1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/SetVector.h" 19 #include "llvm/ADT/SmallSet.h" 20 #include "llvm/ADT/SmallVector.h" 21 #include "llvm/ADT/SparseBitVector.h" 22 #include "llvm/ADT/Statistic.h" 23 #include "llvm/Analysis/AliasAnalysis.h" 24 #include "llvm/CodeGen/MachineBasicBlock.h" 25 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 26 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 27 #include "llvm/CodeGen/MachineDominators.h" 28 #include "llvm/CodeGen/MachineFunction.h" 29 #include "llvm/CodeGen/MachineFunctionPass.h" 30 #include "llvm/CodeGen/MachineInstr.h" 31 #include "llvm/CodeGen/MachineLoopInfo.h" 32 #include "llvm/CodeGen/MachineOperand.h" 33 #include "llvm/CodeGen/MachinePostDominators.h" 34 #include "llvm/CodeGen/MachineRegisterInfo.h" 35 #include "llvm/CodeGen/TargetInstrInfo.h" 36 #include "llvm/CodeGen/TargetRegisterInfo.h" 37 #include "llvm/CodeGen/TargetSubtargetInfo.h" 38 #include "llvm/IR/BasicBlock.h" 39 #include "llvm/IR/DebugInfoMetadata.h" 40 #include "llvm/IR/LLVMContext.h" 41 #include "llvm/MC/MCRegisterInfo.h" 42 #include "llvm/Pass.h" 43 #include "llvm/Support/BranchProbability.h" 44 #include "llvm/Support/CommandLine.h" 45 #include "llvm/Support/Debug.h" 46 #include "llvm/Support/raw_ostream.h" 47 #include <algorithm> 48 #include <cassert> 49 #include <cstdint> 50 #include <map> 51 #include <utility> 52 #include <vector> 53 54 using namespace llvm; 55 56 #define DEBUG_TYPE "machine-sink" 57 58 static cl::opt<bool> 59 SplitEdges("machine-sink-split", 60 cl::desc("Split critical edges during machine sinking"), 61 cl::init(true), cl::Hidden); 62 63 static cl::opt<bool> 64 UseBlockFreqInfo("machine-sink-bfi", 65 cl::desc("Use block frequency info to find successors to sink"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 69 "machine-sink-split-probability-threshold", 70 cl::desc( 71 "Percentage threshold for splitting single-instruction critical edge. " 72 "If the branch threshold is higher than this threshold, we allow " 73 "speculative execution of up to 1 instruction to avoid branching to " 74 "splitted critical edge"), 75 cl::init(40), cl::Hidden); 76 77 STATISTIC(NumSunk, "Number of machine instructions sunk"); 78 STATISTIC(NumSplit, "Number of critical edges split"); 79 STATISTIC(NumCoalesces, "Number of copies coalesced"); 80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 81 82 namespace { 83 84 class MachineSinking : public MachineFunctionPass { 85 const TargetInstrInfo *TII; 86 const TargetRegisterInfo *TRI; 87 MachineRegisterInfo *MRI; // Machine register information 88 MachineDominatorTree *DT; // Machine dominator tree 89 MachinePostDominatorTree *PDT; // Machine post dominator tree 90 MachineLoopInfo *LI; 91 const MachineBlockFrequencyInfo *MBFI; 92 const MachineBranchProbabilityInfo *MBPI; 93 AliasAnalysis *AA; 94 95 // Remember which edges have been considered for breaking. 96 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 97 CEBCandidates; 98 // Remember which edges we are about to split. 99 // This is different from CEBCandidates since those edges 100 // will be split. 101 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 102 103 SparseBitVector<> RegsToClearKillFlags; 104 105 using AllSuccsCache = 106 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 107 108 // Remember debug uses of vregs seen, so we know what to sink out of blocks. 109 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgUsers; 110 111 public: 112 static char ID; // Pass identification 113 114 MachineSinking() : MachineFunctionPass(ID) { 115 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 116 } 117 118 bool runOnMachineFunction(MachineFunction &MF) override; 119 120 void getAnalysisUsage(AnalysisUsage &AU) const override { 121 MachineFunctionPass::getAnalysisUsage(AU); 122 AU.addRequired<AAResultsWrapperPass>(); 123 AU.addRequired<MachineDominatorTree>(); 124 AU.addRequired<MachinePostDominatorTree>(); 125 AU.addRequired<MachineLoopInfo>(); 126 AU.addRequired<MachineBranchProbabilityInfo>(); 127 AU.addPreserved<MachineLoopInfo>(); 128 if (UseBlockFreqInfo) 129 AU.addRequired<MachineBlockFrequencyInfo>(); 130 } 131 132 void releaseMemory() override { 133 CEBCandidates.clear(); 134 } 135 136 private: 137 bool ProcessBlock(MachineBasicBlock &MBB); 138 void ProcessDbgInst(MachineInstr &MI); 139 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 140 MachineBasicBlock *From, 141 MachineBasicBlock *To); 142 143 /// Postpone the splitting of the given critical 144 /// edge (\p From, \p To). 145 /// 146 /// We do not split the edges on the fly. Indeed, this invalidates 147 /// the dominance information and thus triggers a lot of updates 148 /// of that information underneath. 149 /// Instead, we postpone all the splits after each iteration of 150 /// the main loop. That way, the information is at least valid 151 /// for the lifetime of an iteration. 152 /// 153 /// \return True if the edge is marked as toSplit, false otherwise. 154 /// False can be returned if, for instance, this is not profitable. 155 bool PostponeSplitCriticalEdge(MachineInstr &MI, 156 MachineBasicBlock *From, 157 MachineBasicBlock *To, 158 bool BreakPHIEdge); 159 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 160 AllSuccsCache &AllSuccessors); 161 162 /// If we sink a COPY inst, some debug users of it's destination may no 163 /// longer be dominated by the COPY, and will eventually be dropped. 164 /// This is easily rectified by forwarding the non-dominated debug uses 165 /// to the copy source. 166 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 167 MachineBasicBlock *TargetBlock); 168 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 169 MachineBasicBlock *DefMBB, 170 bool &BreakPHIEdge, bool &LocalUse) const; 171 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 172 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 173 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 174 MachineBasicBlock *MBB, 175 MachineBasicBlock *SuccToSinkTo, 176 AllSuccsCache &AllSuccessors); 177 178 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 179 MachineBasicBlock *MBB); 180 181 SmallVector<MachineBasicBlock *, 4> & 182 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 183 AllSuccsCache &AllSuccessors) const; 184 }; 185 186 } // end anonymous namespace 187 188 char MachineSinking::ID = 0; 189 190 char &llvm::MachineSinkingID = MachineSinking::ID; 191 192 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 193 "Machine code sinking", false, false) 194 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 195 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 196 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 197 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 198 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 199 "Machine code sinking", false, false) 200 201 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 202 MachineBasicBlock *MBB) { 203 if (!MI.isCopy()) 204 return false; 205 206 Register SrcReg = MI.getOperand(1).getReg(); 207 Register DstReg = MI.getOperand(0).getReg(); 208 if (!Register::isVirtualRegister(SrcReg) || 209 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 210 return false; 211 212 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 213 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 214 if (SRC != DRC) 215 return false; 216 217 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 218 if (DefMI->isCopyLike()) 219 return false; 220 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 221 LLVM_DEBUG(dbgs() << "*** to: " << MI); 222 MRI->replaceRegWith(DstReg, SrcReg); 223 MI.eraseFromParent(); 224 225 // Conservatively, clear any kill flags, since it's possible that they are no 226 // longer correct. 227 MRI->clearKillFlags(SrcReg); 228 229 ++NumCoalesces; 230 return true; 231 } 232 233 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 234 /// occur in blocks dominated by the specified block. If any use is in the 235 /// definition block, then return false since it is never legal to move def 236 /// after uses. 237 bool 238 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 239 MachineBasicBlock *MBB, 240 MachineBasicBlock *DefMBB, 241 bool &BreakPHIEdge, 242 bool &LocalUse) const { 243 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 244 245 // Ignore debug uses because debug info doesn't affect the code. 246 if (MRI->use_nodbg_empty(Reg)) 247 return true; 248 249 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 250 // into and they are all PHI nodes. In this case, machine-sink must break 251 // the critical edge first. e.g. 252 // 253 // %bb.1: derived from LLVM BB %bb4.preheader 254 // Predecessors according to CFG: %bb.0 255 // ... 256 // %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags 257 // ... 258 // JE_4 <%bb.37>, implicit %eflags 259 // Successors according to CFG: %bb.37 %bb.2 260 // 261 // %bb.2: derived from LLVM BB %bb.nph 262 // Predecessors according to CFG: %bb.0 %bb.1 263 // %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1 264 BreakPHIEdge = true; 265 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 266 MachineInstr *UseInst = MO.getParent(); 267 unsigned OpNo = &MO - &UseInst->getOperand(0); 268 MachineBasicBlock *UseBlock = UseInst->getParent(); 269 if (!(UseBlock == MBB && UseInst->isPHI() && 270 UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) { 271 BreakPHIEdge = false; 272 break; 273 } 274 } 275 if (BreakPHIEdge) 276 return true; 277 278 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 279 // Determine the block of the use. 280 MachineInstr *UseInst = MO.getParent(); 281 unsigned OpNo = &MO - &UseInst->getOperand(0); 282 MachineBasicBlock *UseBlock = UseInst->getParent(); 283 if (UseInst->isPHI()) { 284 // PHI nodes use the operand in the predecessor block, not the block with 285 // the PHI. 286 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 287 } else if (UseBlock == DefMBB) { 288 LocalUse = true; 289 return false; 290 } 291 292 // Check that it dominates. 293 if (!DT->dominates(MBB, UseBlock)) 294 return false; 295 } 296 297 return true; 298 } 299 300 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 301 if (skipFunction(MF.getFunction())) 302 return false; 303 304 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 305 306 TII = MF.getSubtarget().getInstrInfo(); 307 TRI = MF.getSubtarget().getRegisterInfo(); 308 MRI = &MF.getRegInfo(); 309 DT = &getAnalysis<MachineDominatorTree>(); 310 PDT = &getAnalysis<MachinePostDominatorTree>(); 311 LI = &getAnalysis<MachineLoopInfo>(); 312 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 313 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 314 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 315 316 bool EverMadeChange = false; 317 318 while (true) { 319 bool MadeChange = false; 320 321 // Process all basic blocks. 322 CEBCandidates.clear(); 323 ToSplit.clear(); 324 for (auto &MBB: MF) 325 MadeChange |= ProcessBlock(MBB); 326 327 // If we have anything we marked as toSplit, split it now. 328 for (auto &Pair : ToSplit) { 329 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 330 if (NewSucc != nullptr) { 331 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 332 << printMBBReference(*Pair.first) << " -- " 333 << printMBBReference(*NewSucc) << " -- " 334 << printMBBReference(*Pair.second) << '\n'); 335 MadeChange = true; 336 ++NumSplit; 337 } else 338 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 339 } 340 // If this iteration over the code changed anything, keep iterating. 341 if (!MadeChange) break; 342 EverMadeChange = true; 343 } 344 345 // Now clear any kill flags for recorded registers. 346 for (auto I : RegsToClearKillFlags) 347 MRI->clearKillFlags(I); 348 RegsToClearKillFlags.clear(); 349 350 return EverMadeChange; 351 } 352 353 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 354 // Can't sink anything out of a block that has less than two successors. 355 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 356 357 // Don't bother sinking code out of unreachable blocks. In addition to being 358 // unprofitable, it can also lead to infinite looping, because in an 359 // unreachable loop there may be nowhere to stop. 360 if (!DT->isReachableFromEntry(&MBB)) return false; 361 362 bool MadeChange = false; 363 364 // Cache all successors, sorted by frequency info and loop depth. 365 AllSuccsCache AllSuccessors; 366 367 // Walk the basic block bottom-up. Remember if we saw a store. 368 MachineBasicBlock::iterator I = MBB.end(); 369 --I; 370 bool ProcessedBegin, SawStore = false; 371 do { 372 MachineInstr &MI = *I; // The instruction to sink. 373 374 // Predecrement I (if it's not begin) so that it isn't invalidated by 375 // sinking. 376 ProcessedBegin = I == MBB.begin(); 377 if (!ProcessedBegin) 378 --I; 379 380 if (MI.isDebugInstr()) { 381 if (MI.isDebugValue()) 382 ProcessDbgInst(MI); 383 continue; 384 } 385 386 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 387 if (Joined) { 388 MadeChange = true; 389 continue; 390 } 391 392 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 393 ++NumSunk; 394 MadeChange = true; 395 } 396 397 // If we just processed the first instruction in the block, we're done. 398 } while (!ProcessedBegin); 399 400 SeenDbgUsers.clear(); 401 402 return MadeChange; 403 } 404 405 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 406 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 407 // we know what to sink if the vreg def sinks. 408 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 409 410 MachineOperand &MO = MI.getOperand(0); 411 if (!MO.isReg() || !MO.getReg().isVirtual()) 412 return; 413 414 SeenDbgUsers[MO.getReg()].push_back(&MI); 415 } 416 417 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 418 MachineBasicBlock *From, 419 MachineBasicBlock *To) { 420 // FIXME: Need much better heuristics. 421 422 // If the pass has already considered breaking this edge (during this pass 423 // through the function), then let's go ahead and break it. This means 424 // sinking multiple "cheap" instructions into the same block. 425 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 426 return true; 427 428 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 429 return true; 430 431 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 432 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 433 return true; 434 435 // MI is cheap, we probably don't want to break the critical edge for it. 436 // However, if this would allow some definitions of its source operands 437 // to be sunk then it's probably worth it. 438 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 439 const MachineOperand &MO = MI.getOperand(i); 440 if (!MO.isReg() || !MO.isUse()) 441 continue; 442 Register Reg = MO.getReg(); 443 if (Reg == 0) 444 continue; 445 446 // We don't move live definitions of physical registers, 447 // so sinking their uses won't enable any opportunities. 448 if (Register::isPhysicalRegister(Reg)) 449 continue; 450 451 // If this instruction is the only user of a virtual register, 452 // check if breaking the edge will enable sinking 453 // both this instruction and the defining instruction. 454 if (MRI->hasOneNonDBGUse(Reg)) { 455 // If the definition resides in same MBB, 456 // claim it's likely we can sink these together. 457 // If definition resides elsewhere, we aren't 458 // blocking it from being sunk so don't break the edge. 459 MachineInstr *DefMI = MRI->getVRegDef(Reg); 460 if (DefMI->getParent() == MI.getParent()) 461 return true; 462 } 463 } 464 465 return false; 466 } 467 468 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 469 MachineBasicBlock *FromBB, 470 MachineBasicBlock *ToBB, 471 bool BreakPHIEdge) { 472 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 473 return false; 474 475 // Avoid breaking back edge. From == To means backedge for single BB loop. 476 if (!SplitEdges || FromBB == ToBB) 477 return false; 478 479 // Check for backedges of more "complex" loops. 480 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 481 LI->isLoopHeader(ToBB)) 482 return false; 483 484 // It's not always legal to break critical edges and sink the computation 485 // to the edge. 486 // 487 // %bb.1: 488 // v1024 489 // Beq %bb.3 490 // <fallthrough> 491 // %bb.2: 492 // ... no uses of v1024 493 // <fallthrough> 494 // %bb.3: 495 // ... 496 // = v1024 497 // 498 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 499 // 500 // %bb.1: 501 // ... 502 // Bne %bb.2 503 // %bb.4: 504 // v1024 = 505 // B %bb.3 506 // %bb.2: 507 // ... no uses of v1024 508 // <fallthrough> 509 // %bb.3: 510 // ... 511 // = v1024 512 // 513 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 514 // flow. We need to ensure the new basic block where the computation is 515 // sunk to dominates all the uses. 516 // It's only legal to break critical edge and sink the computation to the 517 // new block if all the predecessors of "To", except for "From", are 518 // not dominated by "From". Given SSA property, this means these 519 // predecessors are dominated by "To". 520 // 521 // There is no need to do this check if all the uses are PHI nodes. PHI 522 // sources are only defined on the specific predecessor edges. 523 if (!BreakPHIEdge) { 524 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 525 E = ToBB->pred_end(); PI != E; ++PI) { 526 if (*PI == FromBB) 527 continue; 528 if (!DT->dominates(ToBB, *PI)) 529 return false; 530 } 531 } 532 533 ToSplit.insert(std::make_pair(FromBB, ToBB)); 534 535 return true; 536 } 537 538 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 539 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 540 MachineBasicBlock *MBB, 541 MachineBasicBlock *SuccToSinkTo, 542 AllSuccsCache &AllSuccessors) { 543 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 544 545 if (MBB == SuccToSinkTo) 546 return false; 547 548 // It is profitable if SuccToSinkTo does not post dominate current block. 549 if (!PDT->dominates(SuccToSinkTo, MBB)) 550 return true; 551 552 // It is profitable to sink an instruction from a deeper loop to a shallower 553 // loop, even if the latter post-dominates the former (PR21115). 554 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 555 return true; 556 557 // Check if only use in post dominated block is PHI instruction. 558 bool NonPHIUse = false; 559 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 560 MachineBasicBlock *UseBlock = UseInst.getParent(); 561 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 562 NonPHIUse = true; 563 } 564 if (!NonPHIUse) 565 return true; 566 567 // If SuccToSinkTo post dominates then also it may be profitable if MI 568 // can further profitably sinked into another block in next round. 569 bool BreakPHIEdge = false; 570 // FIXME - If finding successor is compile time expensive then cache results. 571 if (MachineBasicBlock *MBB2 = 572 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 573 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 574 575 // If SuccToSinkTo is final destination and it is a post dominator of current 576 // block then it is not profitable to sink MI into SuccToSinkTo block. 577 return false; 578 } 579 580 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 581 /// computing it if it was not already cached. 582 SmallVector<MachineBasicBlock *, 4> & 583 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 584 AllSuccsCache &AllSuccessors) const { 585 // Do we have the sorted successors in cache ? 586 auto Succs = AllSuccessors.find(MBB); 587 if (Succs != AllSuccessors.end()) 588 return Succs->second; 589 590 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 591 MBB->succ_end()); 592 593 // Handle cases where sinking can happen but where the sink point isn't a 594 // successor. For example: 595 // 596 // x = computation 597 // if () {} else {} 598 // use x 599 // 600 const std::vector<MachineDomTreeNode *> &Children = 601 DT->getNode(MBB)->getChildren(); 602 for (const auto &DTChild : Children) 603 // DomTree children of MBB that have MBB as immediate dominator are added. 604 if (DTChild->getIDom()->getBlock() == MI.getParent() && 605 // Skip MBBs already added to the AllSuccs vector above. 606 !MBB->isSuccessor(DTChild->getBlock())) 607 AllSuccs.push_back(DTChild->getBlock()); 608 609 // Sort Successors according to their loop depth or block frequency info. 610 llvm::stable_sort( 611 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 612 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 613 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 614 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 615 return HasBlockFreq ? LHSFreq < RHSFreq 616 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 617 }); 618 619 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 620 621 return it.first->second; 622 } 623 624 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 625 MachineBasicBlock * 626 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 627 bool &BreakPHIEdge, 628 AllSuccsCache &AllSuccessors) { 629 assert (MBB && "Invalid MachineBasicBlock!"); 630 631 // Loop over all the operands of the specified instruction. If there is 632 // anything we can't handle, bail out. 633 634 // SuccToSinkTo - This is the successor to sink this instruction to, once we 635 // decide. 636 MachineBasicBlock *SuccToSinkTo = nullptr; 637 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 638 const MachineOperand &MO = MI.getOperand(i); 639 if (!MO.isReg()) continue; // Ignore non-register operands. 640 641 Register Reg = MO.getReg(); 642 if (Reg == 0) continue; 643 644 if (Register::isPhysicalRegister(Reg)) { 645 if (MO.isUse()) { 646 // If the physreg has no defs anywhere, it's just an ambient register 647 // and we can freely move its uses. Alternatively, if it's allocatable, 648 // it could get allocated to something with a def during allocation. 649 if (!MRI->isConstantPhysReg(Reg)) 650 return nullptr; 651 } else if (!MO.isDead()) { 652 // A def that isn't dead. We can't move it. 653 return nullptr; 654 } 655 } else { 656 // Virtual register uses are always safe to sink. 657 if (MO.isUse()) continue; 658 659 // If it's not safe to move defs of the register class, then abort. 660 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 661 return nullptr; 662 663 // Virtual register defs can only be sunk if all their uses are in blocks 664 // dominated by one of the successors. 665 if (SuccToSinkTo) { 666 // If a previous operand picked a block to sink to, then this operand 667 // must be sinkable to the same block. 668 bool LocalUse = false; 669 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 670 BreakPHIEdge, LocalUse)) 671 return nullptr; 672 673 continue; 674 } 675 676 // Otherwise, we should look at all the successors and decide which one 677 // we should sink to. If we have reliable block frequency information 678 // (frequency != 0) available, give successors with smaller frequencies 679 // higher priority, otherwise prioritize smaller loop depths. 680 for (MachineBasicBlock *SuccBlock : 681 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 682 bool LocalUse = false; 683 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 684 BreakPHIEdge, LocalUse)) { 685 SuccToSinkTo = SuccBlock; 686 break; 687 } 688 if (LocalUse) 689 // Def is used locally, it's never safe to move this def. 690 return nullptr; 691 } 692 693 // If we couldn't find a block to sink to, ignore this instruction. 694 if (!SuccToSinkTo) 695 return nullptr; 696 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 697 return nullptr; 698 } 699 } 700 701 // It is not possible to sink an instruction into its own block. This can 702 // happen with loops. 703 if (MBB == SuccToSinkTo) 704 return nullptr; 705 706 // It's not safe to sink instructions to EH landing pad. Control flow into 707 // landing pad is implicitly defined. 708 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 709 return nullptr; 710 711 return SuccToSinkTo; 712 } 713 714 /// Return true if MI is likely to be usable as a memory operation by the 715 /// implicit null check optimization. 716 /// 717 /// This is a "best effort" heuristic, and should not be relied upon for 718 /// correctness. This returning true does not guarantee that the implicit null 719 /// check optimization is legal over MI, and this returning false does not 720 /// guarantee MI cannot possibly be used to do a null check. 721 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 722 const TargetInstrInfo *TII, 723 const TargetRegisterInfo *TRI) { 724 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 725 726 auto *MBB = MI.getParent(); 727 if (MBB->pred_size() != 1) 728 return false; 729 730 auto *PredMBB = *MBB->pred_begin(); 731 auto *PredBB = PredMBB->getBasicBlock(); 732 733 // Frontends that don't use implicit null checks have no reason to emit 734 // branches with make.implicit metadata, and this function should always 735 // return false for them. 736 if (!PredBB || 737 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 738 return false; 739 740 const MachineOperand *BaseOp; 741 int64_t Offset; 742 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, TRI)) 743 return false; 744 745 if (!BaseOp->isReg()) 746 return false; 747 748 if (!(MI.mayLoad() && !MI.isPredicable())) 749 return false; 750 751 MachineBranchPredicate MBP; 752 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 753 return false; 754 755 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 756 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 757 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 758 MBP.LHS.getReg() == BaseOp->getReg(); 759 } 760 761 /// Sink an instruction and its associated debug instructions. 762 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 763 MachineBasicBlock::iterator InsertPos, 764 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 765 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 766 const TargetInstrInfo &TII = *MI.getMF()->getSubtarget().getInstrInfo(); 767 768 // If we cannot find a location to use (merge with), then we erase the debug 769 // location to prevent debug-info driven tools from potentially reporting 770 // wrong location information. 771 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 772 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 773 InsertPos->getDebugLoc())); 774 else 775 MI.setDebugLoc(DebugLoc()); 776 777 // Move the instruction. 778 MachineBasicBlock *ParentBlock = MI.getParent(); 779 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 780 ++MachineBasicBlock::iterator(MI)); 781 782 // Sink a copy of debug users to the insert position. Mark the original 783 // DBG_VALUE location as 'undef', indicating that any earlier variable 784 // location should be terminated as we've optimised away the value at this 785 // point. 786 // If the sunk instruction is a copy, try to forward the copy instead of 787 // leaving an 'undef' DBG_VALUE in the original location. Don't do this if 788 // there's any subregister weirdness involved. 789 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 790 DBE = DbgValuesToSink.end(); 791 DBI != DBE; ++DBI) { 792 MachineInstr *DbgMI = *DBI; 793 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 794 SuccToSinkTo.insert(InsertPos, NewDbgMI); 795 796 // Copy DBG_VALUE operand and set the original to undef. We then check to 797 // see whether this is something that can be copy-forwarded. If it isn't, 798 // continue around the loop. 799 MachineOperand DbgMO = DbgMI->getOperand(0); 800 DbgMI->getOperand(0).setReg(0); 801 802 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 803 if (!TII.isCopyInstr(MI, SrcMO, DstMO)) 804 continue; 805 806 // Check validity of forwarding this copy. 807 bool PostRA = MRI.getNumVirtRegs() == 0; 808 809 // Trying to forward between physical and virtual registers is too hard. 810 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 811 continue; 812 813 // Only try virtual register copy-forwarding before regalloc, and physical 814 // register copy-forwarding after regalloc. 815 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 816 if (arePhysRegs != PostRA) 817 continue; 818 819 // Pre-regalloc, only forward if all subregisters agree (or there are no 820 // subregs at all). More analysis might recover some forwardable copies. 821 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 822 DbgMO.getSubReg() != DstMO->getSubReg())) 823 continue; 824 825 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 826 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 827 // matches the copy destination. 828 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 829 continue; 830 831 DbgMI->getOperand(0).setReg(SrcMO->getReg()); 832 DbgMI->getOperand(0).setSubReg(SrcMO->getSubReg()); 833 } 834 } 835 836 /// SinkInstruction - Determine whether it is safe to sink the specified machine 837 /// instruction out of its current block into a successor. 838 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 839 AllSuccsCache &AllSuccessors) { 840 // Don't sink instructions that the target prefers not to sink. 841 if (!TII->shouldSink(MI)) 842 return false; 843 844 // Check if it's safe to move the instruction. 845 if (!MI.isSafeToMove(AA, SawStore)) 846 return false; 847 848 // Convergent operations may not be made control-dependent on additional 849 // values. 850 if (MI.isConvergent()) 851 return false; 852 853 // Don't break implicit null checks. This is a performance heuristic, and not 854 // required for correctness. 855 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 856 return false; 857 858 // FIXME: This should include support for sinking instructions within the 859 // block they are currently in to shorten the live ranges. We often get 860 // instructions sunk into the top of a large block, but it would be better to 861 // also sink them down before their first use in the block. This xform has to 862 // be careful not to *increase* register pressure though, e.g. sinking 863 // "x = y + z" down if it kills y and z would increase the live ranges of y 864 // and z and only shrink the live range of x. 865 866 bool BreakPHIEdge = false; 867 MachineBasicBlock *ParentBlock = MI.getParent(); 868 MachineBasicBlock *SuccToSinkTo = 869 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 870 871 // If there are no outputs, it must have side-effects. 872 if (!SuccToSinkTo) 873 return false; 874 875 // If the instruction to move defines a dead physical register which is live 876 // when leaving the basic block, don't move it because it could turn into a 877 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 878 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 879 const MachineOperand &MO = MI.getOperand(I); 880 if (!MO.isReg()) continue; 881 Register Reg = MO.getReg(); 882 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 883 continue; 884 if (SuccToSinkTo->isLiveIn(Reg)) 885 return false; 886 } 887 888 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 889 890 // If the block has multiple predecessors, this is a critical edge. 891 // Decide if we can sink along it or need to break the edge. 892 if (SuccToSinkTo->pred_size() > 1) { 893 // We cannot sink a load across a critical edge - there may be stores in 894 // other code paths. 895 bool TryBreak = false; 896 bool store = true; 897 if (!MI.isSafeToMove(AA, store)) { 898 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 899 TryBreak = true; 900 } 901 902 // We don't want to sink across a critical edge if we don't dominate the 903 // successor. We could be introducing calculations to new code paths. 904 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 905 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 906 TryBreak = true; 907 } 908 909 // Don't sink instructions into a loop. 910 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 911 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 912 TryBreak = true; 913 } 914 915 // Otherwise we are OK with sinking along a critical edge. 916 if (!TryBreak) 917 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 918 else { 919 // Mark this edge as to be split. 920 // If the edge can actually be split, the next iteration of the main loop 921 // will sink MI in the newly created block. 922 bool Status = 923 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 924 if (!Status) 925 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 926 "break critical edge\n"); 927 // The instruction will not be sunk this time. 928 return false; 929 } 930 } 931 932 if (BreakPHIEdge) { 933 // BreakPHIEdge is true if all the uses are in the successor MBB being 934 // sunken into and they are all PHI nodes. In this case, machine-sink must 935 // break the critical edge first. 936 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 937 SuccToSinkTo, BreakPHIEdge); 938 if (!Status) 939 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 940 "break critical edge\n"); 941 // The instruction will not be sunk this time. 942 return false; 943 } 944 945 // Determine where to insert into. Skip phi nodes. 946 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 947 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 948 ++InsertPos; 949 950 // Collect debug users of any vreg that this inst defines. 951 SmallVector<MachineInstr *, 4> DbgUsersToSink; 952 for (auto &MO : MI.operands()) { 953 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 954 continue; 955 if (!SeenDbgUsers.count(MO.getReg())) 956 continue; 957 958 auto &Users = SeenDbgUsers[MO.getReg()]; 959 DbgUsersToSink.insert(DbgUsersToSink.end(), Users.begin(), Users.end()); 960 } 961 962 // After sinking, some debug users may not be dominated any more. If possible, 963 // copy-propagate their operands. As it's expensive, don't do this if there's 964 // no debuginfo in the program. 965 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 966 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 967 968 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 969 970 // Conservatively, clear any kill flags, since it's possible that they are no 971 // longer correct. 972 // Note that we have to clear the kill flags for any register this instruction 973 // uses as we may sink over another instruction which currently kills the 974 // used registers. 975 for (MachineOperand &MO : MI.operands()) { 976 if (MO.isReg() && MO.isUse()) 977 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 978 } 979 980 return true; 981 } 982 983 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 984 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 985 assert(MI.isCopy()); 986 assert(MI.getOperand(1).isReg()); 987 988 // Enumerate all users of vreg operands that are def'd. Skip those that will 989 // be sunk. For the rest, if they are not dominated by the block we will sink 990 // MI into, propagate the copy source to them. 991 SmallVector<MachineInstr *, 4> DbgDefUsers; 992 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 993 for (auto &MO : MI.operands()) { 994 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 995 continue; 996 for (auto &User : MRI.use_instructions(MO.getReg())) { 997 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 998 continue; 999 1000 // If is in same block, will either sink or be use-before-def. 1001 if (User.getParent() == MI.getParent()) 1002 continue; 1003 1004 assert(User.getOperand(0).isReg() && 1005 "DBG_VALUE user of vreg, but non reg operand?"); 1006 DbgDefUsers.push_back(&User); 1007 } 1008 } 1009 1010 // Point the users of this copy that are no longer dominated, at the source 1011 // of the copy. 1012 for (auto *User : DbgDefUsers) { 1013 User->getOperand(0).setReg(MI.getOperand(1).getReg()); 1014 User->getOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1015 } 1016 } 1017 1018 //===----------------------------------------------------------------------===// 1019 // This pass is not intended to be a replacement or a complete alternative 1020 // for the pre-ra machine sink pass. It is only designed to sink COPY 1021 // instructions which should be handled after RA. 1022 // 1023 // This pass sinks COPY instructions into a successor block, if the COPY is not 1024 // used in the current block and the COPY is live-in to a single successor 1025 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1026 // copy on paths where their results aren't needed. This also exposes 1027 // additional opportunites for dead copy elimination and shrink wrapping. 1028 // 1029 // These copies were either not handled by or are inserted after the MachineSink 1030 // pass. As an example of the former case, the MachineSink pass cannot sink 1031 // COPY instructions with allocatable source registers; for AArch64 these type 1032 // of copy instructions are frequently used to move function parameters (PhyReg) 1033 // into virtual registers in the entry block. 1034 // 1035 // For the machine IR below, this pass will sink %w19 in the entry into its 1036 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1037 // %bb.0: 1038 // %wzr = SUBSWri %w1, 1 1039 // %w19 = COPY %w0 1040 // Bcc 11, %bb.2 1041 // %bb.1: 1042 // Live Ins: %w19 1043 // BL @fun 1044 // %w0 = ADDWrr %w0, %w19 1045 // RET %w0 1046 // %bb.2: 1047 // %w0 = COPY %wzr 1048 // RET %w0 1049 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1050 // able to see %bb.0 as a candidate. 1051 //===----------------------------------------------------------------------===// 1052 namespace { 1053 1054 class PostRAMachineSinking : public MachineFunctionPass { 1055 public: 1056 bool runOnMachineFunction(MachineFunction &MF) override; 1057 1058 static char ID; 1059 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1060 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1061 1062 void getAnalysisUsage(AnalysisUsage &AU) const override { 1063 AU.setPreservesCFG(); 1064 MachineFunctionPass::getAnalysisUsage(AU); 1065 } 1066 1067 MachineFunctionProperties getRequiredProperties() const override { 1068 return MachineFunctionProperties().set( 1069 MachineFunctionProperties::Property::NoVRegs); 1070 } 1071 1072 private: 1073 /// Track which register units have been modified and used. 1074 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1075 1076 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1077 /// entry in this map for each unit it touches. 1078 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1079 1080 /// Sink Copy instructions unused in the same block close to their uses in 1081 /// successors. 1082 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1083 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1084 }; 1085 } // namespace 1086 1087 char PostRAMachineSinking::ID = 0; 1088 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1089 1090 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1091 "PostRA Machine Sink", false, false) 1092 1093 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1094 const TargetRegisterInfo *TRI) { 1095 LiveRegUnits LiveInRegUnits(*TRI); 1096 LiveInRegUnits.addLiveIns(MBB); 1097 return !LiveInRegUnits.available(Reg); 1098 } 1099 1100 static MachineBasicBlock * 1101 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1102 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1103 unsigned Reg, const TargetRegisterInfo *TRI) { 1104 // Try to find a single sinkable successor in which Reg is live-in. 1105 MachineBasicBlock *BB = nullptr; 1106 for (auto *SI : SinkableBBs) { 1107 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1108 // If BB is set here, Reg is live-in to at least two sinkable successors, 1109 // so quit. 1110 if (BB) 1111 return nullptr; 1112 BB = SI; 1113 } 1114 } 1115 // Reg is not live-in to any sinkable successors. 1116 if (!BB) 1117 return nullptr; 1118 1119 // Check if any register aliased with Reg is live-in in other successors. 1120 for (auto *SI : CurBB.successors()) { 1121 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1122 return nullptr; 1123 } 1124 return BB; 1125 } 1126 1127 static MachineBasicBlock * 1128 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1129 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1130 ArrayRef<unsigned> DefedRegsInCopy, 1131 const TargetRegisterInfo *TRI) { 1132 MachineBasicBlock *SingleBB = nullptr; 1133 for (auto DefReg : DefedRegsInCopy) { 1134 MachineBasicBlock *BB = 1135 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1136 if (!BB || (SingleBB && SingleBB != BB)) 1137 return nullptr; 1138 SingleBB = BB; 1139 } 1140 return SingleBB; 1141 } 1142 1143 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1144 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1145 LiveRegUnits &UsedRegUnits, 1146 const TargetRegisterInfo *TRI) { 1147 for (auto U : UsedOpsInCopy) { 1148 MachineOperand &MO = MI->getOperand(U); 1149 Register SrcReg = MO.getReg(); 1150 if (!UsedRegUnits.available(SrcReg)) { 1151 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1152 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1153 if (UI.killsRegister(SrcReg, TRI)) { 1154 UI.clearRegisterKills(SrcReg, TRI); 1155 MO.setIsKill(true); 1156 break; 1157 } 1158 } 1159 } 1160 } 1161 } 1162 1163 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1164 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1165 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1166 MachineFunction &MF = *SuccBB->getParent(); 1167 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1168 for (unsigned DefReg : DefedRegsInCopy) 1169 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1170 SuccBB->removeLiveIn(*S); 1171 for (auto U : UsedOpsInCopy) { 1172 Register Reg = MI->getOperand(U).getReg(); 1173 if (!SuccBB->isLiveIn(Reg)) 1174 SuccBB->addLiveIn(Reg); 1175 } 1176 } 1177 1178 static bool hasRegisterDependency(MachineInstr *MI, 1179 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1180 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1181 LiveRegUnits &ModifiedRegUnits, 1182 LiveRegUnits &UsedRegUnits) { 1183 bool HasRegDependency = false; 1184 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1185 MachineOperand &MO = MI->getOperand(i); 1186 if (!MO.isReg()) 1187 continue; 1188 Register Reg = MO.getReg(); 1189 if (!Reg) 1190 continue; 1191 if (MO.isDef()) { 1192 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1193 HasRegDependency = true; 1194 break; 1195 } 1196 DefedRegsInCopy.push_back(Reg); 1197 1198 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1199 // For example, we can ignore modifications in reg with undef. However, 1200 // it's not perfectly clear if skipping the internal read is safe in all 1201 // other targets. 1202 } else if (MO.isUse()) { 1203 if (!ModifiedRegUnits.available(Reg)) { 1204 HasRegDependency = true; 1205 break; 1206 } 1207 UsedOpsInCopy.push_back(i); 1208 } 1209 } 1210 return HasRegDependency; 1211 } 1212 1213 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1214 const TargetRegisterInfo *TRI) { 1215 SmallSet<unsigned, 4> RegUnits; 1216 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1217 RegUnits.insert(*RI); 1218 return RegUnits; 1219 } 1220 1221 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1222 MachineFunction &MF, 1223 const TargetRegisterInfo *TRI, 1224 const TargetInstrInfo *TII) { 1225 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1226 // FIXME: For now, we sink only to a successor which has a single predecessor 1227 // so that we can directly sink COPY instructions to the successor without 1228 // adding any new block or branch instruction. 1229 for (MachineBasicBlock *SI : CurBB.successors()) 1230 if (!SI->livein_empty() && SI->pred_size() == 1) 1231 SinkableBBs.insert(SI); 1232 1233 if (SinkableBBs.empty()) 1234 return false; 1235 1236 bool Changed = false; 1237 1238 // Track which registers have been modified and used between the end of the 1239 // block and the current instruction. 1240 ModifiedRegUnits.clear(); 1241 UsedRegUnits.clear(); 1242 SeenDbgInstrs.clear(); 1243 1244 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1245 MachineInstr *MI = &*I; 1246 ++I; 1247 1248 // Track the operand index for use in Copy. 1249 SmallVector<unsigned, 2> UsedOpsInCopy; 1250 // Track the register number defed in Copy. 1251 SmallVector<unsigned, 2> DefedRegsInCopy; 1252 1253 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1254 // for DBG_VALUEs later, record them when they're encountered. 1255 if (MI->isDebugValue()) { 1256 auto &MO = MI->getOperand(0); 1257 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1258 // Bail if we can already tell the sink would be rejected, rather 1259 // than needlessly accumulating lots of DBG_VALUEs. 1260 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1261 ModifiedRegUnits, UsedRegUnits)) 1262 continue; 1263 1264 // Record debug use of each reg unit. 1265 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1266 for (unsigned Reg : Units) 1267 SeenDbgInstrs[Reg].push_back(MI); 1268 } 1269 continue; 1270 } 1271 1272 if (MI->isDebugInstr()) 1273 continue; 1274 1275 // Do not move any instruction across function call. 1276 if (MI->isCall()) 1277 return false; 1278 1279 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1280 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1281 TRI); 1282 continue; 1283 } 1284 1285 // Don't sink the COPY if it would violate a register dependency. 1286 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1287 ModifiedRegUnits, UsedRegUnits)) { 1288 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1289 TRI); 1290 continue; 1291 } 1292 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1293 "Unexpect SrcReg or DefReg"); 1294 MachineBasicBlock *SuccBB = 1295 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1296 // Don't sink if we cannot find a single sinkable successor in which Reg 1297 // is live-in. 1298 if (!SuccBB) { 1299 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1300 TRI); 1301 continue; 1302 } 1303 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1304 "Unexpected predecessor"); 1305 1306 // Collect DBG_VALUEs that must sink with this copy. We've previously 1307 // recorded which reg units that DBG_VALUEs read, if this instruction 1308 // writes any of those units then the corresponding DBG_VALUEs must sink. 1309 SetVector<MachineInstr *> DbgValsToSinkSet; 1310 SmallVector<MachineInstr *, 4> DbgValsToSink; 1311 for (auto &MO : MI->operands()) { 1312 if (!MO.isReg() || !MO.isDef()) 1313 continue; 1314 1315 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1316 for (unsigned Reg : Units) 1317 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1318 DbgValsToSinkSet.insert(MI); 1319 } 1320 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1321 DbgValsToSinkSet.end()); 1322 1323 // Clear the kill flag if SrcReg is killed between MI and the end of the 1324 // block. 1325 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1326 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1327 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1328 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1329 1330 Changed = true; 1331 ++NumPostRACopySink; 1332 } 1333 return Changed; 1334 } 1335 1336 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1337 if (skipFunction(MF.getFunction())) 1338 return false; 1339 1340 bool Changed = false; 1341 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1342 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1343 1344 ModifiedRegUnits.init(*TRI); 1345 UsedRegUnits.init(*TRI); 1346 for (auto &BB : MF) 1347 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1348 1349 return Changed; 1350 } 1351