operand", 1235 MI); 1236 } else { 1237 const MachineMemOperand &MMO = **MI->memoperands_begin(); 1238 if (MI->getOpcode() == TargetOpcode::G_ZEXTLOAD || 1239 MI->getOpcode() == TargetOpcode::G_SEXTLOAD) { 1240 if (TypeSize::isKnownGE(MMO.getSizeInBits().getValue(), 1241 ValTy.getSizeInBits())) 1242 report("Generic extload must have a narrower memory type", MI); 1243 } else if (MI->getOpcode() == TargetOpcode::G_LOAD) { 1244 if (TypeSize::isKnownGT(MMO.getSize().getValue(), 1245 ValTy.getSizeInBytes())) 1246 report("load memory size cannot exceed result size", MI); 1247 } else if (MI->getOpcode() == TargetOpcode::G_STORE) { 1248 if (TypeSize::isKnownLT(ValTy.getSizeInBytes(), 1249 MMO.getSize().getValue())) 1250 report("store memory size cannot exceed value size", MI); 1251 } 1252 1253 const AtomicOrdering Order = MMO.getSuccessOrdering(); 1254 if (Opc == TargetOpcode::G_STORE) { 1255 if (Order == AtomicOrdering::Acquire || 1256 Order == AtomicOrdering::AcquireRelease) 1257 report("atomic store cannot use acquire ordering", MI); 1258 1259 } else { 1260 if (Order == AtomicOrdering::Release || 1261 Order == AtomicOrdering::AcquireRelease) 1262 report("atomic load cannot use release ordering", MI); 1263 } 1264 } 1265 1266 break; 1267 } 1268 case TargetOpcode::G_PHI: { 1269 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1270 if (!DstTy.isValid() || !all_of(drop_begin(MI->operands()), 1271 [this, &DstTy](const MachineOperand &MO) { 1272 if (!MO.isReg()) 1273 return true; 1274 LLT Ty = MRI->getType(MO.getReg()); 1275 if (!Ty.isValid() || (Ty != DstTy)) 1276 return false; 1277 return true; 1278 })) 1279 report("Generic Instruction G_PHI has operands with incompatible/missing " 1280 "types", 1281 MI); 1282 break; 1283 } 1284 case TargetOpcode::G_BITCAST: { 1285 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1286 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1287 if (!DstTy.isValid() || !SrcTy.isValid()) 1288 break; 1289 1290 if (SrcTy.isPointer() != DstTy.isPointer()) 1291 report("bitcast cannot convert between pointers and other types", MI); 1292 1293 if (SrcTy.getSizeInBits() != DstTy.getSizeInBits()) 1294 report("bitcast sizes must match", MI); 1295 1296 if (SrcTy == DstTy) 1297 report("bitcast must change the type", MI); 1298 1299 break; 1300 } 1301 case TargetOpcode::G_INTTOPTR: 1302 case TargetOpcode::G_PTRTOINT: 1303 case TargetOpcode::G_ADDRSPACE_CAST: { 1304 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1305 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1306 if (!DstTy.isValid() || !SrcTy.isValid()) 1307 break; 1308 1309 verifyVectorElementMatch(DstTy, SrcTy, MI); 1310 1311 DstTy = DstTy.getScalarType(); 1312 SrcTy = SrcTy.getScalarType(); 1313 1314 if (MI->getOpcode() == TargetOpcode::G_INTTOPTR) { 1315 if (!DstTy.isPointer()) 1316 report("inttoptr result type must be a pointer", MI); 1317 if (SrcTy.isPointer()) 1318 report("inttoptr source type must not be a pointer", MI); 1319 } else if (MI->getOpcode() == TargetOpcode::G_PTRTOINT) { 1320 if (!SrcTy.isPointer()) 1321 report("ptrtoint source type must be a pointer", MI); 1322 if (DstTy.isPointer()) 1323 report("ptrtoint result type must not be a pointer", MI); 1324 } else { 1325 assert(MI->getOpcode() == TargetOpcode::G_ADDRSPACE_CAST); 1326 if (!SrcTy.isPointer() || !DstTy.isPointer()) 1327 report("addrspacecast types must be pointers", MI); 1328 else { 1329 if (SrcTy.getAddressSpace() == DstTy.getAddressSpace()) 1330 report("addrspacecast must convert different address spaces", MI); 1331 } 1332 } 1333 1334 break; 1335 } 1336 case TargetOpcode::G_PTR_ADD: { 1337 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1338 LLT PtrTy = MRI->getType(MI->getOperand(1).getReg()); 1339 LLT OffsetTy = MRI->getType(MI->getOperand(2).getReg()); 1340 if (!DstTy.isValid() || !PtrTy.isValid() || !OffsetTy.isValid()) 1341 break; 1342 1343 if (!PtrTy.isPointerOrPointerVector()) 1344 report("gep first operand must be a pointer", MI); 1345 1346 if (OffsetTy.isPointerOrPointerVector()) 1347 report("gep offset operand must not be a pointer", MI); 1348 1349 if (PtrTy.isPointerOrPointerVector()) { 1350 const DataLayout &DL = MF->getDataLayout(); 1351 unsigned AS = PtrTy.getAddressSpace(); 1352 unsigned IndexSizeInBits = DL.getIndexSize(AS) * 8; 1353 if (OffsetTy.getScalarSizeInBits() != IndexSizeInBits) { 1354 report("gep offset operand must match index size for address space", 1355 MI); 1356 } 1357 } 1358 1359 // TODO: Is the offset allowed to be a scalar with a vector? 1360 break; 1361 } 1362 case TargetOpcode::G_PTRMASK: { 1363 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1364 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1365 LLT MaskTy = MRI->getType(MI->getOperand(2).getReg()); 1366 if (!DstTy.isValid() || !SrcTy.isValid() || !MaskTy.isValid()) 1367 break; 1368 1369 if (!DstTy.isPointerOrPointerVector()) 1370 report("ptrmask result type must be a pointer", MI); 1371 1372 if (!MaskTy.getScalarType().isScalar()) 1373 report("ptrmask mask type must be an integer", MI); 1374 1375 verifyVectorElementMatch(DstTy, MaskTy, MI); 1376 break; 1377 } 1378 case TargetOpcode::G_SEXT: 1379 case TargetOpcode::G_ZEXT: 1380 case TargetOpcode::G_ANYEXT: 1381 case TargetOpcode::G_TRUNC: 1382 case TargetOpcode::G_FPEXT: 1383 case TargetOpcode::G_FPTRUNC: { 1384 // Number of operands and presense of types is already checked (and 1385 // reported in case of any issues), so no need to report them again. As 1386 // we're trying to report as many issues as possible at once, however, the 1387 // instructions aren't guaranteed to have the right number of operands or 1388 // types attached to them at this point 1389 assert(MCID.getNumOperands() == 2 && "Expected 2 operands G_*{EXT,TRUNC}"); 1390 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1391 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1392 if (!DstTy.isValid() || !SrcTy.isValid()) 1393 break; 1394 1395 if (DstTy.isPointerOrPointerVector() || SrcTy.isPointerOrPointerVector()) 1396 report("Generic extend/truncate can not operate on pointers", MI); 1397 1398 verifyVectorElementMatch(DstTy, SrcTy, MI); 1399 1400 unsigned DstSize = DstTy.getScalarSizeInBits(); 1401 unsigned SrcSize = SrcTy.getScalarSizeInBits(); 1402 switch (MI->getOpcode()) { 1403 default: 1404 if (DstSize <= SrcSize) 1405 report("Generic extend has destination type no larger than source", MI); 1406 break; 1407 case TargetOpcode::G_TRUNC: 1408 case TargetOpcode::G_FPTRUNC: 1409 if (DstSize >= SrcSize) 1410 report("Generic truncate has destination type no smaller than source", 1411 MI); 1412 break; 1413 } 1414 break; 1415 } 1416 case TargetOpcode::G_SELECT: { 1417 LLT SelTy = MRI->getType(MI->getOperand(0).getReg()); 1418 LLT CondTy = MRI->getType(MI->getOperand(1).getReg()); 1419 if (!SelTy.isValid() || !CondTy.isValid()) 1420 break; 1421 1422 // Scalar condition select on a vector is valid. 1423 if (CondTy.isVector()) 1424 verifyVectorElementMatch(SelTy, CondTy, MI); 1425 break; 1426 } 1427 case TargetOpcode::G_MERGE_VALUES: { 1428 // G_MERGE_VALUES should only be used to merge scalars into a larger scalar, 1429 // e.g. s2N = MERGE sN, sN 1430 // Merging multiple scalars into a vector is not allowed, should use 1431 // G_BUILD_VECTOR for that. 1432 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1433 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1434 if (DstTy.isVector() || SrcTy.isVector()) 1435 report("G_MERGE_VALUES cannot operate on vectors", MI); 1436 1437 const unsigned NumOps = MI->getNumOperands(); 1438 if (DstTy.getSizeInBits() != SrcTy.getSizeInBits() * (NumOps - 1)) 1439 report("G_MERGE_VALUES result size is inconsistent", MI); 1440 1441 for (unsigned I = 2; I != NumOps; ++I) { 1442 if (MRI->getType(MI->getOperand(I).getReg()) != SrcTy) 1443 report("G_MERGE_VALUES source types do not match", MI); 1444 } 1445 1446 break; 1447 } 1448 case TargetOpcode::G_UNMERGE_VALUES: { 1449 unsigned NumDsts = MI->getNumOperands() - 1; 1450 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1451 for (unsigned i = 1; i < NumDsts; ++i) { 1452 if (MRI->getType(MI->getOperand(i).getReg()) != DstTy) { 1453 report("G_UNMERGE_VALUES destination types do not match", MI); 1454 break; 1455 } 1456 } 1457 1458 LLT SrcTy = MRI->getType(MI->getOperand(NumDsts).getReg()); 1459 if (DstTy.isVector()) { 1460 // This case is the converse of G_CONCAT_VECTORS. 1461 if (!SrcTy.isVector() || SrcTy.getScalarType() != DstTy.getScalarType() || 1462 SrcTy.isScalableVector() != DstTy.isScalableVector() || 1463 SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1464 report("G_UNMERGE_VALUES source operand does not match vector " 1465 "destination operands", 1466 MI); 1467 } else if (SrcTy.isVector()) { 1468 // This case is the converse of G_BUILD_VECTOR, but relaxed to allow 1469 // mismatched types as long as the total size matches: 1470 // %0:_(s64), %1:_(s64) = G_UNMERGE_VALUES %2:_(<4 x s32>) 1471 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) 1472 report("G_UNMERGE_VALUES vector source operand does not match scalar " 1473 "destination operands", 1474 MI); 1475 } else { 1476 // This case is the converse of G_MERGE_VALUES. 1477 if (SrcTy.getSizeInBits() != NumDsts * DstTy.getSizeInBits()) { 1478 report("G_UNMERGE_VALUES scalar source operand does not match scalar " 1479 "destination operands", 1480 MI); 1481 } 1482 } 1483 break; 1484 } 1485 case TargetOpcode::G_BUILD_VECTOR: { 1486 // Source types must be scalars, dest type a vector. Total size of scalars 1487 // must match the dest vector size. 1488 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1489 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1490 if (!DstTy.isVector() || SrcEltTy.isVector()) { 1491 report("G_BUILD_VECTOR must produce a vector from scalar operands", MI); 1492 break; 1493 } 1494 1495 if (DstTy.getElementType() != SrcEltTy) 1496 report("G_BUILD_VECTOR result element type must match source type", MI); 1497 1498 if (DstTy.getNumElements() != MI->getNumOperands() - 1) 1499 report("G_BUILD_VECTOR must have an operand for each elemement", MI); 1500 1501 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1502 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1503 report("G_BUILD_VECTOR source operand types are not homogeneous", MI); 1504 1505 break; 1506 } 1507 case TargetOpcode::G_BUILD_VECTOR_TRUNC: { 1508 // Source types must be scalars, dest type a vector. Scalar types must be 1509 // larger than the dest vector elt type, as this is a truncating operation. 1510 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1511 LLT SrcEltTy = MRI->getType(MI->getOperand(1).getReg()); 1512 if (!DstTy.isVector() || SrcEltTy.isVector()) 1513 report("G_BUILD_VECTOR_TRUNC must produce a vector from scalar operands", 1514 MI); 1515 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1516 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1517 report("G_BUILD_VECTOR_TRUNC source operand types are not homogeneous", 1518 MI); 1519 if (SrcEltTy.getSizeInBits() <= DstTy.getElementType().getSizeInBits()) 1520 report("G_BUILD_VECTOR_TRUNC source operand types are not larger than " 1521 "dest elt type", 1522 MI); 1523 break; 1524 } 1525 case TargetOpcode::G_CONCAT_VECTORS: { 1526 // Source types should be vectors, and total size should match the dest 1527 // vector size. 1528 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1529 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1530 if (!DstTy.isVector() || !SrcTy.isVector()) 1531 report("G_CONCAT_VECTOR requires vector source and destination operands", 1532 MI); 1533 1534 if (MI->getNumOperands() < 3) 1535 report("G_CONCAT_VECTOR requires at least 2 source operands", MI); 1536 1537 for (const MachineOperand &MO : llvm::drop_begin(MI->operands(), 2)) 1538 if (MRI->getType(MI->getOperand(1).getReg()) != MRI->getType(MO.getReg())) 1539 report("G_CONCAT_VECTOR source operand types are not homogeneous", MI); 1540 if (DstTy.getElementCount() != 1541 SrcTy.getElementCount() * (MI->getNumOperands() - 1)) 1542 report("G_CONCAT_VECTOR num dest and source elements should match", MI); 1543 break; 1544 } 1545 case TargetOpcode::G_ICMP: 1546 case TargetOpcode::G_FCMP: { 1547 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1548 LLT SrcTy = MRI->getType(MI->getOperand(2).getReg()); 1549 1550 if ((DstTy.isVector() != SrcTy.isVector()) || 1551 (DstTy.isVector() && 1552 DstTy.getElementCount() != SrcTy.getElementCount())) 1553 report("Generic vector icmp/fcmp must preserve number of lanes", MI); 1554 1555 break; 1556 } 1557 case TargetOpcode::G_SCMP: 1558 case TargetOpcode::G_UCMP: { 1559 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1560 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1561 LLT SrcTy2 = MRI->getType(MI->getOperand(2).getReg()); 1562 1563 if (SrcTy.isPointerOrPointerVector() || SrcTy2.isPointerOrPointerVector()) { 1564 report("Generic scmp/ucmp does not support pointers as operands", MI); 1565 break; 1566 } 1567 1568 if (DstTy.isPointerOrPointerVector()) { 1569 report("Generic scmp/ucmp does not support pointers as a result", MI); 1570 break; 1571 } 1572 1573 if ((DstTy.isVector() != SrcTy.isVector()) || 1574 (DstTy.isVector() && 1575 DstTy.getElementCount() != SrcTy.getElementCount())) { 1576 report("Generic vector scmp/ucmp must preserve number of lanes", MI); 1577 break; 1578 } 1579 1580 if (SrcTy != SrcTy2) { 1581 report("Generic scmp/ucmp must have same input types", MI); 1582 break; 1583 } 1584 1585 break; 1586 } 1587 case TargetOpcode::G_EXTRACT: { 1588 const MachineOperand &SrcOp = MI->getOperand(1); 1589 if (!SrcOp.isReg()) { 1590 report("extract source must be a register", MI); 1591 break; 1592 } 1593 1594 const MachineOperand &OffsetOp = MI->getOperand(2); 1595 if (!OffsetOp.isImm()) { 1596 report("extract offset must be a constant", MI); 1597 break; 1598 } 1599 1600 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1601 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1602 if (SrcSize == DstSize) 1603 report("extract source must be larger than result", MI); 1604 1605 if (DstSize + OffsetOp.getImm() > SrcSize) 1606 report("extract reads past end of register", MI); 1607 break; 1608 } 1609 case TargetOpcode::G_INSERT: { 1610 const MachineOperand &SrcOp = MI->getOperand(2); 1611 if (!SrcOp.isReg()) { 1612 report("insert source must be a register", MI); 1613 break; 1614 } 1615 1616 const MachineOperand &OffsetOp = MI->getOperand(3); 1617 if (!OffsetOp.isImm()) { 1618 report("insert offset must be a constant", MI); 1619 break; 1620 } 1621 1622 unsigned DstSize = MRI->getType(MI->getOperand(0).getReg()).getSizeInBits(); 1623 unsigned SrcSize = MRI->getType(SrcOp.getReg()).getSizeInBits(); 1624 1625 if (DstSize <= SrcSize) 1626 report("inserted size must be smaller than total register", MI); 1627 1628 if (SrcSize + OffsetOp.getImm() > DstSize) 1629 report("insert writes past end of register", MI); 1630 1631 break; 1632 } 1633 case TargetOpcode::G_JUMP_TABLE: { 1634 if (!MI->getOperand(1).isJTI()) 1635 report("G_JUMP_TABLE source operand must be a jump table index", MI); 1636 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1637 if (!DstTy.isPointer()) 1638 report("G_JUMP_TABLE dest operand must have a pointer type", MI); 1639 break; 1640 } 1641 case TargetOpcode::G_BRJT: { 1642 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 1643 report("G_BRJT src operand 0 must be a pointer type", MI); 1644 1645 if (!MI->getOperand(1).isJTI()) 1646 report("G_BRJT src operand 1 must be a jump table index", MI); 1647 1648 const auto &IdxOp = MI->getOperand(2); 1649 if (!IdxOp.isReg() || MRI->getType(IdxOp.getReg()).isPointer()) 1650 report("G_BRJT src operand 2 must be a scalar reg type", MI); 1651 break; 1652 } 1653 case TargetOpcode::G_INTRINSIC: 1654 case TargetOpcode::G_INTRINSIC_W_SIDE_EFFECTS: 1655 case TargetOpcode::G_INTRINSIC_CONVERGENT: 1656 case TargetOpcode::G_INTRINSIC_CONVERGENT_W_SIDE_EFFECTS: { 1657 // TODO: Should verify number of def and use operands, but the current 1658 // interface requires passing in IR types for mangling. 1659 const MachineOperand &IntrIDOp = MI->getOperand(MI->getNumExplicitDefs()); 1660 if (!IntrIDOp.isIntrinsicID()) { 1661 report("G_INTRINSIC first src operand must be an intrinsic ID", MI); 1662 break; 1663 } 1664 1665 if (!verifyGIntrinsicSideEffects(MI)) 1666 break; 1667 if (!verifyGIntrinsicConvergence(MI)) 1668 break; 1669 1670 break; 1671 } 1672 case TargetOpcode::G_SEXT_INREG: { 1673 if (!MI->getOperand(2).isImm()) { 1674 report("G_SEXT_INREG expects an immediate operand #2", MI); 1675 break; 1676 } 1677 1678 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1679 int64_t Imm = MI->getOperand(2).getImm(); 1680 if (Imm <= 0) 1681 report("G_SEXT_INREG size must be >= 1", MI); 1682 if (Imm >= SrcTy.getScalarSizeInBits()) 1683 report("G_SEXT_INREG size must be less than source bit width", MI); 1684 break; 1685 } 1686 case TargetOpcode::G_BSWAP: { 1687 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1688 if (DstTy.getScalarSizeInBits() % 16 != 0) 1689 report("G_BSWAP size must be a multiple of 16 bits", MI); 1690 break; 1691 } 1692 case TargetOpcode::G_VSCALE: { 1693 if (!MI->getOperand(1).isCImm()) { 1694 report("G_VSCALE operand must be cimm", MI); 1695 break; 1696 } 1697 if (MI->getOperand(1).getCImm()->isZero()) { 1698 report("G_VSCALE immediate cannot be zero", MI); 1699 break; 1700 } 1701 break; 1702 } 1703 case TargetOpcode::G_INSERT_SUBVECTOR: { 1704 const MachineOperand &Src0Op = MI->getOperand(1); 1705 if (!Src0Op.isReg()) { 1706 report("G_INSERT_SUBVECTOR first source must be a register", MI); 1707 break; 1708 } 1709 1710 const MachineOperand &Src1Op = MI->getOperand(2); 1711 if (!Src1Op.isReg()) { 1712 report("G_INSERT_SUBVECTOR second source must be a register", MI); 1713 break; 1714 } 1715 1716 const MachineOperand &IndexOp = MI->getOperand(3); 1717 if (!IndexOp.isImm()) { 1718 report("G_INSERT_SUBVECTOR index must be an immediate", MI); 1719 break; 1720 } 1721 1722 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1723 LLT Src1Ty = MRI->getType(Src1Op.getReg()); 1724 1725 if (!DstTy.isVector()) { 1726 report("Destination type must be a vector", MI); 1727 break; 1728 } 1729 1730 if (!Src1Ty.isVector()) { 1731 report("Second source must be a vector", MI); 1732 break; 1733 } 1734 1735 if (DstTy.getElementType() != Src1Ty.getElementType()) { 1736 report("Element type of vectors must be the same", MI); 1737 break; 1738 } 1739 1740 if (Src1Ty.isScalable() != DstTy.isScalable()) { 1741 report("Vector types must both be fixed or both be scalable", MI); 1742 break; 1743 } 1744 1745 if (ElementCount::isKnownGT(Src1Ty.getElementCount(), 1746 DstTy.getElementCount())) { 1747 report("Second source must be smaller than destination vector", MI); 1748 break; 1749 } 1750 1751 uint64_t Idx = IndexOp.getImm(); 1752 uint64_t Src1MinLen = Src1Ty.getElementCount().getKnownMinValue(); 1753 if (IndexOp.getImm() % Src1MinLen != 0) { 1754 report("Index must be a multiple of the second source vector's " 1755 "minimum vector length", 1756 MI); 1757 break; 1758 } 1759 1760 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1761 if (Idx >= DstMinLen || Idx + Src1MinLen > DstMinLen) { 1762 report("Subvector type and index must not cause insert to overrun the " 1763 "vector being inserted into", 1764 MI); 1765 break; 1766 } 1767 1768 break; 1769 } 1770 case TargetOpcode::G_EXTRACT_SUBVECTOR: { 1771 const MachineOperand &SrcOp = MI->getOperand(1); 1772 if (!SrcOp.isReg()) { 1773 report("G_EXTRACT_SUBVECTOR first source must be a register", MI); 1774 break; 1775 } 1776 1777 const MachineOperand &IndexOp = MI->getOperand(2); 1778 if (!IndexOp.isImm()) { 1779 report("G_EXTRACT_SUBVECTOR index must be an immediate", MI); 1780 break; 1781 } 1782 1783 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1784 LLT SrcTy = MRI->getType(SrcOp.getReg()); 1785 1786 if (!DstTy.isVector()) { 1787 report("Destination type must be a vector", MI); 1788 break; 1789 } 1790 1791 if (!SrcTy.isVector()) { 1792 report("Source must be a vector", MI); 1793 break; 1794 } 1795 1796 if (DstTy.getElementType() != SrcTy.getElementType()) { 1797 report("Element type of vectors must be the same", MI); 1798 break; 1799 } 1800 1801 if (SrcTy.isScalable() != DstTy.isScalable()) { 1802 report("Vector types must both be fixed or both be scalable", MI); 1803 break; 1804 } 1805 1806 if (ElementCount::isKnownGT(DstTy.getElementCount(), 1807 SrcTy.getElementCount())) { 1808 report("Destination vector must be smaller than source vector", MI); 1809 break; 1810 } 1811 1812 uint64_t Idx = IndexOp.getImm(); 1813 uint64_t DstMinLen = DstTy.getElementCount().getKnownMinValue(); 1814 if (Idx % DstMinLen != 0) { 1815 report("Index must be a multiple of the destination vector's minimum " 1816 "vector length", 1817 MI); 1818 break; 1819 } 1820 1821 uint64_t SrcMinLen = SrcTy.getElementCount().getKnownMinValue(); 1822 if (Idx >= SrcMinLen || Idx + DstMinLen > SrcMinLen) { 1823 report("Destination type and index must not cause extract to overrun the " 1824 "source vector", 1825 MI); 1826 break; 1827 } 1828 1829 break; 1830 } 1831 case TargetOpcode::G_SHUFFLE_VECTOR: { 1832 const MachineOperand &MaskOp = MI->getOperand(3); 1833 if (!MaskOp.isShuffleMask()) { 1834 report("Incorrect mask operand type for G_SHUFFLE_VECTOR", MI); 1835 break; 1836 } 1837 1838 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1839 LLT Src0Ty = MRI->getType(MI->getOperand(1).getReg()); 1840 LLT Src1Ty = MRI->getType(MI->getOperand(2).getReg()); 1841 1842 if (Src0Ty != Src1Ty) 1843 report("Source operands must be the same type", MI); 1844 1845 if (Src0Ty.getScalarType() != DstTy.getScalarType()) 1846 report("G_SHUFFLE_VECTOR cannot change element type", MI); 1847 1848 // Don't check that all operands are vector because scalars are used in 1849 // place of 1 element vectors. 1850 int SrcNumElts = Src0Ty.isVector() ? Src0Ty.getNumElements() : 1; 1851 int DstNumElts = DstTy.isVector() ? DstTy.getNumElements() : 1; 1852 1853 ArrayRef<int> MaskIdxes = MaskOp.getShuffleMask(); 1854 1855 if (static_cast<int>(MaskIdxes.size()) != DstNumElts) 1856 report("Wrong result type for shufflemask", MI); 1857 1858 for (int Idx : MaskIdxes) { 1859 if (Idx < 0) 1860 continue; 1861 1862 if (Idx >= 2 * SrcNumElts) 1863 report("Out of bounds shuffle index", MI); 1864 } 1865 1866 break; 1867 } 1868 1869 case TargetOpcode::G_SPLAT_VECTOR: { 1870 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1871 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1872 1873 if (!DstTy.isScalableVector()) { 1874 report("Destination type must be a scalable vector", MI); 1875 break; 1876 } 1877 1878 if (!SrcTy.isScalar() && !SrcTy.isPointer()) { 1879 report("Source type must be a scalar or pointer", MI); 1880 break; 1881 } 1882 1883 if (TypeSize::isKnownGT(DstTy.getElementType().getSizeInBits(), 1884 SrcTy.getSizeInBits())) { 1885 report("Element type of the destination must be the same size or smaller " 1886 "than the source type", 1887 MI); 1888 break; 1889 } 1890 1891 break; 1892 } 1893 case TargetOpcode::G_EXTRACT_VECTOR_ELT: { 1894 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1895 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 1896 LLT IdxTy = MRI->getType(MI->getOperand(2).getReg()); 1897 1898 if (!DstTy.isScalar() && !DstTy.isPointer()) { 1899 report("Destination type must be a scalar or pointer", MI); 1900 break; 1901 } 1902 1903 if (!SrcTy.isVector()) { 1904 report("First source must be a vector", MI); 1905 break; 1906 } 1907 1908 auto TLI = MF->getSubtarget().getTargetLowering(); 1909 if (IdxTy.getSizeInBits() != 1910 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1911 report("Index type must match VectorIdxTy", MI); 1912 break; 1913 } 1914 1915 break; 1916 } 1917 case TargetOpcode::G_INSERT_VECTOR_ELT: { 1918 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 1919 LLT VecTy = MRI->getType(MI->getOperand(1).getReg()); 1920 LLT ScaTy = MRI->getType(MI->getOperand(2).getReg()); 1921 LLT IdxTy = MRI->getType(MI->getOperand(3).getReg()); 1922 1923 if (!DstTy.isVector()) { 1924 report("Destination type must be a vector", MI); 1925 break; 1926 } 1927 1928 if (VecTy != DstTy) { 1929 report("Destination type and vector type must match", MI); 1930 break; 1931 } 1932 1933 if (!ScaTy.isScalar() && !ScaTy.isPointer()) { 1934 report("Inserted element must be a scalar or pointer", MI); 1935 break; 1936 } 1937 1938 auto TLI = MF->getSubtarget().getTargetLowering(); 1939 if (IdxTy.getSizeInBits() != 1940 TLI->getVectorIdxTy(MF->getDataLayout()).getFixedSizeInBits()) { 1941 report("Index type must match VectorIdxTy", MI); 1942 break; 1943 } 1944 1945 break; 1946 } 1947 case TargetOpcode::G_DYN_STACKALLOC: { 1948 const MachineOperand &DstOp = MI->getOperand(0); 1949 const MachineOperand &AllocOp = MI->getOperand(1); 1950 const MachineOperand &AlignOp = MI->getOperand(2); 1951 1952 if (!DstOp.isReg() || !MRI->getType(DstOp.getReg()).isPointer()) { 1953 report("dst operand 0 must be a pointer type", MI); 1954 break; 1955 } 1956 1957 if (!AllocOp.isReg() || !MRI->getType(AllocOp.getReg()).isScalar()) { 1958 report("src operand 1 must be a scalar reg type", MI); 1959 break; 1960 } 1961 1962 if (!AlignOp.isImm()) { 1963 report("src operand 2 must be an immediate type", MI); 1964 break; 1965 } 1966 break; 1967 } 1968 case TargetOpcode::G_MEMCPY_INLINE: 1969 case TargetOpcode::G_MEMCPY: 1970 case TargetOpcode::G_MEMMOVE: { 1971 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 1972 if (MMOs.size() != 2) { 1973 report("memcpy/memmove must have 2 memory operands", MI); 1974 break; 1975 } 1976 1977 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad()) || 1978 (MMOs[1]->isStore() || !MMOs[1]->isLoad())) { 1979 report("wrong memory operand types", MI); 1980 break; 1981 } 1982 1983 if (MMOs[0]->getSize() != MMOs[1]->getSize()) 1984 report("inconsistent memory operand sizes", MI); 1985 1986 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 1987 LLT SrcPtrTy = MRI->getType(MI->getOperand(1).getReg()); 1988 1989 if (!DstPtrTy.isPointer() || !SrcPtrTy.isPointer()) { 1990 report("memory instruction operand must be a pointer", MI); 1991 break; 1992 } 1993 1994 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 1995 report("inconsistent store address space", MI); 1996 if (SrcPtrTy.getAddressSpace() != MMOs[1]->getAddrSpace()) 1997 report("inconsistent load address space", MI); 1998 1999 if (Opc != TargetOpcode::G_MEMCPY_INLINE) 2000 if (!MI->getOperand(3).isImm() || (MI->getOperand(3).getImm() & ~1LL)) 2001 report("'tail' flag (operand 3) must be an immediate 0 or 1", MI); 2002 2003 break; 2004 } 2005 case TargetOpcode::G_BZERO: 2006 case TargetOpcode::G_MEMSET: { 2007 ArrayRef<MachineMemOperand *> MMOs = MI->memoperands(); 2008 std::string Name = Opc == TargetOpcode::G_MEMSET ? "memset" : "bzero"; 2009 if (MMOs.size() != 1) { 2010 report(Twine(Name, " must have 1 memory operand"), MI); 2011 break; 2012 } 2013 2014 if ((!MMOs[0]->isStore() || MMOs[0]->isLoad())) { 2015 report(Twine(Name, " memory operand must be a store"), MI); 2016 break; 2017 } 2018 2019 LLT DstPtrTy = MRI->getType(MI->getOperand(0).getReg()); 2020 if (!DstPtrTy.isPointer()) { 2021 report(Twine(Name, " operand must be a pointer"), MI); 2022 break; 2023 } 2024 2025 if (DstPtrTy.getAddressSpace() != MMOs[0]->getAddrSpace()) 2026 report("inconsistent " + Twine(Name, " address space"), MI); 2027 2028 if (!MI->getOperand(MI->getNumOperands() - 1).isImm() || 2029 (MI->getOperand(MI->getNumOperands() - 1).getImm() & ~1LL)) 2030 report("'tail' flag (last operand) must be an immediate 0 or 1", MI); 2031 2032 break; 2033 } 2034 case TargetOpcode::G_UBSANTRAP: { 2035 const MachineOperand &KindOp = MI->getOperand(0); 2036 if (!MI->getOperand(0).isImm()) { 2037 report("Crash kind must be an immediate", &KindOp, 0); 2038 break; 2039 } 2040 int64_t Kind = MI->getOperand(0).getImm(); 2041 if (!isInt<8>(Kind)) 2042 report("Crash kind must be 8 bit wide", &KindOp, 0); 2043 break; 2044 } 2045 case TargetOpcode::G_VECREDUCE_SEQ_FADD: 2046 case TargetOpcode::G_VECREDUCE_SEQ_FMUL: { 2047 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2048 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2049 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2050 if (!DstTy.isScalar()) 2051 report("Vector reduction requires a scalar destination type", MI); 2052 if (!Src1Ty.isScalar()) 2053 report("Sequential FADD/FMUL vector reduction requires a scalar 1st operand", MI); 2054 if (!Src2Ty.isVector()) 2055 report("Sequential FADD/FMUL vector reduction must have a vector 2nd operand", MI); 2056 break; 2057 } 2058 case TargetOpcode::G_VECREDUCE_FADD: 2059 case TargetOpcode::G_VECREDUCE_FMUL: 2060 case TargetOpcode::G_VECREDUCE_FMAX: 2061 case TargetOpcode::G_VECREDUCE_FMIN: 2062 case TargetOpcode::G_VECREDUCE_FMAXIMUM: 2063 case TargetOpcode::G_VECREDUCE_FMINIMUM: 2064 case TargetOpcode::G_VECREDUCE_ADD: 2065 case TargetOpcode::G_VECREDUCE_MUL: 2066 case TargetOpcode::G_VECREDUCE_AND: 2067 case TargetOpcode::G_VECREDUCE_OR: 2068 case TargetOpcode::G_VECREDUCE_XOR: 2069 case TargetOpcode::G_VECREDUCE_SMAX: 2070 case TargetOpcode::G_VECREDUCE_SMIN: 2071 case TargetOpcode::G_VECREDUCE_UMAX: 2072 case TargetOpcode::G_VECREDUCE_UMIN: { 2073 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2074 if (!DstTy.isScalar()) 2075 report("Vector reduction requires a scalar destination type", MI); 2076 break; 2077 } 2078 2079 case TargetOpcode::G_SBFX: 2080 case TargetOpcode::G_UBFX: { 2081 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2082 if (DstTy.isVector()) { 2083 report("Bitfield extraction is not supported on vectors", MI); 2084 break; 2085 } 2086 break; 2087 } 2088 case TargetOpcode::G_SHL: 2089 case TargetOpcode::G_LSHR: 2090 case TargetOpcode::G_ASHR: 2091 case TargetOpcode::G_ROTR: 2092 case TargetOpcode::G_ROTL: { 2093 LLT Src1Ty = MRI->getType(MI->getOperand(1).getReg()); 2094 LLT Src2Ty = MRI->getType(MI->getOperand(2).getReg()); 2095 if (Src1Ty.isVector() != Src2Ty.isVector()) { 2096 report("Shifts and rotates require operands to be either all scalars or " 2097 "all vectors", 2098 MI); 2099 break; 2100 } 2101 break; 2102 } 2103 case TargetOpcode::G_LLROUND: 2104 case TargetOpcode::G_LROUND: { 2105 LLT DstTy = MRI->getType(MI->getOperand(0).getReg()); 2106 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2107 if (!DstTy.isValid() || !SrcTy.isValid()) 2108 break; 2109 if (SrcTy.isPointer() || DstTy.isPointer()) { 2110 StringRef Op = SrcTy.isPointer() ? "Source" : "Destination"; 2111 report(Twine(Op, " operand must not be a pointer type"), MI); 2112 } else if (SrcTy.isScalar()) { 2113 verifyAllRegOpsScalar(*MI, *MRI); 2114 break; 2115 } else if (SrcTy.isVector()) { 2116 verifyVectorElementMatch(SrcTy, DstTy, MI); 2117 break; 2118 } 2119 break; 2120 } 2121 case TargetOpcode::G_IS_FPCLASS: { 2122 LLT DestTy = MRI->getType(MI->getOperand(0).getReg()); 2123 LLT DestEltTy = DestTy.getScalarType(); 2124 if (!DestEltTy.isScalar()) { 2125 report("Destination must be a scalar or vector of scalars", MI); 2126 break; 2127 } 2128 LLT SrcTy = MRI->getType(MI->getOperand(1).getReg()); 2129 LLT SrcEltTy = SrcTy.getScalarType(); 2130 if (!SrcEltTy.isScalar()) { 2131 report("Source must be a scalar or vector of scalars", MI); 2132 break; 2133 } 2134 if (!verifyVectorElementMatch(DestTy, SrcTy, MI)) 2135 break; 2136 const MachineOperand &TestMO = MI->getOperand(2); 2137 if (!TestMO.isImm()) { 2138 report("floating-point class set (operand 2) must be an immediate", MI); 2139 break; 2140 } 2141 int64_t Test = TestMO.getImm(); 2142 if (Test < 0 || Test > fcAllFlags) { 2143 report("Incorrect floating-point class set (operand 2)", MI); 2144 break; 2145 } 2146 break; 2147 } 2148 case TargetOpcode::G_PREFETCH: { 2149 const MachineOperand &AddrOp = MI->getOperand(0); 2150 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) { 2151 report("addr operand must be a pointer", &AddrOp, 0); 2152 break; 2153 } 2154 const MachineOperand &RWOp = MI->getOperand(1); 2155 if (!RWOp.isImm() || (uint64_t)RWOp.getImm() >= 2) { 2156 report("rw operand must be an immediate 0-1", &RWOp, 1); 2157 break; 2158 } 2159 const MachineOperand &LocalityOp = MI->getOperand(2); 2160 if (!LocalityOp.isImm() || (uint64_t)LocalityOp.getImm() >= 4) { 2161 report("locality operand must be an immediate 0-3", &LocalityOp, 2); 2162 break; 2163 } 2164 const MachineOperand &CacheTypeOp = MI->getOperand(3); 2165 if (!CacheTypeOp.isImm() || (uint64_t)CacheTypeOp.getImm() >= 2) { 2166 report("cache type operand must be an immediate 0-1", &CacheTypeOp, 3); 2167 break; 2168 } 2169 break; 2170 } 2171 case TargetOpcode::G_ASSERT_ALIGN: { 2172 if (MI->getOperand(2).getImm() < 1) 2173 report("alignment immediate must be >= 1", MI); 2174 break; 2175 } 2176 case TargetOpcode::G_CONSTANT_POOL: { 2177 if (!MI->getOperand(1).isCPI()) 2178 report("Src operand 1 must be a constant pool index", MI); 2179 if (!MRI->getType(MI->getOperand(0).getReg()).isPointer()) 2180 report("Dst operand 0 must be a pointer", MI); 2181 break; 2182 } 2183 case TargetOpcode::G_PTRAUTH_GLOBAL_VALUE: { 2184 const MachineOperand &AddrOp = MI->getOperand(1); 2185 if (!AddrOp.isReg() || !MRI->getType(AddrOp.getReg()).isPointer()) 2186 report("addr operand must be a pointer", &AddrOp, 1); 2187 break; 2188 } 2189 default: 2190 break; 2191 } 2192 } 2193 2194 void MachineVerifier::visitMachineInstrBefore(const MachineInstr *MI) { 2195 const MCInstrDesc &MCID = MI->getDesc(); 2196 if (MI->getNumOperands() < MCID.getNumOperands()) { 2197 report("Too few operands", MI); 2198 OS << MCID.getNumOperands() << " operands expected, but " 2199 << MI->getNumOperands() << " given.\n"; 2200 } 2201 2202 if (MI->getFlag(MachineInstr::NoConvergent) && !MCID.isConvergent()) 2203 report("NoConvergent flag expected only on convergent instructions.", MI); 2204 2205 if (MI->isPHI()) { 2206 if (MF->getProperties().hasProperty( 2207 MachineFunctionProperties::Property::NoPHIs)) 2208 report("Found PHI instruction with NoPHIs property set", MI); 2209 2210 if (FirstNonPHI) 2211 report("Found PHI instruction after non-PHI", MI); 2212 } else if (FirstNonPHI == nullptr) 2213 FirstNonPHI = MI; 2214 2215 // Check the tied operands. 2216 if (MI->isInlineAsm()) 2217 verifyInlineAsm(MI); 2218 2219 // Check that unspillable terminators define a reg and have at most one use. 2220 if (TII->isUnspillableTerminator(MI)) { 2221 if (!MI->getOperand(0).isReg() || !MI->getOperand(0).isDef()) 2222 report("Unspillable Terminator does not define a reg", MI); 2223 Register Def = MI->getOperand(0).getReg(); 2224 if (Def.isVirtual() && 2225 !MF->getProperties().hasProperty( 2226 MachineFunctionProperties::Property::NoPHIs) && 2227 std::distance(MRI->use_nodbg_begin(Def), MRI->use_nodbg_end()) > 1) 2228 report("Unspillable Terminator expected to have at most one use!", MI); 2229 } 2230 2231 // A fully-formed DBG_VALUE must have a location. Ignore partially formed 2232 // DBG_VALUEs: these are convenient to use in tests, but should never get 2233 // generated. 2234 if (MI->isDebugValue() && MI->getNumOperands() == 4) 2235 if (!MI->getDebugLoc()) 2236 report("Missing DebugLoc for debug instruction", MI); 2237 2238 // Meta instructions should never be the subject of debug value tracking, 2239 // they don't create a value in the output program at all. 2240 if (MI->isMetaInstruction() && MI->peekDebugInstrNum()) 2241 report("Metadata instruction should not have a value tracking number", MI); 2242 2243 // Check the MachineMemOperands for basic consistency. 2244 for (MachineMemOperand *Op : MI->memoperands()) { 2245 if (Op->isLoad() && !MI->mayLoad()) 2246 report("Missing mayLoad flag", MI); 2247 if (Op->isStore() && !MI->mayStore()) 2248 report("Missing mayStore flag", MI); 2249 } 2250 2251 // Debug values must not have a slot index. 2252 // Other instructions must have one, unless they are inside a bundle. 2253 if (LiveInts) { 2254 bool mapped = !LiveInts->isNotInMIMap(*MI); 2255 if (MI->isDebugOrPseudoInstr()) { 2256 if (mapped) 2257 report("Debug instruction has a slot index", MI); 2258 } else if (MI->isInsideBundle()) { 2259 if (mapped) 2260 report("Instruction inside bundle has a slot index", MI); 2261 } else { 2262 if (!mapped) 2263 report("Missing slot index", MI); 2264 } 2265 } 2266 2267 unsigned Opc = MCID.getOpcode(); 2268 if (isPreISelGenericOpcode(Opc) || isPreISelGenericOptimizationHint(Opc)) { 2269 verifyPreISelGenericInstruction(MI); 2270 return; 2271 } 2272 2273 StringRef ErrorInfo; 2274 if (!TII->verifyInstruction(*MI, ErrorInfo)) 2275 report(ErrorInfo.data(), MI); 2276 2277 // Verify properties of various specific instruction types 2278 switch (MI->getOpcode()) { 2279 case TargetOpcode::COPY: { 2280 const MachineOperand &DstOp = MI->getOperand(0); 2281 const MachineOperand &SrcOp = MI->getOperand(1); 2282 const Register SrcReg = SrcOp.getReg(); 2283 const Register DstReg = DstOp.getReg(); 2284 2285 LLT DstTy = MRI->getType(DstReg); 2286 LLT SrcTy = MRI->getType(SrcReg); 2287 if (SrcTy.isValid() && DstTy.isValid()) { 2288 // If both types are valid, check that the types are the same. 2289 if (SrcTy != DstTy) { 2290 report("Copy Instruction is illegal with mismatching types", MI); 2291 OS << "Def = " << DstTy << ", Src = " << SrcTy << '\n'; 2292 } 2293 2294 break; 2295 } 2296 2297 if (!SrcTy.isValid() && !DstTy.isValid()) 2298 break; 2299 2300 // If we have only one valid type, this is likely a copy between a virtual 2301 // and physical register. 2302 TypeSize SrcSize = TRI->getRegSizeInBits(SrcReg, *MRI); 2303 TypeSize DstSize = TRI->getRegSizeInBits(DstReg, *MRI); 2304 if (SrcReg.isPhysical() && DstTy.isValid()) { 2305 const TargetRegisterClass *SrcRC = 2306 TRI->getMinimalPhysRegClassLLT(SrcReg, DstTy); 2307 if (SrcRC) 2308 SrcSize = TRI->getRegSizeInBits(*SrcRC); 2309 } 2310 2311 if (DstReg.isPhysical() && SrcTy.isValid()) { 2312 const TargetRegisterClass *DstRC = 2313 TRI->getMinimalPhysRegClassLLT(DstReg, SrcTy); 2314 if (DstRC) 2315 DstSize = TRI->getRegSizeInBits(*DstRC); 2316 } 2317 2318 // The next two checks allow COPY between physical and virtual registers, 2319 // when the virtual register has a scalable size and the physical register 2320 // has a fixed size. These checks allow COPY between *potentialy* mismatched 2321 // sizes. However, once RegisterBankSelection occurs, MachineVerifier should 2322 // be able to resolve a fixed size for the scalable vector, and at that 2323 // point this function will know for sure whether the sizes are mismatched 2324 // and correctly report a size mismatch. 2325 if (SrcReg.isPhysical() && DstReg.isVirtual() && DstSize.isScalable() && 2326 !SrcSize.isScalable()) 2327 break; 2328 if (SrcReg.isVirtual() && DstReg.isPhysical() && SrcSize.isScalable() && 2329 !DstSize.isScalable()) 2330 break; 2331 2332 if (SrcSize.isNonZero() && DstSize.isNonZero() && SrcSize != DstSize) { 2333 if (!DstOp.getSubReg() && !SrcOp.getSubReg()) { 2334 report("Copy Instruction is illegal with mismatching sizes", MI); 2335 OS << "Def Size = " << DstSize << ", Src Size = " << SrcSize << '\n'; 2336 } 2337 } 2338 break; 2339 } 2340 case TargetOpcode::STATEPOINT: { 2341 StatepointOpers SO(MI); 2342 if (!MI->getOperand(SO.getIDPos()).isImm() || 2343 !MI->getOperand(SO.getNBytesPos()).isImm() || 2344 !MI->getOperand(SO.getNCallArgsPos()).isImm()) { 2345 report("meta operands to STATEPOINT not constant!", MI); 2346 break; 2347 } 2348 2349 auto VerifyStackMapConstant = [&](unsigned Offset) { 2350 if (Offset >= MI->getNumOperands()) { 2351 report("stack map constant to STATEPOINT is out of range!", MI); 2352 return; 2353 } 2354 if (!MI->getOperand(Offset - 1).isImm() || 2355 MI->getOperand(Offset - 1).getImm() != StackMaps::ConstantOp || 2356 !MI->getOperand(Offset).isImm()) 2357 report("stack map constant to STATEPOINT not well formed!", MI); 2358 }; 2359 VerifyStackMapConstant(SO.getCCIdx()); 2360 VerifyStackMapConstant(SO.getFlagsIdx()); 2361 VerifyStackMapConstant(SO.getNumDeoptArgsIdx()); 2362 VerifyStackMapConstant(SO.getNumGCPtrIdx()); 2363 VerifyStackMapConstant(SO.getNumAllocaIdx()); 2364 VerifyStackMapConstant(SO.getNumGcMapEntriesIdx()); 2365 2366 // Verify that all explicit statepoint defs are tied to gc operands as 2367 // they are expected to be a relocation of gc operands. 2368 unsigned FirstGCPtrIdx = SO.getFirstGCPtrIdx(); 2369 unsigned LastGCPtrIdx = SO.getNumAllocaIdx() - 2; 2370 for (unsigned Idx = 0; Idx < MI->getNumDefs(); Idx++) { 2371 unsigned UseOpIdx; 2372 if (!MI->isRegTiedToUseOperand(Idx, &UseOpIdx)) { 2373 report("STATEPOINT defs expected to be tied", MI); 2374 break; 2375 } 2376 if (UseOpIdx < FirstGCPtrIdx || UseOpIdx > LastGCPtrIdx) { 2377 report("STATEPOINT def tied to non-gc operand", MI); 2378 break; 2379 } 2380 } 2381 2382 // TODO: verify we have properly encoded deopt arguments 2383 } break; 2384 case TargetOpcode::INSERT_SUBREG: { 2385 unsigned InsertedSize; 2386 if (unsigned SubIdx = MI->getOperand(2).getSubReg()) 2387 InsertedSize = TRI->getSubRegIdxSize(SubIdx); 2388 else 2389 InsertedSize = TRI->getRegSizeInBits(MI->getOperand(2).getReg(), *MRI); 2390 unsigned SubRegSize = TRI->getSubRegIdxSize(MI->getOperand(3).getImm()); 2391 if (SubRegSize < InsertedSize) { 2392 report("INSERT_SUBREG expected inserted value to have equal or lesser " 2393 "size than the subreg it was inserted into", MI); 2394 break; 2395 } 2396 } break; 2397 case TargetOpcode::REG_SEQUENCE: { 2398 unsigned NumOps = MI->getNumOperands(); 2399 if (!(NumOps & 1)) { 2400 report("Invalid number of operands for REG_SEQUENCE", MI); 2401 break; 2402 } 2403 2404 for (unsigned I = 1; I != NumOps; I += 2) { 2405 const MachineOperand &RegOp = MI->getOperand(I); 2406 const MachineOperand &SubRegOp = MI->getOperand(I + 1); 2407 2408 if (!RegOp.isReg()) 2409 report("Invalid register operand for REG_SEQUENCE", &RegOp, I); 2410 2411 if (!SubRegOp.isImm() || SubRegOp.getImm() == 0 || 2412 SubRegOp.getImm() >= TRI->getNumSubRegIndices()) { 2413 report("Invalid subregister index operand for REG_SEQUENCE", 2414 &SubRegOp, I + 1); 2415 } 2416 } 2417 2418 Register DstReg = MI->getOperand(0).getReg(); 2419 if (DstReg.isPhysical()) 2420 report("REG_SEQUENCE does not support physical register results", MI); 2421 2422 if (MI->getOperand(0).getSubReg()) 2423 report("Invalid subreg result for REG_SEQUENCE", MI); 2424 2425 break; 2426 } 2427 } 2428 } 2429 2430 void 2431 MachineVerifier::visitMachineOperand(const MachineOperand *MO, unsigned MONum) { 2432 const MachineInstr *MI = MO->getParent(); 2433 const MCInstrDesc &MCID = MI->getDesc(); 2434 unsigned NumDefs = MCID.getNumDefs(); 2435 if (MCID.getOpcode() == TargetOpcode::PATCHPOINT) 2436 NumDefs = (MONum == 0 && MO->isReg()) ? NumDefs : 0; 2437 2438 // The first MCID.NumDefs operands must be explicit register defines 2439 if (MONum < NumDefs) { 2440 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2441 if (!MO->isReg()) 2442 report("Explicit definition must be a register", MO, MONum); 2443 else if (!MO->isDef() && !MCOI.isOptionalDef()) 2444 report("Explicit definition marked as use", MO, MONum); 2445 else if (MO->isImplicit()) 2446 report("Explicit definition marked as implicit", MO, MONum); 2447 } else if (MONum < MCID.getNumOperands()) { 2448 const MCOperandInfo &MCOI = MCID.operands()[MONum]; 2449 // Don't check if it's the last operand in a variadic instruction. See, 2450 // e.g., LDM_RET in the arm back end. Check non-variadic operands only. 2451 bool IsOptional = MI->isVariadic() && MONum == MCID.getNumOperands() - 1; 2452 if (!IsOptional) { 2453 if (MO->isReg()) { 2454 if (MO->isDef() && !MCOI.isOptionalDef() && !MCID.variadicOpsAreDefs()) 2455 report("Explicit operand marked as def", MO, MONum); 2456 if (MO->isImplicit()) 2457 report("Explicit operand marked as implicit", MO, MONum); 2458 } 2459 2460 // Check that an instruction has register operands only as expected. 2461 if (MCOI.OperandType == MCOI::OPERAND_REGISTER && 2462 !MO->isReg() && !MO->isFI()) 2463 report("Expected a register operand.", MO, MONum); 2464 if (MO->isReg()) { 2465 if (MCOI.OperandType == MCOI::OPERAND_IMMEDIATE || 2466 (MCOI.OperandType == MCOI::OPERAND_PCREL && 2467 !TII->isPCRelRegisterOperandLegal(*MO))) 2468 report("Expected a non-register operand.", MO, MONum); 2469 } 2470 } 2471 2472 int TiedTo = MCID.getOperandConstraint(MONum, MCOI::TIED_TO); 2473 if (TiedTo != -1) { 2474 if (!MO->isReg()) 2475 report("Tied use must be a register", MO, MONum); 2476 else if (!MO->isTied()) 2477 report("Operand should be tied", MO, MONum); 2478 else if (unsigned(TiedTo) != MI->findTiedOperandIdx(MONum)) 2479 report("Tied def doesn't match MCInstrDesc", MO, MONum); 2480 else if (MO->getReg().isPhysical()) { 2481 const MachineOperand &MOTied = MI->getOperand(TiedTo); 2482 if (!MOTied.isReg()) 2483 report("Tied counterpart must be a register", &MOTied, TiedTo); 2484 else if (MOTied.getReg().isPhysical() && 2485 MO->getReg() != MOTied.getReg()) 2486 report("Tied physical registers must match.", &MOTied, TiedTo); 2487 } 2488 } else if (MO->isReg() && MO->isTied()) 2489 report("Explicit operand should not be tied", MO, MONum); 2490 } else if (!MI->isVariadic()) { 2491 // ARM adds %reg0 operands to indicate predicates. We'll allow that. 2492 if (!MO->isValidExcessOperand()) 2493 report("Extra explicit operand on non-variadic instruction", MO, MONum); 2494 } 2495 2496 switch (MO->getType()) { 2497 case MachineOperand::MO_Register: { 2498 // Verify debug flag on debug instructions. Check this first because reg0 2499 // indicates an undefined debug value. 2500 if (MI->isDebugInstr() && MO->isUse()) { 2501 if (!MO->isDebug()) 2502 report("Register operand must be marked debug", MO, MONum); 2503 } else if (MO->isDebug()) { 2504 report("Register operand must not be marked debug", MO, MONum); 2505 } 2506 2507 const Register Reg = MO->getReg(); 2508 if (!Reg) 2509 return; 2510 if (MRI->tracksLiveness() && !MI->isDebugInstr()) 2511 checkLiveness(MO, MONum); 2512 2513 if (MO->isDef() && MO->isUndef() && !MO->getSubReg() && 2514 MO->getReg().isVirtual()) // TODO: Apply to physregs too 2515 report("Undef virtual register def operands require a subregister", MO, MONum); 2516 2517 // Verify the consistency of tied operands. 2518 if (MO->isTied()) { 2519 unsigned OtherIdx = MI->findTiedOperandIdx(MONum); 2520 const MachineOperand &OtherMO = MI->getOperand(OtherIdx); 2521 if (!OtherMO.isReg()) 2522 report("Must be tied to a register", MO, MONum); 2523 if (!OtherMO.isTied()) 2524 report("Missing tie flags on tied operand", MO, MONum); 2525 if (MI->findTiedOperandIdx(OtherIdx) != MONum) 2526 report("Inconsistent tie links", MO, MONum); 2527 if (MONum < MCID.getNumDefs()) { 2528 if (OtherIdx < MCID.getNumOperands()) { 2529 if (-1 == MCID.getOperandConstraint(OtherIdx, MCOI::TIED_TO)) 2530 report("Explicit def tied to explicit use without tie constraint", 2531 MO, MONum); 2532 } else { 2533 if (!OtherMO.isImplicit()) 2534 report("Explicit def should be tied to implicit use", MO, MONum); 2535 } 2536 } 2537 } 2538 2539 // Verify two-address constraints after the twoaddressinstruction pass. 2540 // Both twoaddressinstruction pass and phi-node-elimination pass call 2541 // MRI->leaveSSA() to set MF as not IsSSA, we should do the verification 2542 // after twoaddressinstruction pass not after phi-node-elimination pass. So 2543 // we shouldn't use the IsSSA as the condition, we should based on 2544 // TiedOpsRewritten property to verify two-address constraints, this 2545 // property will be set in twoaddressinstruction pass. 2546 unsigned DefIdx; 2547 if (MF->getProperties().hasProperty( 2548 MachineFunctionProperties::Property::TiedOpsRewritten) && 2549 MO->isUse() && MI->isRegTiedToDefOperand(MONum, &DefIdx) && 2550 Reg != MI->getOperand(DefIdx).getReg()) 2551 report("Two-address instruction operands must be identical", MO, MONum); 2552 2553 // Check register classes. 2554 unsigned SubIdx = MO->getSubReg(); 2555 2556 if (Reg.isPhysical()) { 2557 if (SubIdx) { 2558 report("Illegal subregister index for physical register", MO, MONum); 2559 return; 2560 } 2561 if (MONum < MCID.getNumOperands()) { 2562 if (const TargetRegisterClass *DRC = 2563 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2564 if (!DRC->contains(Reg)) { 2565 report("Illegal physical register for instruction", MO, MONum); 2566 OS << printReg(Reg, TRI) << " is not a " 2567 << TRI->getRegClassName(DRC) << " register.\n"; 2568 } 2569 } 2570 } 2571 if (MO->isRenamable()) { 2572 if (MRI->isReserved(Reg)) { 2573 report("isRenamable set on reserved register", MO, MONum); 2574 return; 2575 } 2576 } 2577 } else { 2578 // Virtual register. 2579 const TargetRegisterClass *RC = MRI->getRegClassOrNull(Reg); 2580 if (!RC) { 2581 // This is a generic virtual register. 2582 2583 // Do not allow undef uses for generic virtual registers. This ensures 2584 // getVRegDef can never fail and return null on a generic register. 2585 // 2586 // FIXME: This restriction should probably be broadened to all SSA 2587 // MIR. However, DetectDeadLanes/ProcessImplicitDefs technically still 2588 // run on the SSA function just before phi elimination. 2589 if (MO->isUndef()) 2590 report("Generic virtual register use cannot be undef", MO, MONum); 2591 2592 // Debug value instruction is permitted to use undefined vregs. 2593 // This is a performance measure to skip the overhead of immediately 2594 // pruning unused debug operands. The final undef substitution occurs 2595 // when debug values are allocated in LDVImpl::handleDebugValue, so 2596 // these verifications always apply after this pass. 2597 if (isFunctionTracksDebugUserValues || !MO->isUse() || 2598 !MI->isDebugValue() || !MRI->def_empty(Reg)) { 2599 // If we're post-Select, we can't have gvregs anymore. 2600 if (isFunctionSelected) { 2601 report("Generic virtual register invalid in a Selected function", 2602 MO, MONum); 2603 return; 2604 } 2605 2606 // The gvreg must have a type and it must not have a SubIdx. 2607 LLT Ty = MRI->getType(Reg); 2608 if (!Ty.isValid()) { 2609 report("Generic virtual register must have a valid type", MO, 2610 MONum); 2611 return; 2612 } 2613 2614 const RegisterBank *RegBank = MRI->getRegBankOrNull(Reg); 2615 const RegisterBankInfo *RBI = MF->getSubtarget().getRegBankInfo(); 2616 2617 // If we're post-RegBankSelect, the gvreg must have a bank. 2618 if (!RegBank && isFunctionRegBankSelected) { 2619 report("Generic virtual register must have a bank in a " 2620 "RegBankSelected function", 2621 MO, MONum); 2622 return; 2623 } 2624 2625 // Make sure the register fits into its register bank if any. 2626 if (RegBank && Ty.isValid() && !Ty.isScalableVector() && 2627 RBI->getMaximumSize(RegBank->getID()) < Ty.getSizeInBits()) { 2628 report("Register bank is too small for virtual register", MO, 2629 MONum); 2630 OS << "Register bank " << RegBank->getName() << " too small(" 2631 << RBI->getMaximumSize(RegBank->getID()) << ") to fit " 2632 << Ty.getSizeInBits() << "-bits\n"; 2633 return; 2634 } 2635 } 2636 2637 if (SubIdx) { 2638 report("Generic virtual register does not allow subregister index", MO, 2639 MONum); 2640 return; 2641 } 2642 2643 // If this is a target specific instruction and this operand 2644 // has register class constraint, the virtual register must 2645 // comply to it. 2646 if (!isPreISelGenericOpcode(MCID.getOpcode()) && 2647 MONum < MCID.getNumOperands() && 2648 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2649 report("Virtual register does not match instruction constraint", MO, 2650 MONum); 2651 OS << "Expect register class " 2652 << TRI->getRegClassName(TII->getRegClass(MCID, MONum, TRI, *MF)) 2653 << " but got nothing\n"; 2654 return; 2655 } 2656 2657 break; 2658 } 2659 if (SubIdx) { 2660 const TargetRegisterClass *SRC = 2661 TRI->getSubClassWithSubReg(RC, SubIdx); 2662 if (!SRC) { 2663 report("Invalid subregister index for virtual register", MO, MONum); 2664 OS << "Register class " << TRI->getRegClassName(RC) 2665 << " does not support subreg index " << SubIdx << '\n'; 2666 return; 2667 } 2668 if (RC != SRC) { 2669 report("Invalid register class for subregister index", MO, MONum); 2670 OS << "Register class " << TRI->getRegClassName(RC) 2671 << " does not fully support subreg index " << SubIdx << '\n'; 2672 return; 2673 } 2674 } 2675 if (MONum < MCID.getNumOperands()) { 2676 if (const TargetRegisterClass *DRC = 2677 TII->getRegClass(MCID, MONum, TRI, *MF)) { 2678 if (SubIdx) { 2679 const TargetRegisterClass *SuperRC = 2680 TRI->getLargestLegalSuperClass(RC, *MF); 2681 if (!SuperRC) { 2682 report("No largest legal super class exists.", MO, MONum); 2683 return; 2684 } 2685 DRC = TRI->getMatchingSuperRegClass(SuperRC, DRC, SubIdx); 2686 if (!DRC) { 2687 report("No matching super-reg register class.", MO, MONum); 2688 return; 2689 } 2690 } 2691 if (!RC->hasSuperClassEq(DRC)) { 2692 report("Illegal virtual register for instruction", MO, MONum); 2693 OS << "Expected a " << TRI->getRegClassName(DRC) 2694 << " register, but got a " << TRI->getRegClassName(RC) 2695 << " register\n"; 2696 } 2697 } 2698 } 2699 } 2700 break; 2701 } 2702 2703 case MachineOperand::MO_RegisterMask: 2704 regMasks.push_back(MO->getRegMask()); 2705 break; 2706 2707 case MachineOperand::MO_MachineBasicBlock: 2708 if (MI->isPHI() && !MO->getMBB()->isSuccessor(MI->getParent())) 2709 report("PHI operand is not in the CFG", MO, MONum); 2710 break; 2711 2712 case MachineOperand::MO_FrameIndex: 2713 if (LiveStks && LiveStks->hasInterval(MO->getIndex()) && 2714 LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2715 int FI = MO->getIndex(); 2716 LiveInterval &LI = LiveStks->getInterval(FI); 2717 SlotIndex Idx = LiveInts->getInstructionIndex(*MI); 2718 2719 bool stores = MI->mayStore(); 2720 bool loads = MI->mayLoad(); 2721 // For a memory-to-memory move, we need to check if the frame 2722 // index is used for storing or loading, by inspecting the 2723 // memory operands. 2724 if (stores && loads) { 2725 for (auto *MMO : MI->memoperands()) { 2726 const PseudoSourceValue *PSV = MMO->getPseudoValue(); 2727 if (PSV == nullptr) continue; 2728 const FixedStackPseudoSourceValue *Value = 2729 dyn_cast<FixedStackPseudoSourceValue>(PSV); 2730 if (Value == nullptr) continue; 2731 if (Value->getFrameIndex() != FI) continue; 2732 2733 if (MMO->isStore()) 2734 loads = false; 2735 else 2736 stores = false; 2737 break; 2738 } 2739 if (loads == stores) 2740 report("Missing fixed stack memoperand.", MI); 2741 } 2742 if (loads && !LI.liveAt(Idx.getRegSlot(true))) { 2743 report("Instruction loads from dead spill slot", MO, MONum); 2744 OS << "Live stack: " << LI << '\n'; 2745 } 2746 if (stores && !LI.liveAt(Idx.getRegSlot())) { 2747 report("Instruction stores to dead spill slot", MO, MONum); 2748 OS << "Live stack: " << LI << '\n'; 2749 } 2750 } 2751 break; 2752 2753 case MachineOperand::MO_CFIIndex: 2754 if (MO->getCFIIndex() >= MF->getFrameInstructions().size()) 2755 report("CFI instruction has invalid index", MO, MONum); 2756 break; 2757 2758 default: 2759 break; 2760 } 2761 } 2762 2763 void MachineVerifier::checkLivenessAtUse(const MachineOperand *MO, 2764 unsigned MONum, SlotIndex UseIdx, 2765 const LiveRange &LR, 2766 Register VRegOrUnit, 2767 LaneBitmask LaneMask) { 2768 const MachineInstr *MI = MO->getParent(); 2769 2770 if (!LR.verify()) { 2771 report("invalid live range", MO, MONum); 2772 report_context_liverange(LR); 2773 report_context_vreg_regunit(VRegOrUnit); 2774 report_context(UseIdx); 2775 return; 2776 } 2777 2778 LiveQueryResult LRQ = LR.Query(UseIdx); 2779 bool HasValue = LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut()); 2780 // Check if we have a segment at the use, note however that we only need one 2781 // live subregister range, the others may be dead. 2782 if (!HasValue && LaneMask.none()) { 2783 report("No live segment at use", MO, MONum); 2784 report_context_liverange(LR); 2785 report_context_vreg_regunit(VRegOrUnit); 2786 report_context(UseIdx); 2787 } 2788 if (MO->isKill() && !LRQ.isKill()) { 2789 report("Live range continues after kill flag", MO, MONum); 2790 report_context_liverange(LR); 2791 report_context_vreg_regunit(VRegOrUnit); 2792 if (LaneMask.any()) 2793 report_context_lanemask(LaneMask); 2794 report_context(UseIdx); 2795 } 2796 } 2797 2798 void MachineVerifier::checkLivenessAtDef(const MachineOperand *MO, 2799 unsigned MONum, SlotIndex DefIdx, 2800 const LiveRange &LR, 2801 Register VRegOrUnit, 2802 bool SubRangeCheck, 2803 LaneBitmask LaneMask) { 2804 if (!LR.verify()) { 2805 report("invalid live range", MO, MONum); 2806 report_context_liverange(LR); 2807 report_context_vreg_regunit(VRegOrUnit); 2808 if (LaneMask.any()) 2809 report_context_lanemask(LaneMask); 2810 report_context(DefIdx); 2811 } 2812 2813 if (const VNInfo *VNI = LR.getVNInfoAt(DefIdx)) { 2814 // The LR can correspond to the whole reg and its def slot is not obliged 2815 // to be the same as the MO' def slot. E.g. when we check here "normal" 2816 // subreg MO but there is other EC subreg MO in the same instruction so the 2817 // whole reg has EC def slot and differs from the currently checked MO' def 2818 // slot. For example: 2819 // %0 [16e,32r:0) 0@16e L..3 [16e,32r:0) 0@16e L..C [16r,32r:0) 0@16r 2820 // Check that there is an early-clobber def of the same superregister 2821 // somewhere is performed in visitMachineFunctionAfter() 2822 if (((SubRangeCheck || MO->getSubReg() == 0) && VNI->def != DefIdx) || 2823 !SlotIndex::isSameInstr(VNI->def, DefIdx) || 2824 (VNI->def != DefIdx && 2825 (!VNI->def.isEarlyClobber() || !DefIdx.isRegister()))) { 2826 report("Inconsistent valno->def", MO, MONum); 2827 report_context_liverange(LR); 2828 report_context_vreg_regunit(VRegOrUnit); 2829 if (LaneMask.any()) 2830 report_context_lanemask(LaneMask); 2831 report_context(*VNI); 2832 report_context(DefIdx); 2833 } 2834 } else { 2835 report("No live segment at def", MO, MONum); 2836 report_context_liverange(LR); 2837 report_context_vreg_regunit(VRegOrUnit); 2838 if (LaneMask.any()) 2839 report_context_lanemask(LaneMask); 2840 report_context(DefIdx); 2841 } 2842 // Check that, if the dead def flag is present, LiveInts agree. 2843 if (MO->isDead()) { 2844 LiveQueryResult LRQ = LR.Query(DefIdx); 2845 if (!LRQ.isDeadDef()) { 2846 assert(VRegOrUnit.isVirtual() && "Expecting a virtual register."); 2847 // A dead subreg def only tells us that the specific subreg is dead. There 2848 // could be other non-dead defs of other subregs, or we could have other 2849 // parts of the register being live through the instruction. So unless we 2850 // are checking liveness for a subrange it is ok for the live range to 2851 // continue, given that we have a dead def of a subregister. 2852 if (SubRangeCheck || MO->getSubReg() == 0) { 2853 report("Live range continues after dead def flag", MO, MONum); 2854 report_context_liverange(LR); 2855 report_context_vreg_regunit(VRegOrUnit); 2856 if (LaneMask.any()) 2857 report_context_lanemask(LaneMask); 2858 } 2859 } 2860 } 2861 } 2862 2863 void MachineVerifier::checkLiveness(const MachineOperand *MO, unsigned MONum) { 2864 const MachineInstr *MI = MO->getParent(); 2865 const Register Reg = MO->getReg(); 2866 const unsigned SubRegIdx = MO->getSubReg(); 2867 2868 const LiveInterval *LI = nullptr; 2869 if (LiveInts && Reg.isVirtual()) { 2870 if (LiveInts->hasInterval(Reg)) { 2871 LI = &LiveInts->getInterval(Reg); 2872 if (SubRegIdx != 0 && (MO->isDef() || !MO->isUndef()) && !LI->empty() && 2873 !LI->hasSubRanges() && MRI->shouldTrackSubRegLiveness(Reg)) 2874 report("Live interval for subreg operand has no subranges", MO, MONum); 2875 } else { 2876 report("Virtual register has no live interval", MO, MONum); 2877 } 2878 } 2879 2880 // Both use and def operands can read a register. 2881 if (MO->readsReg()) { 2882 if (MO->isKill()) 2883 addRegWithSubRegs(regsKilled, Reg); 2884 2885 // Check that LiveVars knows this kill (unless we are inside a bundle, in 2886 // which case we have already checked that LiveVars knows any kills on the 2887 // bundle header instead). 2888 if (LiveVars && Reg.isVirtual() && MO->isKill() && 2889 !MI->isBundledWithPred()) { 2890 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 2891 if (!is_contained(VI.Kills, MI)) 2892 report("Kill missing from LiveVariables", MO, MONum); 2893 } 2894 2895 // Check LiveInts liveness and kill. 2896 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 2897 SlotIndex UseIdx; 2898 if (MI->isPHI()) { 2899 // PHI use occurs on the edge, so check for live out here instead. 2900 UseIdx = LiveInts->getMBBEndIdx( 2901 MI->getOperand(MONum + 1).getMBB()).getPrevSlot(); 2902 } else { 2903 UseIdx = LiveInts->getInstructionIndex(*MI); 2904 } 2905 // Check the cached regunit intervals. 2906 if (Reg.isPhysical() && !isReserved(Reg)) { 2907 for (MCRegUnit Unit : TRI->regunits(Reg.asMCReg())) { 2908 if (MRI->isReservedRegUnit(Unit)) 2909 continue; 2910 if (const LiveRange *LR = LiveInts->getCachedRegUnit(Unit)) 2911 checkLivenessAtUse(MO, MONum, UseIdx, *LR, Unit); 2912 } 2913 } 2914 2915 if (Reg.isVirtual()) { 2916 // This is a virtual register interval. 2917 checkLivenessAtUse(MO, MONum, UseIdx, *LI, Reg); 2918 2919 if (LI->hasSubRanges() && !MO->isDef()) { 2920 LaneBitmask MOMask = SubRegIdx != 0 2921 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 2922 : MRI->getMaxLaneMaskForVReg(Reg); 2923 LaneBitmask LiveInMask; 2924 for (const LiveInterval::SubRange &SR : LI->subranges()) { 2925 if ((MOMask & SR.LaneMask).none()) 2926 continue; 2927 checkLivenessAtUse(MO, MONum, UseIdx, SR, Reg, SR.LaneMask); 2928 LiveQueryResult LRQ = SR.Query(UseIdx); 2929 if (LRQ.valueIn() || (MI->isPHI() && LRQ.valueOut())) 2930 LiveInMask |= SR.LaneMask; 2931 } 2932 // At least parts of the register has to be live at the use. 2933 if ((LiveInMask & MOMask).none()) { 2934 report("No live subrange at use", MO, MONum); 2935 report_context(*LI); 2936 report_context(UseIdx); 2937 } 2938 // For PHIs all lanes should be live 2939 if (MI->isPHI() && LiveInMask != MOMask) { 2940 report("Not all lanes of PHI source live at use", MO, MONum); 2941 report_context(*LI); 2942 report_context(UseIdx); 2943 } 2944 } 2945 } 2946 } 2947 2948 // Use of a dead register. 2949 if (!regsLive.count(Reg)) { 2950 if (Reg.isPhysical()) { 2951 // Reserved registers may be used even when 'dead'. 2952 bool Bad = !isReserved(Reg); 2953 // We are fine if just any subregister has a defined value. 2954 if (Bad) { 2955 2956 for (const MCPhysReg &SubReg : TRI->subregs(Reg)) { 2957 if (regsLive.count(SubReg)) { 2958 Bad = false; 2959 break; 2960 } 2961 } 2962 } 2963 // If there is an additional implicit-use of a super register we stop 2964 // here. By definition we are fine if the super register is not 2965 // (completely) dead, if the complete super register is dead we will 2966 // get a report for its operand. 2967 if (Bad) { 2968 for (const MachineOperand &MOP : MI->uses()) { 2969 if (!MOP.isReg() || !MOP.isImplicit()) 2970 continue; 2971 2972 if (!MOP.getReg().isPhysical()) 2973 continue; 2974 2975 if (llvm::is_contained(TRI->subregs(MOP.getReg()), Reg)) 2976 Bad = false; 2977 } 2978 } 2979 if (Bad) 2980 report("Using an undefined physical register", MO, MONum); 2981 } else if (MRI->def_empty(Reg)) { 2982 report("Reading virtual register without a def", MO, MONum); 2983 } else { 2984 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 2985 // We don't know which virtual registers are live in, so only complain 2986 // if vreg was killed in this MBB. Otherwise keep track of vregs that 2987 // must be live in. PHI instructions are handled separately. 2988 if (MInfo.regsKilled.count(Reg)) 2989 report("Using a killed virtual register", MO, MONum); 2990 else if (!MI->isPHI()) 2991 MInfo.vregsLiveIn.insert(std::make_pair(Reg, MI)); 2992 } 2993 } 2994 } 2995 2996 if (MO->isDef()) { 2997 // Register defined. 2998 // TODO: verify that earlyclobber ops are not used. 2999 if (MO->isDead()) 3000 addRegWithSubRegs(regsDead, Reg); 3001 else 3002 addRegWithSubRegs(regsDefined, Reg); 3003 3004 // Verify SSA form. 3005 if (MRI->isSSA() && Reg.isVirtual() && 3006 std::next(MRI->def_begin(Reg)) != MRI->def_end()) 3007 report("Multiple virtual register defs in SSA form", MO, MONum); 3008 3009 // Check LiveInts for a live segment, but only for virtual registers. 3010 if (LiveInts && !LiveInts->isNotInMIMap(*MI)) { 3011 SlotIndex DefIdx = LiveInts->getInstructionIndex(*MI); 3012 DefIdx = DefIdx.getRegSlot(MO->isEarlyClobber()); 3013 3014 if (Reg.isVirtual()) { 3015 checkLivenessAtDef(MO, MONum, DefIdx, *LI, Reg); 3016 3017 if (LI->hasSubRanges()) { 3018 LaneBitmask MOMask = SubRegIdx != 0 3019 ? TRI->getSubRegIndexLaneMask(SubRegIdx) 3020 : MRI->getMaxLaneMaskForVReg(Reg); 3021 for (const LiveInterval::SubRange &SR : LI->subranges()) { 3022 if ((SR.LaneMask & MOMask).none()) 3023 continue; 3024 checkLivenessAtDef(MO, MONum, DefIdx, SR, Reg, true, SR.LaneMask); 3025 } 3026 } 3027 } 3028 } 3029 } 3030 } 3031 3032 // This function gets called after visiting all instructions in a bundle. The 3033 // argument points to the bundle header. 3034 // Normal stand-alone instructions are also considered 'bundles', and this 3035 // function is called for all of them. 3036 void MachineVerifier::visitMachineBundleAfter(const MachineInstr *MI) { 3037 BBInfo &MInfo = MBBInfoMap[MI->getParent()]; 3038 set_union(MInfo.regsKilled, regsKilled); 3039 set_subtract(regsLive, regsKilled); regsKilled.clear(); 3040 // Kill any masked registers. 3041 while (!regMasks.empty()) { 3042 const uint32_t *Mask = regMasks.pop_back_val(); 3043 for (Register Reg : regsLive) 3044 if (Reg.isPhysical() && 3045 MachineOperand::clobbersPhysReg(Mask, Reg.asMCReg())) 3046 regsDead.push_back(Reg); 3047 } 3048 set_subtract(regsLive, regsDead); regsDead.clear(); 3049 set_union(regsLive, regsDefined); regsDefined.clear(); 3050 } 3051 3052 void 3053 MachineVerifier::visitMachineBasicBlockAfter(const MachineBasicBlock *MBB) { 3054 MBBInfoMap[MBB].regsLiveOut = regsLive; 3055 regsLive.clear(); 3056 3057 if (Indexes) { 3058 SlotIndex stop = Indexes->getMBBEndIdx(MBB); 3059 if (!(stop > lastIndex)) { 3060 report("Block ends before last instruction index", MBB); 3061 OS << "Block ends at " << stop << " last instruction was at " << lastIndex 3062 << '\n'; 3063 } 3064 lastIndex = stop; 3065 } 3066 } 3067 3068 namespace { 3069 // This implements a set of registers that serves as a filter: can filter other 3070 // sets by passing through elements not in the filter and blocking those that 3071 // are. Any filter implicitly includes the full set of physical registers upon 3072 // creation, thus filtering them all out. The filter itself as a set only grows, 3073 // and needs to be as efficient as possible. 3074 struct VRegFilter { 3075 // Add elements to the filter itself. \pre Input set \p FromRegSet must have 3076 // no duplicates. Both virtual and physical registers are fine. 3077 template <typename RegSetT> void add(const RegSetT &FromRegSet) { 3078 SmallVector<Register, 0> VRegsBuffer; 3079 filterAndAdd(FromRegSet, VRegsBuffer); 3080 } 3081 // Filter \p FromRegSet through the filter and append passed elements into \p 3082 // ToVRegs. All elements appended are then added to the filter itself. 3083 // \returns true if anything changed. 3084 template <typename RegSetT> 3085 bool filterAndAdd(const RegSetT &FromRegSet, 3086 SmallVectorImpl<Register> &ToVRegs) { 3087 unsigned SparseUniverse = Sparse.size(); 3088 unsigned NewSparseUniverse = SparseUniverse; 3089 unsigned NewDenseSize = Dense.size(); 3090 size_t Begin = ToVRegs.size(); 3091 for (Register Reg : FromRegSet) { 3092 if (!Reg.isVirtual()) 3093 continue; 3094 unsigned Index = Register::virtReg2Index(Reg); 3095 if (Index < SparseUniverseMax) { 3096 if (Index < SparseUniverse && Sparse.test(Index)) 3097 continue; 3098 NewSparseUniverse = std::max(NewSparseUniverse, Index + 1); 3099 } else { 3100 if (Dense.count(Reg)) 3101 continue; 3102 ++NewDenseSize; 3103 } 3104 ToVRegs.push_back(Reg); 3105 } 3106 size_t End = ToVRegs.size(); 3107 if (Begin == End) 3108 return false; 3109 // Reserving space in sets once performs better than doing so continuously 3110 // and pays easily for double look-ups (even in Dense with SparseUniverseMax 3111 // tuned all the way down) and double iteration (the second one is over a 3112 // SmallVector, which is a lot cheaper compared to DenseSet or BitVector). 3113 Sparse.resize(NewSparseUniverse); 3114 Dense.reserve(NewDenseSize); 3115 for (unsigned I = Begin; I < End; ++I) { 3116 Register Reg = ToVRegs[I]; 3117 unsigned Index = Register::virtReg2Index(Reg); 3118 if (Index < SparseUniverseMax) 3119 Sparse.set(Index); 3120 else 3121 Dense.insert(Reg); 3122 } 3123 return true; 3124 } 3125 3126 private: 3127 static constexpr unsigned SparseUniverseMax = 10 * 1024 * 8; 3128 // VRegs indexed within SparseUniverseMax are tracked by Sparse, those beyound 3129 // are tracked by Dense. The only purpose of the threashold and the Dense set 3130 // is to have a reasonably growing memory usage in pathological cases (large 3131 // number of very sparse VRegFilter instances live at the same time). In 3132 // practice even in the worst-by-execution time cases having all elements 3133 // tracked by Sparse (very large SparseUniverseMax scenario) tends to be more 3134 // space efficient than if tracked by Dense. The threashold is set to keep the 3135 // worst-case memory usage within 2x of figures determined empirically for 3136 // "all Dense" scenario in such worst-by-execution-time cases. 3137 BitVector Sparse; 3138 DenseSet<unsigned> Dense; 3139 }; 3140 3141 // Implements both a transfer function and a (binary, in-place) join operator 3142 // for a dataflow over register sets with set union join and filtering transfer 3143 // (out_b = in_b \ filter_b). filter_b is expected to be set-up ahead of time. 3144 // Maintains out_b as its state, allowing for O(n) iteration over it at any 3145 // time, where n is the size of the set (as opposed to O(U) where U is the 3146 // universe). filter_b implicitly contains all physical registers at all times. 3147 class FilteringVRegSet { 3148 VRegFilter Filter; 3149 SmallVector<Register, 0> VRegs; 3150 3151 public: 3152 // Set-up the filter_b. \pre Input register set \p RS must have no duplicates. 3153 // Both virtual and physical registers are fine. 3154 template <typename RegSetT> void addToFilter(const RegSetT &RS) { 3155 Filter.add(RS); 3156 } 3157 // Passes \p RS through the filter_b (transfer function) and adds what's left 3158 // to itself (out_b). 3159 template <typename RegSetT> bool add(const RegSetT &RS) { 3160 // Double-duty the Filter: to maintain VRegs a set (and the join operation 3161 // a set union) just add everything being added here to the Filter as well. 3162 return Filter.filterAndAdd(RS, VRegs); 3163 } 3164 using const_iterator = decltype(VRegs)::const_iterator; 3165 const_iterator begin() const { return VRegs.begin(); } 3166 const_iterator end() const { return VRegs.end(); } 3167 size_t size() const { return VRegs.size(); } 3168 }; 3169 } // namespace 3170 3171 // Calculate the largest possible vregsPassed sets. These are the registers that 3172 // can pass through an MBB live, but may not be live every time. It is assumed 3173 // that all vregsPassed sets are empty before the call. 3174 void MachineVerifier::calcRegsPassed() { 3175 if (MF->empty()) 3176 // ReversePostOrderTraversal doesn't handle empty functions. 3177 return; 3178 3179 for (const MachineBasicBlock *MB : 3180 ReversePostOrderTraversal<const MachineFunction *>(MF)) { 3181 FilteringVRegSet VRegs; 3182 BBInfo &Info = MBBInfoMap[MB]; 3183 assert(Info.reachable); 3184 3185 VRegs.addToFilter(Info.regsKilled); 3186 VRegs.addToFilter(Info.regsLiveOut); 3187 for (const MachineBasicBlock *Pred : MB->predecessors()) { 3188 const BBInfo &PredInfo = MBBInfoMap[Pred]; 3189 if (!PredInfo.reachable) 3190 continue; 3191 3192 VRegs.add(PredInfo.regsLiveOut); 3193 VRegs.add(PredInfo.vregsPassed); 3194 } 3195 Info.vregsPassed.reserve(VRegs.size()); 3196 Info.vregsPassed.insert(VRegs.begin(), VRegs.end()); 3197 } 3198 } 3199 3200 // Calculate the set of virtual registers that must be passed through each basic 3201 // block in order to satisfy the requirements of successor blocks. This is very 3202 // similar to calcRegsPassed, only backwards. 3203 void MachineVerifier::calcRegsRequired() { 3204 // First push live-in regs to predecessors' vregsRequired. 3205 SmallPtrSet<const MachineBasicBlock*, 8> todo; 3206 for (const auto &MBB : *MF) { 3207 BBInfo &MInfo = MBBInfoMap[&MBB]; 3208 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3209 BBInfo &PInfo = MBBInfoMap[Pred]; 3210 if (PInfo.addRequired(MInfo.vregsLiveIn)) 3211 todo.insert(Pred); 3212 } 3213 3214 // Handle the PHI node. 3215 for (const MachineInstr &MI : MBB.phis()) { 3216 for (unsigned i = 1, e = MI.getNumOperands(); i != e; i += 2) { 3217 // Skip those Operands which are undef regs or not regs. 3218 if (!MI.getOperand(i).isReg() || !MI.getOperand(i).readsReg()) 3219 continue; 3220 3221 // Get register and predecessor for one PHI edge. 3222 Register Reg = MI.getOperand(i).getReg(); 3223 const MachineBasicBlock *Pred = MI.getOperand(i + 1).getMBB(); 3224 3225 BBInfo &PInfo = MBBInfoMap[Pred]; 3226 if (PInfo.addRequired(Reg)) 3227 todo.insert(Pred); 3228 } 3229 } 3230 } 3231 3232 // Iteratively push vregsRequired to predecessors. This will converge to the 3233 // same final state regardless of DenseSet iteration order. 3234 while (!todo.empty()) { 3235 const MachineBasicBlock *MBB = *todo.begin(); 3236 todo.erase(MBB); 3237 BBInfo &MInfo = MBBInfoMap[MBB]; 3238 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3239 if (Pred == MBB) 3240 continue; 3241 BBInfo &SInfo = MBBInfoMap[Pred]; 3242 if (SInfo.addRequired(MInfo.vregsRequired)) 3243 todo.insert(Pred); 3244 } 3245 } 3246 } 3247 3248 // Check PHI instructions at the beginning of MBB. It is assumed that 3249 // calcRegsPassed has been run so BBInfo::isLiveOut is valid. 3250 void MachineVerifier::checkPHIOps(const MachineBasicBlock &MBB) { 3251 BBInfo &MInfo = MBBInfoMap[&MBB]; 3252 3253 SmallPtrSet<const MachineBasicBlock*, 8> seen; 3254 for (const MachineInstr &Phi : MBB) { 3255 if (!Phi.isPHI()) 3256 break; 3257 seen.clear(); 3258 3259 const MachineOperand &MODef = Phi.getOperand(0); 3260 if (!MODef.isReg() || !MODef.isDef()) { 3261 report("Expected first PHI operand to be a register def", &MODef, 0); 3262 continue; 3263 } 3264 if (MODef.isTied() || MODef.isImplicit() || MODef.isInternalRead() || 3265 MODef.isEarlyClobber() || MODef.isDebug()) 3266 report("Unexpected flag on PHI operand", &MODef, 0); 3267 Register DefReg = MODef.getReg(); 3268 if (!DefReg.isVirtual()) 3269 report("Expected first PHI operand to be a virtual register", &MODef, 0); 3270 3271 for (unsigned I = 1, E = Phi.getNumOperands(); I != E; I += 2) { 3272 const MachineOperand &MO0 = Phi.getOperand(I); 3273 if (!MO0.isReg()) { 3274 report("Expected PHI operand to be a register", &MO0, I); 3275 continue; 3276 } 3277 if (MO0.isImplicit() || MO0.isInternalRead() || MO0.isEarlyClobber() || 3278 MO0.isDebug() || MO0.isTied()) 3279 report("Unexpected flag on PHI operand", &MO0, I); 3280 3281 const MachineOperand &MO1 = Phi.getOperand(I + 1); 3282 if (!MO1.isMBB()) { 3283 report("Expected PHI operand to be a basic block", &MO1, I + 1); 3284 continue; 3285 } 3286 3287 const MachineBasicBlock &Pre = *MO1.getMBB(); 3288 if (!Pre.isSuccessor(&MBB)) { 3289 report("PHI input is not a predecessor block", &MO1, I + 1); 3290 continue; 3291 } 3292 3293 if (MInfo.reachable) { 3294 seen.insert(&Pre); 3295 BBInfo &PrInfo = MBBInfoMap[&Pre]; 3296 if (!MO0.isUndef() && PrInfo.reachable && 3297 !PrInfo.isLiveOut(MO0.getReg())) 3298 report("PHI operand is not live-out from predecessor", &MO0, I); 3299 } 3300 } 3301 3302 // Did we see all predecessors? 3303 if (MInfo.reachable) { 3304 for (MachineBasicBlock *Pred : MBB.predecessors()) { 3305 if (!seen.count(Pred)) { 3306 report("Missing PHI operand", &Phi); 3307 OS << printMBBReference(*Pred) 3308 << " is a predecessor according to the CFG.\n"; 3309 } 3310 } 3311 } 3312 } 3313 } 3314 3315 static void 3316 verifyConvergenceControl(const MachineFunction &MF, MachineDominatorTree &DT, 3317 std::function<void(const Twine &Message)> FailureCB, 3318 raw_ostream &OS) { 3319 MachineConvergenceVerifier CV; 3320 CV.initialize(&OS, FailureCB, MF); 3321 3322 for (const auto &MBB : MF) { 3323 CV.visit(MBB); 3324 for (const auto &MI : MBB.instrs()) 3325 CV.visit(MI); 3326 } 3327 3328 if (CV.sawTokens()) { 3329 DT.recalculate(const_cast<MachineFunction &>(MF)); 3330 CV.verify(DT); 3331 } 3332 } 3333 3334 void MachineVerifier::visitMachineFunctionAfter() { 3335 auto FailureCB = [this](const Twine &Message) { 3336 report(Message.str().c_str(), MF); 3337 }; 3338 verifyConvergenceControl(*MF, DT, FailureCB, OS); 3339 3340 calcRegsPassed(); 3341 3342 for (const MachineBasicBlock &MBB : *MF) 3343 checkPHIOps(MBB); 3344 3345 // Now check liveness info if available 3346 calcRegsRequired(); 3347 3348 // Check for killed virtual registers that should be live out. 3349 for (const auto &MBB : *MF) { 3350 BBInfo &MInfo = MBBInfoMap[&MBB]; 3351 for (Register VReg : MInfo.vregsRequired) 3352 if (MInfo.regsKilled.count(VReg)) { 3353 report("Virtual register killed in block, but needed live out.", &MBB); 3354 OS << "Virtual register " << printReg(VReg) 3355 << " is used after the block.\n"; 3356 } 3357 } 3358 3359 if (!MF->empty()) { 3360 BBInfo &MInfo = MBBInfoMap[&MF->front()]; 3361 for (Register VReg : MInfo.vregsRequired) { 3362 report("Virtual register defs don't dominate all uses.", MF); 3363 report_context_vreg(VReg); 3364 } 3365 } 3366 3367 if (LiveVars) 3368 verifyLiveVariables(); 3369 if (LiveInts) 3370 verifyLiveIntervals(); 3371 3372 // Check live-in list of each MBB. If a register is live into MBB, check 3373 // that the register is in regsLiveOut of each predecessor block. Since 3374 // this must come from a definition in the predecesssor or its live-in 3375 // list, this will catch a live-through case where the predecessor does not 3376 // have the register in its live-in list. This currently only checks 3377 // registers that have no aliases, are not allocatable and are not 3378 // reserved, which could mean a condition code register for instance. 3379 if (MRI->tracksLiveness()) 3380 for (const auto &MBB : *MF) 3381 for (MachineBasicBlock::RegisterMaskPair P : MBB.liveins()) { 3382 MCPhysReg LiveInReg = P.PhysReg; 3383 bool hasAliases = MCRegAliasIterator(LiveInReg, TRI, false).isValid(); 3384 if (hasAliases || isAllocatable(LiveInReg) || isReserved(LiveInReg)) 3385 continue; 3386 for (const MachineBasicBlock *Pred : MBB.predecessors()) { 3387 BBInfo &PInfo = MBBInfoMap[Pred]; 3388 if (!PInfo.regsLiveOut.count(LiveInReg)) { 3389 report("Live in register not found to be live out from predecessor.", 3390 &MBB); 3391 OS << TRI->getName(LiveInReg) << " not found to be live out from " 3392 << printMBBReference(*Pred) << '\n'; 3393 } 3394 } 3395 } 3396 3397 for (auto CSInfo : MF->getCallSitesInfo()) 3398 if (!CSInfo.first->isCall()) 3399 report("Call site info referencing instruction that is not call", MF); 3400 3401 // If there's debug-info, check that we don't have any duplicate value 3402 // tracking numbers. 3403 if (MF->getFunction().getSubprogram()) { 3404 DenseSet<unsigned> SeenNumbers; 3405 for (const auto &MBB : *MF) { 3406 for (const auto &MI : MBB) { 3407 if (auto Num = MI.peekDebugInstrNum()) { 3408 auto Result = SeenNumbers.insert((unsigned)Num); 3409 if (!Result.second) 3410 report("Instruction has a duplicated value tracking number", &MI); 3411 } 3412 } 3413 } 3414 } 3415 } 3416 3417 void MachineVerifier::verifyLiveVariables() { 3418 assert(LiveVars && "Don't call verifyLiveVariables without LiveVars"); 3419 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3420 Register Reg = Register::index2VirtReg(I); 3421 LiveVariables::VarInfo &VI = LiveVars->getVarInfo(Reg); 3422 for (const auto &MBB : *MF) { 3423 BBInfo &MInfo = MBBInfoMap[&MBB]; 3424 3425 // Our vregsRequired should be identical to LiveVariables' AliveBlocks 3426 if (MInfo.vregsRequired.count(Reg)) { 3427 if (!VI.AliveBlocks.test(MBB.getNumber())) { 3428 report("LiveVariables: Block missing from AliveBlocks", &MBB); 3429 OS << "Virtual register " << printReg(Reg) 3430 << " must be live through the block.\n"; 3431 } 3432 } else { 3433 if (VI.AliveBlocks.test(MBB.getNumber())) { 3434 report("LiveVariables: Block should not be in AliveBlocks", &MBB); 3435 OS << "Virtual register " << printReg(Reg) 3436 << " is not needed live through the block.\n"; 3437 } 3438 } 3439 } 3440 } 3441 } 3442 3443 void MachineVerifier::verifyLiveIntervals() { 3444 assert(LiveInts && "Don't call verifyLiveIntervals without LiveInts"); 3445 for (unsigned I = 0, E = MRI->getNumVirtRegs(); I != E; ++I) { 3446 Register Reg = Register::index2VirtReg(I); 3447 3448 // Spilling and splitting may leave unused registers around. Skip them. 3449 if (MRI->reg_nodbg_empty(Reg)) 3450 continue; 3451 3452 if (!LiveInts->hasInterval(Reg)) { 3453 report("Missing live interval for virtual register", MF); 3454 OS << printReg(Reg, TRI) << " still has defs or uses\n"; 3455 continue; 3456 } 3457 3458 const LiveInterval &LI = LiveInts->getInterval(Reg); 3459 assert(Reg == LI.reg() && "Invalid reg to interval mapping"); 3460 verifyLiveInterval(LI); 3461 } 3462 3463 // Verify all the cached regunit intervals. 3464 for (unsigned i = 0, e = TRI->getNumRegUnits(); i != e; ++i) 3465 if (const LiveRange *LR = LiveInts->getCachedRegUnit(i)) 3466 verifyLiveRange(*LR, i); 3467 } 3468 3469 void MachineVerifier::verifyLiveRangeValue(const LiveRange &LR, 3470 const VNInfo *VNI, Register Reg, 3471 LaneBitmask LaneMask) { 3472 if (VNI->isUnused()) 3473 return; 3474 3475 const VNInfo *DefVNI = LR.getVNInfoAt(VNI->def); 3476 3477 if (!DefVNI) { 3478 report("Value not live at VNInfo def and not marked unused", MF); 3479 report_context(LR, Reg, LaneMask); 3480 report_context(*VNI); 3481 return; 3482 } 3483 3484 if (DefVNI != VNI) { 3485 report("Live segment at def has different VNInfo", MF); 3486 report_context(LR, Reg, LaneMask); 3487 report_context(*VNI); 3488 return; 3489 } 3490 3491 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(VNI->def); 3492 if (!MBB) { 3493 report("Invalid VNInfo definition index", MF); 3494 report_context(LR, Reg, LaneMask); 3495 report_context(*VNI); 3496 return; 3497 } 3498 3499 if (VNI->isPHIDef()) { 3500 if (VNI->def != LiveInts->getMBBStartIdx(MBB)) { 3501 report("PHIDef VNInfo is not defined at MBB start", MBB); 3502 report_context(LR, Reg, LaneMask); 3503 report_context(*VNI); 3504 } 3505 return; 3506 } 3507 3508 // Non-PHI def. 3509 const MachineInstr *MI = LiveInts->getInstructionFromIndex(VNI->def); 3510 if (!MI) { 3511 report("No instruction at VNInfo def index", MBB); 3512 report_context(LR, Reg, LaneMask); 3513 report_context(*VNI); 3514 return; 3515 } 3516 3517 if (Reg != 0) { 3518 bool hasDef = false; 3519 bool isEarlyClobber = false; 3520 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3521 if (!MOI->isReg() || !MOI->isDef()) 3522 continue; 3523 if (Reg.isVirtual()) { 3524 if (MOI->getReg() != Reg) 3525 continue; 3526 } else { 3527 if (!MOI->getReg().isPhysical() || !TRI->hasRegUnit(MOI->getReg(), Reg)) 3528 continue; 3529 } 3530 if (LaneMask.any() && 3531 (TRI->getSubRegIndexLaneMask(MOI->getSubReg()) & LaneMask).none()) 3532 continue; 3533 hasDef = true; 3534 if (MOI->isEarlyClobber()) 3535 isEarlyClobber = true; 3536 } 3537 3538 if (!hasDef) { 3539 report("Defining instruction does not modify register", MI); 3540 report_context(LR, Reg, LaneMask); 3541 report_context(*VNI); 3542 } 3543 3544 // Early clobber defs begin at USE slots, but other defs must begin at 3545 // DEF slots. 3546 if (isEarlyClobber) { 3547 if (!VNI->def.isEarlyClobber()) { 3548 report("Early clobber def must be at an early-clobber slot", MBB); 3549 report_context(LR, Reg, LaneMask); 3550 report_context(*VNI); 3551 } 3552 } else if (!VNI->def.isRegister()) { 3553 report("Non-PHI, non-early clobber def must be at a register slot", MBB); 3554 report_context(LR, Reg, LaneMask); 3555 report_context(*VNI); 3556 } 3557 } 3558 } 3559 3560 void MachineVerifier::verifyLiveRangeSegment(const LiveRange &LR, 3561 const LiveRange::const_iterator I, 3562 Register Reg, 3563 LaneBitmask LaneMask) { 3564 const LiveRange::Segment &S = *I; 3565 const VNInfo *VNI = S.valno; 3566 assert(VNI && "Live segment has no valno"); 3567 3568 if (VNI->id >= LR.getNumValNums() || VNI != LR.getValNumInfo(VNI->id)) { 3569 report("Foreign valno in live segment", MF); 3570 report_context(LR, Reg, LaneMask); 3571 report_context(S); 3572 report_context(*VNI); 3573 } 3574 3575 if (VNI->isUnused()) { 3576 report("Live segment valno is marked unused", MF); 3577 report_context(LR, Reg, LaneMask); 3578 report_context(S); 3579 } 3580 3581 const MachineBasicBlock *MBB = LiveInts->getMBBFromIndex(S.start); 3582 if (!MBB) { 3583 report("Bad start of live segment, no basic block", MF); 3584 report_context(LR, Reg, LaneMask); 3585 report_context(S); 3586 return; 3587 } 3588 SlotIndex MBBStartIdx = LiveInts->getMBBStartIdx(MBB); 3589 if (S.start != MBBStartIdx && S.start != VNI->def) { 3590 report("Live segment must begin at MBB entry or valno def", MBB); 3591 report_context(LR, Reg, LaneMask); 3592 report_context(S); 3593 } 3594 3595 const MachineBasicBlock *EndMBB = 3596 LiveInts->getMBBFromIndex(S.end.getPrevSlot()); 3597 if (!EndMBB) { 3598 report("Bad end of live segment, no basic block", MF); 3599 report_context(LR, Reg, LaneMask); 3600 report_context(S); 3601 return; 3602 } 3603 3604 // Checks for non-live-out segments. 3605 if (S.end != LiveInts->getMBBEndIdx(EndMBB)) { 3606 // RegUnit intervals are allowed dead phis. 3607 if (!Reg.isVirtual() && VNI->isPHIDef() && S.start == VNI->def && 3608 S.end == VNI->def.getDeadSlot()) 3609 return; 3610 3611 // The live segment is ending inside EndMBB 3612 const MachineInstr *MI = 3613 LiveInts->getInstructionFromIndex(S.end.getPrevSlot()); 3614 if (!MI) { 3615 report("Live segment doesn't end at a valid instruction", EndMBB); 3616 report_context(LR, Reg, LaneMask); 3617 report_context(S); 3618 return; 3619 } 3620 3621 // The block slot must refer to a basic block boundary. 3622 if (S.end.isBlock()) { 3623 report("Live segment ends at B slot of an instruction", EndMBB); 3624 report_context(LR, Reg, LaneMask); 3625 report_context(S); 3626 } 3627 3628 if (S.end.isDead()) { 3629 // Segment ends on the dead slot. 3630 // That means there must be a dead def. 3631 if (!SlotIndex::isSameInstr(S.start, S.end)) { 3632 report("Live segment ending at dead slot spans instructions", EndMBB); 3633 report_context(LR, Reg, LaneMask); 3634 report_context(S); 3635 } 3636 } 3637 3638 // After tied operands are rewritten, a live segment can only end at an 3639 // early-clobber slot if it is being redefined by an early-clobber def. 3640 // TODO: Before tied operands are rewritten, a live segment can only end at 3641 // an early-clobber slot if the last use is tied to an early-clobber def. 3642 if (MF->getProperties().hasProperty( 3643 MachineFunctionProperties::Property::TiedOpsRewritten) && 3644 S.end.isEarlyClobber()) { 3645 if (I + 1 == LR.end() || (I + 1)->start != S.end) { 3646 report("Live segment ending at early clobber slot must be " 3647 "redefined by an EC def in the same instruction", 3648 EndMBB); 3649 report_context(LR, Reg, LaneMask); 3650 report_context(S); 3651 } 3652 } 3653 3654 // The following checks only apply to virtual registers. Physreg liveness 3655 // is too weird to check. 3656 if (Reg.isVirtual()) { 3657 // A live segment can end with either a redefinition, a kill flag on a 3658 // use, or a dead flag on a def. 3659 bool hasRead = false; 3660 bool hasSubRegDef = false; 3661 bool hasDeadDef = false; 3662 for (ConstMIBundleOperands MOI(*MI); MOI.isValid(); ++MOI) { 3663 if (!MOI->isReg() || MOI->getReg() != Reg) 3664 continue; 3665 unsigned Sub = MOI->getSubReg(); 3666 LaneBitmask SLM = 3667 Sub != 0 ? TRI->getSubRegIndexLaneMask(Sub) : LaneBitmask::getAll(); 3668 if (MOI->isDef()) { 3669 if (Sub != 0) { 3670 hasSubRegDef = true; 3671 // An operand %0:sub0 reads %0:sub1..n. Invert the lane 3672 // mask for subregister defs. Read-undef defs will be handled by 3673 // readsReg below. 3674 SLM = ~SLM; 3675 } 3676 if (MOI->isDead()) 3677 hasDeadDef = true; 3678 } 3679 if (LaneMask.any() && (LaneMask & SLM).none()) 3680 continue; 3681 if (MOI->readsReg()) 3682 hasRead = true; 3683 } 3684 if (S.end.isDead()) { 3685 // Make sure that the corresponding machine operand for a "dead" live 3686 // range has the dead flag. We cannot perform this check for subregister 3687 // liveranges as partially dead values are allowed. 3688 if (LaneMask.none() && !hasDeadDef) { 3689 report( 3690 "Instruction ending live segment on dead slot has no dead flag", 3691 MI); 3692 report_context(LR, Reg, LaneMask); 3693 report_context(S); 3694 } 3695 } else { 3696 if (!hasRead) { 3697 // When tracking subregister liveness, the main range must start new 3698 // values on partial register writes, even if there is no read. 3699 if (!MRI->shouldTrackSubRegLiveness(Reg) || LaneMask.any() || 3700 !hasSubRegDef) { 3701 report("Instruction ending live segment doesn't read the register", 3702 MI); 3703 report_context(LR, Reg, LaneMask); 3704 report_context(S); 3705 } 3706 } 3707 } 3708 } 3709 } 3710 3711 // Now check all the basic blocks in this live segment. 3712 MachineFunction::const_iterator MFI = MBB->getIterator(); 3713 // Is this live segment the beginning of a non-PHIDef VN? 3714 if (S.start == VNI->def && !VNI->isPHIDef()) { 3715 // Not live-in to any blocks. 3716 if (MBB == EndMBB) 3717 return; 3718 // Skip this block. 3719 ++MFI; 3720 } 3721 3722 SmallVector<SlotIndex, 4> Undefs; 3723 if (LaneMask.any()) { 3724 LiveInterval &OwnerLI = LiveInts->getInterval(Reg); 3725 OwnerLI.computeSubRangeUndefs(Undefs, LaneMask, *MRI, *Indexes); 3726 } 3727 3728 while (true) { 3729 assert(LiveInts->isLiveInToMBB(LR, &*MFI)); 3730 // We don't know how to track physregs into a landing pad. 3731 if (!Reg.isVirtual() && MFI->isEHPad()) { 3732 if (&*MFI == EndMBB) 3733 break; 3734 ++MFI; 3735 continue; 3736 } 3737 3738 // Is VNI a PHI-def in the current block? 3739 bool IsPHI = VNI->isPHIDef() && 3740 VNI->def == LiveInts->getMBBStartIdx(&*MFI); 3741 3742 // Check that VNI is live-out of all predecessors. 3743 for (const MachineBasicBlock *Pred : MFI->predecessors()) { 3744 SlotIndex PEnd = LiveInts->getMBBEndIdx(Pred); 3745 // Predecessor of landing pad live-out on last call. 3746 if (MFI->isEHPad()) { 3747 for (const MachineInstr &MI : llvm::reverse(*Pred)) { 3748 if (MI.isCall()) { 3749 PEnd = Indexes->getInstructionIndex(MI).getBoundaryIndex(); 3750 break; 3751 } 3752 } 3753 } 3754 const VNInfo *PVNI = LR.getVNInfoBefore(PEnd); 3755 3756 // All predecessors must have a live-out value. However for a phi 3757 // instruction with subregister intervals 3758 // only one of the subregisters (not necessarily the current one) needs to 3759 // be defined. 3760 if (!PVNI && (LaneMask.none() || !IsPHI)) { 3761 if (LiveRangeCalc::isJointlyDominated(Pred, Undefs, *Indexes)) 3762 continue; 3763 report("Register not marked live out of predecessor", Pred); 3764 report_context(LR, Reg, LaneMask); 3765 report_context(*VNI); 3766 OS << " live into " << printMBBReference(*MFI) << '@' 3767 << LiveInts->getMBBStartIdx(&*MFI) << ", not live before " << PEnd 3768 << '\n'; 3769 continue; 3770 } 3771 3772 // Only PHI-defs can take different predecessor values. 3773 if (!IsPHI && PVNI != VNI) { 3774 report("Different value live out of predecessor", Pred); 3775 report_context(LR, Reg, LaneMask); 3776 OS << "Valno #" << PVNI->id << " live out of " 3777 << printMBBReference(*Pred) << '@' << PEnd << "\nValno #" << VNI->id 3778 << " live into " << printMBBReference(*MFI) << '@' 3779 << LiveInts->getMBBStartIdx(&*MFI) << '\n'; 3780 } 3781 } 3782 if (&*MFI == EndMBB) 3783 break; 3784 ++MFI; 3785 } 3786 } 3787 3788 void MachineVerifier::verifyLiveRange(const LiveRange &LR, Register Reg, 3789 LaneBitmask LaneMask) { 3790 for (const VNInfo *VNI : LR.valnos) 3791 verifyLiveRangeValue(LR, VNI, Reg, LaneMask); 3792 3793 for (LiveRange::const_iterator I = LR.begin(), E = LR.end(); I != E; ++I) 3794 verifyLiveRangeSegment(LR, I, Reg, LaneMask); 3795 } 3796 3797 void MachineVerifier::verifyLiveInterval(const LiveInterval &LI) { 3798 Register Reg = LI.reg(); 3799 assert(Reg.isVirtual()); 3800 verifyLiveRange(LI, Reg); 3801 3802 if (LI.hasSubRanges()) { 3803 LaneBitmask Mask; 3804 LaneBitmask MaxMask = MRI->getMaxLaneMaskForVReg(Reg); 3805 for (const LiveInterval::SubRange &SR : LI.subranges()) { 3806 if ((Mask & SR.LaneMask).any()) { 3807 report("Lane masks of sub ranges overlap in live interval", MF); 3808 report_context(LI); 3809 } 3810 if ((SR.LaneMask & ~MaxMask).any()) { 3811 report("Subrange lanemask is invalid", MF); 3812 report_context(LI); 3813 } 3814 if (SR.empty()) { 3815 report("Subrange must not be empty", MF); 3816 report_context(SR, LI.reg(), SR.LaneMask); 3817 } 3818 Mask |= SR.LaneMask; 3819 verifyLiveRange(SR, LI.reg(), SR.LaneMask); 3820 if (!LI.covers(SR)) { 3821 report("A Subrange is not covered by the main range", MF); 3822 report_context(LI); 3823 } 3824 } 3825 } 3826 3827 // Check the LI only has one connected component. 3828 ConnectedVNInfoEqClasses ConEQ(*LiveInts); 3829 unsigned NumComp = ConEQ.Classify(LI); 3830 if (NumComp > 1) { 3831 report("Multiple connected components in live interval", MF); 3832 report_context(LI); 3833 for (unsigned comp = 0; comp != NumComp; ++comp) { 3834 OS << comp << ": valnos"; 3835 for (const VNInfo *I : LI.valnos) 3836 if (comp == ConEQ.getEqClass(I)) 3837 OS << ' ' << I->id; 3838 OS << '\n'; 3839 } 3840 } 3841 } 3842 3843 namespace { 3844 3845 // FrameSetup and FrameDestroy can have zero adjustment, so using a single 3846 // integer, we can't tell whether it is a FrameSetup or FrameDestroy if the 3847 // value is zero. 3848 // We use a bool plus an integer to capture the stack state. 3849 struct StackStateOfBB { 3850 StackStateOfBB() = default; 3851 StackStateOfBB(int EntryVal, int ExitVal, bool EntrySetup, bool ExitSetup) : 3852 EntryValue(EntryVal), ExitValue(ExitVal), EntryIsSetup(EntrySetup), 3853 ExitIsSetup(ExitSetup) {} 3854 3855 // Can be negative, which means we are setting up a frame. 3856 int EntryValue = 0; 3857 int ExitValue = 0; 3858 bool EntryIsSetup = false; 3859 bool ExitIsSetup = false; 3860 }; 3861 3862 } // end anonymous namespace 3863 3864 /// Make sure on every path through the CFG, a FrameSetup <n> is always followed 3865 /// by a FrameDestroy <n>, stack adjustments are identical on all 3866 /// CFG edges to a merge point, and frame is destroyed at end of a return block. 3867 void MachineVerifier::verifyStackFrame() { 3868 unsigned FrameSetupOpcode = TII->getCallFrameSetupOpcode(); 3869 unsigned FrameDestroyOpcode = TII->getCallFrameDestroyOpcode(); 3870 if (FrameSetupOpcode == ~0u && FrameDestroyOpcode == ~0u) 3871 return; 3872 3873 SmallVector<StackStateOfBB, 8> SPState; 3874 SPState.resize(MF->getNumBlockIDs()); 3875 df_iterator_default_set<const MachineBasicBlock*> Reachable; 3876 3877 // Visit the MBBs in DFS order. 3878 for (df_ext_iterator<const MachineFunction *, 3879 df_iterator_default_set<const MachineBasicBlock *>> 3880 DFI = df_ext_begin(MF, Reachable), DFE = df_ext_end(MF, Reachable); 3881 DFI != DFE; ++DFI) { 3882 const MachineBasicBlock *MBB = *DFI; 3883 3884 StackStateOfBB BBState; 3885 // Check the exit state of the DFS stack predecessor. 3886 if (DFI.getPathLength() >= 2) { 3887 const MachineBasicBlock *StackPred = DFI.getPath(DFI.getPathLength() - 2); 3888 assert(Reachable.count(StackPred) && 3889 "DFS stack predecessor is already visited.\n"); 3890 BBState.EntryValue = SPState[StackPred->getNumber()].ExitValue; 3891 BBState.EntryIsSetup = SPState[StackPred->getNumber()].ExitIsSetup; 3892 BBState.ExitValue = BBState.EntryValue; 3893 BBState.ExitIsSetup = BBState.EntryIsSetup; 3894 } 3895 3896 if ((int)MBB->getCallFrameSize() != -BBState.EntryValue) { 3897 report("Call frame size on entry does not match value computed from " 3898 "predecessor", 3899 MBB); 3900 OS << "Call frame size on entry " << MBB->getCallFrameSize() 3901 << " does not match value computed from predecessor " 3902 << -BBState.EntryValue << '\n'; 3903 } 3904 3905 // Update stack state by checking contents of MBB. 3906 for (const auto &I : *MBB) { 3907 if (I.getOpcode() == FrameSetupOpcode) { 3908 if (BBState.ExitIsSetup) 3909 report("FrameSetup is after another FrameSetup", &I); 3910 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3911 report("AdjustsStack not set in presence of a frame pseudo " 3912 "instruction.", &I); 3913 BBState.ExitValue -= TII->getFrameTotalSize(I); 3914 BBState.ExitIsSetup = true; 3915 } 3916 3917 if (I.getOpcode() == FrameDestroyOpcode) { 3918 int Size = TII->getFrameTotalSize(I); 3919 if (!BBState.ExitIsSetup) 3920 report("FrameDestroy is not after a FrameSetup", &I); 3921 int AbsSPAdj = BBState.ExitValue < 0 ? -BBState.ExitValue : 3922 BBState.ExitValue; 3923 if (BBState.ExitIsSetup && AbsSPAdj != Size) { 3924 report("FrameDestroy <n> is after FrameSetup <m>", &I); 3925 OS << "FrameDestroy <" << Size << "> is after FrameSetup <" 3926 << AbsSPAdj << ">.\n"; 3927 } 3928 if (!MRI->isSSA() && !MF->getFrameInfo().adjustsStack()) 3929 report("AdjustsStack not set in presence of a frame pseudo " 3930 "instruction.", &I); 3931 BBState.ExitValue += Size; 3932 BBState.ExitIsSetup = false; 3933 } 3934 } 3935 SPState[MBB->getNumber()] = BBState; 3936 3937 // Make sure the exit state of any predecessor is consistent with the entry 3938 // state. 3939 for (const MachineBasicBlock *Pred : MBB->predecessors()) { 3940 if (Reachable.count(Pred) && 3941 (SPState[Pred->getNumber()].ExitValue != BBState.EntryValue || 3942 SPState[Pred->getNumber()].ExitIsSetup != BBState.EntryIsSetup)) { 3943 report("The exit stack state of a predecessor is inconsistent.", MBB); 3944 OS << "Predecessor " << printMBBReference(*Pred) << " has exit state (" 3945 << SPState[Pred->getNumber()].ExitValue << ", " 3946 << SPState[Pred->getNumber()].ExitIsSetup << "), while " 3947 << printMBBReference(*MBB) << " has entry state (" 3948 << BBState.EntryValue << ", " << BBState.EntryIsSetup << ").\n"; 3949 } 3950 } 3951 3952 // Make sure the entry state of any successor is consistent with the exit 3953 // state. 3954 for (const MachineBasicBlock *Succ : MBB->successors()) { 3955 if (Reachable.count(Succ) && 3956 (SPState[Succ->getNumber()].EntryValue != BBState.ExitValue || 3957 SPState[Succ->getNumber()].EntryIsSetup != BBState.ExitIsSetup)) { 3958 report("The entry stack state of a successor is inconsistent.", MBB); 3959 OS << "Successor " << printMBBReference(*Succ) << " has entry state (" 3960 << SPState[Succ->getNumber()].EntryValue << ", " 3961 << SPState[Succ->getNumber()].EntryIsSetup << "), while " 3962 << printMBBReference(*MBB) << " has exit state (" 3963 << BBState.ExitValue << ", " << BBState.ExitIsSetup << ").\n"; 3964 } 3965 } 3966 3967 // Make sure a basic block with return ends with zero stack adjustment. 3968 if (!MBB->empty() && MBB->back().isReturn()) { 3969 if (BBState.ExitIsSetup) 3970 report("A return block ends with a FrameSetup.", MBB); 3971 if (BBState.ExitValue) 3972 report("A return block ends with a nonzero stack adjustment.", MBB); 3973 } 3974 } 3975 } 3976