1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/MachineSizeOpts.h" 42 #include "llvm/CodeGen/RegisterClassInfo.h" 43 #include "llvm/CodeGen/RegisterPressure.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "machine-sink" 65 66 static cl::opt<bool> 67 SplitEdges("machine-sink-split", 68 cl::desc("Split critical edges during machine sinking"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<bool> UseBlockFreqInfo( 72 "machine-sink-bfi", 73 cl::desc("Use block frequency info to find successors to sink"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 77 "machine-sink-split-probability-threshold", 78 cl::desc( 79 "Percentage threshold for splitting single-instruction critical edge. " 80 "If the branch threshold is higher than this threshold, we allow " 81 "speculative execution of up to 1 instruction to avoid branching to " 82 "splitted critical edge"), 83 cl::init(40), cl::Hidden); 84 85 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 86 "machine-sink-load-instrs-threshold", 87 cl::desc("Do not try to find alias store for a load if there is a in-path " 88 "block whose instruction number is higher than this threshold."), 89 cl::init(2000), cl::Hidden); 90 91 static cl::opt<unsigned> SinkLoadBlocksThreshold( 92 "machine-sink-load-blocks-threshold", 93 cl::desc("Do not try to find alias store for a load if the block number in " 94 "the straight line is higher than this threshold."), 95 cl::init(20), cl::Hidden); 96 97 static cl::opt<bool> 98 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 99 cl::desc("Sink instructions into cycles to avoid " 100 "register spills"), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> SinkIntoCycleLimit( 104 "machine-sink-cycle-limit", 105 cl::desc( 106 "The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 ProfileSummaryInfo *PSI = nullptr; 126 MachineBlockFrequencyInfo *MBFI = nullptr; 127 const MachineBranchProbabilityInfo *MBPI = nullptr; 128 AliasAnalysis *AA = nullptr; 129 RegisterClassInfo RegClassInfo; 130 131 // Remember which edges have been considered for breaking. 132 SmallSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 8> 133 CEBCandidates; 134 // Memorize the register that also wanted to sink into the same block along 135 // a different critical edge. 136 // {register to sink, sink-to block} -> the first sink-from block. 137 // We're recording the first sink-from block because that (critical) edge 138 // was deferred until we see another register that's going to sink into the 139 // same block. 140 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 141 CEMergeCandidates; 142 // Remember which edges we are about to split. 143 // This is different from CEBCandidates since those edges 144 // will be split. 145 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 146 147 DenseSet<Register> RegsToClearKillFlags; 148 149 using AllSuccsCache = 150 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 151 152 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 153 /// post-dominated by another DBG_VALUE of the same variable location. 154 /// This is necessary to detect sequences such as: 155 /// %0 = someinst 156 /// DBG_VALUE %0, !123, !DIExpression() 157 /// %1 = anotherinst 158 /// DBG_VALUE %1, !123, !DIExpression() 159 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 160 /// would re-order assignments. 161 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 162 163 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 164 /// debug instructions to sink. 165 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 166 167 /// Record of debug variables that have had their locations set in the 168 /// current block. 169 DenseSet<DebugVariable> SeenDbgVars; 170 171 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 172 HasStoreCache; 173 174 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 175 SmallVector<MachineInstr *>> 176 StoreInstrCache; 177 178 /// Cached BB's register pressure. 179 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 180 CachedRegisterPressure; 181 182 bool EnableSinkAndFold; 183 184 public: 185 static char ID; // Pass identification 186 187 MachineSinking() : MachineFunctionPass(ID) { 188 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 189 } 190 191 bool runOnMachineFunction(MachineFunction &MF) override; 192 193 void getAnalysisUsage(AnalysisUsage &AU) const override { 194 MachineFunctionPass::getAnalysisUsage(AU); 195 AU.addRequired<AAResultsWrapperPass>(); 196 AU.addRequired<MachineDominatorTreeWrapperPass>(); 197 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 198 AU.addRequired<MachineCycleInfoWrapperPass>(); 199 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 200 AU.addPreserved<MachineCycleInfoWrapperPass>(); 201 AU.addPreserved<MachineLoopInfoWrapperPass>(); 202 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 203 if (UseBlockFreqInfo) 204 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 205 AU.addRequired<TargetPassConfig>(); 206 } 207 208 void releaseMemory() override { 209 CEBCandidates.clear(); 210 CEMergeCandidates.clear(); 211 } 212 213 private: 214 bool ProcessBlock(MachineBasicBlock &MBB); 215 void ProcessDbgInst(MachineInstr &MI); 216 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 217 MachineBasicBlock *To, bool BreakPHIEdge); 218 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 219 MachineBasicBlock *To, 220 MachineBasicBlock *&DeferredFromBlock); 221 222 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 223 MachineInstr &MI); 224 225 /// Postpone the splitting of the given critical 226 /// edge (\p From, \p To). 227 /// 228 /// We do not split the edges on the fly. Indeed, this invalidates 229 /// the dominance information and thus triggers a lot of updates 230 /// of that information underneath. 231 /// Instead, we postpone all the splits after each iteration of 232 /// the main loop. That way, the information is at least valid 233 /// for the lifetime of an iteration. 234 /// 235 /// \return True if the edge is marked as toSplit, false otherwise. 236 /// False can be returned if, for instance, this is not profitable. 237 bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 238 MachineBasicBlock *To, bool BreakPHIEdge); 239 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 240 AllSuccsCache &AllSuccessors); 241 242 /// If we sink a COPY inst, some debug users of it's destination may no 243 /// longer be dominated by the COPY, and will eventually be dropped. 244 /// This is easily rectified by forwarding the non-dominated debug uses 245 /// to the copy source. 246 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 247 MachineBasicBlock *TargetBlock); 248 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 249 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 250 bool &LocalUse) const; 251 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 252 bool &BreakPHIEdge, 253 AllSuccsCache &AllSuccessors); 254 255 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 256 SmallVectorImpl<MachineInstr *> &Candidates); 257 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 258 259 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 260 MachineBasicBlock *MBB, 261 MachineBasicBlock *SuccToSinkTo, 262 AllSuccsCache &AllSuccessors); 263 264 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 265 MachineBasicBlock *MBB); 266 267 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 268 269 SmallVector<MachineBasicBlock *, 4> & 270 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 271 AllSuccsCache &AllSuccessors) const; 272 273 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 274 275 bool registerPressureSetExceedsLimit(unsigned NRegs, 276 const TargetRegisterClass *RC, 277 const MachineBasicBlock &MBB); 278 }; 279 280 } // end anonymous namespace 281 282 char MachineSinking::ID = 0; 283 284 char &llvm::MachineSinkingID = MachineSinking::ID; 285 286 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 287 false) 288 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 289 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 290 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 291 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 293 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 294 false) 295 296 /// Return true if a target defined block prologue instruction interferes 297 /// with a sink candidate. 298 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 299 MachineBasicBlock::const_iterator End, 300 const MachineInstr &MI, 301 const TargetRegisterInfo *TRI, 302 const TargetInstrInfo *TII, 303 const MachineRegisterInfo *MRI) { 304 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 305 ++PI) { 306 // Only check target defined prologue instructions 307 if (!TII->isBasicBlockPrologue(*PI)) 308 continue; 309 for (auto &MO : MI.operands()) { 310 if (!MO.isReg()) 311 continue; 312 Register Reg = MO.getReg(); 313 if (!Reg) 314 continue; 315 if (MO.isUse()) { 316 if (Reg.isPhysical() && 317 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 318 continue; 319 if (PI->modifiesRegister(Reg, TRI)) 320 return true; 321 } else { 322 if (PI->readsRegister(Reg, TRI)) 323 return true; 324 // Check for interference with non-dead defs 325 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 326 if (DefOp && !DefOp->isDead()) 327 return true; 328 } 329 } 330 } 331 332 return false; 333 } 334 335 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 336 MachineBasicBlock *MBB) { 337 if (!MI.isCopy()) 338 return false; 339 340 Register SrcReg = MI.getOperand(1).getReg(); 341 Register DstReg = MI.getOperand(0).getReg(); 342 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 343 !MRI->hasOneNonDBGUse(SrcReg)) 344 return false; 345 346 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 347 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 348 if (SRC != DRC) 349 return false; 350 351 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 352 if (DefMI->isCopyLike()) 353 return false; 354 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 355 LLVM_DEBUG(dbgs() << "*** to: " << MI); 356 MRI->replaceRegWith(DstReg, SrcReg); 357 MI.eraseFromParent(); 358 359 // Conservatively, clear any kill flags, since it's possible that they are no 360 // longer correct. 361 MRI->clearKillFlags(SrcReg); 362 363 ++NumCoalesces; 364 return true; 365 } 366 367 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 368 MachineBasicBlock *MBB) { 369 if (MI.isCopy() || MI.mayLoadOrStore() || 370 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 371 return false; 372 373 // Don't sink instructions that the target prefers not to sink. 374 if (!TII->shouldSink(MI)) 375 return false; 376 377 // Check if it's safe to move the instruction. 378 bool SawStore = true; 379 if (!MI.isSafeToMove(SawStore)) 380 return false; 381 382 // Convergent operations may not be made control-dependent on additional 383 // values. 384 if (MI.isConvergent()) 385 return false; 386 387 // Don't sink defs/uses of hard registers or if the instruction defines more 388 // than one register. 389 // Don't sink more than two register uses - it'll cover most of the cases and 390 // greatly simplifies the register pressure checks. 391 Register DefReg; 392 Register UsedRegA, UsedRegB; 393 for (const MachineOperand &MO : MI.operands()) { 394 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 395 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 396 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 397 continue; 398 if (!MO.isReg()) 399 return false; 400 401 Register Reg = MO.getReg(); 402 if (Reg == 0) 403 continue; 404 405 if (Reg.isVirtual()) { 406 if (MO.isDef()) { 407 if (DefReg) 408 return false; 409 DefReg = Reg; 410 continue; 411 } 412 413 if (UsedRegA == 0) 414 UsedRegA = Reg; 415 else if (UsedRegB == 0) 416 UsedRegB = Reg; 417 else 418 return false; 419 continue; 420 } 421 422 if (Reg.isPhysical() && MO.isUse() && 423 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 424 continue; 425 426 return false; 427 } 428 429 // Scan uses of the destination register. Every use, except the last, must be 430 // a copy, with a chain of copies terminating with either a copy into a hard 431 // register, or a load/store instruction where the use is part of the 432 // address (*not* the stored value). 433 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 434 SmallVector<SinkInfo> SinkInto; 435 SmallVector<Register> Worklist; 436 437 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 438 const TargetRegisterClass *RCA = 439 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 440 const TargetRegisterClass *RCB = 441 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 442 443 Worklist.push_back(DefReg); 444 while (!Worklist.empty()) { 445 Register Reg = Worklist.pop_back_val(); 446 447 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 448 ExtAddrMode MaybeAM; 449 MachineInstr &UseInst = *MO.getParent(); 450 if (UseInst.isCopy()) { 451 Register DstReg; 452 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 453 DstReg = O.getReg(); 454 if (DstReg == 0) 455 return false; 456 if (DstReg.isVirtual()) { 457 Worklist.push_back(DstReg); 458 continue; 459 } 460 // If we are going to replace a copy, the original instruction must be 461 // as cheap as a copy. 462 if (!TII->isAsCheapAsAMove(MI)) 463 return false; 464 // The hard register must be in the register class of the original 465 // instruction's destination register. 466 if (!RC->contains(DstReg)) 467 return false; 468 } else if (UseInst.mayLoadOrStore()) { 469 ExtAddrMode AM; 470 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 471 return false; 472 MaybeAM = AM; 473 } else { 474 return false; 475 } 476 477 if (UseInst.getParent() != MI.getParent()) { 478 // If the register class of the register we are replacing is a superset 479 // of any of the register classes of the operands of the materialized 480 // instruction don't consider that live range extended. 481 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 482 if (RCA && RCA->hasSuperClassEq(RCS)) 483 RCA = nullptr; 484 else if (RCB && RCB->hasSuperClassEq(RCS)) 485 RCB = nullptr; 486 if (RCA || RCB) { 487 if (RCA == nullptr) { 488 RCA = RCB; 489 RCB = nullptr; 490 } 491 492 unsigned NRegs = !!RCA + !!RCB; 493 if (RCA == RCB) 494 RCB = nullptr; 495 496 // Check we don't exceed register pressure at the destination. 497 const MachineBasicBlock &MBB = *UseInst.getParent(); 498 if (RCB == nullptr) { 499 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 500 return false; 501 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 502 registerPressureSetExceedsLimit(1, RCB, MBB)) { 503 return false; 504 } 505 } 506 } 507 508 SinkInto.emplace_back(&UseInst, MaybeAM); 509 } 510 } 511 512 if (SinkInto.empty()) 513 return false; 514 515 // Now we know we can fold the instruction in all its users. 516 for (auto &[SinkDst, MaybeAM] : SinkInto) { 517 MachineInstr *New = nullptr; 518 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 519 SinkDst->dump()); 520 if (SinkDst->isCopy()) { 521 // TODO: After performing the sink-and-fold, the original instruction is 522 // deleted. Its value is still available (in a hard register), so if there 523 // are debug instructions which refer to the (now deleted) virtual 524 // register they could be updated to refer to the hard register, in 525 // principle. However, it's not clear how to do that, moreover in some 526 // cases the debug instructions may need to be replicated proportionally 527 // to the number of the COPY instructions replaced and in some extreme 528 // cases we can end up with quadratic increase in the number of debug 529 // instructions. 530 531 // Sink a copy of the instruction, replacing a COPY instruction. 532 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 533 Register DstReg = SinkDst->getOperand(0).getReg(); 534 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 535 New = &*std::prev(InsertPt); 536 if (!New->getDebugLoc()) 537 New->setDebugLoc(SinkDst->getDebugLoc()); 538 539 // The operand registers of the "sunk" instruction have their live range 540 // extended and their kill flags may no longer be correct. Conservatively 541 // clear the kill flags. 542 if (UsedRegA) 543 MRI->clearKillFlags(UsedRegA); 544 if (UsedRegB) 545 MRI->clearKillFlags(UsedRegB); 546 } else { 547 // Fold instruction into the addressing mode of a memory instruction. 548 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 549 550 // The registers of the addressing mode may have their live range extended 551 // and their kill flags may no longer be correct. Conservatively clear the 552 // kill flags. 553 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 554 MRI->clearKillFlags(R); 555 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 556 MRI->clearKillFlags(R); 557 } 558 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 559 // Clear the StoreInstrCache, since we may invalidate it by erasing. 560 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 561 StoreInstrCache.clear(); 562 SinkDst->eraseFromParent(); 563 } 564 565 // Collect operands that need to be cleaned up because the registers no longer 566 // exist (in COPYs and debug instructions). We cannot delete instructions or 567 // clear operands while traversing register uses. 568 SmallVector<MachineOperand *> Cleanup; 569 Worklist.push_back(DefReg); 570 while (!Worklist.empty()) { 571 Register Reg = Worklist.pop_back_val(); 572 for (MachineOperand &MO : MRI->use_operands(Reg)) { 573 MachineInstr *U = MO.getParent(); 574 assert((U->isCopy() || U->isDebugInstr()) && 575 "Only debug uses and copies must remain"); 576 if (U->isCopy()) 577 Worklist.push_back(U->getOperand(0).getReg()); 578 Cleanup.push_back(&MO); 579 } 580 } 581 582 // Delete the dead COPYs and clear operands in debug instructions 583 for (MachineOperand *MO : Cleanup) { 584 MachineInstr *I = MO->getParent(); 585 if (I->isCopy()) { 586 I->eraseFromParent(); 587 } else { 588 MO->setReg(0); 589 MO->setSubReg(0); 590 } 591 } 592 593 MI.eraseFromParent(); 594 return true; 595 } 596 597 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 598 /// occur in blocks dominated by the specified block. If any use is in the 599 /// definition block, then return false since it is never legal to move def 600 /// after uses. 601 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 602 MachineBasicBlock *MBB, 603 MachineBasicBlock *DefMBB, 604 bool &BreakPHIEdge, 605 bool &LocalUse) const { 606 assert(Reg.isVirtual() && "Only makes sense for vregs"); 607 608 // Ignore debug uses because debug info doesn't affect the code. 609 if (MRI->use_nodbg_empty(Reg)) 610 return true; 611 612 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 613 // into and they are all PHI nodes. In this case, machine-sink must break 614 // the critical edge first. e.g. 615 // 616 // %bb.1: 617 // Predecessors according to CFG: %bb.0 618 // ... 619 // %def = DEC64_32r %x, implicit-def dead %eflags 620 // ... 621 // JE_4 <%bb.37>, implicit %eflags 622 // Successors according to CFG: %bb.37 %bb.2 623 // 624 // %bb.2: 625 // %p = PHI %y, %bb.0, %def, %bb.1 626 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 627 MachineInstr *UseInst = MO.getParent(); 628 unsigned OpNo = MO.getOperandNo(); 629 MachineBasicBlock *UseBlock = UseInst->getParent(); 630 return UseBlock == MBB && UseInst->isPHI() && 631 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 632 })) { 633 BreakPHIEdge = true; 634 return true; 635 } 636 637 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 638 // Determine the block of the use. 639 MachineInstr *UseInst = MO.getParent(); 640 unsigned OpNo = &MO - &UseInst->getOperand(0); 641 MachineBasicBlock *UseBlock = UseInst->getParent(); 642 if (UseInst->isPHI()) { 643 // PHI nodes use the operand in the predecessor block, not the block with 644 // the PHI. 645 UseBlock = UseInst->getOperand(OpNo + 1).getMBB(); 646 } else if (UseBlock == DefMBB) { 647 LocalUse = true; 648 return false; 649 } 650 651 // Check that it dominates. 652 if (!DT->dominates(MBB, UseBlock)) 653 return false; 654 } 655 656 return true; 657 } 658 659 /// Return true if this machine instruction loads from global offset table or 660 /// constant pool. 661 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 662 assert(MI.mayLoad() && "Expected MI that loads!"); 663 664 // If we lost memory operands, conservatively assume that the instruction 665 // reads from everything.. 666 if (MI.memoperands_empty()) 667 return true; 668 669 for (MachineMemOperand *MemOp : MI.memoperands()) 670 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 671 if (PSV->isGOT() || PSV->isConstantPool()) 672 return true; 673 674 return false; 675 } 676 677 void MachineSinking::FindCycleSinkCandidates( 678 MachineCycle *Cycle, MachineBasicBlock *BB, 679 SmallVectorImpl<MachineInstr *> &Candidates) { 680 for (auto &MI : *BB) { 681 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 682 if (!TII->shouldSink(MI)) { 683 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 684 "target\n"); 685 continue; 686 } 687 if (!isCycleInvariant(Cycle, MI)) { 688 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 689 continue; 690 } 691 bool DontMoveAcrossStore = true; 692 if (!MI.isSafeToMove(DontMoveAcrossStore)) { 693 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 694 continue; 695 } 696 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 697 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 698 continue; 699 } 700 if (MI.isConvergent()) 701 continue; 702 703 const MachineOperand &MO = MI.getOperand(0); 704 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 705 continue; 706 if (!MRI->hasOneDef(MO.getReg())) 707 continue; 708 709 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 710 Candidates.push_back(&MI); 711 } 712 } 713 714 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 715 if (skipFunction(MF.getFunction())) 716 return false; 717 718 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 719 720 STI = &MF.getSubtarget(); 721 TII = STI->getInstrInfo(); 722 TRI = STI->getRegisterInfo(); 723 MRI = &MF.getRegInfo(); 724 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 725 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 726 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 727 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 728 MBFI = UseBlockFreqInfo 729 ? &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI() 730 : nullptr; 731 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 732 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 733 RegClassInfo.runOnMachineFunction(MF); 734 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 735 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 736 737 bool EverMadeChange = false; 738 739 while (true) { 740 bool MadeChange = false; 741 742 // Process all basic blocks. 743 CEBCandidates.clear(); 744 CEMergeCandidates.clear(); 745 ToSplit.clear(); 746 for (auto &MBB : MF) 747 MadeChange |= ProcessBlock(MBB); 748 749 // If we have anything we marked as toSplit, split it now. 750 for (const auto &Pair : ToSplit) { 751 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 752 if (NewSucc != nullptr) { 753 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 754 << printMBBReference(*Pair.first) << " -- " 755 << printMBBReference(*NewSucc) << " -- " 756 << printMBBReference(*Pair.second) << '\n'); 757 if (MBFI) 758 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 759 760 MadeChange = true; 761 ++NumSplit; 762 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 763 } else 764 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 765 } 766 // If this iteration over the code changed anything, keep iterating. 767 if (!MadeChange) 768 break; 769 EverMadeChange = true; 770 } 771 772 if (SinkInstsIntoCycle) { 773 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_cycles()); 774 for (auto *Cycle : Cycles) { 775 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 776 if (!Preheader) { 777 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 778 continue; 779 } 780 SmallVector<MachineInstr *, 8> Candidates; 781 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 782 783 // Walk the candidates in reverse order so that we start with the use 784 // of a def-use chain, if there is any. 785 // TODO: Sort the candidates using a cost-model. 786 unsigned i = 0; 787 for (MachineInstr *I : llvm::reverse(Candidates)) { 788 if (i++ == SinkIntoCycleLimit) { 789 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 790 "be analysed."); 791 break; 792 } 793 794 if (!SinkIntoCycle(Cycle, *I)) 795 break; 796 EverMadeChange = true; 797 ++NumCycleSunk; 798 } 799 } 800 } 801 802 HasStoreCache.clear(); 803 StoreInstrCache.clear(); 804 805 // Now clear any kill flags for recorded registers. 806 for (auto I : RegsToClearKillFlags) 807 MRI->clearKillFlags(I); 808 RegsToClearKillFlags.clear(); 809 810 return EverMadeChange; 811 } 812 813 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 814 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 815 return false; 816 817 // Don't bother sinking code out of unreachable blocks. In addition to being 818 // unprofitable, it can also lead to infinite looping, because in an 819 // unreachable cycle there may be nowhere to stop. 820 if (!DT->isReachableFromEntry(&MBB)) 821 return false; 822 823 bool MadeChange = false; 824 825 // Cache all successors, sorted by frequency info and cycle depth. 826 AllSuccsCache AllSuccessors; 827 828 // Walk the basic block bottom-up. Remember if we saw a store. 829 MachineBasicBlock::iterator I = MBB.end(); 830 --I; 831 bool ProcessedBegin, SawStore = false; 832 do { 833 MachineInstr &MI = *I; // The instruction to sink. 834 835 // Predecrement I (if it's not begin) so that it isn't invalidated by 836 // sinking. 837 ProcessedBegin = I == MBB.begin(); 838 if (!ProcessedBegin) 839 --I; 840 841 if (MI.isDebugOrPseudoInstr() || MI.isFakeUse()) { 842 if (MI.isDebugValue()) 843 ProcessDbgInst(MI); 844 continue; 845 } 846 847 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 848 MadeChange = true; 849 continue; 850 } 851 852 // Can't sink anything out of a block that has less than two successors. 853 if (MBB.succ_size() <= 1) 854 continue; 855 856 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 857 MadeChange = true; 858 continue; 859 } 860 861 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 862 ++NumSunk; 863 MadeChange = true; 864 } 865 866 // If we just processed the first instruction in the block, we're done. 867 } while (!ProcessedBegin); 868 869 SeenDbgUsers.clear(); 870 SeenDbgVars.clear(); 871 // recalculate the bb register pressure after sinking one BB. 872 CachedRegisterPressure.clear(); 873 return MadeChange; 874 } 875 876 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 877 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 878 // we know what to sink if the vreg def sinks. 879 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 880 881 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 882 MI.getDebugLoc()->getInlinedAt()); 883 bool SeenBefore = SeenDbgVars.contains(Var); 884 885 for (MachineOperand &MO : MI.debug_operands()) { 886 if (MO.isReg() && MO.getReg().isVirtual()) 887 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 888 } 889 890 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 891 SeenDbgVars.insert(Var); 892 } 893 894 bool MachineSinking::isWorthBreakingCriticalEdge( 895 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 896 MachineBasicBlock *&DeferredFromBlock) { 897 // FIXME: Need much better heuristics. 898 899 // If the pass has already considered breaking this edge (during this pass 900 // through the function), then let's go ahead and break it. This means 901 // sinking multiple "cheap" instructions into the same block. 902 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 903 return true; 904 905 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 906 return true; 907 908 // Check and record the register and the destination block we want to sink 909 // into. Note that we want to do the following before the next check on branch 910 // probability. Because we want to record the initial candidate even if it's 911 // on hot edge, so that other candidates that might not on hot edges can be 912 // sinked as well. 913 for (const auto &MO : MI.all_defs()) { 914 Register Reg = MO.getReg(); 915 if (!Reg) 916 continue; 917 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 918 auto Key = std::make_pair(SrcReg, To); 919 auto Res = CEMergeCandidates.try_emplace(Key, From); 920 // We wanted to sink the same register into the same block, consider it to 921 // be profitable. 922 if (!Res.second) { 923 // Return the source block that was previously held off. 924 DeferredFromBlock = Res.first->second; 925 return true; 926 } 927 } 928 929 if (From->isSuccessor(To) && 930 MBPI->getEdgeProbability(From, To) <= 931 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 932 return true; 933 934 // MI is cheap, we probably don't want to break the critical edge for it. 935 // However, if this would allow some definitions of its source operands 936 // to be sunk then it's probably worth it. 937 for (const MachineOperand &MO : MI.all_uses()) { 938 Register Reg = MO.getReg(); 939 if (Reg == 0) 940 continue; 941 942 // We don't move live definitions of physical registers, 943 // so sinking their uses won't enable any opportunities. 944 if (Reg.isPhysical()) 945 continue; 946 947 // If this instruction is the only user of a virtual register, 948 // check if breaking the edge will enable sinking 949 // both this instruction and the defining instruction. 950 if (MRI->hasOneNonDBGUse(Reg)) { 951 // If the definition resides in same MBB, 952 // claim it's likely we can sink these together. 953 // If definition resides elsewhere, we aren't 954 // blocking it from being sunk so don't break the edge. 955 MachineInstr *DefMI = MRI->getVRegDef(Reg); 956 if (DefMI->getParent() == MI.getParent()) 957 return true; 958 } 959 } 960 961 return false; 962 } 963 964 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 965 MachineBasicBlock *FromBB, 966 MachineBasicBlock *ToBB, 967 bool BreakPHIEdge) { 968 // Avoid breaking back edge. From == To means backedge for single BB cycle. 969 if (!SplitEdges || FromBB == ToBB || !FromBB->isSuccessor(ToBB)) 970 return false; 971 972 MachineCycle *FromCycle = CI->getCycle(FromBB); 973 MachineCycle *ToCycle = CI->getCycle(ToBB); 974 975 // Check for backedges of more "complex" cycles. 976 if (FromCycle == ToCycle && FromCycle && 977 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 978 return false; 979 980 // It's not always legal to break critical edges and sink the computation 981 // to the edge. 982 // 983 // %bb.1: 984 // v1024 985 // Beq %bb.3 986 // <fallthrough> 987 // %bb.2: 988 // ... no uses of v1024 989 // <fallthrough> 990 // %bb.3: 991 // ... 992 // = v1024 993 // 994 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 995 // 996 // %bb.1: 997 // ... 998 // Bne %bb.2 999 // %bb.4: 1000 // v1024 = 1001 // B %bb.3 1002 // %bb.2: 1003 // ... no uses of v1024 1004 // <fallthrough> 1005 // %bb.3: 1006 // ... 1007 // = v1024 1008 // 1009 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1010 // flow. We need to ensure the new basic block where the computation is 1011 // sunk to dominates all the uses. 1012 // It's only legal to break critical edge and sink the computation to the 1013 // new block if all the predecessors of "To", except for "From", are 1014 // not dominated by "From". Given SSA property, this means these 1015 // predecessors are dominated by "To". 1016 // 1017 // There is no need to do this check if all the uses are PHI nodes. PHI 1018 // sources are only defined on the specific predecessor edges. 1019 if (!BreakPHIEdge) { 1020 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1021 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1022 return false; 1023 } 1024 1025 return true; 1026 } 1027 1028 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1029 MachineBasicBlock *FromBB, 1030 MachineBasicBlock *ToBB, 1031 bool BreakPHIEdge) { 1032 bool Status = false; 1033 MachineBasicBlock *DeferredFromBB = nullptr; 1034 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1035 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1036 // of them are legal to split. 1037 if ((!DeferredFromBB || 1038 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1039 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1040 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1041 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1042 if (DeferredFromBB) 1043 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1044 Status = true; 1045 } 1046 } 1047 1048 return Status; 1049 } 1050 1051 std::vector<unsigned> & 1052 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 1053 // Currently to save compiling time, MBB's register pressure will not change 1054 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1055 // register pressure is changed after sinking any instructions into it. 1056 // FIXME: need a accurate and cheap register pressure estiminate model here. 1057 auto RP = CachedRegisterPressure.find(&MBB); 1058 if (RP != CachedRegisterPressure.end()) 1059 return RP->second; 1060 1061 RegionPressure Pressure; 1062 RegPressureTracker RPTracker(Pressure); 1063 1064 // Initialize the register pressure tracker. 1065 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1066 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1067 1068 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1069 MIE = MBB.instr_begin(); 1070 MII != MIE; --MII) { 1071 const MachineInstr &MI = *std::prev(MII); 1072 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1073 continue; 1074 RegisterOperands RegOpers; 1075 RegOpers.collect(MI, *TRI, *MRI, false, false); 1076 RPTracker.recedeSkipDebugValues(); 1077 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1078 RPTracker.recede(RegOpers); 1079 } 1080 1081 RPTracker.closeRegion(); 1082 auto It = CachedRegisterPressure.insert( 1083 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1084 return It.first->second; 1085 } 1086 1087 bool MachineSinking::registerPressureSetExceedsLimit( 1088 unsigned NRegs, const TargetRegisterClass *RC, 1089 const MachineBasicBlock &MBB) { 1090 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1091 const int *PS = TRI->getRegClassPressureSets(RC); 1092 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1093 for (; *PS != -1; PS++) 1094 if (Weight + BBRegisterPressure[*PS] >= 1095 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1096 return true; 1097 return false; 1098 } 1099 1100 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1101 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1102 MachineBasicBlock *MBB, 1103 MachineBasicBlock *SuccToSinkTo, 1104 AllSuccsCache &AllSuccessors) { 1105 assert(SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1106 1107 if (MBB == SuccToSinkTo) 1108 return false; 1109 1110 // It is profitable if SuccToSinkTo does not post dominate current block. 1111 if (!PDT->dominates(SuccToSinkTo, MBB)) 1112 return true; 1113 1114 // It is profitable to sink an instruction from a deeper cycle to a shallower 1115 // cycle, even if the latter post-dominates the former (PR21115). 1116 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1117 return true; 1118 1119 // Check if only use in post dominated block is PHI instruction. 1120 bool NonPHIUse = false; 1121 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1122 MachineBasicBlock *UseBlock = UseInst.getParent(); 1123 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1124 NonPHIUse = true; 1125 } 1126 if (!NonPHIUse) 1127 return true; 1128 1129 // If SuccToSinkTo post dominates then also it may be profitable if MI 1130 // can further profitably sinked into another block in next round. 1131 bool BreakPHIEdge = false; 1132 // FIXME - If finding successor is compile time expensive then cache results. 1133 if (MachineBasicBlock *MBB2 = 1134 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1135 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1136 1137 MachineCycle *MCycle = CI->getCycle(MBB); 1138 1139 // If the instruction is not inside a cycle, it is not profitable to sink MI 1140 // to a post dominate block SuccToSinkTo. 1141 if (!MCycle) 1142 return false; 1143 1144 // If this instruction is inside a Cycle and sinking this instruction can make 1145 // more registers live range shorten, it is still prifitable. 1146 for (const MachineOperand &MO : MI.operands()) { 1147 // Ignore non-register operands. 1148 if (!MO.isReg()) 1149 continue; 1150 Register Reg = MO.getReg(); 1151 if (Reg == 0) 1152 continue; 1153 1154 if (Reg.isPhysical()) { 1155 // Don't handle non-constant and non-ignorable physical register uses. 1156 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && 1157 !TII->isIgnorableUse(MO)) 1158 return false; 1159 continue; 1160 } 1161 1162 // Users for the defs are all dominated by SuccToSinkTo. 1163 if (MO.isDef()) { 1164 // This def register's live range is shortened after sinking. 1165 bool LocalUse = false; 1166 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1167 LocalUse)) 1168 return false; 1169 } else { 1170 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1171 if (!DefMI) 1172 continue; 1173 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1174 // DefMI is defined outside of cycle. There should be no live range 1175 // impact for this operand. Defination outside of cycle means: 1176 // 1: defination is outside of cycle. 1177 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1178 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1179 Cycle->getHeader() == DefMI->getParent())) 1180 continue; 1181 // The DefMI is defined inside the cycle. 1182 // If sinking this operand makes some register pressure set exceed limit, 1183 // it is not profitable. 1184 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1185 *SuccToSinkTo)) { 1186 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1187 return false; 1188 } 1189 } 1190 } 1191 1192 // If MI is in cycle and all its operands are alive across the whole cycle or 1193 // if no operand sinking make register pressure set exceed limit, it is 1194 // profitable to sink MI. 1195 return true; 1196 } 1197 1198 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1199 /// computing it if it was not already cached. 1200 SmallVector<MachineBasicBlock *, 4> & 1201 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1202 AllSuccsCache &AllSuccessors) const { 1203 // Do we have the sorted successors in cache ? 1204 auto Succs = AllSuccessors.find(MBB); 1205 if (Succs != AllSuccessors.end()) 1206 return Succs->second; 1207 1208 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1209 1210 // Handle cases where sinking can happen but where the sink point isn't a 1211 // successor. For example: 1212 // 1213 // x = computation 1214 // if () {} else {} 1215 // use x 1216 // 1217 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1218 // DomTree children of MBB that have MBB as immediate dominator are added. 1219 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1220 // Skip MBBs already added to the AllSuccs vector above. 1221 !MBB->isSuccessor(DTChild->getBlock())) 1222 AllSuccs.push_back(DTChild->getBlock()); 1223 } 1224 1225 // Sort Successors according to their cycle depth or block frequency info. 1226 llvm::stable_sort( 1227 AllSuccs, [&](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1228 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1229 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1230 if (llvm::shouldOptimizeForSize(MBB, PSI, MBFI) || 1231 (!LHSFreq && !RHSFreq)) 1232 return CI->getCycleDepth(L) < CI->getCycleDepth(R); 1233 return LHSFreq < RHSFreq; 1234 }); 1235 1236 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1237 1238 return it.first->second; 1239 } 1240 1241 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1242 MachineBasicBlock * 1243 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1244 bool &BreakPHIEdge, 1245 AllSuccsCache &AllSuccessors) { 1246 assert(MBB && "Invalid MachineBasicBlock!"); 1247 1248 // loop over all the operands of the specified instruction. If there is 1249 // anything we can't handle, bail out. 1250 1251 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1252 // decide. 1253 MachineBasicBlock *SuccToSinkTo = nullptr; 1254 for (const MachineOperand &MO : MI.operands()) { 1255 if (!MO.isReg()) 1256 continue; // Ignore non-register operands. 1257 1258 Register Reg = MO.getReg(); 1259 if (Reg == 0) 1260 continue; 1261 1262 if (Reg.isPhysical()) { 1263 if (MO.isUse()) { 1264 // If the physreg has no defs anywhere, it's just an ambient register 1265 // and we can freely move its uses. Alternatively, if it's allocatable, 1266 // it could get allocated to something with a def during allocation. 1267 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1268 return nullptr; 1269 } else if (!MO.isDead()) { 1270 // A def that isn't dead. We can't move it. 1271 return nullptr; 1272 } 1273 } else { 1274 // Virtual register uses are always safe to sink. 1275 if (MO.isUse()) 1276 continue; 1277 1278 // If it's not safe to move defs of the register class, then abort. 1279 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1280 return nullptr; 1281 1282 // Virtual register defs can only be sunk if all their uses are in blocks 1283 // dominated by one of the successors. 1284 if (SuccToSinkTo) { 1285 // If a previous operand picked a block to sink to, then this operand 1286 // must be sinkable to the same block. 1287 bool LocalUse = false; 1288 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1289 LocalUse)) 1290 return nullptr; 1291 1292 continue; 1293 } 1294 1295 // Otherwise, we should look at all the successors and decide which one 1296 // we should sink to. If we have reliable block frequency information 1297 // (frequency != 0) available, give successors with smaller frequencies 1298 // higher priority, otherwise prioritize smaller cycle depths. 1299 for (MachineBasicBlock *SuccBlock : 1300 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1301 bool LocalUse = false; 1302 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, 1303 LocalUse)) { 1304 SuccToSinkTo = SuccBlock; 1305 break; 1306 } 1307 if (LocalUse) 1308 // Def is used locally, it's never safe to move this def. 1309 return nullptr; 1310 } 1311 1312 // If we couldn't find a block to sink to, ignore this instruction. 1313 if (!SuccToSinkTo) 1314 return nullptr; 1315 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1316 return nullptr; 1317 } 1318 } 1319 1320 // It is not possible to sink an instruction into its own block. This can 1321 // happen with cycles. 1322 if (MBB == SuccToSinkTo) 1323 return nullptr; 1324 1325 // It's not safe to sink instructions to EH landing pad. Control flow into 1326 // landing pad is implicitly defined. 1327 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1328 return nullptr; 1329 1330 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1331 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1332 // the source block (which this code does not yet do). So for now, forbid 1333 // doing so. 1334 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1335 return nullptr; 1336 1337 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1338 return nullptr; 1339 1340 return SuccToSinkTo; 1341 } 1342 1343 /// Return true if MI is likely to be usable as a memory operation by the 1344 /// implicit null check optimization. 1345 /// 1346 /// This is a "best effort" heuristic, and should not be relied upon for 1347 /// correctness. This returning true does not guarantee that the implicit null 1348 /// check optimization is legal over MI, and this returning false does not 1349 /// guarantee MI cannot possibly be used to do a null check. 1350 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1351 const TargetInstrInfo *TII, 1352 const TargetRegisterInfo *TRI) { 1353 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1354 1355 auto *MBB = MI.getParent(); 1356 if (MBB->pred_size() != 1) 1357 return false; 1358 1359 auto *PredMBB = *MBB->pred_begin(); 1360 auto *PredBB = PredMBB->getBasicBlock(); 1361 1362 // Frontends that don't use implicit null checks have no reason to emit 1363 // branches with make.implicit metadata, and this function should always 1364 // return false for them. 1365 if (!PredBB || 1366 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1367 return false; 1368 1369 const MachineOperand *BaseOp; 1370 int64_t Offset; 1371 bool OffsetIsScalable; 1372 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1373 return false; 1374 1375 if (!BaseOp->isReg()) 1376 return false; 1377 1378 if (!(MI.mayLoad() && !MI.isPredicable())) 1379 return false; 1380 1381 MachineBranchPredicate MBP; 1382 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1383 return false; 1384 1385 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1386 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1387 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1388 MBP.LHS.getReg() == BaseOp->getReg(); 1389 } 1390 1391 /// If the sunk instruction is a copy, try to forward the copy instead of 1392 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1393 /// there's any subregister weirdness involved. Returns true if copy 1394 /// propagation occurred. 1395 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1396 Register Reg) { 1397 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1398 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1399 1400 // Copy DBG_VALUE operand and set the original to undef. We then check to 1401 // see whether this is something that can be copy-forwarded. If it isn't, 1402 // continue around the loop. 1403 1404 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1405 auto CopyOperands = TII.isCopyInstr(SinkInst); 1406 if (!CopyOperands) 1407 return false; 1408 SrcMO = CopyOperands->Source; 1409 DstMO = CopyOperands->Destination; 1410 1411 // Check validity of forwarding this copy. 1412 bool PostRA = MRI.getNumVirtRegs() == 0; 1413 1414 // Trying to forward between physical and virtual registers is too hard. 1415 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1416 return false; 1417 1418 // Only try virtual register copy-forwarding before regalloc, and physical 1419 // register copy-forwarding after regalloc. 1420 bool arePhysRegs = !Reg.isVirtual(); 1421 if (arePhysRegs != PostRA) 1422 return false; 1423 1424 // Pre-regalloc, only forward if all subregisters agree (or there are no 1425 // subregs at all). More analysis might recover some forwardable copies. 1426 if (!PostRA) 1427 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1428 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1429 DbgMO.getSubReg() != DstMO->getSubReg()) 1430 return false; 1431 1432 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1433 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1434 // matches the copy destination. 1435 if (PostRA && Reg != DstMO->getReg()) 1436 return false; 1437 1438 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1439 DbgMO.setReg(SrcMO->getReg()); 1440 DbgMO.setSubReg(SrcMO->getSubReg()); 1441 } 1442 return true; 1443 } 1444 1445 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1446 /// Sink an instruction and its associated debug instructions. 1447 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1448 MachineBasicBlock::iterator InsertPos, 1449 ArrayRef<MIRegs> DbgValuesToSink) { 1450 // If we cannot find a location to use (merge with), then we erase the debug 1451 // location to prevent debug-info driven tools from potentially reporting 1452 // wrong location information. 1453 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1454 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1455 InsertPos->getDebugLoc())); 1456 else 1457 MI.setDebugLoc(DebugLoc()); 1458 1459 // Move the instruction. 1460 MachineBasicBlock *ParentBlock = MI.getParent(); 1461 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1462 ++MachineBasicBlock::iterator(MI)); 1463 1464 // Sink a copy of debug users to the insert position. Mark the original 1465 // DBG_VALUE location as 'undef', indicating that any earlier variable 1466 // location should be terminated as we've optimised away the value at this 1467 // point. 1468 for (const auto &DbgValueToSink : DbgValuesToSink) { 1469 MachineInstr *DbgMI = DbgValueToSink.first; 1470 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1471 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1472 1473 bool PropagatedAllSunkOps = true; 1474 for (unsigned Reg : DbgValueToSink.second) { 1475 if (DbgMI->hasDebugOperandForReg(Reg)) { 1476 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1477 PropagatedAllSunkOps = false; 1478 break; 1479 } 1480 } 1481 } 1482 if (!PropagatedAllSunkOps) 1483 DbgMI->setDebugValueUndef(); 1484 } 1485 } 1486 1487 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1488 /// and To. 1489 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1490 MachineBasicBlock *To, MachineInstr &MI) { 1491 // Make sure From and To are in straight line which means From dominates To 1492 // and To post dominates From. 1493 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1494 return true; 1495 1496 auto BlockPair = std::make_pair(From, To); 1497 1498 // Does these two blocks pair be queried before and have a definite cached 1499 // result? 1500 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1501 return It->second; 1502 1503 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1504 return llvm::any_of(It->second, [&](MachineInstr *I) { 1505 return I->mayAlias(AA, MI, false); 1506 }); 1507 1508 bool SawStore = false; 1509 bool HasAliasedStore = false; 1510 DenseSet<MachineBasicBlock *> HandledBlocks; 1511 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1512 // Go through all reachable blocks from From. 1513 for (MachineBasicBlock *BB : depth_first(From)) { 1514 // We insert the instruction at the start of block To, so no need to worry 1515 // about stores inside To. 1516 // Store in block From should be already considered when just enter function 1517 // SinkInstruction. 1518 if (BB == To || BB == From) 1519 continue; 1520 1521 // We already handle this BB in previous iteration. 1522 if (HandledBlocks.count(BB)) 1523 continue; 1524 1525 HandledBlocks.insert(BB); 1526 // To post dominates BB, it must be a path from block From. 1527 if (PDT->dominates(To, BB)) { 1528 if (!HandledDomBlocks.count(BB)) 1529 HandledDomBlocks.insert(BB); 1530 1531 // If this BB is too big or the block number in straight line between From 1532 // and To is too big, stop searching to save compiling time. 1533 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1534 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1535 for (auto *DomBB : HandledDomBlocks) { 1536 if (DomBB != BB && DT->dominates(DomBB, BB)) 1537 HasStoreCache[std::make_pair(DomBB, To)] = true; 1538 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1539 HasStoreCache[std::make_pair(From, DomBB)] = true; 1540 } 1541 HasStoreCache[BlockPair] = true; 1542 return true; 1543 } 1544 1545 for (MachineInstr &I : *BB) { 1546 // Treat as alias conservatively for a call or an ordered memory 1547 // operation. 1548 if (I.isCall() || I.hasOrderedMemoryRef()) { 1549 for (auto *DomBB : HandledDomBlocks) { 1550 if (DomBB != BB && DT->dominates(DomBB, BB)) 1551 HasStoreCache[std::make_pair(DomBB, To)] = true; 1552 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1553 HasStoreCache[std::make_pair(From, DomBB)] = true; 1554 } 1555 HasStoreCache[BlockPair] = true; 1556 return true; 1557 } 1558 1559 if (I.mayStore()) { 1560 SawStore = true; 1561 // We still have chance to sink MI if all stores between are not 1562 // aliased to MI. 1563 // Cache all store instructions, so that we don't need to go through 1564 // all From reachable blocks for next load instruction. 1565 if (I.mayAlias(AA, MI, false)) 1566 HasAliasedStore = true; 1567 StoreInstrCache[BlockPair].push_back(&I); 1568 } 1569 } 1570 } 1571 } 1572 // If there is no store at all, cache the result. 1573 if (!SawStore) 1574 HasStoreCache[BlockPair] = false; 1575 return HasAliasedStore; 1576 } 1577 1578 /// Sink instructions into cycles if profitable. This especially tries to 1579 /// prevent register spills caused by register pressure if there is little to no 1580 /// overhead moving instructions into cycles. 1581 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1582 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1583 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1584 assert(Preheader && "Cycle sink needs a preheader block"); 1585 MachineBasicBlock *SinkBlock = nullptr; 1586 bool CanSink = true; 1587 const MachineOperand &MO = I.getOperand(0); 1588 1589 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1590 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1591 if (!Cycle->contains(MI.getParent())) { 1592 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1593 CanSink = false; 1594 break; 1595 } 1596 1597 // FIXME: Come up with a proper cost model that estimates whether sinking 1598 // the instruction (and thus possibly executing it on every cycle 1599 // iteration) is more expensive than a register. 1600 // For now assumes that copies are cheap and thus almost always worth it. 1601 if (!MI.isCopy()) { 1602 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1603 CanSink = false; 1604 break; 1605 } 1606 if (!SinkBlock) { 1607 SinkBlock = MI.getParent(); 1608 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1609 << printMBBReference(*SinkBlock) << "\n"); 1610 continue; 1611 } 1612 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1613 if (!SinkBlock) { 1614 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1615 CanSink = false; 1616 break; 1617 } 1618 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " 1619 << printMBBReference(*SinkBlock) << "\n"); 1620 } 1621 1622 if (!CanSink) { 1623 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1624 return false; 1625 } 1626 if (!SinkBlock) { 1627 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1628 return false; 1629 } 1630 if (SinkBlock == Preheader) { 1631 LLVM_DEBUG( 1632 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1633 return false; 1634 } 1635 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1636 LLVM_DEBUG( 1637 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1638 return false; 1639 } 1640 1641 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1642 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1643 I); 1644 1645 // Conservatively clear any kill flags on uses of sunk instruction 1646 for (MachineOperand &MO : I.operands()) { 1647 if (MO.isReg() && MO.readsReg()) 1648 RegsToClearKillFlags.insert(MO.getReg()); 1649 } 1650 1651 // The instruction is moved from its basic block, so do not retain the 1652 // debug information. 1653 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1654 I.setDebugLoc(DebugLoc()); 1655 return true; 1656 } 1657 1658 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1659 /// instruction out of its current block into a successor. 1660 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1661 AllSuccsCache &AllSuccessors) { 1662 // Don't sink instructions that the target prefers not to sink. 1663 if (!TII->shouldSink(MI)) 1664 return false; 1665 1666 // Check if it's safe to move the instruction. 1667 if (!MI.isSafeToMove(SawStore)) 1668 return false; 1669 1670 // Convergent operations may not be made control-dependent on additional 1671 // values. 1672 if (MI.isConvergent()) 1673 return false; 1674 1675 // Don't break implicit null checks. This is a performance heuristic, and not 1676 // required for correctness. 1677 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1678 return false; 1679 1680 // FIXME: This should include support for sinking instructions within the 1681 // block they are currently in to shorten the live ranges. We often get 1682 // instructions sunk into the top of a large block, but it would be better to 1683 // also sink them down before their first use in the block. This xform has to 1684 // be careful not to *increase* register pressure though, e.g. sinking 1685 // "x = y + z" down if it kills y and z would increase the live ranges of y 1686 // and z and only shrink the live range of x. 1687 1688 bool BreakPHIEdge = false; 1689 MachineBasicBlock *ParentBlock = MI.getParent(); 1690 MachineBasicBlock *SuccToSinkTo = 1691 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1692 1693 // If there are no outputs, it must have side-effects. 1694 if (!SuccToSinkTo) 1695 return false; 1696 1697 // If the instruction to move defines a dead physical register which is live 1698 // when leaving the basic block, don't move it because it could turn into a 1699 // "zombie" define of that preg. E.g., EFLAGS. 1700 for (const MachineOperand &MO : MI.all_defs()) { 1701 Register Reg = MO.getReg(); 1702 if (Reg == 0 || !Reg.isPhysical()) 1703 continue; 1704 if (SuccToSinkTo->isLiveIn(Reg)) 1705 return false; 1706 } 1707 1708 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1709 1710 // If the block has multiple predecessors, this is a critical edge. 1711 // Decide if we can sink along it or need to break the edge. 1712 if (SuccToSinkTo->pred_size() > 1) { 1713 // We cannot sink a load across a critical edge - there may be stores in 1714 // other code paths. 1715 bool TryBreak = false; 1716 bool Store = 1717 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1718 if (!MI.isSafeToMove(Store)) { 1719 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1720 TryBreak = true; 1721 } 1722 1723 // We don't want to sink across a critical edge if we don't dominate the 1724 // successor. We could be introducing calculations to new code paths. 1725 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1726 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1727 TryBreak = true; 1728 } 1729 1730 // Don't sink instructions into a cycle. 1731 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1732 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1733 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1734 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1735 TryBreak = true; 1736 } 1737 1738 // Otherwise we are OK with sinking along a critical edge. 1739 if (!TryBreak) 1740 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1741 else { 1742 // Mark this edge as to be split. 1743 // If the edge can actually be split, the next iteration of the main loop 1744 // will sink MI in the newly created block. 1745 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, 1746 BreakPHIEdge); 1747 if (!Status) 1748 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1749 "break critical edge\n"); 1750 // The instruction will not be sunk this time. 1751 return false; 1752 } 1753 } 1754 1755 if (BreakPHIEdge) { 1756 // BreakPHIEdge is true if all the uses are in the successor MBB being 1757 // sunken into and they are all PHI nodes. In this case, machine-sink must 1758 // break the critical edge first. 1759 bool Status = 1760 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1761 if (!Status) 1762 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1763 "break critical edge\n"); 1764 // The instruction will not be sunk this time. 1765 return false; 1766 } 1767 1768 // Determine where to insert into. Skip phi nodes. 1769 MachineBasicBlock::iterator InsertPos = 1770 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1771 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1772 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1773 return false; 1774 } 1775 1776 // Collect debug users of any vreg that this inst defines. 1777 SmallVector<MIRegs, 4> DbgUsersToSink; 1778 for (auto &MO : MI.all_defs()) { 1779 if (!MO.getReg().isVirtual()) 1780 continue; 1781 if (!SeenDbgUsers.count(MO.getReg())) 1782 continue; 1783 1784 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1785 auto &Users = SeenDbgUsers[MO.getReg()]; 1786 for (auto &User : Users) { 1787 MachineInstr *DbgMI = User.getPointer(); 1788 if (User.getInt()) { 1789 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1790 // it, it can't be recovered. Set it undef. 1791 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1792 DbgMI->setDebugValueUndef(); 1793 } else { 1794 DbgUsersToSink.push_back( 1795 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1796 } 1797 } 1798 } 1799 1800 // After sinking, some debug users may not be dominated any more. If possible, 1801 // copy-propagate their operands. As it's expensive, don't do this if there's 1802 // no debuginfo in the program. 1803 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1804 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1805 1806 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1807 1808 // Conservatively, clear any kill flags, since it's possible that they are no 1809 // longer correct. 1810 // Note that we have to clear the kill flags for any register this instruction 1811 // uses as we may sink over another instruction which currently kills the 1812 // used registers. 1813 for (MachineOperand &MO : MI.all_uses()) 1814 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1815 1816 return true; 1817 } 1818 1819 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1820 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1821 assert(MI.isCopy()); 1822 assert(MI.getOperand(1).isReg()); 1823 1824 // Enumerate all users of vreg operands that are def'd. Skip those that will 1825 // be sunk. For the rest, if they are not dominated by the block we will sink 1826 // MI into, propagate the copy source to them. 1827 SmallVector<MachineInstr *, 4> DbgDefUsers; 1828 SmallVector<Register, 4> DbgUseRegs; 1829 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1830 for (auto &MO : MI.all_defs()) { 1831 if (!MO.getReg().isVirtual()) 1832 continue; 1833 DbgUseRegs.push_back(MO.getReg()); 1834 for (auto &User : MRI.use_instructions(MO.getReg())) { 1835 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1836 continue; 1837 1838 // If is in same block, will either sink or be use-before-def. 1839 if (User.getParent() == MI.getParent()) 1840 continue; 1841 1842 assert(User.hasDebugOperandForReg(MO.getReg()) && 1843 "DBG_VALUE user of vreg, but has no operand for it?"); 1844 DbgDefUsers.push_back(&User); 1845 } 1846 } 1847 1848 // Point the users of this copy that are no longer dominated, at the source 1849 // of the copy. 1850 for (auto *User : DbgDefUsers) { 1851 for (auto &Reg : DbgUseRegs) { 1852 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1853 DbgOp.setReg(MI.getOperand(1).getReg()); 1854 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1855 } 1856 } 1857 } 1858 } 1859 1860 //===----------------------------------------------------------------------===// 1861 // This pass is not intended to be a replacement or a complete alternative 1862 // for the pre-ra machine sink pass. It is only designed to sink COPY 1863 // instructions which should be handled after RA. 1864 // 1865 // This pass sinks COPY instructions into a successor block, if the COPY is not 1866 // used in the current block and the COPY is live-in to a single successor 1867 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1868 // copy on paths where their results aren't needed. This also exposes 1869 // additional opportunites for dead copy elimination and shrink wrapping. 1870 // 1871 // These copies were either not handled by or are inserted after the MachineSink 1872 // pass. As an example of the former case, the MachineSink pass cannot sink 1873 // COPY instructions with allocatable source registers; for AArch64 these type 1874 // of copy instructions are frequently used to move function parameters (PhyReg) 1875 // into virtual registers in the entry block. 1876 // 1877 // For the machine IR below, this pass will sink %w19 in the entry into its 1878 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1879 // %bb.0: 1880 // %wzr = SUBSWri %w1, 1 1881 // %w19 = COPY %w0 1882 // Bcc 11, %bb.2 1883 // %bb.1: 1884 // Live Ins: %w19 1885 // BL @fun 1886 // %w0 = ADDWrr %w0, %w19 1887 // RET %w0 1888 // %bb.2: 1889 // %w0 = COPY %wzr 1890 // RET %w0 1891 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1892 // able to see %bb.0 as a candidate. 1893 //===----------------------------------------------------------------------===// 1894 namespace { 1895 1896 class PostRAMachineSinking : public MachineFunctionPass { 1897 public: 1898 bool runOnMachineFunction(MachineFunction &MF) override; 1899 1900 static char ID; 1901 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1902 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1903 1904 void getAnalysisUsage(AnalysisUsage &AU) const override { 1905 AU.setPreservesCFG(); 1906 MachineFunctionPass::getAnalysisUsage(AU); 1907 } 1908 1909 MachineFunctionProperties getRequiredProperties() const override { 1910 return MachineFunctionProperties().set( 1911 MachineFunctionProperties::Property::NoVRegs); 1912 } 1913 1914 private: 1915 /// Track which register units have been modified and used. 1916 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1917 1918 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1919 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1920 /// consists of a pointer to the instruction itself, and a vector of registers 1921 /// referred to by the instruction that overlap the key register unit. 1922 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1923 1924 /// Sink Copy instructions unused in the same block close to their uses in 1925 /// successors. 1926 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1927 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1928 }; 1929 } // namespace 1930 1931 char PostRAMachineSinking::ID = 0; 1932 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1933 1934 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1935 "PostRA Machine Sink", false, false) 1936 1937 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1938 const TargetRegisterInfo *TRI) { 1939 LiveRegUnits LiveInRegUnits(*TRI); 1940 LiveInRegUnits.addLiveIns(MBB); 1941 return !LiveInRegUnits.available(Reg); 1942 } 1943 1944 static MachineBasicBlock * 1945 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1946 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1947 unsigned Reg, const TargetRegisterInfo *TRI) { 1948 // Try to find a single sinkable successor in which Reg is live-in. 1949 MachineBasicBlock *BB = nullptr; 1950 for (auto *SI : SinkableBBs) { 1951 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1952 // If BB is set here, Reg is live-in to at least two sinkable successors, 1953 // so quit. 1954 if (BB) 1955 return nullptr; 1956 BB = SI; 1957 } 1958 } 1959 // Reg is not live-in to any sinkable successors. 1960 if (!BB) 1961 return nullptr; 1962 1963 // Check if any register aliased with Reg is live-in in other successors. 1964 for (auto *SI : CurBB.successors()) { 1965 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1966 return nullptr; 1967 } 1968 return BB; 1969 } 1970 1971 static MachineBasicBlock * 1972 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1973 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1974 ArrayRef<unsigned> DefedRegsInCopy, 1975 const TargetRegisterInfo *TRI) { 1976 MachineBasicBlock *SingleBB = nullptr; 1977 for (auto DefReg : DefedRegsInCopy) { 1978 MachineBasicBlock *BB = 1979 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1980 if (!BB || (SingleBB && SingleBB != BB)) 1981 return nullptr; 1982 SingleBB = BB; 1983 } 1984 return SingleBB; 1985 } 1986 1987 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1988 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1989 LiveRegUnits &UsedRegUnits, 1990 const TargetRegisterInfo *TRI) { 1991 for (auto U : UsedOpsInCopy) { 1992 MachineOperand &MO = MI->getOperand(U); 1993 Register SrcReg = MO.getReg(); 1994 if (!UsedRegUnits.available(SrcReg)) { 1995 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1996 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1997 if (UI.killsRegister(SrcReg, TRI)) { 1998 UI.clearRegisterKills(SrcReg, TRI); 1999 MO.setIsKill(true); 2000 break; 2001 } 2002 } 2003 } 2004 } 2005 } 2006 2007 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 2008 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2009 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 2010 MachineFunction &MF = *SuccBB->getParent(); 2011 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2012 for (unsigned DefReg : DefedRegsInCopy) 2013 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2014 SuccBB->removeLiveIn(S); 2015 for (auto U : UsedOpsInCopy) 2016 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2017 SuccBB->sortUniqueLiveIns(); 2018 } 2019 2020 static bool hasRegisterDependency(MachineInstr *MI, 2021 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2022 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2023 LiveRegUnits &ModifiedRegUnits, 2024 LiveRegUnits &UsedRegUnits) { 2025 bool HasRegDependency = false; 2026 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2027 MachineOperand &MO = MI->getOperand(i); 2028 if (!MO.isReg()) 2029 continue; 2030 Register Reg = MO.getReg(); 2031 if (!Reg) 2032 continue; 2033 if (MO.isDef()) { 2034 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2035 HasRegDependency = true; 2036 break; 2037 } 2038 DefedRegsInCopy.push_back(Reg); 2039 2040 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2041 // For example, we can ignore modifications in reg with undef. However, 2042 // it's not perfectly clear if skipping the internal read is safe in all 2043 // other targets. 2044 } else if (MO.isUse()) { 2045 if (!ModifiedRegUnits.available(Reg)) { 2046 HasRegDependency = true; 2047 break; 2048 } 2049 UsedOpsInCopy.push_back(i); 2050 } 2051 } 2052 return HasRegDependency; 2053 } 2054 2055 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2056 MachineFunction &MF, 2057 const TargetRegisterInfo *TRI, 2058 const TargetInstrInfo *TII) { 2059 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2060 // FIXME: For now, we sink only to a successor which has a single predecessor 2061 // so that we can directly sink COPY instructions to the successor without 2062 // adding any new block or branch instruction. 2063 for (MachineBasicBlock *SI : CurBB.successors()) 2064 if (!SI->livein_empty() && SI->pred_size() == 1) 2065 SinkableBBs.insert(SI); 2066 2067 if (SinkableBBs.empty()) 2068 return false; 2069 2070 bool Changed = false; 2071 2072 // Track which registers have been modified and used between the end of the 2073 // block and the current instruction. 2074 ModifiedRegUnits.clear(); 2075 UsedRegUnits.clear(); 2076 SeenDbgInstrs.clear(); 2077 2078 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2079 // Track the operand index for use in Copy. 2080 SmallVector<unsigned, 2> UsedOpsInCopy; 2081 // Track the register number defed in Copy. 2082 SmallVector<unsigned, 2> DefedRegsInCopy; 2083 2084 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2085 // for DBG_VALUEs later, record them when they're encountered. 2086 if (MI.isDebugValue() && !MI.isDebugRef()) { 2087 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2088 bool IsValid = true; 2089 for (MachineOperand &MO : MI.debug_operands()) { 2090 if (MO.isReg() && MO.getReg().isPhysical()) { 2091 // Bail if we can already tell the sink would be rejected, rather 2092 // than needlessly accumulating lots of DBG_VALUEs. 2093 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2094 ModifiedRegUnits, UsedRegUnits)) { 2095 IsValid = false; 2096 break; 2097 } 2098 2099 // Record debug use of each reg unit. 2100 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2101 MIUnits[Unit].push_back(MO.getReg()); 2102 } 2103 } 2104 if (IsValid) { 2105 for (auto &RegOps : MIUnits) 2106 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2107 std::move(RegOps.second)); 2108 } 2109 continue; 2110 } 2111 2112 if (MI.isDebugOrPseudoInstr()) 2113 continue; 2114 2115 // Do not move any instruction across function call. 2116 if (MI.isCall()) 2117 return false; 2118 2119 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2120 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2121 TRI); 2122 continue; 2123 } 2124 2125 // Don't sink the COPY if it would violate a register dependency. 2126 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2127 ModifiedRegUnits, UsedRegUnits)) { 2128 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2129 TRI); 2130 continue; 2131 } 2132 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2133 "Unexpect SrcReg or DefReg"); 2134 MachineBasicBlock *SuccBB = 2135 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2136 // Don't sink if we cannot find a single sinkable successor in which Reg 2137 // is live-in. 2138 if (!SuccBB) { 2139 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2140 TRI); 2141 continue; 2142 } 2143 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2144 "Unexpected predecessor"); 2145 2146 // Collect DBG_VALUEs that must sink with this copy. We've previously 2147 // recorded which reg units that DBG_VALUEs read, if this instruction 2148 // writes any of those units then the corresponding DBG_VALUEs must sink. 2149 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2150 for (auto &MO : MI.all_defs()) { 2151 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2152 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2153 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2154 for (unsigned Reg : MIRegs.second) 2155 Regs.push_back(Reg); 2156 } 2157 } 2158 } 2159 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2160 2161 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2162 2163 MachineBasicBlock::iterator InsertPos = 2164 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2165 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2166 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2167 TRI); 2168 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 2169 continue; 2170 } 2171 2172 // Clear the kill flag if SrcReg is killed between MI and the end of the 2173 // block. 2174 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2175 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2176 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2177 2178 Changed = true; 2179 ++NumPostRACopySink; 2180 } 2181 return Changed; 2182 } 2183 2184 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2185 if (skipFunction(MF.getFunction())) 2186 return false; 2187 2188 bool Changed = false; 2189 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2190 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2191 2192 ModifiedRegUnits.init(*TRI); 2193 UsedRegUnits.init(*TRI); 2194 for (auto &BB : MF) 2195 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2196 2197 return Changed; 2198 } 2199