xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision c8f6c0f961eed1301b33b8af53d075542f7723c8)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/PointerIntPair.h"
20 #include "llvm/ADT/SetVector.h"
21 #include "llvm/ADT/SmallSet.h"
22 #include "llvm/ADT/SmallVector.h"
23 #include "llvm/ADT/SparseBitVector.h"
24 #include "llvm/ADT/Statistic.h"
25 #include "llvm/Analysis/AliasAnalysis.h"
26 #include "llvm/CodeGen/MachineBasicBlock.h"
27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
29 #include "llvm/CodeGen/MachineDominators.h"
30 #include "llvm/CodeGen/MachineFunction.h"
31 #include "llvm/CodeGen/MachineFunctionPass.h"
32 #include "llvm/CodeGen/MachineInstr.h"
33 #include "llvm/CodeGen/MachineLoopInfo.h"
34 #include "llvm/CodeGen/MachineOperand.h"
35 #include "llvm/CodeGen/MachinePostDominators.h"
36 #include "llvm/CodeGen/MachineRegisterInfo.h"
37 #include "llvm/CodeGen/TargetInstrInfo.h"
38 #include "llvm/CodeGen/TargetRegisterInfo.h"
39 #include "llvm/CodeGen/TargetSubtargetInfo.h"
40 #include "llvm/IR/BasicBlock.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/IR/LLVMContext.h"
43 #include "llvm/InitializePasses.h"
44 #include "llvm/MC/MCRegisterInfo.h"
45 #include "llvm/Pass.h"
46 #include "llvm/Support/BranchProbability.h"
47 #include "llvm/Support/CommandLine.h"
48 #include "llvm/Support/Debug.h"
49 #include "llvm/Support/raw_ostream.h"
50 #include <algorithm>
51 #include <cassert>
52 #include <cstdint>
53 #include <map>
54 #include <utility>
55 #include <vector>
56 
57 using namespace llvm;
58 
59 #define DEBUG_TYPE "machine-sink"
60 
61 static cl::opt<bool>
62 SplitEdges("machine-sink-split",
63            cl::desc("Split critical edges during machine sinking"),
64            cl::init(true), cl::Hidden);
65 
66 static cl::opt<bool>
67 UseBlockFreqInfo("machine-sink-bfi",
68            cl::desc("Use block frequency info to find successors to sink"),
69            cl::init(true), cl::Hidden);
70 
71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
72     "machine-sink-split-probability-threshold",
73     cl::desc(
74         "Percentage threshold for splitting single-instruction critical edge. "
75         "If the branch threshold is higher than this threshold, we allow "
76         "speculative execution of up to 1 instruction to avoid branching to "
77         "splitted critical edge"),
78     cl::init(40), cl::Hidden);
79 
80 STATISTIC(NumSunk,      "Number of machine instructions sunk");
81 STATISTIC(NumSplit,     "Number of critical edges split");
82 STATISTIC(NumCoalesces, "Number of copies coalesced");
83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
84 
85 namespace {
86 
87   class MachineSinking : public MachineFunctionPass {
88     const TargetInstrInfo *TII;
89     const TargetRegisterInfo *TRI;
90     MachineRegisterInfo  *MRI;     // Machine register information
91     MachineDominatorTree *DT;      // Machine dominator tree
92     MachinePostDominatorTree *PDT; // Machine post dominator tree
93     MachineLoopInfo *LI;
94     MachineBlockFrequencyInfo *MBFI;
95     const MachineBranchProbabilityInfo *MBPI;
96     AliasAnalysis *AA;
97 
98     // Remember which edges have been considered for breaking.
99     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
100     CEBCandidates;
101     // Remember which edges we are about to split.
102     // This is different from CEBCandidates since those edges
103     // will be split.
104     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
105 
106     SparseBitVector<> RegsToClearKillFlags;
107 
108     using AllSuccsCache =
109         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
110 
111     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
112     /// post-dominated by another DBG_VALUE of the same variable location.
113     /// This is necessary to detect sequences such as:
114     ///     %0 = someinst
115     ///     DBG_VALUE %0, !123, !DIExpression()
116     ///     %1 = anotherinst
117     ///     DBG_VALUE %1, !123, !DIExpression()
118     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
119     /// would re-order assignments.
120     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
121 
122     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
123     /// debug instructions to sink.
124     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
125 
126     /// Record of debug variables that have had their locations set in the
127     /// current block.
128     DenseSet<DebugVariable> SeenDbgVars;
129 
130   public:
131     static char ID; // Pass identification
132 
133     MachineSinking() : MachineFunctionPass(ID) {
134       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
135     }
136 
137     bool runOnMachineFunction(MachineFunction &MF) override;
138 
139     void getAnalysisUsage(AnalysisUsage &AU) const override {
140       MachineFunctionPass::getAnalysisUsage(AU);
141       AU.addRequired<AAResultsWrapperPass>();
142       AU.addRequired<MachineDominatorTree>();
143       AU.addRequired<MachinePostDominatorTree>();
144       AU.addRequired<MachineLoopInfo>();
145       AU.addRequired<MachineBranchProbabilityInfo>();
146       AU.addPreserved<MachineLoopInfo>();
147       if (UseBlockFreqInfo)
148         AU.addRequired<MachineBlockFrequencyInfo>();
149     }
150 
151     void releaseMemory() override {
152       CEBCandidates.clear();
153     }
154 
155   private:
156     bool ProcessBlock(MachineBasicBlock &MBB);
157     void ProcessDbgInst(MachineInstr &MI);
158     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
159                                      MachineBasicBlock *From,
160                                      MachineBasicBlock *To);
161 
162     /// Postpone the splitting of the given critical
163     /// edge (\p From, \p To).
164     ///
165     /// We do not split the edges on the fly. Indeed, this invalidates
166     /// the dominance information and thus triggers a lot of updates
167     /// of that information underneath.
168     /// Instead, we postpone all the splits after each iteration of
169     /// the main loop. That way, the information is at least valid
170     /// for the lifetime of an iteration.
171     ///
172     /// \return True if the edge is marked as toSplit, false otherwise.
173     /// False can be returned if, for instance, this is not profitable.
174     bool PostponeSplitCriticalEdge(MachineInstr &MI,
175                                    MachineBasicBlock *From,
176                                    MachineBasicBlock *To,
177                                    bool BreakPHIEdge);
178     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
179                          AllSuccsCache &AllSuccessors);
180 
181     /// If we sink a COPY inst, some debug users of it's destination may no
182     /// longer be dominated by the COPY, and will eventually be dropped.
183     /// This is easily rectified by forwarding the non-dominated debug uses
184     /// to the copy source.
185     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
186                                        MachineBasicBlock *TargetBlock);
187     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
188                                  MachineBasicBlock *DefMBB,
189                                  bool &BreakPHIEdge, bool &LocalUse) const;
190     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
191                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
192     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
193                               MachineBasicBlock *MBB,
194                               MachineBasicBlock *SuccToSinkTo,
195                               AllSuccsCache &AllSuccessors);
196 
197     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
198                                          MachineBasicBlock *MBB);
199 
200     SmallVector<MachineBasicBlock *, 4> &
201     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
202                            AllSuccsCache &AllSuccessors) const;
203   };
204 
205 } // end anonymous namespace
206 
207 char MachineSinking::ID = 0;
208 
209 char &llvm::MachineSinkingID = MachineSinking::ID;
210 
211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
212                       "Machine code sinking", false, false)
213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
218                     "Machine code sinking", false, false)
219 
220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
221                                                      MachineBasicBlock *MBB) {
222   if (!MI.isCopy())
223     return false;
224 
225   Register SrcReg = MI.getOperand(1).getReg();
226   Register DstReg = MI.getOperand(0).getReg();
227   if (!Register::isVirtualRegister(SrcReg) ||
228       !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg))
229     return false;
230 
231   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
232   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
233   if (SRC != DRC)
234     return false;
235 
236   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
237   if (DefMI->isCopyLike())
238     return false;
239   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
240   LLVM_DEBUG(dbgs() << "*** to: " << MI);
241   MRI->replaceRegWith(DstReg, SrcReg);
242   MI.eraseFromParent();
243 
244   // Conservatively, clear any kill flags, since it's possible that they are no
245   // longer correct.
246   MRI->clearKillFlags(SrcReg);
247 
248   ++NumCoalesces;
249   return true;
250 }
251 
252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
253 /// occur in blocks dominated by the specified block. If any use is in the
254 /// definition block, then return false since it is never legal to move def
255 /// after uses.
256 bool
257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
258                                         MachineBasicBlock *MBB,
259                                         MachineBasicBlock *DefMBB,
260                                         bool &BreakPHIEdge,
261                                         bool &LocalUse) const {
262   assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs");
263 
264   // Ignore debug uses because debug info doesn't affect the code.
265   if (MRI->use_nodbg_empty(Reg))
266     return true;
267 
268   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
269   // into and they are all PHI nodes. In this case, machine-sink must break
270   // the critical edge first. e.g.
271   //
272   // %bb.1:
273   //   Predecessors according to CFG: %bb.0
274   //     ...
275   //     %def = DEC64_32r %x, implicit-def dead %eflags
276   //     ...
277   //     JE_4 <%bb.37>, implicit %eflags
278   //   Successors according to CFG: %bb.37 %bb.2
279   //
280   // %bb.2:
281   //     %p = PHI %y, %bb.0, %def, %bb.1
282   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
283         MachineInstr *UseInst = MO.getParent();
284         unsigned OpNo = UseInst->getOperandNo(&MO);
285         MachineBasicBlock *UseBlock = UseInst->getParent();
286         return UseBlock == MBB && UseInst->isPHI() &&
287                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
288       })) {
289     BreakPHIEdge = true;
290     return true;
291   }
292 
293   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
294     // Determine the block of the use.
295     MachineInstr *UseInst = MO.getParent();
296     unsigned OpNo = &MO - &UseInst->getOperand(0);
297     MachineBasicBlock *UseBlock = UseInst->getParent();
298     if (UseInst->isPHI()) {
299       // PHI nodes use the operand in the predecessor block, not the block with
300       // the PHI.
301       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
302     } else if (UseBlock == DefMBB) {
303       LocalUse = true;
304       return false;
305     }
306 
307     // Check that it dominates.
308     if (!DT->dominates(MBB, UseBlock))
309       return false;
310   }
311 
312   return true;
313 }
314 
315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
316   if (skipFunction(MF.getFunction()))
317     return false;
318 
319   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
320 
321   TII = MF.getSubtarget().getInstrInfo();
322   TRI = MF.getSubtarget().getRegisterInfo();
323   MRI = &MF.getRegInfo();
324   DT = &getAnalysis<MachineDominatorTree>();
325   PDT = &getAnalysis<MachinePostDominatorTree>();
326   LI = &getAnalysis<MachineLoopInfo>();
327   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
328   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
329   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
330 
331   bool EverMadeChange = false;
332 
333   while (true) {
334     bool MadeChange = false;
335 
336     // Process all basic blocks.
337     CEBCandidates.clear();
338     ToSplit.clear();
339     for (auto &MBB: MF)
340       MadeChange |= ProcessBlock(MBB);
341 
342     // If we have anything we marked as toSplit, split it now.
343     for (auto &Pair : ToSplit) {
344       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
345       if (NewSucc != nullptr) {
346         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
347                           << printMBBReference(*Pair.first) << " -- "
348                           << printMBBReference(*NewSucc) << " -- "
349                           << printMBBReference(*Pair.second) << '\n');
350         if (MBFI)
351           MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
352 
353         MadeChange = true;
354         ++NumSplit;
355       } else
356         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
357     }
358     // If this iteration over the code changed anything, keep iterating.
359     if (!MadeChange) break;
360     EverMadeChange = true;
361   }
362 
363   // Now clear any kill flags for recorded registers.
364   for (auto I : RegsToClearKillFlags)
365     MRI->clearKillFlags(I);
366   RegsToClearKillFlags.clear();
367 
368   return EverMadeChange;
369 }
370 
371 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
372   // Can't sink anything out of a block that has less than two successors.
373   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
374 
375   // Don't bother sinking code out of unreachable blocks. In addition to being
376   // unprofitable, it can also lead to infinite looping, because in an
377   // unreachable loop there may be nowhere to stop.
378   if (!DT->isReachableFromEntry(&MBB)) return false;
379 
380   bool MadeChange = false;
381 
382   // Cache all successors, sorted by frequency info and loop depth.
383   AllSuccsCache AllSuccessors;
384 
385   // Walk the basic block bottom-up.  Remember if we saw a store.
386   MachineBasicBlock::iterator I = MBB.end();
387   --I;
388   bool ProcessedBegin, SawStore = false;
389   do {
390     MachineInstr &MI = *I;  // The instruction to sink.
391 
392     // Predecrement I (if it's not begin) so that it isn't invalidated by
393     // sinking.
394     ProcessedBegin = I == MBB.begin();
395     if (!ProcessedBegin)
396       --I;
397 
398     if (MI.isDebugInstr()) {
399       if (MI.isDebugValue())
400         ProcessDbgInst(MI);
401       continue;
402     }
403 
404     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
405     if (Joined) {
406       MadeChange = true;
407       continue;
408     }
409 
410     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
411       ++NumSunk;
412       MadeChange = true;
413     }
414 
415     // If we just processed the first instruction in the block, we're done.
416   } while (!ProcessedBegin);
417 
418   SeenDbgUsers.clear();
419   SeenDbgVars.clear();
420 
421   return MadeChange;
422 }
423 
424 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
425   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
426   // we know what to sink if the vreg def sinks.
427   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
428 
429   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
430                     MI.getDebugLoc()->getInlinedAt());
431   bool SeenBefore = SeenDbgVars.count(Var) != 0;
432 
433   MachineOperand &MO = MI.getDebugOperand(0);
434   if (MO.isReg() && MO.getReg().isVirtual())
435     SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
436 
437   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
438   SeenDbgVars.insert(Var);
439 }
440 
441 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
442                                                  MachineBasicBlock *From,
443                                                  MachineBasicBlock *To) {
444   // FIXME: Need much better heuristics.
445 
446   // If the pass has already considered breaking this edge (during this pass
447   // through the function), then let's go ahead and break it. This means
448   // sinking multiple "cheap" instructions into the same block.
449   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
450     return true;
451 
452   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
453     return true;
454 
455   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
456       BranchProbability(SplitEdgeProbabilityThreshold, 100))
457     return true;
458 
459   // MI is cheap, we probably don't want to break the critical edge for it.
460   // However, if this would allow some definitions of its source operands
461   // to be sunk then it's probably worth it.
462   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
463     const MachineOperand &MO = MI.getOperand(i);
464     if (!MO.isReg() || !MO.isUse())
465       continue;
466     Register Reg = MO.getReg();
467     if (Reg == 0)
468       continue;
469 
470     // We don't move live definitions of physical registers,
471     // so sinking their uses won't enable any opportunities.
472     if (Register::isPhysicalRegister(Reg))
473       continue;
474 
475     // If this instruction is the only user of a virtual register,
476     // check if breaking the edge will enable sinking
477     // both this instruction and the defining instruction.
478     if (MRI->hasOneNonDBGUse(Reg)) {
479       // If the definition resides in same MBB,
480       // claim it's likely we can sink these together.
481       // If definition resides elsewhere, we aren't
482       // blocking it from being sunk so don't break the edge.
483       MachineInstr *DefMI = MRI->getVRegDef(Reg);
484       if (DefMI->getParent() == MI.getParent())
485         return true;
486     }
487   }
488 
489   return false;
490 }
491 
492 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
493                                                MachineBasicBlock *FromBB,
494                                                MachineBasicBlock *ToBB,
495                                                bool BreakPHIEdge) {
496   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
497     return false;
498 
499   // Avoid breaking back edge. From == To means backedge for single BB loop.
500   if (!SplitEdges || FromBB == ToBB)
501     return false;
502 
503   // Check for backedges of more "complex" loops.
504   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
505       LI->isLoopHeader(ToBB))
506     return false;
507 
508   // It's not always legal to break critical edges and sink the computation
509   // to the edge.
510   //
511   // %bb.1:
512   // v1024
513   // Beq %bb.3
514   // <fallthrough>
515   // %bb.2:
516   // ... no uses of v1024
517   // <fallthrough>
518   // %bb.3:
519   // ...
520   //       = v1024
521   //
522   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
523   //
524   // %bb.1:
525   // ...
526   // Bne %bb.2
527   // %bb.4:
528   // v1024 =
529   // B %bb.3
530   // %bb.2:
531   // ... no uses of v1024
532   // <fallthrough>
533   // %bb.3:
534   // ...
535   //       = v1024
536   //
537   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
538   // flow. We need to ensure the new basic block where the computation is
539   // sunk to dominates all the uses.
540   // It's only legal to break critical edge and sink the computation to the
541   // new block if all the predecessors of "To", except for "From", are
542   // not dominated by "From". Given SSA property, this means these
543   // predecessors are dominated by "To".
544   //
545   // There is no need to do this check if all the uses are PHI nodes. PHI
546   // sources are only defined on the specific predecessor edges.
547   if (!BreakPHIEdge) {
548     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
549            E = ToBB->pred_end(); PI != E; ++PI) {
550       if (*PI == FromBB)
551         continue;
552       if (!DT->dominates(ToBB, *PI))
553         return false;
554     }
555   }
556 
557   ToSplit.insert(std::make_pair(FromBB, ToBB));
558 
559   return true;
560 }
561 
562 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
563 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
564                                           MachineBasicBlock *MBB,
565                                           MachineBasicBlock *SuccToSinkTo,
566                                           AllSuccsCache &AllSuccessors) {
567   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
568 
569   if (MBB == SuccToSinkTo)
570     return false;
571 
572   // It is profitable if SuccToSinkTo does not post dominate current block.
573   if (!PDT->dominates(SuccToSinkTo, MBB))
574     return true;
575 
576   // It is profitable to sink an instruction from a deeper loop to a shallower
577   // loop, even if the latter post-dominates the former (PR21115).
578   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
579     return true;
580 
581   // Check if only use in post dominated block is PHI instruction.
582   bool NonPHIUse = false;
583   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
584     MachineBasicBlock *UseBlock = UseInst.getParent();
585     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
586       NonPHIUse = true;
587   }
588   if (!NonPHIUse)
589     return true;
590 
591   // If SuccToSinkTo post dominates then also it may be profitable if MI
592   // can further profitably sinked into another block in next round.
593   bool BreakPHIEdge = false;
594   // FIXME - If finding successor is compile time expensive then cache results.
595   if (MachineBasicBlock *MBB2 =
596           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
597     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
598 
599   MachineLoop *ML = LI->getLoopFor(MBB);
600 
601   // If the instruction is not inside a loop, it is not profitable to sink MI to
602   // a post dominate block SuccToSinkTo.
603   if (!ML)
604     return false;
605 
606   // If this instruction is inside a loop and sinking this instruction can make
607   // more registers live range shorten, it is still prifitable.
608   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
609     const MachineOperand &MO = MI.getOperand(i);
610     // Ignore non-register operands.
611     if (!MO.isReg())
612       continue;
613     Register Reg = MO.getReg();
614     if (Reg == 0)
615       continue;
616 
617     // Don't handle physical register.
618     if (Register::isPhysicalRegister(Reg))
619       return false;
620 
621     // Users for the defs are all dominated by SuccToSinkTo.
622     if (MO.isDef()) {
623       // This def register's live range is shortened after sinking.
624       bool LocalUse = false;
625       if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
626                                    LocalUse))
627         return false;
628     } else {
629       MachineInstr *DefMI = MRI->getVRegDef(Reg);
630       // DefMI is defined outside of loop. There should be no live range
631       // impact for this operand. Defination outside of loop means:
632       // 1: defination is outside of loop.
633       // 2: defination is in this loop, but it is a PHI in the loop header.
634       if (LI->getLoopFor(DefMI->getParent()) != ML ||
635           (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent())))
636         continue;
637       // DefMI is inside the loop. Mark it as not profitable as sinking MI will
638       // enlarge DefMI live range.
639       // FIXME: check the register pressure in block SuccToSinkTo, if it is
640       // smaller than the limit after sinking, it is still profitable to sink.
641       return false;
642     }
643   }
644 
645   // If MI is in loop and all its operands are alive across the whole loop, it
646   // is profitable to sink MI.
647   return true;
648 }
649 
650 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
651 /// computing it if it was not already cached.
652 SmallVector<MachineBasicBlock *, 4> &
653 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
654                                        AllSuccsCache &AllSuccessors) const {
655   // Do we have the sorted successors in cache ?
656   auto Succs = AllSuccessors.find(MBB);
657   if (Succs != AllSuccessors.end())
658     return Succs->second;
659 
660   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
661                                                MBB->succ_end());
662 
663   // Handle cases where sinking can happen but where the sink point isn't a
664   // successor. For example:
665   //
666   //   x = computation
667   //   if () {} else {}
668   //   use x
669   //
670   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
671     // DomTree children of MBB that have MBB as immediate dominator are added.
672     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
673         // Skip MBBs already added to the AllSuccs vector above.
674         !MBB->isSuccessor(DTChild->getBlock()))
675       AllSuccs.push_back(DTChild->getBlock());
676   }
677 
678   // Sort Successors according to their loop depth or block frequency info.
679   llvm::stable_sort(
680       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
681         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
682         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
683         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
684         return HasBlockFreq ? LHSFreq < RHSFreq
685                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
686       });
687 
688   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
689 
690   return it.first->second;
691 }
692 
693 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
694 MachineBasicBlock *
695 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
696                                  bool &BreakPHIEdge,
697                                  AllSuccsCache &AllSuccessors) {
698   assert (MBB && "Invalid MachineBasicBlock!");
699 
700   // Loop over all the operands of the specified instruction.  If there is
701   // anything we can't handle, bail out.
702 
703   // SuccToSinkTo - This is the successor to sink this instruction to, once we
704   // decide.
705   MachineBasicBlock *SuccToSinkTo = nullptr;
706   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
707     const MachineOperand &MO = MI.getOperand(i);
708     if (!MO.isReg()) continue;  // Ignore non-register operands.
709 
710     Register Reg = MO.getReg();
711     if (Reg == 0) continue;
712 
713     if (Register::isPhysicalRegister(Reg)) {
714       if (MO.isUse()) {
715         // If the physreg has no defs anywhere, it's just an ambient register
716         // and we can freely move its uses. Alternatively, if it's allocatable,
717         // it could get allocated to something with a def during allocation.
718         if (!MRI->isConstantPhysReg(Reg))
719           return nullptr;
720       } else if (!MO.isDead()) {
721         // A def that isn't dead. We can't move it.
722         return nullptr;
723       }
724     } else {
725       // Virtual register uses are always safe to sink.
726       if (MO.isUse()) continue;
727 
728       // If it's not safe to move defs of the register class, then abort.
729       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
730         return nullptr;
731 
732       // Virtual register defs can only be sunk if all their uses are in blocks
733       // dominated by one of the successors.
734       if (SuccToSinkTo) {
735         // If a previous operand picked a block to sink to, then this operand
736         // must be sinkable to the same block.
737         bool LocalUse = false;
738         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
739                                      BreakPHIEdge, LocalUse))
740           return nullptr;
741 
742         continue;
743       }
744 
745       // Otherwise, we should look at all the successors and decide which one
746       // we should sink to. If we have reliable block frequency information
747       // (frequency != 0) available, give successors with smaller frequencies
748       // higher priority, otherwise prioritize smaller loop depths.
749       for (MachineBasicBlock *SuccBlock :
750            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
751         bool LocalUse = false;
752         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
753                                     BreakPHIEdge, LocalUse)) {
754           SuccToSinkTo = SuccBlock;
755           break;
756         }
757         if (LocalUse)
758           // Def is used locally, it's never safe to move this def.
759           return nullptr;
760       }
761 
762       // If we couldn't find a block to sink to, ignore this instruction.
763       if (!SuccToSinkTo)
764         return nullptr;
765       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
766         return nullptr;
767     }
768   }
769 
770   // It is not possible to sink an instruction into its own block.  This can
771   // happen with loops.
772   if (MBB == SuccToSinkTo)
773     return nullptr;
774 
775   // It's not safe to sink instructions to EH landing pad. Control flow into
776   // landing pad is implicitly defined.
777   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
778     return nullptr;
779 
780   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
781   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
782   // the source block (which this code does not yet do). So for now, forbid
783   // doing so.
784   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
785     return nullptr;
786 
787   return SuccToSinkTo;
788 }
789 
790 /// Return true if MI is likely to be usable as a memory operation by the
791 /// implicit null check optimization.
792 ///
793 /// This is a "best effort" heuristic, and should not be relied upon for
794 /// correctness.  This returning true does not guarantee that the implicit null
795 /// check optimization is legal over MI, and this returning false does not
796 /// guarantee MI cannot possibly be used to do a null check.
797 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
798                                              const TargetInstrInfo *TII,
799                                              const TargetRegisterInfo *TRI) {
800   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
801 
802   auto *MBB = MI.getParent();
803   if (MBB->pred_size() != 1)
804     return false;
805 
806   auto *PredMBB = *MBB->pred_begin();
807   auto *PredBB = PredMBB->getBasicBlock();
808 
809   // Frontends that don't use implicit null checks have no reason to emit
810   // branches with make.implicit metadata, and this function should always
811   // return false for them.
812   if (!PredBB ||
813       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
814     return false;
815 
816   const MachineOperand *BaseOp;
817   int64_t Offset;
818   bool OffsetIsScalable;
819   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
820     return false;
821 
822   if (!BaseOp->isReg())
823     return false;
824 
825   if (!(MI.mayLoad() && !MI.isPredicable()))
826     return false;
827 
828   MachineBranchPredicate MBP;
829   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
830     return false;
831 
832   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
833          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
834           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
835          MBP.LHS.getReg() == BaseOp->getReg();
836 }
837 
838 /// If the sunk instruction is a copy, try to forward the copy instead of
839 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
840 /// there's any subregister weirdness involved. Returns true if copy
841 /// propagation occurred.
842 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) {
843   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
844   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
845 
846   // Copy DBG_VALUE operand and set the original to undef. We then check to
847   // see whether this is something that can be copy-forwarded. If it isn't,
848   // continue around the loop.
849   MachineOperand &DbgMO = DbgMI.getDebugOperand(0);
850 
851   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
852   auto CopyOperands = TII.isCopyInstr(SinkInst);
853   if (!CopyOperands)
854     return false;
855   SrcMO = CopyOperands->Source;
856   DstMO = CopyOperands->Destination;
857 
858   // Check validity of forwarding this copy.
859   bool PostRA = MRI.getNumVirtRegs() == 0;
860 
861   // Trying to forward between physical and virtual registers is too hard.
862   if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual())
863     return false;
864 
865   // Only try virtual register copy-forwarding before regalloc, and physical
866   // register copy-forwarding after regalloc.
867   bool arePhysRegs = !DbgMO.getReg().isVirtual();
868   if (arePhysRegs != PostRA)
869     return false;
870 
871   // Pre-regalloc, only forward if all subregisters agree (or there are no
872   // subregs at all). More analysis might recover some forwardable copies.
873   if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() ||
874                   DbgMO.getSubReg() != DstMO->getSubReg()))
875     return false;
876 
877   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
878   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
879   // matches the copy destination.
880   if (PostRA && DbgMO.getReg() != DstMO->getReg())
881     return false;
882 
883   DbgMO.setReg(SrcMO->getReg());
884   DbgMO.setSubReg(SrcMO->getSubReg());
885   return true;
886 }
887 
888 /// Sink an instruction and its associated debug instructions.
889 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
890                         MachineBasicBlock::iterator InsertPos,
891                         SmallVectorImpl<MachineInstr *> &DbgValuesToSink) {
892 
893   // If we cannot find a location to use (merge with), then we erase the debug
894   // location to prevent debug-info driven tools from potentially reporting
895   // wrong location information.
896   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
897     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
898                                                  InsertPos->getDebugLoc()));
899   else
900     MI.setDebugLoc(DebugLoc());
901 
902   // Move the instruction.
903   MachineBasicBlock *ParentBlock = MI.getParent();
904   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
905                       ++MachineBasicBlock::iterator(MI));
906 
907   // Sink a copy of debug users to the insert position. Mark the original
908   // DBG_VALUE location as 'undef', indicating that any earlier variable
909   // location should be terminated as we've optimised away the value at this
910   // point.
911   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
912                                                  DBE = DbgValuesToSink.end();
913        DBI != DBE; ++DBI) {
914     MachineInstr *DbgMI = *DBI;
915     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI);
916     SuccToSinkTo.insert(InsertPos, NewDbgMI);
917 
918     if (!attemptDebugCopyProp(MI, *DbgMI))
919       DbgMI->setDebugValueUndef();
920   }
921 }
922 
923 /// SinkInstruction - Determine whether it is safe to sink the specified machine
924 /// instruction out of its current block into a successor.
925 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
926                                      AllSuccsCache &AllSuccessors) {
927   // Don't sink instructions that the target prefers not to sink.
928   if (!TII->shouldSink(MI))
929     return false;
930 
931   // Check if it's safe to move the instruction.
932   if (!MI.isSafeToMove(AA, SawStore))
933     return false;
934 
935   // Convergent operations may not be made control-dependent on additional
936   // values.
937   if (MI.isConvergent())
938     return false;
939 
940   // Don't break implicit null checks.  This is a performance heuristic, and not
941   // required for correctness.
942   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
943     return false;
944 
945   // FIXME: This should include support for sinking instructions within the
946   // block they are currently in to shorten the live ranges.  We often get
947   // instructions sunk into the top of a large block, but it would be better to
948   // also sink them down before their first use in the block.  This xform has to
949   // be careful not to *increase* register pressure though, e.g. sinking
950   // "x = y + z" down if it kills y and z would increase the live ranges of y
951   // and z and only shrink the live range of x.
952 
953   bool BreakPHIEdge = false;
954   MachineBasicBlock *ParentBlock = MI.getParent();
955   MachineBasicBlock *SuccToSinkTo =
956       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
957 
958   // If there are no outputs, it must have side-effects.
959   if (!SuccToSinkTo)
960     return false;
961 
962   // If the instruction to move defines a dead physical register which is live
963   // when leaving the basic block, don't move it because it could turn into a
964   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
965   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
966     const MachineOperand &MO = MI.getOperand(I);
967     if (!MO.isReg()) continue;
968     Register Reg = MO.getReg();
969     if (Reg == 0 || !Register::isPhysicalRegister(Reg))
970       continue;
971     if (SuccToSinkTo->isLiveIn(Reg))
972       return false;
973   }
974 
975   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
976 
977   // If the block has multiple predecessors, this is a critical edge.
978   // Decide if we can sink along it or need to break the edge.
979   if (SuccToSinkTo->pred_size() > 1) {
980     // We cannot sink a load across a critical edge - there may be stores in
981     // other code paths.
982     bool TryBreak = false;
983     bool store = true;
984     if (!MI.isSafeToMove(AA, store)) {
985       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
986       TryBreak = true;
987     }
988 
989     // We don't want to sink across a critical edge if we don't dominate the
990     // successor. We could be introducing calculations to new code paths.
991     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
992       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
993       TryBreak = true;
994     }
995 
996     // Don't sink instructions into a loop.
997     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
998       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
999       TryBreak = true;
1000     }
1001 
1002     // Otherwise we are OK with sinking along a critical edge.
1003     if (!TryBreak)
1004       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1005     else {
1006       // Mark this edge as to be split.
1007       // If the edge can actually be split, the next iteration of the main loop
1008       // will sink MI in the newly created block.
1009       bool Status =
1010         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1011       if (!Status)
1012         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1013                              "break critical edge\n");
1014       // The instruction will not be sunk this time.
1015       return false;
1016     }
1017   }
1018 
1019   if (BreakPHIEdge) {
1020     // BreakPHIEdge is true if all the uses are in the successor MBB being
1021     // sunken into and they are all PHI nodes. In this case, machine-sink must
1022     // break the critical edge first.
1023     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1024                                             SuccToSinkTo, BreakPHIEdge);
1025     if (!Status)
1026       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1027                            "break critical edge\n");
1028     // The instruction will not be sunk this time.
1029     return false;
1030   }
1031 
1032   // Determine where to insert into. Skip phi nodes.
1033   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
1034   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
1035     ++InsertPos;
1036 
1037   // Collect debug users of any vreg that this inst defines.
1038   SmallVector<MachineInstr *, 4> DbgUsersToSink;
1039   for (auto &MO : MI.operands()) {
1040     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1041       continue;
1042     if (!SeenDbgUsers.count(MO.getReg()))
1043       continue;
1044 
1045     // Sink any users that don't pass any other DBG_VALUEs for this variable.
1046     auto &Users = SeenDbgUsers[MO.getReg()];
1047     for (auto &User : Users) {
1048       MachineInstr *DbgMI = User.getPointer();
1049       if (User.getInt()) {
1050         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1051         // it, it can't be recovered. Set it undef.
1052         if (!attemptDebugCopyProp(MI, *DbgMI))
1053           DbgMI->setDebugValueUndef();
1054       } else {
1055         DbgUsersToSink.push_back(DbgMI);
1056       }
1057     }
1058   }
1059 
1060   // After sinking, some debug users may not be dominated any more. If possible,
1061   // copy-propagate their operands. As it's expensive, don't do this if there's
1062   // no debuginfo in the program.
1063   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1064     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1065 
1066   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1067 
1068   // Conservatively, clear any kill flags, since it's possible that they are no
1069   // longer correct.
1070   // Note that we have to clear the kill flags for any register this instruction
1071   // uses as we may sink over another instruction which currently kills the
1072   // used registers.
1073   for (MachineOperand &MO : MI.operands()) {
1074     if (MO.isReg() && MO.isUse())
1075       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
1076   }
1077 
1078   return true;
1079 }
1080 
1081 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1082     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1083   assert(MI.isCopy());
1084   assert(MI.getOperand(1).isReg());
1085 
1086   // Enumerate all users of vreg operands that are def'd. Skip those that will
1087   // be sunk. For the rest, if they are not dominated by the block we will sink
1088   // MI into, propagate the copy source to them.
1089   SmallVector<MachineInstr *, 4> DbgDefUsers;
1090   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1091   for (auto &MO : MI.operands()) {
1092     if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual())
1093       continue;
1094     for (auto &User : MRI.use_instructions(MO.getReg())) {
1095       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1096         continue;
1097 
1098       // If is in same block, will either sink or be use-before-def.
1099       if (User.getParent() == MI.getParent())
1100         continue;
1101 
1102       assert(User.getDebugOperand(0).isReg() &&
1103              "DBG_VALUE user of vreg, but non reg operand?");
1104       DbgDefUsers.push_back(&User);
1105     }
1106   }
1107 
1108   // Point the users of this copy that are no longer dominated, at the source
1109   // of the copy.
1110   for (auto *User : DbgDefUsers) {
1111     User->getDebugOperand(0).setReg(MI.getOperand(1).getReg());
1112     User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg());
1113   }
1114 }
1115 
1116 //===----------------------------------------------------------------------===//
1117 // This pass is not intended to be a replacement or a complete alternative
1118 // for the pre-ra machine sink pass. It is only designed to sink COPY
1119 // instructions which should be handled after RA.
1120 //
1121 // This pass sinks COPY instructions into a successor block, if the COPY is not
1122 // used in the current block and the COPY is live-in to a single successor
1123 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1124 // copy on paths where their results aren't needed.  This also exposes
1125 // additional opportunites for dead copy elimination and shrink wrapping.
1126 //
1127 // These copies were either not handled by or are inserted after the MachineSink
1128 // pass. As an example of the former case, the MachineSink pass cannot sink
1129 // COPY instructions with allocatable source registers; for AArch64 these type
1130 // of copy instructions are frequently used to move function parameters (PhyReg)
1131 // into virtual registers in the entry block.
1132 //
1133 // For the machine IR below, this pass will sink %w19 in the entry into its
1134 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1135 // %bb.0:
1136 //   %wzr = SUBSWri %w1, 1
1137 //   %w19 = COPY %w0
1138 //   Bcc 11, %bb.2
1139 // %bb.1:
1140 //   Live Ins: %w19
1141 //   BL @fun
1142 //   %w0 = ADDWrr %w0, %w19
1143 //   RET %w0
1144 // %bb.2:
1145 //   %w0 = COPY %wzr
1146 //   RET %w0
1147 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1148 // able to see %bb.0 as a candidate.
1149 //===----------------------------------------------------------------------===//
1150 namespace {
1151 
1152 class PostRAMachineSinking : public MachineFunctionPass {
1153 public:
1154   bool runOnMachineFunction(MachineFunction &MF) override;
1155 
1156   static char ID;
1157   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1158   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1159 
1160   void getAnalysisUsage(AnalysisUsage &AU) const override {
1161     AU.setPreservesCFG();
1162     MachineFunctionPass::getAnalysisUsage(AU);
1163   }
1164 
1165   MachineFunctionProperties getRequiredProperties() const override {
1166     return MachineFunctionProperties().set(
1167         MachineFunctionProperties::Property::NoVRegs);
1168   }
1169 
1170 private:
1171   /// Track which register units have been modified and used.
1172   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1173 
1174   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1175   /// entry in this map for each unit it touches.
1176   DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs;
1177 
1178   /// Sink Copy instructions unused in the same block close to their uses in
1179   /// successors.
1180   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1181                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1182 };
1183 } // namespace
1184 
1185 char PostRAMachineSinking::ID = 0;
1186 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1187 
1188 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1189                 "PostRA Machine Sink", false, false)
1190 
1191 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1192                                   const TargetRegisterInfo *TRI) {
1193   LiveRegUnits LiveInRegUnits(*TRI);
1194   LiveInRegUnits.addLiveIns(MBB);
1195   return !LiveInRegUnits.available(Reg);
1196 }
1197 
1198 static MachineBasicBlock *
1199 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1200                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1201                       unsigned Reg, const TargetRegisterInfo *TRI) {
1202   // Try to find a single sinkable successor in which Reg is live-in.
1203   MachineBasicBlock *BB = nullptr;
1204   for (auto *SI : SinkableBBs) {
1205     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1206       // If BB is set here, Reg is live-in to at least two sinkable successors,
1207       // so quit.
1208       if (BB)
1209         return nullptr;
1210       BB = SI;
1211     }
1212   }
1213   // Reg is not live-in to any sinkable successors.
1214   if (!BB)
1215     return nullptr;
1216 
1217   // Check if any register aliased with Reg is live-in in other successors.
1218   for (auto *SI : CurBB.successors()) {
1219     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1220       return nullptr;
1221   }
1222   return BB;
1223 }
1224 
1225 static MachineBasicBlock *
1226 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1227                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1228                       ArrayRef<unsigned> DefedRegsInCopy,
1229                       const TargetRegisterInfo *TRI) {
1230   MachineBasicBlock *SingleBB = nullptr;
1231   for (auto DefReg : DefedRegsInCopy) {
1232     MachineBasicBlock *BB =
1233         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1234     if (!BB || (SingleBB && SingleBB != BB))
1235       return nullptr;
1236     SingleBB = BB;
1237   }
1238   return SingleBB;
1239 }
1240 
1241 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1242                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1243                            LiveRegUnits &UsedRegUnits,
1244                            const TargetRegisterInfo *TRI) {
1245   for (auto U : UsedOpsInCopy) {
1246     MachineOperand &MO = MI->getOperand(U);
1247     Register SrcReg = MO.getReg();
1248     if (!UsedRegUnits.available(SrcReg)) {
1249       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1250       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1251         if (UI.killsRegister(SrcReg, TRI)) {
1252           UI.clearRegisterKills(SrcReg, TRI);
1253           MO.setIsKill(true);
1254           break;
1255         }
1256       }
1257     }
1258   }
1259 }
1260 
1261 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1262                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1263                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1264   MachineFunction &MF = *SuccBB->getParent();
1265   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1266   for (unsigned DefReg : DefedRegsInCopy)
1267     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1268       SuccBB->removeLiveIn(*S);
1269   for (auto U : UsedOpsInCopy) {
1270     Register SrcReg = MI->getOperand(U).getReg();
1271     LaneBitmask Mask;
1272     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) {
1273       Mask |= (*S).second;
1274     }
1275     SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll());
1276   }
1277   SuccBB->sortUniqueLiveIns();
1278 }
1279 
1280 static bool hasRegisterDependency(MachineInstr *MI,
1281                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1282                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1283                                   LiveRegUnits &ModifiedRegUnits,
1284                                   LiveRegUnits &UsedRegUnits) {
1285   bool HasRegDependency = false;
1286   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1287     MachineOperand &MO = MI->getOperand(i);
1288     if (!MO.isReg())
1289       continue;
1290     Register Reg = MO.getReg();
1291     if (!Reg)
1292       continue;
1293     if (MO.isDef()) {
1294       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1295         HasRegDependency = true;
1296         break;
1297       }
1298       DefedRegsInCopy.push_back(Reg);
1299 
1300       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1301       // For example, we can ignore modifications in reg with undef. However,
1302       // it's not perfectly clear if skipping the internal read is safe in all
1303       // other targets.
1304     } else if (MO.isUse()) {
1305       if (!ModifiedRegUnits.available(Reg)) {
1306         HasRegDependency = true;
1307         break;
1308       }
1309       UsedOpsInCopy.push_back(i);
1310     }
1311   }
1312   return HasRegDependency;
1313 }
1314 
1315 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg,
1316                                          const TargetRegisterInfo *TRI) {
1317   SmallSet<unsigned, 4> RegUnits;
1318   for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI)
1319     RegUnits.insert(*RI);
1320   return RegUnits;
1321 }
1322 
1323 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1324                                          MachineFunction &MF,
1325                                          const TargetRegisterInfo *TRI,
1326                                          const TargetInstrInfo *TII) {
1327   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1328   // FIXME: For now, we sink only to a successor which has a single predecessor
1329   // so that we can directly sink COPY instructions to the successor without
1330   // adding any new block or branch instruction.
1331   for (MachineBasicBlock *SI : CurBB.successors())
1332     if (!SI->livein_empty() && SI->pred_size() == 1)
1333       SinkableBBs.insert(SI);
1334 
1335   if (SinkableBBs.empty())
1336     return false;
1337 
1338   bool Changed = false;
1339 
1340   // Track which registers have been modified and used between the end of the
1341   // block and the current instruction.
1342   ModifiedRegUnits.clear();
1343   UsedRegUnits.clear();
1344   SeenDbgInstrs.clear();
1345 
1346   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1347     MachineInstr *MI = &*I;
1348     ++I;
1349 
1350     // Track the operand index for use in Copy.
1351     SmallVector<unsigned, 2> UsedOpsInCopy;
1352     // Track the register number defed in Copy.
1353     SmallVector<unsigned, 2> DefedRegsInCopy;
1354 
1355     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
1356     // for DBG_VALUEs later, record them when they're encountered.
1357     if (MI->isDebugValue()) {
1358       auto &MO = MI->getDebugOperand(0);
1359       if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) {
1360         // Bail if we can already tell the sink would be rejected, rather
1361         // than needlessly accumulating lots of DBG_VALUEs.
1362         if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1363                                   ModifiedRegUnits, UsedRegUnits))
1364           continue;
1365 
1366         // Record debug use of each reg unit.
1367         SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1368         for (unsigned Reg : Units)
1369           SeenDbgInstrs[Reg].push_back(MI);
1370       }
1371       continue;
1372     }
1373 
1374     if (MI->isDebugInstr())
1375       continue;
1376 
1377     // Do not move any instruction across function call.
1378     if (MI->isCall())
1379       return false;
1380 
1381     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1382       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1383                                         TRI);
1384       continue;
1385     }
1386 
1387     // Don't sink the COPY if it would violate a register dependency.
1388     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1389                               ModifiedRegUnits, UsedRegUnits)) {
1390       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1391                                         TRI);
1392       continue;
1393     }
1394     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1395            "Unexpect SrcReg or DefReg");
1396     MachineBasicBlock *SuccBB =
1397         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1398     // Don't sink if we cannot find a single sinkable successor in which Reg
1399     // is live-in.
1400     if (!SuccBB) {
1401       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1402                                         TRI);
1403       continue;
1404     }
1405     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1406            "Unexpected predecessor");
1407 
1408     // Collect DBG_VALUEs that must sink with this copy. We've previously
1409     // recorded which reg units that DBG_VALUEs read, if this instruction
1410     // writes any of those units then the corresponding DBG_VALUEs must sink.
1411     SetVector<MachineInstr *> DbgValsToSinkSet;
1412     SmallVector<MachineInstr *, 4> DbgValsToSink;
1413     for (auto &MO : MI->operands()) {
1414       if (!MO.isReg() || !MO.isDef())
1415         continue;
1416 
1417       SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI);
1418       for (unsigned Reg : Units)
1419         for (auto *MI : SeenDbgInstrs.lookup(Reg))
1420           DbgValsToSinkSet.insert(MI);
1421     }
1422     DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(),
1423                          DbgValsToSinkSet.end());
1424 
1425     // Clear the kill flag if SrcReg is killed between MI and the end of the
1426     // block.
1427     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1428     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1429     performSink(*MI, *SuccBB, InsertPos, DbgValsToSink);
1430     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1431 
1432     Changed = true;
1433     ++NumPostRACopySink;
1434   }
1435   return Changed;
1436 }
1437 
1438 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1439   if (skipFunction(MF.getFunction()))
1440     return false;
1441 
1442   bool Changed = false;
1443   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1444   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1445 
1446   ModifiedRegUnits.init(*TRI);
1447   UsedRegUnits.init(*TRI);
1448   for (auto &BB : MF)
1449     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1450 
1451   return Changed;
1452 }
1453