xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision d538352b3e4b1eabee02fc7ce491728678cc4716)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <map>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "machine-sink"
57 
58 static cl::opt<bool>
59 SplitEdges("machine-sink-split",
60            cl::desc("Split critical edges during machine sinking"),
61            cl::init(true), cl::Hidden);
62 
63 static cl::opt<bool>
64 UseBlockFreqInfo("machine-sink-bfi",
65            cl::desc("Use block frequency info to find successors to sink"),
66            cl::init(true), cl::Hidden);
67 
68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69     "machine-sink-split-probability-threshold",
70     cl::desc(
71         "Percentage threshold for splitting single-instruction critical edge. "
72         "If the branch threshold is higher than this threshold, we allow "
73         "speculative execution of up to 1 instruction to avoid branching to "
74         "splitted critical edge"),
75     cl::init(40), cl::Hidden);
76 
77 STATISTIC(NumSunk,      "Number of machine instructions sunk");
78 STATISTIC(NumSplit,     "Number of critical edges split");
79 STATISTIC(NumCoalesces, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 
82 namespace {
83 
84   class MachineSinking : public MachineFunctionPass {
85     const TargetInstrInfo *TII;
86     const TargetRegisterInfo *TRI;
87     MachineRegisterInfo  *MRI;     // Machine register information
88     MachineDominatorTree *DT;      // Machine dominator tree
89     MachinePostDominatorTree *PDT; // Machine post dominator tree
90     MachineLoopInfo *LI;
91     const MachineBlockFrequencyInfo *MBFI;
92     const MachineBranchProbabilityInfo *MBPI;
93     AliasAnalysis *AA;
94 
95     // Remember which edges have been considered for breaking.
96     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97     CEBCandidates;
98     // Remember which edges we are about to split.
99     // This is different from CEBCandidates since those edges
100     // will be split.
101     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 
103     SparseBitVector<> RegsToClearKillFlags;
104 
105     using AllSuccsCache =
106         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 
108   public:
109     static char ID; // Pass identification
110 
111     MachineSinking() : MachineFunctionPass(ID) {
112       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
113     }
114 
115     bool runOnMachineFunction(MachineFunction &MF) override;
116 
117     void getAnalysisUsage(AnalysisUsage &AU) const override {
118       AU.setPreservesCFG();
119       MachineFunctionPass::getAnalysisUsage(AU);
120       AU.addRequired<AAResultsWrapperPass>();
121       AU.addRequired<MachineDominatorTree>();
122       AU.addRequired<MachinePostDominatorTree>();
123       AU.addRequired<MachineLoopInfo>();
124       AU.addRequired<MachineBranchProbabilityInfo>();
125       AU.addPreserved<MachineDominatorTree>();
126       AU.addPreserved<MachinePostDominatorTree>();
127       AU.addPreserved<MachineLoopInfo>();
128       if (UseBlockFreqInfo)
129         AU.addRequired<MachineBlockFrequencyInfo>();
130     }
131 
132     void releaseMemory() override {
133       CEBCandidates.clear();
134     }
135 
136   private:
137     bool ProcessBlock(MachineBasicBlock &MBB);
138     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139                                      MachineBasicBlock *From,
140                                      MachineBasicBlock *To);
141 
142     /// Postpone the splitting of the given critical
143     /// edge (\p From, \p To).
144     ///
145     /// We do not split the edges on the fly. Indeed, this invalidates
146     /// the dominance information and thus triggers a lot of updates
147     /// of that information underneath.
148     /// Instead, we postpone all the splits after each iteration of
149     /// the main loop. That way, the information is at least valid
150     /// for the lifetime of an iteration.
151     ///
152     /// \return True if the edge is marked as toSplit, false otherwise.
153     /// False can be returned if, for instance, this is not profitable.
154     bool PostponeSplitCriticalEdge(MachineInstr &MI,
155                                    MachineBasicBlock *From,
156                                    MachineBasicBlock *To,
157                                    bool BreakPHIEdge);
158     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 
160                          AllSuccsCache &AllSuccessors);
161     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162                                  MachineBasicBlock *DefMBB,
163                                  bool &BreakPHIEdge, bool &LocalUse) const;
164     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167                               MachineBasicBlock *MBB,
168                               MachineBasicBlock *SuccToSinkTo,
169                               AllSuccsCache &AllSuccessors);
170 
171     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172                                          MachineBasicBlock *MBB);
173 
174     SmallVector<MachineBasicBlock *, 4> &
175     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176                            AllSuccsCache &AllSuccessors) const;
177   };
178 
179 } // end anonymous namespace
180 
181 char MachineSinking::ID = 0;
182 
183 char &llvm::MachineSinkingID = MachineSinking::ID;
184 
185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186                       "Machine code sinking", false, false)
187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192                     "Machine code sinking", false, false)
193 
194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195                                                      MachineBasicBlock *MBB) {
196   if (!MI.isCopy())
197     return false;
198 
199   unsigned SrcReg = MI.getOperand(1).getReg();
200   unsigned DstReg = MI.getOperand(0).getReg();
201   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
202       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
203       !MRI->hasOneNonDBGUse(SrcReg))
204     return false;
205 
206   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
207   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
208   if (SRC != DRC)
209     return false;
210 
211   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
212   if (DefMI->isCopyLike())
213     return false;
214   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
215   LLVM_DEBUG(dbgs() << "*** to: " << MI);
216   MRI->replaceRegWith(DstReg, SrcReg);
217   MI.eraseFromParent();
218 
219   // Conservatively, clear any kill flags, since it's possible that they are no
220   // longer correct.
221   MRI->clearKillFlags(SrcReg);
222 
223   ++NumCoalesces;
224   return true;
225 }
226 
227 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
228 /// occur in blocks dominated by the specified block. If any use is in the
229 /// definition block, then return false since it is never legal to move def
230 /// after uses.
231 bool
232 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
233                                         MachineBasicBlock *MBB,
234                                         MachineBasicBlock *DefMBB,
235                                         bool &BreakPHIEdge,
236                                         bool &LocalUse) const {
237   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
238          "Only makes sense for vregs");
239 
240   // Ignore debug uses because debug info doesn't affect the code.
241   if (MRI->use_nodbg_empty(Reg))
242     return true;
243 
244   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245   // into and they are all PHI nodes. In this case, machine-sink must break
246   // the critical edge first. e.g.
247   //
248   // %bb.1: derived from LLVM BB %bb4.preheader
249   //   Predecessors according to CFG: %bb.0
250   //     ...
251   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
252   //     ...
253   //     JE_4 <%bb.37>, implicit %eflags
254   //   Successors according to CFG: %bb.37 %bb.2
255   //
256   // %bb.2: derived from LLVM BB %bb.nph
257   //   Predecessors according to CFG: %bb.0 %bb.1
258   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
259   BreakPHIEdge = true;
260   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
261     MachineInstr *UseInst = MO.getParent();
262     unsigned OpNo = &MO - &UseInst->getOperand(0);
263     MachineBasicBlock *UseBlock = UseInst->getParent();
264     if (!(UseBlock == MBB && UseInst->isPHI() &&
265           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
266       BreakPHIEdge = false;
267       break;
268     }
269   }
270   if (BreakPHIEdge)
271     return true;
272 
273   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
274     // Determine the block of the use.
275     MachineInstr *UseInst = MO.getParent();
276     unsigned OpNo = &MO - &UseInst->getOperand(0);
277     MachineBasicBlock *UseBlock = UseInst->getParent();
278     if (UseInst->isPHI()) {
279       // PHI nodes use the operand in the predecessor block, not the block with
280       // the PHI.
281       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
282     } else if (UseBlock == DefMBB) {
283       LocalUse = true;
284       return false;
285     }
286 
287     // Check that it dominates.
288     if (!DT->dominates(MBB, UseBlock))
289       return false;
290   }
291 
292   return true;
293 }
294 
295 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
296   if (skipFunction(MF.getFunction()))
297     return false;
298 
299   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 
301   TII = MF.getSubtarget().getInstrInfo();
302   TRI = MF.getSubtarget().getRegisterInfo();
303   MRI = &MF.getRegInfo();
304   DT = &getAnalysis<MachineDominatorTree>();
305   PDT = &getAnalysis<MachinePostDominatorTree>();
306   LI = &getAnalysis<MachineLoopInfo>();
307   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
308   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
309   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 
311   bool EverMadeChange = false;
312 
313   while (true) {
314     bool MadeChange = false;
315 
316     // Process all basic blocks.
317     CEBCandidates.clear();
318     ToSplit.clear();
319     for (auto &MBB: MF)
320       MadeChange |= ProcessBlock(MBB);
321 
322     // If we have anything we marked as toSplit, split it now.
323     for (auto &Pair : ToSplit) {
324       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
325       if (NewSucc != nullptr) {
326         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
327                           << printMBBReference(*Pair.first) << " -- "
328                           << printMBBReference(*NewSucc) << " -- "
329                           << printMBBReference(*Pair.second) << '\n');
330         MadeChange = true;
331         ++NumSplit;
332       } else
333         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334     }
335     // If this iteration over the code changed anything, keep iterating.
336     if (!MadeChange) break;
337     EverMadeChange = true;
338   }
339 
340   // Now clear any kill flags for recorded registers.
341   for (auto I : RegsToClearKillFlags)
342     MRI->clearKillFlags(I);
343   RegsToClearKillFlags.clear();
344 
345   return EverMadeChange;
346 }
347 
348 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
349   // Can't sink anything out of a block that has less than two successors.
350   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 
352   // Don't bother sinking code out of unreachable blocks. In addition to being
353   // unprofitable, it can also lead to infinite looping, because in an
354   // unreachable loop there may be nowhere to stop.
355   if (!DT->isReachableFromEntry(&MBB)) return false;
356 
357   bool MadeChange = false;
358 
359   // Cache all successors, sorted by frequency info and loop depth.
360   AllSuccsCache AllSuccessors;
361 
362   // Walk the basic block bottom-up.  Remember if we saw a store.
363   MachineBasicBlock::iterator I = MBB.end();
364   --I;
365   bool ProcessedBegin, SawStore = false;
366   do {
367     MachineInstr &MI = *I;  // The instruction to sink.
368 
369     // Predecrement I (if it's not begin) so that it isn't invalidated by
370     // sinking.
371     ProcessedBegin = I == MBB.begin();
372     if (!ProcessedBegin)
373       --I;
374 
375     if (MI.isDebugInstr())
376       continue;
377 
378     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
379     if (Joined) {
380       MadeChange = true;
381       continue;
382     }
383 
384     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
385       ++NumSunk;
386       MadeChange = true;
387     }
388 
389     // If we just processed the first instruction in the block, we're done.
390   } while (!ProcessedBegin);
391 
392   return MadeChange;
393 }
394 
395 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
396                                                  MachineBasicBlock *From,
397                                                  MachineBasicBlock *To) {
398   // FIXME: Need much better heuristics.
399 
400   // If the pass has already considered breaking this edge (during this pass
401   // through the function), then let's go ahead and break it. This means
402   // sinking multiple "cheap" instructions into the same block.
403   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
404     return true;
405 
406   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
407     return true;
408 
409   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
410       BranchProbability(SplitEdgeProbabilityThreshold, 100))
411     return true;
412 
413   // MI is cheap, we probably don't want to break the critical edge for it.
414   // However, if this would allow some definitions of its source operands
415   // to be sunk then it's probably worth it.
416   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
417     const MachineOperand &MO = MI.getOperand(i);
418     if (!MO.isReg() || !MO.isUse())
419       continue;
420     unsigned Reg = MO.getReg();
421     if (Reg == 0)
422       continue;
423 
424     // We don't move live definitions of physical registers,
425     // so sinking their uses won't enable any opportunities.
426     if (TargetRegisterInfo::isPhysicalRegister(Reg))
427       continue;
428 
429     // If this instruction is the only user of a virtual register,
430     // check if breaking the edge will enable sinking
431     // both this instruction and the defining instruction.
432     if (MRI->hasOneNonDBGUse(Reg)) {
433       // If the definition resides in same MBB,
434       // claim it's likely we can sink these together.
435       // If definition resides elsewhere, we aren't
436       // blocking it from being sunk so don't break the edge.
437       MachineInstr *DefMI = MRI->getVRegDef(Reg);
438       if (DefMI->getParent() == MI.getParent())
439         return true;
440     }
441   }
442 
443   return false;
444 }
445 
446 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
447                                                MachineBasicBlock *FromBB,
448                                                MachineBasicBlock *ToBB,
449                                                bool BreakPHIEdge) {
450   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
451     return false;
452 
453   // Avoid breaking back edge. From == To means backedge for single BB loop.
454   if (!SplitEdges || FromBB == ToBB)
455     return false;
456 
457   // Check for backedges of more "complex" loops.
458   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
459       LI->isLoopHeader(ToBB))
460     return false;
461 
462   // It's not always legal to break critical edges and sink the computation
463   // to the edge.
464   //
465   // %bb.1:
466   // v1024
467   // Beq %bb.3
468   // <fallthrough>
469   // %bb.2:
470   // ... no uses of v1024
471   // <fallthrough>
472   // %bb.3:
473   // ...
474   //       = v1024
475   //
476   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477   //
478   // %bb.1:
479   // ...
480   // Bne %bb.2
481   // %bb.4:
482   // v1024 =
483   // B %bb.3
484   // %bb.2:
485   // ... no uses of v1024
486   // <fallthrough>
487   // %bb.3:
488   // ...
489   //       = v1024
490   //
491   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492   // flow. We need to ensure the new basic block where the computation is
493   // sunk to dominates all the uses.
494   // It's only legal to break critical edge and sink the computation to the
495   // new block if all the predecessors of "To", except for "From", are
496   // not dominated by "From". Given SSA property, this means these
497   // predecessors are dominated by "To".
498   //
499   // There is no need to do this check if all the uses are PHI nodes. PHI
500   // sources are only defined on the specific predecessor edges.
501   if (!BreakPHIEdge) {
502     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
503            E = ToBB->pred_end(); PI != E; ++PI) {
504       if (*PI == FromBB)
505         continue;
506       if (!DT->dominates(ToBB, *PI))
507         return false;
508     }
509   }
510 
511   ToSplit.insert(std::make_pair(FromBB, ToBB));
512 
513   return true;
514 }
515 
516 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
517 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
518                                           MachineBasicBlock *MBB,
519                                           MachineBasicBlock *SuccToSinkTo,
520                                           AllSuccsCache &AllSuccessors) {
521   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522 
523   if (MBB == SuccToSinkTo)
524     return false;
525 
526   // It is profitable if SuccToSinkTo does not post dominate current block.
527   if (!PDT->dominates(SuccToSinkTo, MBB))
528     return true;
529 
530   // It is profitable to sink an instruction from a deeper loop to a shallower
531   // loop, even if the latter post-dominates the former (PR21115).
532   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
533     return true;
534 
535   // Check if only use in post dominated block is PHI instruction.
536   bool NonPHIUse = false;
537   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
538     MachineBasicBlock *UseBlock = UseInst.getParent();
539     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
540       NonPHIUse = true;
541   }
542   if (!NonPHIUse)
543     return true;
544 
545   // If SuccToSinkTo post dominates then also it may be profitable if MI
546   // can further profitably sinked into another block in next round.
547   bool BreakPHIEdge = false;
548   // FIXME - If finding successor is compile time expensive then cache results.
549   if (MachineBasicBlock *MBB2 =
550           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
551     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552 
553   // If SuccToSinkTo is final destination and it is a post dominator of current
554   // block then it is not profitable to sink MI into SuccToSinkTo block.
555   return false;
556 }
557 
558 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
559 /// computing it if it was not already cached.
560 SmallVector<MachineBasicBlock *, 4> &
561 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
562                                        AllSuccsCache &AllSuccessors) const {
563   // Do we have the sorted successors in cache ?
564   auto Succs = AllSuccessors.find(MBB);
565   if (Succs != AllSuccessors.end())
566     return Succs->second;
567 
568   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
569                                                MBB->succ_end());
570 
571   // Handle cases where sinking can happen but where the sink point isn't a
572   // successor. For example:
573   //
574   //   x = computation
575   //   if () {} else {}
576   //   use x
577   //
578   const std::vector<MachineDomTreeNode *> &Children =
579     DT->getNode(MBB)->getChildren();
580   for (const auto &DTChild : Children)
581     // DomTree children of MBB that have MBB as immediate dominator are added.
582     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
583         // Skip MBBs already added to the AllSuccs vector above.
584         !MBB->isSuccessor(DTChild->getBlock()))
585       AllSuccs.push_back(DTChild->getBlock());
586 
587   // Sort Successors according to their loop depth or block frequency info.
588   std::stable_sort(
589       AllSuccs.begin(), AllSuccs.end(),
590       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
591         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
592         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
593         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
594         return HasBlockFreq ? LHSFreq < RHSFreq
595                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
596       });
597 
598   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
599 
600   return it.first->second;
601 }
602 
603 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
604 MachineBasicBlock *
605 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
606                                  bool &BreakPHIEdge,
607                                  AllSuccsCache &AllSuccessors) {
608   assert (MBB && "Invalid MachineBasicBlock!");
609 
610   // Loop over all the operands of the specified instruction.  If there is
611   // anything we can't handle, bail out.
612 
613   // SuccToSinkTo - This is the successor to sink this instruction to, once we
614   // decide.
615   MachineBasicBlock *SuccToSinkTo = nullptr;
616   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
617     const MachineOperand &MO = MI.getOperand(i);
618     if (!MO.isReg()) continue;  // Ignore non-register operands.
619 
620     unsigned Reg = MO.getReg();
621     if (Reg == 0) continue;
622 
623     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
624       if (MO.isUse()) {
625         // If the physreg has no defs anywhere, it's just an ambient register
626         // and we can freely move its uses. Alternatively, if it's allocatable,
627         // it could get allocated to something with a def during allocation.
628         if (!MRI->isConstantPhysReg(Reg))
629           return nullptr;
630       } else if (!MO.isDead()) {
631         // A def that isn't dead. We can't move it.
632         return nullptr;
633       }
634     } else {
635       // Virtual register uses are always safe to sink.
636       if (MO.isUse()) continue;
637 
638       // If it's not safe to move defs of the register class, then abort.
639       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
640         return nullptr;
641 
642       // Virtual register defs can only be sunk if all their uses are in blocks
643       // dominated by one of the successors.
644       if (SuccToSinkTo) {
645         // If a previous operand picked a block to sink to, then this operand
646         // must be sinkable to the same block.
647         bool LocalUse = false;
648         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
649                                      BreakPHIEdge, LocalUse))
650           return nullptr;
651 
652         continue;
653       }
654 
655       // Otherwise, we should look at all the successors and decide which one
656       // we should sink to. If we have reliable block frequency information
657       // (frequency != 0) available, give successors with smaller frequencies
658       // higher priority, otherwise prioritize smaller loop depths.
659       for (MachineBasicBlock *SuccBlock :
660            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
661         bool LocalUse = false;
662         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
663                                     BreakPHIEdge, LocalUse)) {
664           SuccToSinkTo = SuccBlock;
665           break;
666         }
667         if (LocalUse)
668           // Def is used locally, it's never safe to move this def.
669           return nullptr;
670       }
671 
672       // If we couldn't find a block to sink to, ignore this instruction.
673       if (!SuccToSinkTo)
674         return nullptr;
675       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
676         return nullptr;
677     }
678   }
679 
680   // It is not possible to sink an instruction into its own block.  This can
681   // happen with loops.
682   if (MBB == SuccToSinkTo)
683     return nullptr;
684 
685   // It's not safe to sink instructions to EH landing pad. Control flow into
686   // landing pad is implicitly defined.
687   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
688     return nullptr;
689 
690   return SuccToSinkTo;
691 }
692 
693 /// Return true if MI is likely to be usable as a memory operation by the
694 /// implicit null check optimization.
695 ///
696 /// This is a "best effort" heuristic, and should not be relied upon for
697 /// correctness.  This returning true does not guarantee that the implicit null
698 /// check optimization is legal over MI, and this returning false does not
699 /// guarantee MI cannot possibly be used to do a null check.
700 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
701                                              const TargetInstrInfo *TII,
702                                              const TargetRegisterInfo *TRI) {
703   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
704 
705   auto *MBB = MI.getParent();
706   if (MBB->pred_size() != 1)
707     return false;
708 
709   auto *PredMBB = *MBB->pred_begin();
710   auto *PredBB = PredMBB->getBasicBlock();
711 
712   // Frontends that don't use implicit null checks have no reason to emit
713   // branches with make.implicit metadata, and this function should always
714   // return false for them.
715   if (!PredBB ||
716       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
717     return false;
718 
719   unsigned BaseReg;
720   int64_t Offset;
721   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
722     return false;
723 
724   if (!(MI.mayLoad() && !MI.isPredicable()))
725     return false;
726 
727   MachineBranchPredicate MBP;
728   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
729     return false;
730 
731   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
732          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
733           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
734          MBP.LHS.getReg() == BaseReg;
735 }
736 
737 /// Sink an instruction and its associated debug instructions. If the debug
738 /// instructions to be sunk are already known, they can be provided in DbgVals.
739 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
740                         MachineBasicBlock::iterator InsertPos,
741                         SmallVectorImpl<MachineInstr *> *DbgVals = nullptr) {
742   // If debug values are provided use those, otherwise call collectDebugValues.
743   SmallVector<MachineInstr *, 2> DbgValuesToSink;
744   if (DbgVals)
745     DbgValuesToSink.insert(DbgValuesToSink.begin(),
746                            DbgVals->begin(), DbgVals->end());
747   else
748     MI.collectDebugValues(DbgValuesToSink);
749 
750   // If we cannot find a location to use (merge with), then we erase the debug
751   // location to prevent debug-info driven tools from potentially reporting
752   // wrong location information.
753   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
754     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
755                                                  InsertPos->getDebugLoc()));
756   else
757     MI.setDebugLoc(DebugLoc());
758 
759   // Move the instruction.
760   MachineBasicBlock *ParentBlock = MI.getParent();
761   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
762                       ++MachineBasicBlock::iterator(MI));
763 
764   // Move previously adjacent debug value instructions to the insert position.
765   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
766                                                  DBE = DbgValuesToSink.end();
767        DBI != DBE; ++DBI) {
768     MachineInstr *DbgMI = *DBI;
769     SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
770                         ++MachineBasicBlock::iterator(DbgMI));
771   }
772 }
773 
774 /// SinkInstruction - Determine whether it is safe to sink the specified machine
775 /// instruction out of its current block into a successor.
776 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
777                                      AllSuccsCache &AllSuccessors) {
778   // Don't sink instructions that the target prefers not to sink.
779   if (!TII->shouldSink(MI))
780     return false;
781 
782   // Check if it's safe to move the instruction.
783   if (!MI.isSafeToMove(AA, SawStore))
784     return false;
785 
786   // Convergent operations may not be made control-dependent on additional
787   // values.
788   if (MI.isConvergent())
789     return false;
790 
791   // Don't break implicit null checks.  This is a performance heuristic, and not
792   // required for correctness.
793   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
794     return false;
795 
796   // FIXME: This should include support for sinking instructions within the
797   // block they are currently in to shorten the live ranges.  We often get
798   // instructions sunk into the top of a large block, but it would be better to
799   // also sink them down before their first use in the block.  This xform has to
800   // be careful not to *increase* register pressure though, e.g. sinking
801   // "x = y + z" down if it kills y and z would increase the live ranges of y
802   // and z and only shrink the live range of x.
803 
804   bool BreakPHIEdge = false;
805   MachineBasicBlock *ParentBlock = MI.getParent();
806   MachineBasicBlock *SuccToSinkTo =
807       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
808 
809   // If there are no outputs, it must have side-effects.
810   if (!SuccToSinkTo)
811     return false;
812 
813   // If the instruction to move defines a dead physical register which is live
814   // when leaving the basic block, don't move it because it could turn into a
815   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
816   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
817     const MachineOperand &MO = MI.getOperand(I);
818     if (!MO.isReg()) continue;
819     unsigned Reg = MO.getReg();
820     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
821     if (SuccToSinkTo->isLiveIn(Reg))
822       return false;
823   }
824 
825   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
826 
827   // If the block has multiple predecessors, this is a critical edge.
828   // Decide if we can sink along it or need to break the edge.
829   if (SuccToSinkTo->pred_size() > 1) {
830     // We cannot sink a load across a critical edge - there may be stores in
831     // other code paths.
832     bool TryBreak = false;
833     bool store = true;
834     if (!MI.isSafeToMove(AA, store)) {
835       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
836       TryBreak = true;
837     }
838 
839     // We don't want to sink across a critical edge if we don't dominate the
840     // successor. We could be introducing calculations to new code paths.
841     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
842       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
843       TryBreak = true;
844     }
845 
846     // Don't sink instructions into a loop.
847     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
848       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
849       TryBreak = true;
850     }
851 
852     // Otherwise we are OK with sinking along a critical edge.
853     if (!TryBreak)
854       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
855     else {
856       // Mark this edge as to be split.
857       // If the edge can actually be split, the next iteration of the main loop
858       // will sink MI in the newly created block.
859       bool Status =
860         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
861       if (!Status)
862         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
863                              "break critical edge\n");
864       // The instruction will not be sunk this time.
865       return false;
866     }
867   }
868 
869   if (BreakPHIEdge) {
870     // BreakPHIEdge is true if all the uses are in the successor MBB being
871     // sunken into and they are all PHI nodes. In this case, machine-sink must
872     // break the critical edge first.
873     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
874                                             SuccToSinkTo, BreakPHIEdge);
875     if (!Status)
876       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
877                            "break critical edge\n");
878     // The instruction will not be sunk this time.
879     return false;
880   }
881 
882   // Determine where to insert into. Skip phi nodes.
883   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
884   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
885     ++InsertPos;
886 
887   performSink(MI, *SuccToSinkTo, InsertPos);
888 
889   // Conservatively, clear any kill flags, since it's possible that they are no
890   // longer correct.
891   // Note that we have to clear the kill flags for any register this instruction
892   // uses as we may sink over another instruction which currently kills the
893   // used registers.
894   for (MachineOperand &MO : MI.operands()) {
895     if (MO.isReg() && MO.isUse())
896       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
897   }
898 
899   return true;
900 }
901 
902 //===----------------------------------------------------------------------===//
903 // This pass is not intended to be a replacement or a complete alternative
904 // for the pre-ra machine sink pass. It is only designed to sink COPY
905 // instructions which should be handled after RA.
906 //
907 // This pass sinks COPY instructions into a successor block, if the COPY is not
908 // used in the current block and the COPY is live-in to a single successor
909 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
910 // copy on paths where their results aren't needed.  This also exposes
911 // additional opportunites for dead copy elimination and shrink wrapping.
912 //
913 // These copies were either not handled by or are inserted after the MachineSink
914 // pass. As an example of the former case, the MachineSink pass cannot sink
915 // COPY instructions with allocatable source registers; for AArch64 these type
916 // of copy instructions are frequently used to move function parameters (PhyReg)
917 // into virtual registers in the entry block.
918 //
919 // For the machine IR below, this pass will sink %w19 in the entry into its
920 // successor (%bb.1) because %w19 is only live-in in %bb.1.
921 // %bb.0:
922 //   %wzr = SUBSWri %w1, 1
923 //   %w19 = COPY %w0
924 //   Bcc 11, %bb.2
925 // %bb.1:
926 //   Live Ins: %w19
927 //   BL @fun
928 //   %w0 = ADDWrr %w0, %w19
929 //   RET %w0
930 // %bb.2:
931 //   %w0 = COPY %wzr
932 //   RET %w0
933 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
934 // able to see %bb.0 as a candidate.
935 //===----------------------------------------------------------------------===//
936 namespace {
937 
938 class PostRAMachineSinking : public MachineFunctionPass {
939 public:
940   bool runOnMachineFunction(MachineFunction &MF) override;
941 
942   static char ID;
943   PostRAMachineSinking() : MachineFunctionPass(ID) {}
944   StringRef getPassName() const override { return "PostRA Machine Sink"; }
945 
946   void getAnalysisUsage(AnalysisUsage &AU) const override {
947     AU.setPreservesCFG();
948     MachineFunctionPass::getAnalysisUsage(AU);
949   }
950 
951   MachineFunctionProperties getRequiredProperties() const override {
952     return MachineFunctionProperties().set(
953         MachineFunctionProperties::Property::NoVRegs);
954   }
955 
956 private:
957   /// Track which register units have been modified and used.
958   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
959 
960   /// Track DBG_VALUEs of (unmodified) register units.
961   DenseMap<unsigned, TinyPtrVector<MachineInstr*>> SeenDbgInstrs;
962 
963   /// Sink Copy instructions unused in the same block close to their uses in
964   /// successors.
965   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
966                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
967 };
968 } // namespace
969 
970 char PostRAMachineSinking::ID = 0;
971 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
972 
973 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
974                 "PostRA Machine Sink", false, false)
975 
976 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
977                                   const TargetRegisterInfo *TRI) {
978   LiveRegUnits LiveInRegUnits(*TRI);
979   LiveInRegUnits.addLiveIns(MBB);
980   return !LiveInRegUnits.available(Reg);
981 }
982 
983 static MachineBasicBlock *
984 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
985                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
986                       unsigned Reg, const TargetRegisterInfo *TRI) {
987   // Try to find a single sinkable successor in which Reg is live-in.
988   MachineBasicBlock *BB = nullptr;
989   for (auto *SI : SinkableBBs) {
990     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
991       // If BB is set here, Reg is live-in to at least two sinkable successors,
992       // so quit.
993       if (BB)
994         return nullptr;
995       BB = SI;
996     }
997   }
998   // Reg is not live-in to any sinkable successors.
999   if (!BB)
1000     return nullptr;
1001 
1002   // Check if any register aliased with Reg is live-in in other successors.
1003   for (auto *SI : CurBB.successors()) {
1004     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1005       return nullptr;
1006   }
1007   return BB;
1008 }
1009 
1010 static MachineBasicBlock *
1011 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1012                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1013                       ArrayRef<unsigned> DefedRegsInCopy,
1014                       const TargetRegisterInfo *TRI) {
1015   MachineBasicBlock *SingleBB = nullptr;
1016   for (auto DefReg : DefedRegsInCopy) {
1017     MachineBasicBlock *BB =
1018         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1019     if (!BB || (SingleBB && SingleBB != BB))
1020       return nullptr;
1021     SingleBB = BB;
1022   }
1023   return SingleBB;
1024 }
1025 
1026 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1027                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1028                            LiveRegUnits &UsedRegUnits,
1029                            const TargetRegisterInfo *TRI) {
1030   for (auto U : UsedOpsInCopy) {
1031     MachineOperand &MO = MI->getOperand(U);
1032     unsigned SrcReg = MO.getReg();
1033     if (!UsedRegUnits.available(SrcReg)) {
1034       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1035       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1036         if (UI.killsRegister(SrcReg, TRI)) {
1037           UI.clearRegisterKills(SrcReg, TRI);
1038           MO.setIsKill(true);
1039           break;
1040         }
1041       }
1042     }
1043   }
1044 }
1045 
1046 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1047                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1048                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1049   MachineFunction &MF = *SuccBB->getParent();
1050   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1051   for (unsigned DefReg : DefedRegsInCopy)
1052     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1053       SuccBB->removeLiveIn(*S);
1054   for (auto U : UsedOpsInCopy) {
1055     unsigned Reg = MI->getOperand(U).getReg();
1056     if (!SuccBB->isLiveIn(Reg))
1057       SuccBB->addLiveIn(Reg);
1058   }
1059 }
1060 
1061 static bool hasRegisterDependency(MachineInstr *MI,
1062                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1063                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1064                                   LiveRegUnits &ModifiedRegUnits,
1065                                   LiveRegUnits &UsedRegUnits) {
1066   bool HasRegDependency = false;
1067   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1068     MachineOperand &MO = MI->getOperand(i);
1069     if (!MO.isReg())
1070       continue;
1071     unsigned Reg = MO.getReg();
1072     if (!Reg)
1073       continue;
1074     if (MO.isDef()) {
1075       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1076         HasRegDependency = true;
1077         break;
1078       }
1079       DefedRegsInCopy.push_back(Reg);
1080 
1081       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1082       // For example, we can ignore modifications in reg with undef. However,
1083       // it's not perfectly clear if skipping the internal read is safe in all
1084       // other targets.
1085     } else if (MO.isUse()) {
1086       if (!ModifiedRegUnits.available(Reg)) {
1087         HasRegDependency = true;
1088         break;
1089       }
1090       UsedOpsInCopy.push_back(i);
1091     }
1092   }
1093   return HasRegDependency;
1094 }
1095 
1096 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1097                                          MachineFunction &MF,
1098                                          const TargetRegisterInfo *TRI,
1099                                          const TargetInstrInfo *TII) {
1100   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1101   // FIXME: For now, we sink only to a successor which has a single predecessor
1102   // so that we can directly sink COPY instructions to the successor without
1103   // adding any new block or branch instruction.
1104   for (MachineBasicBlock *SI : CurBB.successors())
1105     if (!SI->livein_empty() && SI->pred_size() == 1)
1106       SinkableBBs.insert(SI);
1107 
1108   if (SinkableBBs.empty())
1109     return false;
1110 
1111   bool Changed = false;
1112 
1113   // Track which registers have been modified and used between the end of the
1114   // block and the current instruction.
1115   ModifiedRegUnits.clear();
1116   UsedRegUnits.clear();
1117   SeenDbgInstrs.clear();
1118 
1119   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1120     MachineInstr *MI = &*I;
1121     ++I;
1122 
1123     // Track the operand index for use in Copy.
1124     SmallVector<unsigned, 2> UsedOpsInCopy;
1125     // Track the register number defed in Copy.
1126     SmallVector<unsigned, 2> DefedRegsInCopy;
1127 
1128     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1129     // for DBG_VALUEs later, record them when they're encountered.
1130     if (MI->isDebugValue()) {
1131       auto &MO = MI->getOperand(0);
1132       if (MO.isReg() && TRI->isPhysicalRegister(MO.getReg())) {
1133         // Bail if we can already tell the sink would be rejected, rather
1134         // than needlessly accumulating lots of DBG_VALUEs.
1135         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1136                                   ModifiedRegUnits, UsedRegUnits))
1137           continue;
1138 
1139         // Record debug use of this register.
1140         SeenDbgInstrs[MO.getReg()].push_back(MI);
1141       }
1142       continue;
1143     }
1144 
1145     if (MI->isDebugInstr())
1146       continue;
1147 
1148     // Do not move any instruction across function call.
1149     if (MI->isCall())
1150       return false;
1151 
1152     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1153       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1154                                         TRI);
1155       continue;
1156     }
1157 
1158     // Don't sink the COPY if it would violate a register dependency.
1159     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1160                               ModifiedRegUnits, UsedRegUnits)) {
1161       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1162                                         TRI);
1163       continue;
1164     }
1165     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1166            "Unexpect SrcReg or DefReg");
1167     MachineBasicBlock *SuccBB =
1168         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1169     // Don't sink if we cannot find a single sinkable successor in which Reg
1170     // is live-in.
1171     if (!SuccBB) {
1172       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1173                                         TRI);
1174       continue;
1175     }
1176     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1177            "Unexpected predecessor");
1178 
1179     // Collect DBG_VALUEs that must sink with this copy.
1180     SmallVector<MachineInstr *, 4> DbgValsToSink;
1181     for (auto &MO : MI->operands()) {
1182       if (!MO.isReg() || !MO.isDef())
1183         continue;
1184       unsigned reg = MO.getReg();
1185       for (auto *MI : SeenDbgInstrs.lookup(reg))
1186         DbgValsToSink.push_back(MI);
1187     }
1188 
1189     // Clear the kill flag if SrcReg is killed between MI and the end of the
1190     // block.
1191     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1192     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1193     performSink(*MI, *SuccBB, InsertPos, &DbgValsToSink);
1194     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1195 
1196     Changed = true;
1197     ++NumPostRACopySink;
1198   }
1199   return Changed;
1200 }
1201 
1202 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1203   bool Changed = false;
1204   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1205   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1206 
1207   ModifiedRegUnits.init(*TRI);
1208   UsedRegUnits.init(*TRI);
1209   for (auto &BB : MF)
1210     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1211 
1212   return Changed;
1213 }
1214