1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <map> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "machine-sink" 62 63 static cl::opt<bool> 64 SplitEdges("machine-sink-split", 65 cl::desc("Split critical edges during machine sinking"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<bool> 69 UseBlockFreqInfo("machine-sink-bfi", 70 cl::desc("Use block frequency info to find successors to sink"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 74 "machine-sink-split-probability-threshold", 75 cl::desc( 76 "Percentage threshold for splitting single-instruction critical edge. " 77 "If the branch threshold is higher than this threshold, we allow " 78 "speculative execution of up to 1 instruction to avoid branching to " 79 "splitted critical edge"), 80 cl::init(40), cl::Hidden); 81 82 STATISTIC(NumSunk, "Number of machine instructions sunk"); 83 STATISTIC(NumSplit, "Number of critical edges split"); 84 STATISTIC(NumCoalesces, "Number of copies coalesced"); 85 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 86 87 namespace { 88 89 class MachineSinking : public MachineFunctionPass { 90 const TargetInstrInfo *TII; 91 const TargetRegisterInfo *TRI; 92 MachineRegisterInfo *MRI; // Machine register information 93 MachineDominatorTree *DT; // Machine dominator tree 94 MachinePostDominatorTree *PDT; // Machine post dominator tree 95 MachineLoopInfo *LI; 96 MachineBlockFrequencyInfo *MBFI; 97 const MachineBranchProbabilityInfo *MBPI; 98 AliasAnalysis *AA; 99 RegisterClassInfo RegClassInfo; 100 101 // Remember which edges have been considered for breaking. 102 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 103 CEBCandidates; 104 // Remember which edges we are about to split. 105 // This is different from CEBCandidates since those edges 106 // will be split. 107 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 108 109 SparseBitVector<> RegsToClearKillFlags; 110 111 using AllSuccsCache = 112 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 113 114 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 115 /// post-dominated by another DBG_VALUE of the same variable location. 116 /// This is necessary to detect sequences such as: 117 /// %0 = someinst 118 /// DBG_VALUE %0, !123, !DIExpression() 119 /// %1 = anotherinst 120 /// DBG_VALUE %1, !123, !DIExpression() 121 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 122 /// would re-order assignments. 123 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 124 125 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 126 /// debug instructions to sink. 127 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 128 129 /// Record of debug variables that have had their locations set in the 130 /// current block. 131 DenseSet<DebugVariable> SeenDbgVars; 132 133 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 134 HasStoreCache; 135 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 136 std::vector<MachineInstr *>> 137 StoreInstrCache; 138 139 /// Cached BB's register pressure. 140 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 141 142 public: 143 static char ID; // Pass identification 144 145 MachineSinking() : MachineFunctionPass(ID) { 146 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 147 } 148 149 bool runOnMachineFunction(MachineFunction &MF) override; 150 151 void getAnalysisUsage(AnalysisUsage &AU) const override { 152 MachineFunctionPass::getAnalysisUsage(AU); 153 AU.addRequired<AAResultsWrapperPass>(); 154 AU.addRequired<MachineDominatorTree>(); 155 AU.addRequired<MachinePostDominatorTree>(); 156 AU.addRequired<MachineLoopInfo>(); 157 AU.addRequired<MachineBranchProbabilityInfo>(); 158 AU.addPreserved<MachineLoopInfo>(); 159 if (UseBlockFreqInfo) 160 AU.addRequired<MachineBlockFrequencyInfo>(); 161 } 162 163 void releaseMemory() override { 164 CEBCandidates.clear(); 165 } 166 167 private: 168 bool ProcessBlock(MachineBasicBlock &MBB); 169 void ProcessDbgInst(MachineInstr &MI); 170 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 171 MachineBasicBlock *From, 172 MachineBasicBlock *To); 173 174 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 175 MachineInstr &MI); 176 177 /// Postpone the splitting of the given critical 178 /// edge (\p From, \p To). 179 /// 180 /// We do not split the edges on the fly. Indeed, this invalidates 181 /// the dominance information and thus triggers a lot of updates 182 /// of that information underneath. 183 /// Instead, we postpone all the splits after each iteration of 184 /// the main loop. That way, the information is at least valid 185 /// for the lifetime of an iteration. 186 /// 187 /// \return True if the edge is marked as toSplit, false otherwise. 188 /// False can be returned if, for instance, this is not profitable. 189 bool PostponeSplitCriticalEdge(MachineInstr &MI, 190 MachineBasicBlock *From, 191 MachineBasicBlock *To, 192 bool BreakPHIEdge); 193 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 194 AllSuccsCache &AllSuccessors); 195 196 /// If we sink a COPY inst, some debug users of it's destination may no 197 /// longer be dominated by the COPY, and will eventually be dropped. 198 /// This is easily rectified by forwarding the non-dominated debug uses 199 /// to the copy source. 200 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 201 MachineBasicBlock *TargetBlock); 202 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 203 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 204 bool &LocalUse) const; 205 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 206 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 207 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 208 MachineBasicBlock *MBB, 209 MachineBasicBlock *SuccToSinkTo, 210 AllSuccsCache &AllSuccessors); 211 212 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 213 MachineBasicBlock *MBB); 214 215 SmallVector<MachineBasicBlock *, 4> & 216 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 217 AllSuccsCache &AllSuccessors) const; 218 219 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 220 }; 221 222 } // end anonymous namespace 223 224 char MachineSinking::ID = 0; 225 226 char &llvm::MachineSinkingID = MachineSinking::ID; 227 228 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 229 "Machine code sinking", false, false) 230 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 231 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 232 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 233 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 234 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 235 "Machine code sinking", false, false) 236 237 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 238 MachineBasicBlock *MBB) { 239 if (!MI.isCopy()) 240 return false; 241 242 Register SrcReg = MI.getOperand(1).getReg(); 243 Register DstReg = MI.getOperand(0).getReg(); 244 if (!Register::isVirtualRegister(SrcReg) || 245 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 246 return false; 247 248 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 249 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 250 if (SRC != DRC) 251 return false; 252 253 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 254 if (DefMI->isCopyLike()) 255 return false; 256 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 257 LLVM_DEBUG(dbgs() << "*** to: " << MI); 258 MRI->replaceRegWith(DstReg, SrcReg); 259 MI.eraseFromParent(); 260 261 // Conservatively, clear any kill flags, since it's possible that they are no 262 // longer correct. 263 MRI->clearKillFlags(SrcReg); 264 265 ++NumCoalesces; 266 return true; 267 } 268 269 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 270 /// occur in blocks dominated by the specified block. If any use is in the 271 /// definition block, then return false since it is never legal to move def 272 /// after uses. 273 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 274 MachineBasicBlock *MBB, 275 MachineBasicBlock *DefMBB, 276 bool &BreakPHIEdge, 277 bool &LocalUse) const { 278 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 279 280 // Ignore debug uses because debug info doesn't affect the code. 281 if (MRI->use_nodbg_empty(Reg)) 282 return true; 283 284 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 285 // into and they are all PHI nodes. In this case, machine-sink must break 286 // the critical edge first. e.g. 287 // 288 // %bb.1: 289 // Predecessors according to CFG: %bb.0 290 // ... 291 // %def = DEC64_32r %x, implicit-def dead %eflags 292 // ... 293 // JE_4 <%bb.37>, implicit %eflags 294 // Successors according to CFG: %bb.37 %bb.2 295 // 296 // %bb.2: 297 // %p = PHI %y, %bb.0, %def, %bb.1 298 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 299 MachineInstr *UseInst = MO.getParent(); 300 unsigned OpNo = UseInst->getOperandNo(&MO); 301 MachineBasicBlock *UseBlock = UseInst->getParent(); 302 return UseBlock == MBB && UseInst->isPHI() && 303 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 304 })) { 305 BreakPHIEdge = true; 306 return true; 307 } 308 309 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 310 // Determine the block of the use. 311 MachineInstr *UseInst = MO.getParent(); 312 unsigned OpNo = &MO - &UseInst->getOperand(0); 313 MachineBasicBlock *UseBlock = UseInst->getParent(); 314 if (UseInst->isPHI()) { 315 // PHI nodes use the operand in the predecessor block, not the block with 316 // the PHI. 317 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 318 } else if (UseBlock == DefMBB) { 319 LocalUse = true; 320 return false; 321 } 322 323 // Check that it dominates. 324 if (!DT->dominates(MBB, UseBlock)) 325 return false; 326 } 327 328 return true; 329 } 330 331 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 332 if (skipFunction(MF.getFunction())) 333 return false; 334 335 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 336 337 TII = MF.getSubtarget().getInstrInfo(); 338 TRI = MF.getSubtarget().getRegisterInfo(); 339 MRI = &MF.getRegInfo(); 340 DT = &getAnalysis<MachineDominatorTree>(); 341 PDT = &getAnalysis<MachinePostDominatorTree>(); 342 LI = &getAnalysis<MachineLoopInfo>(); 343 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 344 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 345 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 346 RegClassInfo.runOnMachineFunction(MF); 347 348 bool EverMadeChange = false; 349 350 while (true) { 351 bool MadeChange = false; 352 353 // Process all basic blocks. 354 CEBCandidates.clear(); 355 ToSplit.clear(); 356 for (auto &MBB: MF) 357 MadeChange |= ProcessBlock(MBB); 358 359 // If we have anything we marked as toSplit, split it now. 360 for (auto &Pair : ToSplit) { 361 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 362 if (NewSucc != nullptr) { 363 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 364 << printMBBReference(*Pair.first) << " -- " 365 << printMBBReference(*NewSucc) << " -- " 366 << printMBBReference(*Pair.second) << '\n'); 367 if (MBFI) 368 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 369 370 MadeChange = true; 371 ++NumSplit; 372 } else 373 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 374 } 375 // If this iteration over the code changed anything, keep iterating. 376 if (!MadeChange) break; 377 EverMadeChange = true; 378 } 379 380 HasStoreCache.clear(); 381 StoreInstrCache.clear(); 382 383 // Now clear any kill flags for recorded registers. 384 for (auto I : RegsToClearKillFlags) 385 MRI->clearKillFlags(I); 386 RegsToClearKillFlags.clear(); 387 388 return EverMadeChange; 389 } 390 391 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 392 // Can't sink anything out of a block that has less than two successors. 393 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 394 395 // Don't bother sinking code out of unreachable blocks. In addition to being 396 // unprofitable, it can also lead to infinite looping, because in an 397 // unreachable loop there may be nowhere to stop. 398 if (!DT->isReachableFromEntry(&MBB)) return false; 399 400 bool MadeChange = false; 401 402 // Cache all successors, sorted by frequency info and loop depth. 403 AllSuccsCache AllSuccessors; 404 405 // Walk the basic block bottom-up. Remember if we saw a store. 406 MachineBasicBlock::iterator I = MBB.end(); 407 --I; 408 bool ProcessedBegin, SawStore = false; 409 do { 410 MachineInstr &MI = *I; // The instruction to sink. 411 412 // Predecrement I (if it's not begin) so that it isn't invalidated by 413 // sinking. 414 ProcessedBegin = I == MBB.begin(); 415 if (!ProcessedBegin) 416 --I; 417 418 if (MI.isDebugInstr()) { 419 if (MI.isDebugValue()) 420 ProcessDbgInst(MI); 421 continue; 422 } 423 424 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 425 if (Joined) { 426 MadeChange = true; 427 continue; 428 } 429 430 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 431 ++NumSunk; 432 MadeChange = true; 433 } 434 435 // If we just processed the first instruction in the block, we're done. 436 } while (!ProcessedBegin); 437 438 SeenDbgUsers.clear(); 439 SeenDbgVars.clear(); 440 // recalculate the bb register pressure after sinking one BB. 441 CachedRegisterPressure.clear(); 442 443 return MadeChange; 444 } 445 446 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 447 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 448 // we know what to sink if the vreg def sinks. 449 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 450 451 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 452 MI.getDebugLoc()->getInlinedAt()); 453 bool SeenBefore = SeenDbgVars.count(Var) != 0; 454 455 MachineOperand &MO = MI.getDebugOperand(0); 456 if (MO.isReg() && MO.getReg().isVirtual()) 457 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 458 459 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 460 SeenDbgVars.insert(Var); 461 } 462 463 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 464 MachineBasicBlock *From, 465 MachineBasicBlock *To) { 466 // FIXME: Need much better heuristics. 467 468 // If the pass has already considered breaking this edge (during this pass 469 // through the function), then let's go ahead and break it. This means 470 // sinking multiple "cheap" instructions into the same block. 471 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 472 return true; 473 474 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 475 return true; 476 477 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 478 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 479 return true; 480 481 // MI is cheap, we probably don't want to break the critical edge for it. 482 // However, if this would allow some definitions of its source operands 483 // to be sunk then it's probably worth it. 484 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 485 const MachineOperand &MO = MI.getOperand(i); 486 if (!MO.isReg() || !MO.isUse()) 487 continue; 488 Register Reg = MO.getReg(); 489 if (Reg == 0) 490 continue; 491 492 // We don't move live definitions of physical registers, 493 // so sinking their uses won't enable any opportunities. 494 if (Register::isPhysicalRegister(Reg)) 495 continue; 496 497 // If this instruction is the only user of a virtual register, 498 // check if breaking the edge will enable sinking 499 // both this instruction and the defining instruction. 500 if (MRI->hasOneNonDBGUse(Reg)) { 501 // If the definition resides in same MBB, 502 // claim it's likely we can sink these together. 503 // If definition resides elsewhere, we aren't 504 // blocking it from being sunk so don't break the edge. 505 MachineInstr *DefMI = MRI->getVRegDef(Reg); 506 if (DefMI->getParent() == MI.getParent()) 507 return true; 508 } 509 } 510 511 return false; 512 } 513 514 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 515 MachineBasicBlock *FromBB, 516 MachineBasicBlock *ToBB, 517 bool BreakPHIEdge) { 518 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 519 return false; 520 521 // Avoid breaking back edge. From == To means backedge for single BB loop. 522 if (!SplitEdges || FromBB == ToBB) 523 return false; 524 525 // Check for backedges of more "complex" loops. 526 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 527 LI->isLoopHeader(ToBB)) 528 return false; 529 530 // It's not always legal to break critical edges and sink the computation 531 // to the edge. 532 // 533 // %bb.1: 534 // v1024 535 // Beq %bb.3 536 // <fallthrough> 537 // %bb.2: 538 // ... no uses of v1024 539 // <fallthrough> 540 // %bb.3: 541 // ... 542 // = v1024 543 // 544 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 545 // 546 // %bb.1: 547 // ... 548 // Bne %bb.2 549 // %bb.4: 550 // v1024 = 551 // B %bb.3 552 // %bb.2: 553 // ... no uses of v1024 554 // <fallthrough> 555 // %bb.3: 556 // ... 557 // = v1024 558 // 559 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 560 // flow. We need to ensure the new basic block where the computation is 561 // sunk to dominates all the uses. 562 // It's only legal to break critical edge and sink the computation to the 563 // new block if all the predecessors of "To", except for "From", are 564 // not dominated by "From". Given SSA property, this means these 565 // predecessors are dominated by "To". 566 // 567 // There is no need to do this check if all the uses are PHI nodes. PHI 568 // sources are only defined on the specific predecessor edges. 569 if (!BreakPHIEdge) { 570 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 571 E = ToBB->pred_end(); PI != E; ++PI) { 572 if (*PI == FromBB) 573 continue; 574 if (!DT->dominates(ToBB, *PI)) 575 return false; 576 } 577 } 578 579 ToSplit.insert(std::make_pair(FromBB, ToBB)); 580 581 return true; 582 } 583 584 std::vector<unsigned> & 585 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 586 // Currently to save compiling time, MBB's register pressure will not change 587 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 588 // register pressure is changed after sinking any instructions into it. 589 // FIXME: need a accurate and cheap register pressure estiminate model here. 590 auto RP = CachedRegisterPressure.find(&MBB); 591 if (RP != CachedRegisterPressure.end()) 592 return RP->second; 593 594 RegionPressure Pressure; 595 RegPressureTracker RPTracker(Pressure); 596 597 // Initialize the register pressure tracker. 598 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 599 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 600 601 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 602 MIE = MBB.instr_begin(); 603 MII != MIE; --MII) { 604 MachineInstr &MI = *std::prev(MII); 605 if (MI.isDebugValue() || MI.isDebugLabel()) 606 continue; 607 RegisterOperands RegOpers; 608 RegOpers.collect(MI, *TRI, *MRI, false, false); 609 RPTracker.recedeSkipDebugValues(); 610 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 611 RPTracker.recede(RegOpers); 612 } 613 614 RPTracker.closeRegion(); 615 auto It = CachedRegisterPressure.insert( 616 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 617 return It.first->second; 618 } 619 620 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 621 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 622 MachineBasicBlock *MBB, 623 MachineBasicBlock *SuccToSinkTo, 624 AllSuccsCache &AllSuccessors) { 625 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 626 627 if (MBB == SuccToSinkTo) 628 return false; 629 630 // It is profitable if SuccToSinkTo does not post dominate current block. 631 if (!PDT->dominates(SuccToSinkTo, MBB)) 632 return true; 633 634 // It is profitable to sink an instruction from a deeper loop to a shallower 635 // loop, even if the latter post-dominates the former (PR21115). 636 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 637 return true; 638 639 // Check if only use in post dominated block is PHI instruction. 640 bool NonPHIUse = false; 641 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 642 MachineBasicBlock *UseBlock = UseInst.getParent(); 643 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 644 NonPHIUse = true; 645 } 646 if (!NonPHIUse) 647 return true; 648 649 // If SuccToSinkTo post dominates then also it may be profitable if MI 650 // can further profitably sinked into another block in next round. 651 bool BreakPHIEdge = false; 652 // FIXME - If finding successor is compile time expensive then cache results. 653 if (MachineBasicBlock *MBB2 = 654 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 655 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 656 657 MachineLoop *ML = LI->getLoopFor(MBB); 658 659 // If the instruction is not inside a loop, it is not profitable to sink MI to 660 // a post dominate block SuccToSinkTo. 661 if (!ML) 662 return false; 663 664 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 665 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 666 const int *PS = TRI->getRegClassPressureSets(RC); 667 // Get register pressure for block SuccToSinkTo. 668 std::vector<unsigned> BBRegisterPressure = 669 getBBRegisterPressure(*SuccToSinkTo); 670 for (; *PS != -1; PS++) 671 // check if any register pressure set exceeds limit in block SuccToSinkTo 672 // after sinking. 673 if (Weight + BBRegisterPressure[*PS] >= 674 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 675 return true; 676 return false; 677 }; 678 679 // If this instruction is inside a loop and sinking this instruction can make 680 // more registers live range shorten, it is still prifitable. 681 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 682 const MachineOperand &MO = MI.getOperand(i); 683 // Ignore non-register operands. 684 if (!MO.isReg()) 685 continue; 686 Register Reg = MO.getReg(); 687 if (Reg == 0) 688 continue; 689 690 // Don't handle physical register. 691 if (Register::isPhysicalRegister(Reg)) 692 return false; 693 694 // Users for the defs are all dominated by SuccToSinkTo. 695 if (MO.isDef()) { 696 // This def register's live range is shortened after sinking. 697 bool LocalUse = false; 698 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 699 LocalUse)) 700 return false; 701 } else { 702 MachineInstr *DefMI = MRI->getVRegDef(Reg); 703 // DefMI is defined outside of loop. There should be no live range 704 // impact for this operand. Defination outside of loop means: 705 // 1: defination is outside of loop. 706 // 2: defination is in this loop, but it is a PHI in the loop header. 707 if (LI->getLoopFor(DefMI->getParent()) != ML || 708 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 709 continue; 710 // The DefMI is defined inside the loop. 711 // If sinking this operand makes some register pressure set exceed limit, 712 // it is not profitable. 713 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 714 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 715 return false; 716 } 717 } 718 } 719 720 // If MI is in loop and all its operands are alive across the whole loop or if 721 // no operand sinking make register pressure set exceed limit, it is 722 // profitable to sink MI. 723 return true; 724 } 725 726 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 727 /// computing it if it was not already cached. 728 SmallVector<MachineBasicBlock *, 4> & 729 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 730 AllSuccsCache &AllSuccessors) const { 731 // Do we have the sorted successors in cache ? 732 auto Succs = AllSuccessors.find(MBB); 733 if (Succs != AllSuccessors.end()) 734 return Succs->second; 735 736 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 737 MBB->succ_end()); 738 739 // Handle cases where sinking can happen but where the sink point isn't a 740 // successor. For example: 741 // 742 // x = computation 743 // if () {} else {} 744 // use x 745 // 746 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 747 // DomTree children of MBB that have MBB as immediate dominator are added. 748 if (DTChild->getIDom()->getBlock() == MI.getParent() && 749 // Skip MBBs already added to the AllSuccs vector above. 750 !MBB->isSuccessor(DTChild->getBlock())) 751 AllSuccs.push_back(DTChild->getBlock()); 752 } 753 754 // Sort Successors according to their loop depth or block frequency info. 755 llvm::stable_sort( 756 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 757 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 758 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 759 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 760 return HasBlockFreq ? LHSFreq < RHSFreq 761 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 762 }); 763 764 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 765 766 return it.first->second; 767 } 768 769 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 770 MachineBasicBlock * 771 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 772 bool &BreakPHIEdge, 773 AllSuccsCache &AllSuccessors) { 774 assert (MBB && "Invalid MachineBasicBlock!"); 775 776 // Loop over all the operands of the specified instruction. If there is 777 // anything we can't handle, bail out. 778 779 // SuccToSinkTo - This is the successor to sink this instruction to, once we 780 // decide. 781 MachineBasicBlock *SuccToSinkTo = nullptr; 782 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 783 const MachineOperand &MO = MI.getOperand(i); 784 if (!MO.isReg()) continue; // Ignore non-register operands. 785 786 Register Reg = MO.getReg(); 787 if (Reg == 0) continue; 788 789 if (Register::isPhysicalRegister(Reg)) { 790 if (MO.isUse()) { 791 // If the physreg has no defs anywhere, it's just an ambient register 792 // and we can freely move its uses. Alternatively, if it's allocatable, 793 // it could get allocated to something with a def during allocation. 794 if (!MRI->isConstantPhysReg(Reg)) 795 return nullptr; 796 } else if (!MO.isDead()) { 797 // A def that isn't dead. We can't move it. 798 return nullptr; 799 } 800 } else { 801 // Virtual register uses are always safe to sink. 802 if (MO.isUse()) continue; 803 804 // If it's not safe to move defs of the register class, then abort. 805 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 806 return nullptr; 807 808 // Virtual register defs can only be sunk if all their uses are in blocks 809 // dominated by one of the successors. 810 if (SuccToSinkTo) { 811 // If a previous operand picked a block to sink to, then this operand 812 // must be sinkable to the same block. 813 bool LocalUse = false; 814 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 815 BreakPHIEdge, LocalUse)) 816 return nullptr; 817 818 continue; 819 } 820 821 // Otherwise, we should look at all the successors and decide which one 822 // we should sink to. If we have reliable block frequency information 823 // (frequency != 0) available, give successors with smaller frequencies 824 // higher priority, otherwise prioritize smaller loop depths. 825 for (MachineBasicBlock *SuccBlock : 826 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 827 bool LocalUse = false; 828 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 829 BreakPHIEdge, LocalUse)) { 830 SuccToSinkTo = SuccBlock; 831 break; 832 } 833 if (LocalUse) 834 // Def is used locally, it's never safe to move this def. 835 return nullptr; 836 } 837 838 // If we couldn't find a block to sink to, ignore this instruction. 839 if (!SuccToSinkTo) 840 return nullptr; 841 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 842 return nullptr; 843 } 844 } 845 846 // It is not possible to sink an instruction into its own block. This can 847 // happen with loops. 848 if (MBB == SuccToSinkTo) 849 return nullptr; 850 851 // It's not safe to sink instructions to EH landing pad. Control flow into 852 // landing pad is implicitly defined. 853 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 854 return nullptr; 855 856 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 857 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 858 // the source block (which this code does not yet do). So for now, forbid 859 // doing so. 860 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 861 return nullptr; 862 863 return SuccToSinkTo; 864 } 865 866 /// Return true if MI is likely to be usable as a memory operation by the 867 /// implicit null check optimization. 868 /// 869 /// This is a "best effort" heuristic, and should not be relied upon for 870 /// correctness. This returning true does not guarantee that the implicit null 871 /// check optimization is legal over MI, and this returning false does not 872 /// guarantee MI cannot possibly be used to do a null check. 873 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 874 const TargetInstrInfo *TII, 875 const TargetRegisterInfo *TRI) { 876 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 877 878 auto *MBB = MI.getParent(); 879 if (MBB->pred_size() != 1) 880 return false; 881 882 auto *PredMBB = *MBB->pred_begin(); 883 auto *PredBB = PredMBB->getBasicBlock(); 884 885 // Frontends that don't use implicit null checks have no reason to emit 886 // branches with make.implicit metadata, and this function should always 887 // return false for them. 888 if (!PredBB || 889 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 890 return false; 891 892 const MachineOperand *BaseOp; 893 int64_t Offset; 894 bool OffsetIsScalable; 895 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 896 return false; 897 898 if (!BaseOp->isReg()) 899 return false; 900 901 if (!(MI.mayLoad() && !MI.isPredicable())) 902 return false; 903 904 MachineBranchPredicate MBP; 905 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 906 return false; 907 908 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 909 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 910 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 911 MBP.LHS.getReg() == BaseOp->getReg(); 912 } 913 914 /// If the sunk instruction is a copy, try to forward the copy instead of 915 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 916 /// there's any subregister weirdness involved. Returns true if copy 917 /// propagation occurred. 918 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 919 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 920 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 921 922 // Copy DBG_VALUE operand and set the original to undef. We then check to 923 // see whether this is something that can be copy-forwarded. If it isn't, 924 // continue around the loop. 925 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 926 927 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 928 auto CopyOperands = TII.isCopyInstr(SinkInst); 929 if (!CopyOperands) 930 return false; 931 SrcMO = CopyOperands->Source; 932 DstMO = CopyOperands->Destination; 933 934 // Check validity of forwarding this copy. 935 bool PostRA = MRI.getNumVirtRegs() == 0; 936 937 // Trying to forward between physical and virtual registers is too hard. 938 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 939 return false; 940 941 // Only try virtual register copy-forwarding before regalloc, and physical 942 // register copy-forwarding after regalloc. 943 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 944 if (arePhysRegs != PostRA) 945 return false; 946 947 // Pre-regalloc, only forward if all subregisters agree (or there are no 948 // subregs at all). More analysis might recover some forwardable copies. 949 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 950 DbgMO.getSubReg() != DstMO->getSubReg())) 951 return false; 952 953 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 954 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 955 // matches the copy destination. 956 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 957 return false; 958 959 DbgMO.setReg(SrcMO->getReg()); 960 DbgMO.setSubReg(SrcMO->getSubReg()); 961 return true; 962 } 963 964 /// Sink an instruction and its associated debug instructions. 965 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 966 MachineBasicBlock::iterator InsertPos, 967 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 968 969 // If we cannot find a location to use (merge with), then we erase the debug 970 // location to prevent debug-info driven tools from potentially reporting 971 // wrong location information. 972 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 973 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 974 InsertPos->getDebugLoc())); 975 else 976 MI.setDebugLoc(DebugLoc()); 977 978 // Move the instruction. 979 MachineBasicBlock *ParentBlock = MI.getParent(); 980 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 981 ++MachineBasicBlock::iterator(MI)); 982 983 // Sink a copy of debug users to the insert position. Mark the original 984 // DBG_VALUE location as 'undef', indicating that any earlier variable 985 // location should be terminated as we've optimised away the value at this 986 // point. 987 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 988 DBE = DbgValuesToSink.end(); 989 DBI != DBE; ++DBI) { 990 MachineInstr *DbgMI = *DBI; 991 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 992 SuccToSinkTo.insert(InsertPos, NewDbgMI); 993 994 if (!attemptDebugCopyProp(MI, *DbgMI)) 995 DbgMI->setDebugValueUndef(); 996 } 997 } 998 999 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1000 /// and To. 1001 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1002 MachineBasicBlock *To, MachineInstr &MI) { 1003 // Make sure From and To are in straight line which means From dominates To 1004 // and To post dominates From. 1005 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1006 return true; 1007 1008 auto BlockPair = std::make_pair(From, To); 1009 1010 // Does these two blocks pair be queried before and have a definite cached 1011 // result? 1012 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1013 return HasStoreCache[BlockPair]; 1014 1015 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1016 return std::any_of( 1017 StoreInstrCache[BlockPair].begin(), StoreInstrCache[BlockPair].end(), 1018 [&](MachineInstr *I) { return I->mayAlias(AA, MI, false); }); 1019 1020 bool SawStore = false; 1021 bool HasAliasedStore = false; 1022 DenseSet<MachineBasicBlock *> HandledBlocks; 1023 // Go through all reachable blocks from From. 1024 for (MachineBasicBlock *BB : depth_first(From)) { 1025 // We insert the instruction at the start of block To, so no need to worry 1026 // about stores inside To. 1027 // Store in block From should be already considered when just enter function 1028 // SinkInstruction. 1029 if (BB == To || BB == From) 1030 continue; 1031 1032 // We already handle this BB in previous iteration. 1033 if (HandledBlocks.count(BB)) 1034 continue; 1035 1036 HandledBlocks.insert(BB); 1037 // To post dominates BB, it must be a path from block From. 1038 if (PDT->dominates(To, BB)) { 1039 for (MachineInstr &I : *BB) { 1040 // Treat as alias conservatively for a call or an ordered memory 1041 // operation. 1042 if (I.isCall() || I.hasOrderedMemoryRef()) { 1043 HasStoreCache[BlockPair] = true; 1044 return true; 1045 } 1046 1047 if (I.mayStore()) { 1048 SawStore = true; 1049 // We still have chance to sink MI if all stores between are not 1050 // aliased to MI. 1051 // Cache all store instructions, so that we don't need to go through 1052 // all From reachable blocks for next load instruction. 1053 if (I.mayAlias(AA, MI, false)) 1054 HasAliasedStore = true; 1055 StoreInstrCache[BlockPair].push_back(&I); 1056 } 1057 } 1058 } 1059 } 1060 // If there is no store at all, cache the result. 1061 if (!SawStore) 1062 HasStoreCache[BlockPair] = false; 1063 return HasAliasedStore; 1064 } 1065 1066 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1067 /// instruction out of its current block into a successor. 1068 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1069 AllSuccsCache &AllSuccessors) { 1070 // Don't sink instructions that the target prefers not to sink. 1071 if (!TII->shouldSink(MI)) 1072 return false; 1073 1074 // Check if it's safe to move the instruction. 1075 if (!MI.isSafeToMove(AA, SawStore)) 1076 return false; 1077 1078 // Convergent operations may not be made control-dependent on additional 1079 // values. 1080 if (MI.isConvergent()) 1081 return false; 1082 1083 // Don't break implicit null checks. This is a performance heuristic, and not 1084 // required for correctness. 1085 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1086 return false; 1087 1088 // FIXME: This should include support for sinking instructions within the 1089 // block they are currently in to shorten the live ranges. We often get 1090 // instructions sunk into the top of a large block, but it would be better to 1091 // also sink them down before their first use in the block. This xform has to 1092 // be careful not to *increase* register pressure though, e.g. sinking 1093 // "x = y + z" down if it kills y and z would increase the live ranges of y 1094 // and z and only shrink the live range of x. 1095 1096 bool BreakPHIEdge = false; 1097 MachineBasicBlock *ParentBlock = MI.getParent(); 1098 MachineBasicBlock *SuccToSinkTo = 1099 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1100 1101 // If there are no outputs, it must have side-effects. 1102 if (!SuccToSinkTo) 1103 return false; 1104 1105 // If the instruction to move defines a dead physical register which is live 1106 // when leaving the basic block, don't move it because it could turn into a 1107 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1108 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1109 const MachineOperand &MO = MI.getOperand(I); 1110 if (!MO.isReg()) continue; 1111 Register Reg = MO.getReg(); 1112 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1113 continue; 1114 if (SuccToSinkTo->isLiveIn(Reg)) 1115 return false; 1116 } 1117 1118 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1119 1120 // If the block has multiple predecessors, this is a critical edge. 1121 // Decide if we can sink along it or need to break the edge. 1122 if (SuccToSinkTo->pred_size() > 1) { 1123 // We cannot sink a load across a critical edge - there may be stores in 1124 // other code paths. 1125 bool TryBreak = false; 1126 bool Store = 1127 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1128 if (!MI.isSafeToMove(AA, Store)) { 1129 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1130 TryBreak = true; 1131 } 1132 1133 // We don't want to sink across a critical edge if we don't dominate the 1134 // successor. We could be introducing calculations to new code paths. 1135 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1136 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1137 TryBreak = true; 1138 } 1139 1140 // Don't sink instructions into a loop. 1141 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1142 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1143 TryBreak = true; 1144 } 1145 1146 // Otherwise we are OK with sinking along a critical edge. 1147 if (!TryBreak) 1148 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1149 else { 1150 // Mark this edge as to be split. 1151 // If the edge can actually be split, the next iteration of the main loop 1152 // will sink MI in the newly created block. 1153 bool Status = 1154 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1155 if (!Status) 1156 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1157 "break critical edge\n"); 1158 // The instruction will not be sunk this time. 1159 return false; 1160 } 1161 } 1162 1163 if (BreakPHIEdge) { 1164 // BreakPHIEdge is true if all the uses are in the successor MBB being 1165 // sunken into and they are all PHI nodes. In this case, machine-sink must 1166 // break the critical edge first. 1167 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1168 SuccToSinkTo, BreakPHIEdge); 1169 if (!Status) 1170 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1171 "break critical edge\n"); 1172 // The instruction will not be sunk this time. 1173 return false; 1174 } 1175 1176 // Determine where to insert into. Skip phi nodes. 1177 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1178 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1179 ++InsertPos; 1180 1181 // Collect debug users of any vreg that this inst defines. 1182 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1183 for (auto &MO : MI.operands()) { 1184 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1185 continue; 1186 if (!SeenDbgUsers.count(MO.getReg())) 1187 continue; 1188 1189 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1190 auto &Users = SeenDbgUsers[MO.getReg()]; 1191 for (auto &User : Users) { 1192 MachineInstr *DbgMI = User.getPointer(); 1193 if (User.getInt()) { 1194 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1195 // it, it can't be recovered. Set it undef. 1196 if (!attemptDebugCopyProp(MI, *DbgMI)) 1197 DbgMI->setDebugValueUndef(); 1198 } else { 1199 DbgUsersToSink.push_back(DbgMI); 1200 } 1201 } 1202 } 1203 1204 // After sinking, some debug users may not be dominated any more. If possible, 1205 // copy-propagate their operands. As it's expensive, don't do this if there's 1206 // no debuginfo in the program. 1207 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1208 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1209 1210 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1211 1212 // Conservatively, clear any kill flags, since it's possible that they are no 1213 // longer correct. 1214 // Note that we have to clear the kill flags for any register this instruction 1215 // uses as we may sink over another instruction which currently kills the 1216 // used registers. 1217 for (MachineOperand &MO : MI.operands()) { 1218 if (MO.isReg() && MO.isUse()) 1219 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1220 } 1221 1222 return true; 1223 } 1224 1225 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1226 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1227 assert(MI.isCopy()); 1228 assert(MI.getOperand(1).isReg()); 1229 1230 // Enumerate all users of vreg operands that are def'd. Skip those that will 1231 // be sunk. For the rest, if they are not dominated by the block we will sink 1232 // MI into, propagate the copy source to them. 1233 SmallVector<MachineInstr *, 4> DbgDefUsers; 1234 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1235 for (auto &MO : MI.operands()) { 1236 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1237 continue; 1238 for (auto &User : MRI.use_instructions(MO.getReg())) { 1239 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1240 continue; 1241 1242 // If is in same block, will either sink or be use-before-def. 1243 if (User.getParent() == MI.getParent()) 1244 continue; 1245 1246 assert(User.getDebugOperand(0).isReg() && 1247 "DBG_VALUE user of vreg, but non reg operand?"); 1248 DbgDefUsers.push_back(&User); 1249 } 1250 } 1251 1252 // Point the users of this copy that are no longer dominated, at the source 1253 // of the copy. 1254 for (auto *User : DbgDefUsers) { 1255 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1256 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1257 } 1258 } 1259 1260 //===----------------------------------------------------------------------===// 1261 // This pass is not intended to be a replacement or a complete alternative 1262 // for the pre-ra machine sink pass. It is only designed to sink COPY 1263 // instructions which should be handled after RA. 1264 // 1265 // This pass sinks COPY instructions into a successor block, if the COPY is not 1266 // used in the current block and the COPY is live-in to a single successor 1267 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1268 // copy on paths where their results aren't needed. This also exposes 1269 // additional opportunites for dead copy elimination and shrink wrapping. 1270 // 1271 // These copies were either not handled by or are inserted after the MachineSink 1272 // pass. As an example of the former case, the MachineSink pass cannot sink 1273 // COPY instructions with allocatable source registers; for AArch64 these type 1274 // of copy instructions are frequently used to move function parameters (PhyReg) 1275 // into virtual registers in the entry block. 1276 // 1277 // For the machine IR below, this pass will sink %w19 in the entry into its 1278 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1279 // %bb.0: 1280 // %wzr = SUBSWri %w1, 1 1281 // %w19 = COPY %w0 1282 // Bcc 11, %bb.2 1283 // %bb.1: 1284 // Live Ins: %w19 1285 // BL @fun 1286 // %w0 = ADDWrr %w0, %w19 1287 // RET %w0 1288 // %bb.2: 1289 // %w0 = COPY %wzr 1290 // RET %w0 1291 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1292 // able to see %bb.0 as a candidate. 1293 //===----------------------------------------------------------------------===// 1294 namespace { 1295 1296 class PostRAMachineSinking : public MachineFunctionPass { 1297 public: 1298 bool runOnMachineFunction(MachineFunction &MF) override; 1299 1300 static char ID; 1301 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1302 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1303 1304 void getAnalysisUsage(AnalysisUsage &AU) const override { 1305 AU.setPreservesCFG(); 1306 MachineFunctionPass::getAnalysisUsage(AU); 1307 } 1308 1309 MachineFunctionProperties getRequiredProperties() const override { 1310 return MachineFunctionProperties().set( 1311 MachineFunctionProperties::Property::NoVRegs); 1312 } 1313 1314 private: 1315 /// Track which register units have been modified and used. 1316 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1317 1318 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1319 /// entry in this map for each unit it touches. 1320 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1321 1322 /// Sink Copy instructions unused in the same block close to their uses in 1323 /// successors. 1324 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1325 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1326 }; 1327 } // namespace 1328 1329 char PostRAMachineSinking::ID = 0; 1330 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1331 1332 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1333 "PostRA Machine Sink", false, false) 1334 1335 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1336 const TargetRegisterInfo *TRI) { 1337 LiveRegUnits LiveInRegUnits(*TRI); 1338 LiveInRegUnits.addLiveIns(MBB); 1339 return !LiveInRegUnits.available(Reg); 1340 } 1341 1342 static MachineBasicBlock * 1343 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1344 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1345 unsigned Reg, const TargetRegisterInfo *TRI) { 1346 // Try to find a single sinkable successor in which Reg is live-in. 1347 MachineBasicBlock *BB = nullptr; 1348 for (auto *SI : SinkableBBs) { 1349 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1350 // If BB is set here, Reg is live-in to at least two sinkable successors, 1351 // so quit. 1352 if (BB) 1353 return nullptr; 1354 BB = SI; 1355 } 1356 } 1357 // Reg is not live-in to any sinkable successors. 1358 if (!BB) 1359 return nullptr; 1360 1361 // Check if any register aliased with Reg is live-in in other successors. 1362 for (auto *SI : CurBB.successors()) { 1363 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1364 return nullptr; 1365 } 1366 return BB; 1367 } 1368 1369 static MachineBasicBlock * 1370 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1371 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1372 ArrayRef<unsigned> DefedRegsInCopy, 1373 const TargetRegisterInfo *TRI) { 1374 MachineBasicBlock *SingleBB = nullptr; 1375 for (auto DefReg : DefedRegsInCopy) { 1376 MachineBasicBlock *BB = 1377 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1378 if (!BB || (SingleBB && SingleBB != BB)) 1379 return nullptr; 1380 SingleBB = BB; 1381 } 1382 return SingleBB; 1383 } 1384 1385 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1386 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1387 LiveRegUnits &UsedRegUnits, 1388 const TargetRegisterInfo *TRI) { 1389 for (auto U : UsedOpsInCopy) { 1390 MachineOperand &MO = MI->getOperand(U); 1391 Register SrcReg = MO.getReg(); 1392 if (!UsedRegUnits.available(SrcReg)) { 1393 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1394 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1395 if (UI.killsRegister(SrcReg, TRI)) { 1396 UI.clearRegisterKills(SrcReg, TRI); 1397 MO.setIsKill(true); 1398 break; 1399 } 1400 } 1401 } 1402 } 1403 } 1404 1405 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1406 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1407 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1408 MachineFunction &MF = *SuccBB->getParent(); 1409 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1410 for (unsigned DefReg : DefedRegsInCopy) 1411 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1412 SuccBB->removeLiveIn(*S); 1413 for (auto U : UsedOpsInCopy) { 1414 Register SrcReg = MI->getOperand(U).getReg(); 1415 LaneBitmask Mask; 1416 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1417 Mask |= (*S).second; 1418 } 1419 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1420 } 1421 SuccBB->sortUniqueLiveIns(); 1422 } 1423 1424 static bool hasRegisterDependency(MachineInstr *MI, 1425 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1426 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1427 LiveRegUnits &ModifiedRegUnits, 1428 LiveRegUnits &UsedRegUnits) { 1429 bool HasRegDependency = false; 1430 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1431 MachineOperand &MO = MI->getOperand(i); 1432 if (!MO.isReg()) 1433 continue; 1434 Register Reg = MO.getReg(); 1435 if (!Reg) 1436 continue; 1437 if (MO.isDef()) { 1438 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1439 HasRegDependency = true; 1440 break; 1441 } 1442 DefedRegsInCopy.push_back(Reg); 1443 1444 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1445 // For example, we can ignore modifications in reg with undef. However, 1446 // it's not perfectly clear if skipping the internal read is safe in all 1447 // other targets. 1448 } else if (MO.isUse()) { 1449 if (!ModifiedRegUnits.available(Reg)) { 1450 HasRegDependency = true; 1451 break; 1452 } 1453 UsedOpsInCopy.push_back(i); 1454 } 1455 } 1456 return HasRegDependency; 1457 } 1458 1459 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1460 const TargetRegisterInfo *TRI) { 1461 SmallSet<MCRegister, 4> RegUnits; 1462 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1463 RegUnits.insert(*RI); 1464 return RegUnits; 1465 } 1466 1467 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1468 MachineFunction &MF, 1469 const TargetRegisterInfo *TRI, 1470 const TargetInstrInfo *TII) { 1471 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1472 // FIXME: For now, we sink only to a successor which has a single predecessor 1473 // so that we can directly sink COPY instructions to the successor without 1474 // adding any new block or branch instruction. 1475 for (MachineBasicBlock *SI : CurBB.successors()) 1476 if (!SI->livein_empty() && SI->pred_size() == 1) 1477 SinkableBBs.insert(SI); 1478 1479 if (SinkableBBs.empty()) 1480 return false; 1481 1482 bool Changed = false; 1483 1484 // Track which registers have been modified and used between the end of the 1485 // block and the current instruction. 1486 ModifiedRegUnits.clear(); 1487 UsedRegUnits.clear(); 1488 SeenDbgInstrs.clear(); 1489 1490 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1491 MachineInstr *MI = &*I; 1492 ++I; 1493 1494 // Track the operand index for use in Copy. 1495 SmallVector<unsigned, 2> UsedOpsInCopy; 1496 // Track the register number defed in Copy. 1497 SmallVector<unsigned, 2> DefedRegsInCopy; 1498 1499 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1500 // for DBG_VALUEs later, record them when they're encountered. 1501 if (MI->isDebugValue()) { 1502 auto &MO = MI->getDebugOperand(0); 1503 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1504 // Bail if we can already tell the sink would be rejected, rather 1505 // than needlessly accumulating lots of DBG_VALUEs. 1506 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1507 ModifiedRegUnits, UsedRegUnits)) 1508 continue; 1509 1510 // Record debug use of each reg unit. 1511 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1512 for (MCRegister Reg : Units) 1513 SeenDbgInstrs[Reg].push_back(MI); 1514 } 1515 continue; 1516 } 1517 1518 if (MI->isDebugInstr()) 1519 continue; 1520 1521 // Do not move any instruction across function call. 1522 if (MI->isCall()) 1523 return false; 1524 1525 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1526 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1527 TRI); 1528 continue; 1529 } 1530 1531 // Don't sink the COPY if it would violate a register dependency. 1532 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1533 ModifiedRegUnits, UsedRegUnits)) { 1534 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1535 TRI); 1536 continue; 1537 } 1538 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1539 "Unexpect SrcReg or DefReg"); 1540 MachineBasicBlock *SuccBB = 1541 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1542 // Don't sink if we cannot find a single sinkable successor in which Reg 1543 // is live-in. 1544 if (!SuccBB) { 1545 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1546 TRI); 1547 continue; 1548 } 1549 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1550 "Unexpected predecessor"); 1551 1552 // Collect DBG_VALUEs that must sink with this copy. We've previously 1553 // recorded which reg units that DBG_VALUEs read, if this instruction 1554 // writes any of those units then the corresponding DBG_VALUEs must sink. 1555 SetVector<MachineInstr *> DbgValsToSinkSet; 1556 SmallVector<MachineInstr *, 4> DbgValsToSink; 1557 for (auto &MO : MI->operands()) { 1558 if (!MO.isReg() || !MO.isDef()) 1559 continue; 1560 1561 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1562 for (MCRegister Reg : Units) 1563 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1564 DbgValsToSinkSet.insert(MI); 1565 } 1566 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1567 DbgValsToSinkSet.end()); 1568 1569 // Clear the kill flag if SrcReg is killed between MI and the end of the 1570 // block. 1571 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1572 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1573 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1574 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1575 1576 Changed = true; 1577 ++NumPostRACopySink; 1578 } 1579 return Changed; 1580 } 1581 1582 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1583 if (skipFunction(MF.getFunction())) 1584 return false; 1585 1586 bool Changed = false; 1587 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1588 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1589 1590 ModifiedRegUnits.init(*TRI); 1591 UsedRegUnits.init(*TRI); 1592 for (auto &BB : MF) 1593 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1594 1595 return Changed; 1596 } 1597