1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Remember which edges we are about to split. 134 // This is different from CEBCandidates since those edges 135 // will be split. 136 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 137 138 DenseSet<Register> RegsToClearKillFlags; 139 140 using AllSuccsCache = 141 DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 142 143 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 144 /// post-dominated by another DBG_VALUE of the same variable location. 145 /// This is necessary to detect sequences such as: 146 /// %0 = someinst 147 /// DBG_VALUE %0, !123, !DIExpression() 148 /// %1 = anotherinst 149 /// DBG_VALUE %1, !123, !DIExpression() 150 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 151 /// would re-order assignments. 152 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 153 154 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 155 /// debug instructions to sink. 156 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 157 158 /// Record of debug variables that have had their locations set in the 159 /// current block. 160 DenseSet<DebugVariable> SeenDbgVars; 161 162 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 163 HasStoreCache; 164 165 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 SmallVector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && 304 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 305 continue; 306 if (PI->modifiesRegister(Reg, TRI)) 307 return true; 308 } else { 309 if (PI->readsRegister(Reg, TRI)) 310 return true; 311 // Check for interference with non-dead defs 312 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 313 if (DefOp && !DefOp->isDead()) 314 return true; 315 } 316 } 317 } 318 319 return false; 320 } 321 322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 323 MachineBasicBlock *MBB) { 324 if (!MI.isCopy()) 325 return false; 326 327 Register SrcReg = MI.getOperand(1).getReg(); 328 Register DstReg = MI.getOperand(0).getReg(); 329 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 330 !MRI->hasOneNonDBGUse(SrcReg)) 331 return false; 332 333 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 334 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 335 if (SRC != DRC) 336 return false; 337 338 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 339 if (DefMI->isCopyLike()) 340 return false; 341 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 342 LLVM_DEBUG(dbgs() << "*** to: " << MI); 343 MRI->replaceRegWith(DstReg, SrcReg); 344 MI.eraseFromParent(); 345 346 // Conservatively, clear any kill flags, since it's possible that they are no 347 // longer correct. 348 MRI->clearKillFlags(SrcReg); 349 350 ++NumCoalesces; 351 return true; 352 } 353 354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 355 MachineBasicBlock *MBB) { 356 if (MI.isCopy() || MI.mayLoadOrStore() || 357 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 358 return false; 359 360 // Don't sink instructions that the target prefers not to sink. 361 if (!TII->shouldSink(MI)) 362 return false; 363 364 // Check if it's safe to move the instruction. 365 bool SawStore = true; 366 if (!MI.isSafeToMove(AA, SawStore)) 367 return false; 368 369 // Convergent operations may not be made control-dependent on additional 370 // values. 371 if (MI.isConvergent()) 372 return false; 373 374 // Don't sink defs/uses of hard registers or if the instruction defines more 375 // than one register. 376 // Don't sink more than two register uses - it'll cover most of the cases and 377 // greatly simplifies the register pressure checks. 378 Register DefReg; 379 Register UsedRegA, UsedRegB; 380 for (const MachineOperand &MO : MI.operands()) { 381 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 382 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 383 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 384 continue; 385 if (!MO.isReg()) 386 return false; 387 388 Register Reg = MO.getReg(); 389 if (Reg == 0) 390 continue; 391 392 if (Reg.isVirtual()) { 393 if (MO.isDef()) { 394 if (DefReg) 395 return false; 396 DefReg = Reg; 397 continue; 398 } 399 400 if (UsedRegA == 0) 401 UsedRegA = Reg; 402 else if (UsedRegB == 0) 403 UsedRegB = Reg; 404 else 405 return false; 406 continue; 407 } 408 409 if (Reg.isPhysical() && 410 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 411 continue; 412 413 return false; 414 } 415 416 // Scan uses of the destination register. Every use, except the last, must be 417 // a copy, with a chain of copies terminating with either a copy into a hard 418 // register, or a load/store instruction where the use is part of the 419 // address (*not* the stored value). 420 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 421 SmallVector<SinkInfo> SinkInto; 422 SmallVector<Register> Worklist; 423 424 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 425 const TargetRegisterClass *RCA = 426 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 427 const TargetRegisterClass *RCB = 428 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 429 430 Worklist.push_back(DefReg); 431 while (!Worklist.empty()) { 432 Register Reg = Worklist.pop_back_val(); 433 434 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 435 ExtAddrMode MaybeAM; 436 MachineInstr &UseInst = *MO.getParent(); 437 if (UseInst.isCopy()) { 438 Register DstReg; 439 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 440 DstReg = O.getReg(); 441 if (DstReg == 0) 442 return false; 443 if (DstReg.isVirtual()) { 444 Worklist.push_back(DstReg); 445 continue; 446 } 447 // If we are going to replace a copy, the original instruction must be 448 // as cheap as a copy. 449 if (!TII->isAsCheapAsAMove(MI)) 450 return false; 451 // The hard register must be in the register class of the original 452 // instruction's destination register. 453 if (!RC->contains(DstReg)) 454 return false; 455 } else if (UseInst.mayLoadOrStore()) { 456 ExtAddrMode AM; 457 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 458 return false; 459 MaybeAM = AM; 460 } else { 461 return false; 462 } 463 464 if (UseInst.getParent() != MI.getParent()) { 465 // If the register class of the register we are replacing is a superset 466 // of any of the register classes of the operands of the materialized 467 // instruction don't consider that live range extended. 468 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 469 if (RCA && RCA->hasSuperClassEq(RCS)) 470 RCA = nullptr; 471 else if (RCB && RCB->hasSuperClassEq(RCS)) 472 RCB = nullptr; 473 if (RCA || RCB) { 474 if (RCA == nullptr) { 475 RCA = RCB; 476 RCB = nullptr; 477 } 478 479 unsigned NRegs = !!RCA + !!RCB; 480 if (RCA == RCB) 481 RCB = nullptr; 482 483 // Check we don't exceed register pressure at the destination. 484 const MachineBasicBlock &MBB = *UseInst.getParent(); 485 if (RCB == nullptr) { 486 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 487 return false; 488 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 489 registerPressureSetExceedsLimit(1, RCB, MBB)) { 490 return false; 491 } 492 } 493 } 494 495 SinkInto.emplace_back(&UseInst, MaybeAM); 496 } 497 } 498 499 if (SinkInto.empty()) 500 return false; 501 502 // Now we know we can fold the instruction in all its users. 503 if (UsedRegA) 504 MRI->clearKillFlags(UsedRegA); 505 if (UsedRegB) 506 MRI->clearKillFlags(UsedRegB); 507 508 for (auto &[SinkDst, MaybeAM] : SinkInto) { 509 [[maybe_unused]] MachineInstr *New = nullptr; 510 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 511 SinkDst->dump()); 512 if (SinkDst->isCopy()) { 513 // TODO: After performing the sink-and-fold, the original instruction is 514 // deleted. Its value is still available (in a hard register), so if there 515 // are debug instructions which refer to the (now deleted) virtual 516 // register they could be updated to refer to the hard register, in 517 // principle. However, it's not clear how to do that, moreover in some 518 // cases the debug instructions may need to be replicated proportionally 519 // to the number of the COPY instructions replaced and in some extreme 520 // cases we can end up with quadratic increase in the number of debug 521 // instructions. 522 523 // Sink a copy of the instruction, replacing a COPY instruction. 524 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 525 Register DstReg = SinkDst->getOperand(0).getReg(); 526 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 527 New = &*std::prev(InsertPt); 528 } else { 529 // Fold instruction into the addressing mode of a memory instruction. 530 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 531 } 532 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 533 // Clear the StoreInstrCache, since we may invalidate it by erasing. 534 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 535 StoreInstrCache.clear(); 536 SinkDst->eraseFromParent(); 537 } 538 539 // Collect operands that need to be cleaned up because the registers no longer 540 // exist (in COPYs and debug instructions). We cannot delete instructions or 541 // clear operands while traversing register uses. 542 SmallVector<MachineOperand *> Cleanup; 543 Worklist.push_back(DefReg); 544 while (!Worklist.empty()) { 545 Register Reg = Worklist.pop_back_val(); 546 for (MachineOperand &MO : MRI->use_operands(Reg)) { 547 MachineInstr *U = MO.getParent(); 548 assert((U->isCopy() || U->isDebugInstr()) && 549 "Only debug uses and copies must remain"); 550 if (U->isCopy()) 551 Worklist.push_back(U->getOperand(0).getReg()); 552 Cleanup.push_back(&MO); 553 } 554 } 555 556 // Delete the dead COPYs and clear operands in debug instructions 557 for (MachineOperand *MO : Cleanup) { 558 MachineInstr *I = MO->getParent(); 559 if (I->isCopy()) { 560 I->eraseFromParent(); 561 } else { 562 MO->setReg(0); 563 MO->setSubReg(0); 564 } 565 } 566 567 MI.eraseFromParent(); 568 return true; 569 } 570 571 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 572 /// occur in blocks dominated by the specified block. If any use is in the 573 /// definition block, then return false since it is never legal to move def 574 /// after uses. 575 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 576 MachineBasicBlock *MBB, 577 MachineBasicBlock *DefMBB, 578 bool &BreakPHIEdge, 579 bool &LocalUse) const { 580 assert(Reg.isVirtual() && "Only makes sense for vregs"); 581 582 // Ignore debug uses because debug info doesn't affect the code. 583 if (MRI->use_nodbg_empty(Reg)) 584 return true; 585 586 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 587 // into and they are all PHI nodes. In this case, machine-sink must break 588 // the critical edge first. e.g. 589 // 590 // %bb.1: 591 // Predecessors according to CFG: %bb.0 592 // ... 593 // %def = DEC64_32r %x, implicit-def dead %eflags 594 // ... 595 // JE_4 <%bb.37>, implicit %eflags 596 // Successors according to CFG: %bb.37 %bb.2 597 // 598 // %bb.2: 599 // %p = PHI %y, %bb.0, %def, %bb.1 600 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 601 MachineInstr *UseInst = MO.getParent(); 602 unsigned OpNo = MO.getOperandNo(); 603 MachineBasicBlock *UseBlock = UseInst->getParent(); 604 return UseBlock == MBB && UseInst->isPHI() && 605 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 606 })) { 607 BreakPHIEdge = true; 608 return true; 609 } 610 611 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 612 // Determine the block of the use. 613 MachineInstr *UseInst = MO.getParent(); 614 unsigned OpNo = &MO - &UseInst->getOperand(0); 615 MachineBasicBlock *UseBlock = UseInst->getParent(); 616 if (UseInst->isPHI()) { 617 // PHI nodes use the operand in the predecessor block, not the block with 618 // the PHI. 619 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 620 } else if (UseBlock == DefMBB) { 621 LocalUse = true; 622 return false; 623 } 624 625 // Check that it dominates. 626 if (!DT->dominates(MBB, UseBlock)) 627 return false; 628 } 629 630 return true; 631 } 632 633 /// Return true if this machine instruction loads from global offset table or 634 /// constant pool. 635 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 636 assert(MI.mayLoad() && "Expected MI that loads!"); 637 638 // If we lost memory operands, conservatively assume that the instruction 639 // reads from everything.. 640 if (MI.memoperands_empty()) 641 return true; 642 643 for (MachineMemOperand *MemOp : MI.memoperands()) 644 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 645 if (PSV->isGOT() || PSV->isConstantPool()) 646 return true; 647 648 return false; 649 } 650 651 void MachineSinking::FindCycleSinkCandidates( 652 MachineCycle *Cycle, MachineBasicBlock *BB, 653 SmallVectorImpl<MachineInstr *> &Candidates) { 654 for (auto &MI : *BB) { 655 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 656 if (!TII->shouldSink(MI)) { 657 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 658 "target\n"); 659 continue; 660 } 661 if (!isCycleInvariant(Cycle, MI)) { 662 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 663 continue; 664 } 665 bool DontMoveAcrossStore = true; 666 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 667 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 668 continue; 669 } 670 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 671 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 672 continue; 673 } 674 if (MI.isConvergent()) 675 continue; 676 677 const MachineOperand &MO = MI.getOperand(0); 678 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 679 continue; 680 if (!MRI->hasOneDef(MO.getReg())) 681 continue; 682 683 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 684 Candidates.push_back(&MI); 685 } 686 } 687 688 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 689 if (skipFunction(MF.getFunction())) 690 return false; 691 692 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 693 694 STI = &MF.getSubtarget(); 695 TII = STI->getInstrInfo(); 696 TRI = STI->getRegisterInfo(); 697 MRI = &MF.getRegInfo(); 698 DT = &getAnalysis<MachineDominatorTree>(); 699 PDT = &getAnalysis<MachinePostDominatorTree>(); 700 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 701 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 702 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 703 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 704 RegClassInfo.runOnMachineFunction(MF); 705 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 706 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 707 708 bool EverMadeChange = false; 709 710 while (true) { 711 bool MadeChange = false; 712 713 // Process all basic blocks. 714 CEBCandidates.clear(); 715 ToSplit.clear(); 716 for (auto &MBB: MF) 717 MadeChange |= ProcessBlock(MBB); 718 719 // If we have anything we marked as toSplit, split it now. 720 for (const auto &Pair : ToSplit) { 721 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 722 if (NewSucc != nullptr) { 723 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 724 << printMBBReference(*Pair.first) << " -- " 725 << printMBBReference(*NewSucc) << " -- " 726 << printMBBReference(*Pair.second) << '\n'); 727 if (MBFI) 728 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 729 730 MadeChange = true; 731 ++NumSplit; 732 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 733 } else 734 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 735 } 736 // If this iteration over the code changed anything, keep iterating. 737 if (!MadeChange) break; 738 EverMadeChange = true; 739 } 740 741 if (SinkInstsIntoCycle) { 742 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 743 CI->toplevel_end()); 744 for (auto *Cycle : Cycles) { 745 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 746 if (!Preheader) { 747 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 748 continue; 749 } 750 SmallVector<MachineInstr *, 8> Candidates; 751 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 752 753 // Walk the candidates in reverse order so that we start with the use 754 // of a def-use chain, if there is any. 755 // TODO: Sort the candidates using a cost-model. 756 unsigned i = 0; 757 for (MachineInstr *I : llvm::reverse(Candidates)) { 758 if (i++ == SinkIntoCycleLimit) { 759 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 760 "be analysed."); 761 break; 762 } 763 764 if (!SinkIntoCycle(Cycle, *I)) 765 break; 766 EverMadeChange = true; 767 ++NumCycleSunk; 768 } 769 } 770 } 771 772 HasStoreCache.clear(); 773 StoreInstrCache.clear(); 774 775 // Now clear any kill flags for recorded registers. 776 for (auto I : RegsToClearKillFlags) 777 MRI->clearKillFlags(I); 778 RegsToClearKillFlags.clear(); 779 780 return EverMadeChange; 781 } 782 783 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 784 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 785 return false; 786 787 // Don't bother sinking code out of unreachable blocks. In addition to being 788 // unprofitable, it can also lead to infinite looping, because in an 789 // unreachable cycle there may be nowhere to stop. 790 if (!DT->isReachableFromEntry(&MBB)) return false; 791 792 bool MadeChange = false; 793 794 // Cache all successors, sorted by frequency info and cycle depth. 795 AllSuccsCache AllSuccessors; 796 797 // Walk the basic block bottom-up. Remember if we saw a store. 798 MachineBasicBlock::iterator I = MBB.end(); 799 --I; 800 bool ProcessedBegin, SawStore = false; 801 do { 802 MachineInstr &MI = *I; // The instruction to sink. 803 804 // Predecrement I (if it's not begin) so that it isn't invalidated by 805 // sinking. 806 ProcessedBegin = I == MBB.begin(); 807 if (!ProcessedBegin) 808 --I; 809 810 if (MI.isDebugOrPseudoInstr()) { 811 if (MI.isDebugValue()) 812 ProcessDbgInst(MI); 813 continue; 814 } 815 816 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 817 MadeChange = true; 818 continue; 819 } 820 821 // Can't sink anything out of a block that has less than two successors. 822 if (MBB.succ_size() <= 1) 823 continue; 824 825 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 826 MadeChange = true; 827 continue; 828 } 829 830 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 831 ++NumSunk; 832 MadeChange = true; 833 } 834 835 // If we just processed the first instruction in the block, we're done. 836 } while (!ProcessedBegin); 837 838 SeenDbgUsers.clear(); 839 SeenDbgVars.clear(); 840 // recalculate the bb register pressure after sinking one BB. 841 CachedRegisterPressure.clear(); 842 return MadeChange; 843 } 844 845 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 846 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 847 // we know what to sink if the vreg def sinks. 848 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 849 850 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 851 MI.getDebugLoc()->getInlinedAt()); 852 bool SeenBefore = SeenDbgVars.contains(Var); 853 854 for (MachineOperand &MO : MI.debug_operands()) { 855 if (MO.isReg() && MO.getReg().isVirtual()) 856 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 857 } 858 859 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 860 SeenDbgVars.insert(Var); 861 } 862 863 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 864 MachineBasicBlock *From, 865 MachineBasicBlock *To) { 866 // FIXME: Need much better heuristics. 867 868 // If the pass has already considered breaking this edge (during this pass 869 // through the function), then let's go ahead and break it. This means 870 // sinking multiple "cheap" instructions into the same block. 871 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 872 return true; 873 874 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 875 return true; 876 877 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 878 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 879 return true; 880 881 // MI is cheap, we probably don't want to break the critical edge for it. 882 // However, if this would allow some definitions of its source operands 883 // to be sunk then it's probably worth it. 884 for (const MachineOperand &MO : MI.all_uses()) { 885 Register Reg = MO.getReg(); 886 if (Reg == 0) 887 continue; 888 889 // We don't move live definitions of physical registers, 890 // so sinking their uses won't enable any opportunities. 891 if (Reg.isPhysical()) 892 continue; 893 894 // If this instruction is the only user of a virtual register, 895 // check if breaking the edge will enable sinking 896 // both this instruction and the defining instruction. 897 if (MRI->hasOneNonDBGUse(Reg)) { 898 // If the definition resides in same MBB, 899 // claim it's likely we can sink these together. 900 // If definition resides elsewhere, we aren't 901 // blocking it from being sunk so don't break the edge. 902 MachineInstr *DefMI = MRI->getVRegDef(Reg); 903 if (DefMI->getParent() == MI.getParent()) 904 return true; 905 } 906 } 907 908 return false; 909 } 910 911 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 912 MachineBasicBlock *FromBB, 913 MachineBasicBlock *ToBB, 914 bool BreakPHIEdge) { 915 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 916 return false; 917 918 // Avoid breaking back edge. From == To means backedge for single BB cycle. 919 if (!SplitEdges || FromBB == ToBB) 920 return false; 921 922 MachineCycle *FromCycle = CI->getCycle(FromBB); 923 MachineCycle *ToCycle = CI->getCycle(ToBB); 924 925 // Check for backedges of more "complex" cycles. 926 if (FromCycle == ToCycle && FromCycle && 927 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 928 return false; 929 930 // It's not always legal to break critical edges and sink the computation 931 // to the edge. 932 // 933 // %bb.1: 934 // v1024 935 // Beq %bb.3 936 // <fallthrough> 937 // %bb.2: 938 // ... no uses of v1024 939 // <fallthrough> 940 // %bb.3: 941 // ... 942 // = v1024 943 // 944 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 945 // 946 // %bb.1: 947 // ... 948 // Bne %bb.2 949 // %bb.4: 950 // v1024 = 951 // B %bb.3 952 // %bb.2: 953 // ... no uses of v1024 954 // <fallthrough> 955 // %bb.3: 956 // ... 957 // = v1024 958 // 959 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 960 // flow. We need to ensure the new basic block where the computation is 961 // sunk to dominates all the uses. 962 // It's only legal to break critical edge and sink the computation to the 963 // new block if all the predecessors of "To", except for "From", are 964 // not dominated by "From". Given SSA property, this means these 965 // predecessors are dominated by "To". 966 // 967 // There is no need to do this check if all the uses are PHI nodes. PHI 968 // sources are only defined on the specific predecessor edges. 969 if (!BreakPHIEdge) { 970 for (MachineBasicBlock *Pred : ToBB->predecessors()) 971 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 972 return false; 973 } 974 975 ToSplit.insert(std::make_pair(FromBB, ToBB)); 976 977 return true; 978 } 979 980 std::vector<unsigned> & 981 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 982 // Currently to save compiling time, MBB's register pressure will not change 983 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 984 // register pressure is changed after sinking any instructions into it. 985 // FIXME: need a accurate and cheap register pressure estiminate model here. 986 auto RP = CachedRegisterPressure.find(&MBB); 987 if (RP != CachedRegisterPressure.end()) 988 return RP->second; 989 990 RegionPressure Pressure; 991 RegPressureTracker RPTracker(Pressure); 992 993 // Initialize the register pressure tracker. 994 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 995 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 996 997 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 998 MIE = MBB.instr_begin(); 999 MII != MIE; --MII) { 1000 const MachineInstr &MI = *std::prev(MII); 1001 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1002 continue; 1003 RegisterOperands RegOpers; 1004 RegOpers.collect(MI, *TRI, *MRI, false, false); 1005 RPTracker.recedeSkipDebugValues(); 1006 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1007 RPTracker.recede(RegOpers); 1008 } 1009 1010 RPTracker.closeRegion(); 1011 auto It = CachedRegisterPressure.insert( 1012 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1013 return It.first->second; 1014 } 1015 1016 bool MachineSinking::registerPressureSetExceedsLimit( 1017 unsigned NRegs, const TargetRegisterClass *RC, 1018 const MachineBasicBlock &MBB) { 1019 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1020 const int *PS = TRI->getRegClassPressureSets(RC); 1021 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1022 for (; *PS != -1; PS++) 1023 if (Weight + BBRegisterPressure[*PS] >= 1024 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1025 return true; 1026 return false; 1027 } 1028 1029 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1030 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1031 MachineBasicBlock *MBB, 1032 MachineBasicBlock *SuccToSinkTo, 1033 AllSuccsCache &AllSuccessors) { 1034 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1035 1036 if (MBB == SuccToSinkTo) 1037 return false; 1038 1039 // It is profitable if SuccToSinkTo does not post dominate current block. 1040 if (!PDT->dominates(SuccToSinkTo, MBB)) 1041 return true; 1042 1043 // It is profitable to sink an instruction from a deeper cycle to a shallower 1044 // cycle, even if the latter post-dominates the former (PR21115). 1045 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1046 return true; 1047 1048 // Check if only use in post dominated block is PHI instruction. 1049 bool NonPHIUse = false; 1050 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1051 MachineBasicBlock *UseBlock = UseInst.getParent(); 1052 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1053 NonPHIUse = true; 1054 } 1055 if (!NonPHIUse) 1056 return true; 1057 1058 // If SuccToSinkTo post dominates then also it may be profitable if MI 1059 // can further profitably sinked into another block in next round. 1060 bool BreakPHIEdge = false; 1061 // FIXME - If finding successor is compile time expensive then cache results. 1062 if (MachineBasicBlock *MBB2 = 1063 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1064 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1065 1066 MachineCycle *MCycle = CI->getCycle(MBB); 1067 1068 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1069 // a post dominate block SuccToSinkTo. 1070 if (!MCycle) 1071 return false; 1072 1073 // If this instruction is inside a Cycle and sinking this instruction can make 1074 // more registers live range shorten, it is still prifitable. 1075 for (const MachineOperand &MO : MI.operands()) { 1076 // Ignore non-register operands. 1077 if (!MO.isReg()) 1078 continue; 1079 Register Reg = MO.getReg(); 1080 if (Reg == 0) 1081 continue; 1082 1083 if (Reg.isPhysical()) { 1084 // Don't handle non-constant and non-ignorable physical register uses. 1085 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1086 return false; 1087 continue; 1088 } 1089 1090 // Users for the defs are all dominated by SuccToSinkTo. 1091 if (MO.isDef()) { 1092 // This def register's live range is shortened after sinking. 1093 bool LocalUse = false; 1094 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1095 LocalUse)) 1096 return false; 1097 } else { 1098 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1099 if (!DefMI) 1100 continue; 1101 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1102 // DefMI is defined outside of cycle. There should be no live range 1103 // impact for this operand. Defination outside of cycle means: 1104 // 1: defination is outside of cycle. 1105 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1106 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1107 Cycle->getHeader() == DefMI->getParent())) 1108 continue; 1109 // The DefMI is defined inside the cycle. 1110 // If sinking this operand makes some register pressure set exceed limit, 1111 // it is not profitable. 1112 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1113 *SuccToSinkTo)) { 1114 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1115 return false; 1116 } 1117 } 1118 } 1119 1120 // If MI is in cycle and all its operands are alive across the whole cycle or 1121 // if no operand sinking make register pressure set exceed limit, it is 1122 // profitable to sink MI. 1123 return true; 1124 } 1125 1126 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1127 /// computing it if it was not already cached. 1128 SmallVector<MachineBasicBlock *, 4> & 1129 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1130 AllSuccsCache &AllSuccessors) const { 1131 // Do we have the sorted successors in cache ? 1132 auto Succs = AllSuccessors.find(MBB); 1133 if (Succs != AllSuccessors.end()) 1134 return Succs->second; 1135 1136 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1137 1138 // Handle cases where sinking can happen but where the sink point isn't a 1139 // successor. For example: 1140 // 1141 // x = computation 1142 // if () {} else {} 1143 // use x 1144 // 1145 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1146 // DomTree children of MBB that have MBB as immediate dominator are added. 1147 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1148 // Skip MBBs already added to the AllSuccs vector above. 1149 !MBB->isSuccessor(DTChild->getBlock())) 1150 AllSuccs.push_back(DTChild->getBlock()); 1151 } 1152 1153 // Sort Successors according to their cycle depth or block frequency info. 1154 llvm::stable_sort( 1155 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1156 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1157 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1158 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1159 return HasBlockFreq ? LHSFreq < RHSFreq 1160 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1161 }); 1162 1163 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1164 1165 return it.first->second; 1166 } 1167 1168 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1169 MachineBasicBlock * 1170 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1171 bool &BreakPHIEdge, 1172 AllSuccsCache &AllSuccessors) { 1173 assert (MBB && "Invalid MachineBasicBlock!"); 1174 1175 // loop over all the operands of the specified instruction. If there is 1176 // anything we can't handle, bail out. 1177 1178 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1179 // decide. 1180 MachineBasicBlock *SuccToSinkTo = nullptr; 1181 for (const MachineOperand &MO : MI.operands()) { 1182 if (!MO.isReg()) continue; // Ignore non-register operands. 1183 1184 Register Reg = MO.getReg(); 1185 if (Reg == 0) continue; 1186 1187 if (Reg.isPhysical()) { 1188 if (MO.isUse()) { 1189 // If the physreg has no defs anywhere, it's just an ambient register 1190 // and we can freely move its uses. Alternatively, if it's allocatable, 1191 // it could get allocated to something with a def during allocation. 1192 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1193 return nullptr; 1194 } else if (!MO.isDead()) { 1195 // A def that isn't dead. We can't move it. 1196 return nullptr; 1197 } 1198 } else { 1199 // Virtual register uses are always safe to sink. 1200 if (MO.isUse()) continue; 1201 1202 // If it's not safe to move defs of the register class, then abort. 1203 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1204 return nullptr; 1205 1206 // Virtual register defs can only be sunk if all their uses are in blocks 1207 // dominated by one of the successors. 1208 if (SuccToSinkTo) { 1209 // If a previous operand picked a block to sink to, then this operand 1210 // must be sinkable to the same block. 1211 bool LocalUse = false; 1212 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1213 BreakPHIEdge, LocalUse)) 1214 return nullptr; 1215 1216 continue; 1217 } 1218 1219 // Otherwise, we should look at all the successors and decide which one 1220 // we should sink to. If we have reliable block frequency information 1221 // (frequency != 0) available, give successors with smaller frequencies 1222 // higher priority, otherwise prioritize smaller cycle depths. 1223 for (MachineBasicBlock *SuccBlock : 1224 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1225 bool LocalUse = false; 1226 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1227 BreakPHIEdge, LocalUse)) { 1228 SuccToSinkTo = SuccBlock; 1229 break; 1230 } 1231 if (LocalUse) 1232 // Def is used locally, it's never safe to move this def. 1233 return nullptr; 1234 } 1235 1236 // If we couldn't find a block to sink to, ignore this instruction. 1237 if (!SuccToSinkTo) 1238 return nullptr; 1239 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1240 return nullptr; 1241 } 1242 } 1243 1244 // It is not possible to sink an instruction into its own block. This can 1245 // happen with cycles. 1246 if (MBB == SuccToSinkTo) 1247 return nullptr; 1248 1249 // It's not safe to sink instructions to EH landing pad. Control flow into 1250 // landing pad is implicitly defined. 1251 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1252 return nullptr; 1253 1254 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1255 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1256 // the source block (which this code does not yet do). So for now, forbid 1257 // doing so. 1258 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1259 return nullptr; 1260 1261 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1262 return nullptr; 1263 1264 return SuccToSinkTo; 1265 } 1266 1267 /// Return true if MI is likely to be usable as a memory operation by the 1268 /// implicit null check optimization. 1269 /// 1270 /// This is a "best effort" heuristic, and should not be relied upon for 1271 /// correctness. This returning true does not guarantee that the implicit null 1272 /// check optimization is legal over MI, and this returning false does not 1273 /// guarantee MI cannot possibly be used to do a null check. 1274 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1275 const TargetInstrInfo *TII, 1276 const TargetRegisterInfo *TRI) { 1277 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1278 1279 auto *MBB = MI.getParent(); 1280 if (MBB->pred_size() != 1) 1281 return false; 1282 1283 auto *PredMBB = *MBB->pred_begin(); 1284 auto *PredBB = PredMBB->getBasicBlock(); 1285 1286 // Frontends that don't use implicit null checks have no reason to emit 1287 // branches with make.implicit metadata, and this function should always 1288 // return false for them. 1289 if (!PredBB || 1290 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1291 return false; 1292 1293 const MachineOperand *BaseOp; 1294 int64_t Offset; 1295 bool OffsetIsScalable; 1296 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1297 return false; 1298 1299 if (!BaseOp->isReg()) 1300 return false; 1301 1302 if (!(MI.mayLoad() && !MI.isPredicable())) 1303 return false; 1304 1305 MachineBranchPredicate MBP; 1306 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1307 return false; 1308 1309 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1310 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1311 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1312 MBP.LHS.getReg() == BaseOp->getReg(); 1313 } 1314 1315 /// If the sunk instruction is a copy, try to forward the copy instead of 1316 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1317 /// there's any subregister weirdness involved. Returns true if copy 1318 /// propagation occurred. 1319 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1320 Register Reg) { 1321 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1322 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1323 1324 // Copy DBG_VALUE operand and set the original to undef. We then check to 1325 // see whether this is something that can be copy-forwarded. If it isn't, 1326 // continue around the loop. 1327 1328 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1329 auto CopyOperands = TII.isCopyInstr(SinkInst); 1330 if (!CopyOperands) 1331 return false; 1332 SrcMO = CopyOperands->Source; 1333 DstMO = CopyOperands->Destination; 1334 1335 // Check validity of forwarding this copy. 1336 bool PostRA = MRI.getNumVirtRegs() == 0; 1337 1338 // Trying to forward between physical and virtual registers is too hard. 1339 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1340 return false; 1341 1342 // Only try virtual register copy-forwarding before regalloc, and physical 1343 // register copy-forwarding after regalloc. 1344 bool arePhysRegs = !Reg.isVirtual(); 1345 if (arePhysRegs != PostRA) 1346 return false; 1347 1348 // Pre-regalloc, only forward if all subregisters agree (or there are no 1349 // subregs at all). More analysis might recover some forwardable copies. 1350 if (!PostRA) 1351 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1352 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1353 DbgMO.getSubReg() != DstMO->getSubReg()) 1354 return false; 1355 1356 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1357 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1358 // matches the copy destination. 1359 if (PostRA && Reg != DstMO->getReg()) 1360 return false; 1361 1362 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1363 DbgMO.setReg(SrcMO->getReg()); 1364 DbgMO.setSubReg(SrcMO->getSubReg()); 1365 } 1366 return true; 1367 } 1368 1369 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1370 /// Sink an instruction and its associated debug instructions. 1371 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1372 MachineBasicBlock::iterator InsertPos, 1373 ArrayRef<MIRegs> DbgValuesToSink) { 1374 // If we cannot find a location to use (merge with), then we erase the debug 1375 // location to prevent debug-info driven tools from potentially reporting 1376 // wrong location information. 1377 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1378 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1379 InsertPos->getDebugLoc())); 1380 else 1381 MI.setDebugLoc(DebugLoc()); 1382 1383 // Move the instruction. 1384 MachineBasicBlock *ParentBlock = MI.getParent(); 1385 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1386 ++MachineBasicBlock::iterator(MI)); 1387 1388 // Sink a copy of debug users to the insert position. Mark the original 1389 // DBG_VALUE location as 'undef', indicating that any earlier variable 1390 // location should be terminated as we've optimised away the value at this 1391 // point. 1392 for (const auto &DbgValueToSink : DbgValuesToSink) { 1393 MachineInstr *DbgMI = DbgValueToSink.first; 1394 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1395 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1396 1397 bool PropagatedAllSunkOps = true; 1398 for (unsigned Reg : DbgValueToSink.second) { 1399 if (DbgMI->hasDebugOperandForReg(Reg)) { 1400 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1401 PropagatedAllSunkOps = false; 1402 break; 1403 } 1404 } 1405 } 1406 if (!PropagatedAllSunkOps) 1407 DbgMI->setDebugValueUndef(); 1408 } 1409 } 1410 1411 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1412 /// and To. 1413 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1414 MachineBasicBlock *To, MachineInstr &MI) { 1415 // Make sure From and To are in straight line which means From dominates To 1416 // and To post dominates From. 1417 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1418 return true; 1419 1420 auto BlockPair = std::make_pair(From, To); 1421 1422 // Does these two blocks pair be queried before and have a definite cached 1423 // result? 1424 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1425 return It->second; 1426 1427 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1428 return llvm::any_of(It->second, [&](MachineInstr *I) { 1429 return I->mayAlias(AA, MI, false); 1430 }); 1431 1432 bool SawStore = false; 1433 bool HasAliasedStore = false; 1434 DenseSet<MachineBasicBlock *> HandledBlocks; 1435 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1436 // Go through all reachable blocks from From. 1437 for (MachineBasicBlock *BB : depth_first(From)) { 1438 // We insert the instruction at the start of block To, so no need to worry 1439 // about stores inside To. 1440 // Store in block From should be already considered when just enter function 1441 // SinkInstruction. 1442 if (BB == To || BB == From) 1443 continue; 1444 1445 // We already handle this BB in previous iteration. 1446 if (HandledBlocks.count(BB)) 1447 continue; 1448 1449 HandledBlocks.insert(BB); 1450 // To post dominates BB, it must be a path from block From. 1451 if (PDT->dominates(To, BB)) { 1452 if (!HandledDomBlocks.count(BB)) 1453 HandledDomBlocks.insert(BB); 1454 1455 // If this BB is too big or the block number in straight line between From 1456 // and To is too big, stop searching to save compiling time. 1457 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1458 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1459 for (auto *DomBB : HandledDomBlocks) { 1460 if (DomBB != BB && DT->dominates(DomBB, BB)) 1461 HasStoreCache[std::make_pair(DomBB, To)] = true; 1462 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1463 HasStoreCache[std::make_pair(From, DomBB)] = true; 1464 } 1465 HasStoreCache[BlockPair] = true; 1466 return true; 1467 } 1468 1469 for (MachineInstr &I : *BB) { 1470 // Treat as alias conservatively for a call or an ordered memory 1471 // operation. 1472 if (I.isCall() || I.hasOrderedMemoryRef()) { 1473 for (auto *DomBB : HandledDomBlocks) { 1474 if (DomBB != BB && DT->dominates(DomBB, BB)) 1475 HasStoreCache[std::make_pair(DomBB, To)] = true; 1476 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1477 HasStoreCache[std::make_pair(From, DomBB)] = true; 1478 } 1479 HasStoreCache[BlockPair] = true; 1480 return true; 1481 } 1482 1483 if (I.mayStore()) { 1484 SawStore = true; 1485 // We still have chance to sink MI if all stores between are not 1486 // aliased to MI. 1487 // Cache all store instructions, so that we don't need to go through 1488 // all From reachable blocks for next load instruction. 1489 if (I.mayAlias(AA, MI, false)) 1490 HasAliasedStore = true; 1491 StoreInstrCache[BlockPair].push_back(&I); 1492 } 1493 } 1494 } 1495 } 1496 // If there is no store at all, cache the result. 1497 if (!SawStore) 1498 HasStoreCache[BlockPair] = false; 1499 return HasAliasedStore; 1500 } 1501 1502 /// Sink instructions into cycles if profitable. This especially tries to 1503 /// prevent register spills caused by register pressure if there is little to no 1504 /// overhead moving instructions into cycles. 1505 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1506 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1507 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1508 assert(Preheader && "Cycle sink needs a preheader block"); 1509 MachineBasicBlock *SinkBlock = nullptr; 1510 bool CanSink = true; 1511 const MachineOperand &MO = I.getOperand(0); 1512 1513 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1514 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1515 if (!Cycle->contains(MI.getParent())) { 1516 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1517 CanSink = false; 1518 break; 1519 } 1520 1521 // FIXME: Come up with a proper cost model that estimates whether sinking 1522 // the instruction (and thus possibly executing it on every cycle 1523 // iteration) is more expensive than a register. 1524 // For now assumes that copies are cheap and thus almost always worth it. 1525 if (!MI.isCopy()) { 1526 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1527 CanSink = false; 1528 break; 1529 } 1530 if (!SinkBlock) { 1531 SinkBlock = MI.getParent(); 1532 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1533 << printMBBReference(*SinkBlock) << "\n"); 1534 continue; 1535 } 1536 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1537 if (!SinkBlock) { 1538 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1539 CanSink = false; 1540 break; 1541 } 1542 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1543 printMBBReference(*SinkBlock) << "\n"); 1544 } 1545 1546 if (!CanSink) { 1547 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1548 return false; 1549 } 1550 if (!SinkBlock) { 1551 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1552 return false; 1553 } 1554 if (SinkBlock == Preheader) { 1555 LLVM_DEBUG( 1556 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1557 return false; 1558 } 1559 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1560 LLVM_DEBUG( 1561 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1562 return false; 1563 } 1564 1565 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1566 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1567 I); 1568 1569 // Conservatively clear any kill flags on uses of sunk instruction 1570 for (MachineOperand &MO : I.operands()) { 1571 if (MO.isReg() && MO.readsReg()) 1572 RegsToClearKillFlags.insert(MO.getReg()); 1573 } 1574 1575 // The instruction is moved from its basic block, so do not retain the 1576 // debug information. 1577 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1578 I.setDebugLoc(DebugLoc()); 1579 return true; 1580 } 1581 1582 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1583 /// instruction out of its current block into a successor. 1584 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1585 AllSuccsCache &AllSuccessors) { 1586 // Don't sink instructions that the target prefers not to sink. 1587 if (!TII->shouldSink(MI)) 1588 return false; 1589 1590 // Check if it's safe to move the instruction. 1591 if (!MI.isSafeToMove(AA, SawStore)) 1592 return false; 1593 1594 // Convergent operations may not be made control-dependent on additional 1595 // values. 1596 if (MI.isConvergent()) 1597 return false; 1598 1599 // Don't break implicit null checks. This is a performance heuristic, and not 1600 // required for correctness. 1601 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1602 return false; 1603 1604 // FIXME: This should include support for sinking instructions within the 1605 // block they are currently in to shorten the live ranges. We often get 1606 // instructions sunk into the top of a large block, but it would be better to 1607 // also sink them down before their first use in the block. This xform has to 1608 // be careful not to *increase* register pressure though, e.g. sinking 1609 // "x = y + z" down if it kills y and z would increase the live ranges of y 1610 // and z and only shrink the live range of x. 1611 1612 bool BreakPHIEdge = false; 1613 MachineBasicBlock *ParentBlock = MI.getParent(); 1614 MachineBasicBlock *SuccToSinkTo = 1615 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1616 1617 // If there are no outputs, it must have side-effects. 1618 if (!SuccToSinkTo) 1619 return false; 1620 1621 // If the instruction to move defines a dead physical register which is live 1622 // when leaving the basic block, don't move it because it could turn into a 1623 // "zombie" define of that preg. E.g., EFLAGS. 1624 for (const MachineOperand &MO : MI.all_defs()) { 1625 Register Reg = MO.getReg(); 1626 if (Reg == 0 || !Reg.isPhysical()) 1627 continue; 1628 if (SuccToSinkTo->isLiveIn(Reg)) 1629 return false; 1630 } 1631 1632 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1633 1634 // If the block has multiple predecessors, this is a critical edge. 1635 // Decide if we can sink along it or need to break the edge. 1636 if (SuccToSinkTo->pred_size() > 1) { 1637 // We cannot sink a load across a critical edge - there may be stores in 1638 // other code paths. 1639 bool TryBreak = false; 1640 bool Store = 1641 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1642 if (!MI.isSafeToMove(AA, Store)) { 1643 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1644 TryBreak = true; 1645 } 1646 1647 // We don't want to sink across a critical edge if we don't dominate the 1648 // successor. We could be introducing calculations to new code paths. 1649 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1650 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1651 TryBreak = true; 1652 } 1653 1654 // Don't sink instructions into a cycle. 1655 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1656 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1657 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1658 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1659 TryBreak = true; 1660 } 1661 1662 // Otherwise we are OK with sinking along a critical edge. 1663 if (!TryBreak) 1664 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1665 else { 1666 // Mark this edge as to be split. 1667 // If the edge can actually be split, the next iteration of the main loop 1668 // will sink MI in the newly created block. 1669 bool Status = 1670 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1671 if (!Status) 1672 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1673 "break critical edge\n"); 1674 // The instruction will not be sunk this time. 1675 return false; 1676 } 1677 } 1678 1679 if (BreakPHIEdge) { 1680 // BreakPHIEdge is true if all the uses are in the successor MBB being 1681 // sunken into and they are all PHI nodes. In this case, machine-sink must 1682 // break the critical edge first. 1683 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1684 SuccToSinkTo, BreakPHIEdge); 1685 if (!Status) 1686 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1687 "break critical edge\n"); 1688 // The instruction will not be sunk this time. 1689 return false; 1690 } 1691 1692 // Determine where to insert into. Skip phi nodes. 1693 MachineBasicBlock::iterator InsertPos = 1694 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1695 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1696 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1697 return false; 1698 } 1699 1700 // Collect debug users of any vreg that this inst defines. 1701 SmallVector<MIRegs, 4> DbgUsersToSink; 1702 for (auto &MO : MI.all_defs()) { 1703 if (!MO.getReg().isVirtual()) 1704 continue; 1705 if (!SeenDbgUsers.count(MO.getReg())) 1706 continue; 1707 1708 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1709 auto &Users = SeenDbgUsers[MO.getReg()]; 1710 for (auto &User : Users) { 1711 MachineInstr *DbgMI = User.getPointer(); 1712 if (User.getInt()) { 1713 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1714 // it, it can't be recovered. Set it undef. 1715 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1716 DbgMI->setDebugValueUndef(); 1717 } else { 1718 DbgUsersToSink.push_back( 1719 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1720 } 1721 } 1722 } 1723 1724 // After sinking, some debug users may not be dominated any more. If possible, 1725 // copy-propagate their operands. As it's expensive, don't do this if there's 1726 // no debuginfo in the program. 1727 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1728 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1729 1730 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1731 1732 // Conservatively, clear any kill flags, since it's possible that they are no 1733 // longer correct. 1734 // Note that we have to clear the kill flags for any register this instruction 1735 // uses as we may sink over another instruction which currently kills the 1736 // used registers. 1737 for (MachineOperand &MO : MI.all_uses()) 1738 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1739 1740 return true; 1741 } 1742 1743 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1744 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1745 assert(MI.isCopy()); 1746 assert(MI.getOperand(1).isReg()); 1747 1748 // Enumerate all users of vreg operands that are def'd. Skip those that will 1749 // be sunk. For the rest, if they are not dominated by the block we will sink 1750 // MI into, propagate the copy source to them. 1751 SmallVector<MachineInstr *, 4> DbgDefUsers; 1752 SmallVector<Register, 4> DbgUseRegs; 1753 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1754 for (auto &MO : MI.all_defs()) { 1755 if (!MO.getReg().isVirtual()) 1756 continue; 1757 DbgUseRegs.push_back(MO.getReg()); 1758 for (auto &User : MRI.use_instructions(MO.getReg())) { 1759 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1760 continue; 1761 1762 // If is in same block, will either sink or be use-before-def. 1763 if (User.getParent() == MI.getParent()) 1764 continue; 1765 1766 assert(User.hasDebugOperandForReg(MO.getReg()) && 1767 "DBG_VALUE user of vreg, but has no operand for it?"); 1768 DbgDefUsers.push_back(&User); 1769 } 1770 } 1771 1772 // Point the users of this copy that are no longer dominated, at the source 1773 // of the copy. 1774 for (auto *User : DbgDefUsers) { 1775 for (auto &Reg : DbgUseRegs) { 1776 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1777 DbgOp.setReg(MI.getOperand(1).getReg()); 1778 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1779 } 1780 } 1781 } 1782 } 1783 1784 //===----------------------------------------------------------------------===// 1785 // This pass is not intended to be a replacement or a complete alternative 1786 // for the pre-ra machine sink pass. It is only designed to sink COPY 1787 // instructions which should be handled after RA. 1788 // 1789 // This pass sinks COPY instructions into a successor block, if the COPY is not 1790 // used in the current block and the COPY is live-in to a single successor 1791 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1792 // copy on paths where their results aren't needed. This also exposes 1793 // additional opportunites for dead copy elimination and shrink wrapping. 1794 // 1795 // These copies were either not handled by or are inserted after the MachineSink 1796 // pass. As an example of the former case, the MachineSink pass cannot sink 1797 // COPY instructions with allocatable source registers; for AArch64 these type 1798 // of copy instructions are frequently used to move function parameters (PhyReg) 1799 // into virtual registers in the entry block. 1800 // 1801 // For the machine IR below, this pass will sink %w19 in the entry into its 1802 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1803 // %bb.0: 1804 // %wzr = SUBSWri %w1, 1 1805 // %w19 = COPY %w0 1806 // Bcc 11, %bb.2 1807 // %bb.1: 1808 // Live Ins: %w19 1809 // BL @fun 1810 // %w0 = ADDWrr %w0, %w19 1811 // RET %w0 1812 // %bb.2: 1813 // %w0 = COPY %wzr 1814 // RET %w0 1815 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1816 // able to see %bb.0 as a candidate. 1817 //===----------------------------------------------------------------------===// 1818 namespace { 1819 1820 class PostRAMachineSinking : public MachineFunctionPass { 1821 public: 1822 bool runOnMachineFunction(MachineFunction &MF) override; 1823 1824 static char ID; 1825 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1826 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1827 1828 void getAnalysisUsage(AnalysisUsage &AU) const override { 1829 AU.setPreservesCFG(); 1830 MachineFunctionPass::getAnalysisUsage(AU); 1831 } 1832 1833 MachineFunctionProperties getRequiredProperties() const override { 1834 return MachineFunctionProperties().set( 1835 MachineFunctionProperties::Property::NoVRegs); 1836 } 1837 1838 private: 1839 /// Track which register units have been modified and used. 1840 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1841 1842 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1843 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1844 /// consists of a pointer to the instruction itself, and a vector of registers 1845 /// referred to by the instruction that overlap the key register unit. 1846 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1847 1848 /// Sink Copy instructions unused in the same block close to their uses in 1849 /// successors. 1850 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1851 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1852 }; 1853 } // namespace 1854 1855 char PostRAMachineSinking::ID = 0; 1856 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1857 1858 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1859 "PostRA Machine Sink", false, false) 1860 1861 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1862 const TargetRegisterInfo *TRI) { 1863 LiveRegUnits LiveInRegUnits(*TRI); 1864 LiveInRegUnits.addLiveIns(MBB); 1865 return !LiveInRegUnits.available(Reg); 1866 } 1867 1868 static MachineBasicBlock * 1869 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1870 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1871 unsigned Reg, const TargetRegisterInfo *TRI) { 1872 // Try to find a single sinkable successor in which Reg is live-in. 1873 MachineBasicBlock *BB = nullptr; 1874 for (auto *SI : SinkableBBs) { 1875 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1876 // If BB is set here, Reg is live-in to at least two sinkable successors, 1877 // so quit. 1878 if (BB) 1879 return nullptr; 1880 BB = SI; 1881 } 1882 } 1883 // Reg is not live-in to any sinkable successors. 1884 if (!BB) 1885 return nullptr; 1886 1887 // Check if any register aliased with Reg is live-in in other successors. 1888 for (auto *SI : CurBB.successors()) { 1889 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1890 return nullptr; 1891 } 1892 return BB; 1893 } 1894 1895 static MachineBasicBlock * 1896 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1897 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1898 ArrayRef<unsigned> DefedRegsInCopy, 1899 const TargetRegisterInfo *TRI) { 1900 MachineBasicBlock *SingleBB = nullptr; 1901 for (auto DefReg : DefedRegsInCopy) { 1902 MachineBasicBlock *BB = 1903 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1904 if (!BB || (SingleBB && SingleBB != BB)) 1905 return nullptr; 1906 SingleBB = BB; 1907 } 1908 return SingleBB; 1909 } 1910 1911 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1912 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1913 LiveRegUnits &UsedRegUnits, 1914 const TargetRegisterInfo *TRI) { 1915 for (auto U : UsedOpsInCopy) { 1916 MachineOperand &MO = MI->getOperand(U); 1917 Register SrcReg = MO.getReg(); 1918 if (!UsedRegUnits.available(SrcReg)) { 1919 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1920 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1921 if (UI.killsRegister(SrcReg, TRI)) { 1922 UI.clearRegisterKills(SrcReg, TRI); 1923 MO.setIsKill(true); 1924 break; 1925 } 1926 } 1927 } 1928 } 1929 } 1930 1931 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1932 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1933 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1934 MachineFunction &MF = *SuccBB->getParent(); 1935 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1936 for (unsigned DefReg : DefedRegsInCopy) 1937 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1938 SuccBB->removeLiveIn(S); 1939 for (auto U : UsedOpsInCopy) { 1940 Register SrcReg = MI->getOperand(U).getReg(); 1941 LaneBitmask Mask; 1942 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1943 Mask |= (*S).second; 1944 SuccBB->addLiveIn(SrcReg, Mask); 1945 } 1946 SuccBB->sortUniqueLiveIns(); 1947 } 1948 1949 static bool hasRegisterDependency(MachineInstr *MI, 1950 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1951 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1952 LiveRegUnits &ModifiedRegUnits, 1953 LiveRegUnits &UsedRegUnits) { 1954 bool HasRegDependency = false; 1955 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1956 MachineOperand &MO = MI->getOperand(i); 1957 if (!MO.isReg()) 1958 continue; 1959 Register Reg = MO.getReg(); 1960 if (!Reg) 1961 continue; 1962 if (MO.isDef()) { 1963 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1964 HasRegDependency = true; 1965 break; 1966 } 1967 DefedRegsInCopy.push_back(Reg); 1968 1969 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1970 // For example, we can ignore modifications in reg with undef. However, 1971 // it's not perfectly clear if skipping the internal read is safe in all 1972 // other targets. 1973 } else if (MO.isUse()) { 1974 if (!ModifiedRegUnits.available(Reg)) { 1975 HasRegDependency = true; 1976 break; 1977 } 1978 UsedOpsInCopy.push_back(i); 1979 } 1980 } 1981 return HasRegDependency; 1982 } 1983 1984 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1985 MachineFunction &MF, 1986 const TargetRegisterInfo *TRI, 1987 const TargetInstrInfo *TII) { 1988 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1989 // FIXME: For now, we sink only to a successor which has a single predecessor 1990 // so that we can directly sink COPY instructions to the successor without 1991 // adding any new block or branch instruction. 1992 for (MachineBasicBlock *SI : CurBB.successors()) 1993 if (!SI->livein_empty() && SI->pred_size() == 1) 1994 SinkableBBs.insert(SI); 1995 1996 if (SinkableBBs.empty()) 1997 return false; 1998 1999 bool Changed = false; 2000 2001 // Track which registers have been modified and used between the end of the 2002 // block and the current instruction. 2003 ModifiedRegUnits.clear(); 2004 UsedRegUnits.clear(); 2005 SeenDbgInstrs.clear(); 2006 2007 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2008 // Track the operand index for use in Copy. 2009 SmallVector<unsigned, 2> UsedOpsInCopy; 2010 // Track the register number defed in Copy. 2011 SmallVector<unsigned, 2> DefedRegsInCopy; 2012 2013 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2014 // for DBG_VALUEs later, record them when they're encountered. 2015 if (MI.isDebugValue() && !MI.isDebugRef()) { 2016 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2017 bool IsValid = true; 2018 for (MachineOperand &MO : MI.debug_operands()) { 2019 if (MO.isReg() && MO.getReg().isPhysical()) { 2020 // Bail if we can already tell the sink would be rejected, rather 2021 // than needlessly accumulating lots of DBG_VALUEs. 2022 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2023 ModifiedRegUnits, UsedRegUnits)) { 2024 IsValid = false; 2025 break; 2026 } 2027 2028 // Record debug use of each reg unit. 2029 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2030 MIUnits[Unit].push_back(MO.getReg()); 2031 } 2032 } 2033 if (IsValid) { 2034 for (auto &RegOps : MIUnits) 2035 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2036 std::move(RegOps.second)); 2037 } 2038 continue; 2039 } 2040 2041 if (MI.isDebugOrPseudoInstr()) 2042 continue; 2043 2044 // Do not move any instruction across function call. 2045 if (MI.isCall()) 2046 return false; 2047 2048 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2049 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2050 TRI); 2051 continue; 2052 } 2053 2054 // Don't sink the COPY if it would violate a register dependency. 2055 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2056 ModifiedRegUnits, UsedRegUnits)) { 2057 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2058 TRI); 2059 continue; 2060 } 2061 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2062 "Unexpect SrcReg or DefReg"); 2063 MachineBasicBlock *SuccBB = 2064 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2065 // Don't sink if we cannot find a single sinkable successor in which Reg 2066 // is live-in. 2067 if (!SuccBB) { 2068 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2069 TRI); 2070 continue; 2071 } 2072 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2073 "Unexpected predecessor"); 2074 2075 // Collect DBG_VALUEs that must sink with this copy. We've previously 2076 // recorded which reg units that DBG_VALUEs read, if this instruction 2077 // writes any of those units then the corresponding DBG_VALUEs must sink. 2078 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2079 for (auto &MO : MI.all_defs()) { 2080 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2081 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2082 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2083 for (unsigned Reg : MIRegs.second) 2084 Regs.push_back(Reg); 2085 } 2086 } 2087 } 2088 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2089 2090 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2091 2092 MachineBasicBlock::iterator InsertPos = 2093 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2094 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2095 LLVM_DEBUG( 2096 dbgs() << " *** Not sinking: prologue interference\n"); 2097 continue; 2098 } 2099 2100 // Clear the kill flag if SrcReg is killed between MI and the end of the 2101 // block. 2102 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2103 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2104 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2105 2106 Changed = true; 2107 ++NumPostRACopySink; 2108 } 2109 return Changed; 2110 } 2111 2112 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2113 if (skipFunction(MF.getFunction())) 2114 return false; 2115 2116 bool Changed = false; 2117 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2118 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2119 2120 ModifiedRegUnits.init(*TRI); 2121 UsedRegUnits.init(*TRI); 2122 for (auto &BB : MF) 2123 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2124 2125 return Changed; 2126 } 2127