1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <map> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-sink" 67 68 static cl::opt<bool> 69 SplitEdges("machine-sink-split", 70 cl::desc("Split critical edges during machine sinking"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<bool> 74 UseBlockFreqInfo("machine-sink-bfi", 75 cl::desc("Use block frequency info to find successors to sink"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 79 "machine-sink-split-probability-threshold", 80 cl::desc( 81 "Percentage threshold for splitting single-instruction critical edge. " 82 "If the branch threshold is higher than this threshold, we allow " 83 "speculative execution of up to 1 instruction to avoid branching to " 84 "splitted critical edge"), 85 cl::init(40), cl::Hidden); 86 87 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 88 "machine-sink-load-instrs-threshold", 89 cl::desc("Do not try to find alias store for a load if there is a in-path " 90 "block whose instruction number is higher than this threshold."), 91 cl::init(2000), cl::Hidden); 92 93 static cl::opt<unsigned> SinkLoadBlocksThreshold( 94 "machine-sink-load-blocks-threshold", 95 cl::desc("Do not try to find alias store for a load if the block number in " 96 "the straight line is higher than this threshold."), 97 cl::init(20), cl::Hidden); 98 99 static cl::opt<bool> 100 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 101 cl::desc("Sink instructions into cycles to avoid " 102 "register spills"), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> SinkIntoCycleLimit( 106 "machine-sink-cycle-limit", 107 cl::desc("The maximum number of instructions considered for cycle sinking."), 108 cl::init(50), cl::Hidden); 109 110 STATISTIC(NumSunk, "Number of machine instructions sunk"); 111 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 112 STATISTIC(NumSplit, "Number of critical edges split"); 113 STATISTIC(NumCoalesces, "Number of copies coalesced"); 114 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 115 116 namespace { 117 118 class MachineSinking : public MachineFunctionPass { 119 const TargetSubtargetInfo *STI = nullptr; 120 const TargetInstrInfo *TII = nullptr; 121 const TargetRegisterInfo *TRI = nullptr; 122 MachineRegisterInfo *MRI = nullptr; // Machine register information 123 MachineDominatorTree *DT = nullptr; // Machine dominator tree 124 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 125 MachineCycleInfo *CI = nullptr; 126 MachineBlockFrequencyInfo *MBFI = nullptr; 127 const MachineBranchProbabilityInfo *MBPI = nullptr; 128 AliasAnalysis *AA = nullptr; 129 RegisterClassInfo RegClassInfo; 130 131 // Remember which edges have been considered for breaking. 132 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 133 CEBCandidates; 134 // Remember which edges we are about to split. 135 // This is different from CEBCandidates since those edges 136 // will be split. 137 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 138 139 DenseSet<Register> RegsToClearKillFlags; 140 141 using AllSuccsCache = 142 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 143 144 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 145 /// post-dominated by another DBG_VALUE of the same variable location. 146 /// This is necessary to detect sequences such as: 147 /// %0 = someinst 148 /// DBG_VALUE %0, !123, !DIExpression() 149 /// %1 = anotherinst 150 /// DBG_VALUE %1, !123, !DIExpression() 151 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 152 /// would re-order assignments. 153 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 154 155 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 156 /// debug instructions to sink. 157 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 158 159 /// Record of debug variables that have had their locations set in the 160 /// current block. 161 DenseSet<DebugVariable> SeenDbgVars; 162 163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 164 HasStoreCache; 165 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 std::vector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 std::map<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && MRI && MRI->isConstantPhysReg(Reg)) 304 continue; 305 if (PI->modifiesRegister(Reg, TRI)) 306 return true; 307 } else { 308 if (PI->readsRegister(Reg, TRI)) 309 return true; 310 // Check for interference with non-dead defs 311 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 312 if (DefOp && !DefOp->isDead()) 313 return true; 314 } 315 } 316 } 317 318 return false; 319 } 320 321 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 322 MachineBasicBlock *MBB) { 323 if (!MI.isCopy()) 324 return false; 325 326 Register SrcReg = MI.getOperand(1).getReg(); 327 Register DstReg = MI.getOperand(0).getReg(); 328 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 329 !MRI->hasOneNonDBGUse(SrcReg)) 330 return false; 331 332 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 333 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 334 if (SRC != DRC) 335 return false; 336 337 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 338 if (DefMI->isCopyLike()) 339 return false; 340 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 341 LLVM_DEBUG(dbgs() << "*** to: " << MI); 342 MRI->replaceRegWith(DstReg, SrcReg); 343 MI.eraseFromParent(); 344 345 // Conservatively, clear any kill flags, since it's possible that they are no 346 // longer correct. 347 MRI->clearKillFlags(SrcReg); 348 349 ++NumCoalesces; 350 return true; 351 } 352 353 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 354 MachineBasicBlock *MBB) { 355 if (MI.isCopy() || MI.mayLoadOrStore() || 356 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 357 return false; 358 359 // Don't sink instructions that the target prefers not to sink. 360 if (!TII->shouldSink(MI)) 361 return false; 362 363 // Check if it's safe to move the instruction. 364 bool SawStore = true; 365 if (!MI.isSafeToMove(AA, SawStore)) 366 return false; 367 368 // Convergent operations may not be made control-dependent on additional 369 // values. 370 if (MI.isConvergent()) 371 return false; 372 373 // Don't sink defs/uses of hard registers or if the instruction defines more 374 // than one register. 375 // Don't sink more than two register uses - it'll cover most of the cases and 376 // greatly simplifies the register pressure checks. 377 Register DefReg; 378 Register UsedRegA, UsedRegB; 379 for (const MachineOperand &MO : MI.operands()) { 380 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 381 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 382 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 383 continue; 384 if (!MO.isReg()) 385 return false; 386 387 Register Reg = MO.getReg(); 388 if (Reg == 0) 389 continue; 390 391 if (Reg.isVirtual()) { 392 if (MO.isDef()) { 393 if (DefReg) 394 return false; 395 DefReg = Reg; 396 continue; 397 } 398 399 if (UsedRegA == 0) 400 UsedRegA = Reg; 401 else if (UsedRegB == 0) 402 UsedRegB = Reg; 403 else 404 return false; 405 continue; 406 } 407 408 if (Reg.isPhysical() && 409 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 410 continue; 411 412 return false; 413 } 414 415 // Scan uses of the destination register. Every use, except the last, must be 416 // a copy, with a chain of copies terminating with either a copy into a hard 417 // register, or a load/store instruction where the use is part of the 418 // address (*not* the stored value). 419 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 420 SmallVector<SinkInfo> SinkInto; 421 SmallVector<Register> Worklist; 422 423 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 424 const TargetRegisterClass *RCA = 425 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 426 const TargetRegisterClass *RCB = 427 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 428 429 Worklist.push_back(DefReg); 430 while (!Worklist.empty()) { 431 Register Reg = Worklist.pop_back_val(); 432 433 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 434 ExtAddrMode MaybeAM; 435 MachineInstr &UseInst = *MO.getParent(); 436 if (UseInst.isCopy()) { 437 Register DstReg; 438 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 439 DstReg = O.getReg(); 440 if (DstReg == 0) 441 return false; 442 if (DstReg.isVirtual()) { 443 Worklist.push_back(DstReg); 444 continue; 445 } 446 // If we are going to replace a copy, the original instruction must be 447 // as cheap as a copy. 448 if (!TII->isAsCheapAsAMove(MI)) 449 return false; 450 // The hard register must be in the register class of the original 451 // instruction's destination register. 452 if (!RC->contains(DstReg)) 453 return false; 454 } else if (UseInst.mayLoadOrStore()) { 455 ExtAddrMode AM; 456 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 457 return false; 458 MaybeAM = AM; 459 } else { 460 return false; 461 } 462 463 if (UseInst.getParent() != MI.getParent()) { 464 // If the register class of the register we are replacingis a superset 465 // of any of the register classes of the operands of the materialized 466 // instruction don't consider that live range extended. 467 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 468 if (RCA && RCA->hasSuperClassEq(RCS)) 469 RCA = nullptr; 470 else if (RCB && RCB->hasSuperClassEq(RCS)) 471 RCB = nullptr; 472 if (RCA || RCB) { 473 if (RCA == nullptr) { 474 RCA = RCB; 475 RCB = nullptr; 476 } 477 478 unsigned NRegs = !!RCA + !!RCB; 479 if (RCA == RCB) 480 RCB = nullptr; 481 482 // Check we don't exceed register pressure at the destination. 483 const MachineBasicBlock &MBB = *UseInst.getParent(); 484 if (RCB == nullptr) { 485 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 486 return false; 487 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 488 registerPressureSetExceedsLimit(1, RCB, MBB)) { 489 return false; 490 } 491 } 492 } 493 494 SinkInto.emplace_back(&UseInst, MaybeAM); 495 } 496 } 497 498 if (SinkInto.empty()) 499 return false; 500 501 // Now we know we can fold the instruction in all its users. 502 if (UsedRegA) 503 MRI->clearKillFlags(UsedRegA); 504 if (UsedRegB) 505 MRI->clearKillFlags(UsedRegB); 506 507 for (auto &[SinkDst, MaybeAM] : SinkInto) { 508 MachineInstr *New = nullptr; 509 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 510 SinkDst->dump()); 511 if (SinkDst->isCopy()) { 512 // Sink a copy of the instruction, replacing a COPY instruction. 513 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 514 Register DstReg = SinkDst->getOperand(0).getReg(); 515 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 516 // If the original instruction did not have source location, reuse a one 517 // from the COPY. 518 New = &*std::prev(InsertPt); 519 if (const DebugLoc &NewLoc = New->getDebugLoc(); !NewLoc) 520 New->setDebugLoc(SinkDst->getDebugLoc()); 521 // Sink DBG_VALUEs, which refer to the original instruction's destination 522 // (DefReg). 523 MachineBasicBlock &SinkMBB = *SinkDst->getParent(); 524 auto &DbgUsers = SeenDbgUsers[DefReg]; 525 for (auto &U : DbgUsers) { 526 MachineInstr *DbgMI = U.getPointer(); 527 if (U.getInt()) 528 continue; 529 MachineInstr *NewDbgMI = SinkDst->getMF()->CloneMachineInstr(DbgMI); 530 NewDbgMI->getOperand(0).setReg(DstReg); 531 SinkMBB.insertAfter(InsertPt, NewDbgMI); 532 } 533 } else { 534 // Fold instruction into the addressing mode of a memory instruction. 535 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 536 } 537 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 538 SinkDst->eraseFromParent(); 539 } 540 541 MI.eraseFromParent(); 542 543 // Collect instructions that need to be deleted (COPYs). We cannot delete them 544 // while traversing register uses. 545 SmallVector<MachineInstr *> CleanupInstrs; 546 Worklist.push_back(DefReg); 547 while (!Worklist.empty()) { 548 Register Reg = Worklist.pop_back_val(); 549 550 for (MachineOperand &MO : MRI->use_operands(Reg)) { 551 MachineInstr *U = MO.getParent(); 552 assert((U->isCopy() || U->isDebugInstr()) && 553 "Only debug uses and copies must remain"); 554 if (U->isCopy()) { 555 Worklist.push_back(U->getOperand(0).getReg()); 556 CleanupInstrs.push_back(U); 557 } else { 558 MO.setReg(0); 559 MO.setSubReg(0); 560 } 561 } 562 } 563 564 // Delete the dead COPYs. 565 for (MachineInstr *Del : CleanupInstrs) 566 Del->eraseFromParent(); 567 568 return true; 569 } 570 571 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 572 /// occur in blocks dominated by the specified block. If any use is in the 573 /// definition block, then return false since it is never legal to move def 574 /// after uses. 575 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 576 MachineBasicBlock *MBB, 577 MachineBasicBlock *DefMBB, 578 bool &BreakPHIEdge, 579 bool &LocalUse) const { 580 assert(Reg.isVirtual() && "Only makes sense for vregs"); 581 582 // Ignore debug uses because debug info doesn't affect the code. 583 if (MRI->use_nodbg_empty(Reg)) 584 return true; 585 586 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 587 // into and they are all PHI nodes. In this case, machine-sink must break 588 // the critical edge first. e.g. 589 // 590 // %bb.1: 591 // Predecessors according to CFG: %bb.0 592 // ... 593 // %def = DEC64_32r %x, implicit-def dead %eflags 594 // ... 595 // JE_4 <%bb.37>, implicit %eflags 596 // Successors according to CFG: %bb.37 %bb.2 597 // 598 // %bb.2: 599 // %p = PHI %y, %bb.0, %def, %bb.1 600 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 601 MachineInstr *UseInst = MO.getParent(); 602 unsigned OpNo = MO.getOperandNo(); 603 MachineBasicBlock *UseBlock = UseInst->getParent(); 604 return UseBlock == MBB && UseInst->isPHI() && 605 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 606 })) { 607 BreakPHIEdge = true; 608 return true; 609 } 610 611 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 612 // Determine the block of the use. 613 MachineInstr *UseInst = MO.getParent(); 614 unsigned OpNo = &MO - &UseInst->getOperand(0); 615 MachineBasicBlock *UseBlock = UseInst->getParent(); 616 if (UseInst->isPHI()) { 617 // PHI nodes use the operand in the predecessor block, not the block with 618 // the PHI. 619 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 620 } else if (UseBlock == DefMBB) { 621 LocalUse = true; 622 return false; 623 } 624 625 // Check that it dominates. 626 if (!DT->dominates(MBB, UseBlock)) 627 return false; 628 } 629 630 return true; 631 } 632 633 /// Return true if this machine instruction loads from global offset table or 634 /// constant pool. 635 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 636 assert(MI.mayLoad() && "Expected MI that loads!"); 637 638 // If we lost memory operands, conservatively assume that the instruction 639 // reads from everything.. 640 if (MI.memoperands_empty()) 641 return true; 642 643 for (MachineMemOperand *MemOp : MI.memoperands()) 644 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 645 if (PSV->isGOT() || PSV->isConstantPool()) 646 return true; 647 648 return false; 649 } 650 651 void MachineSinking::FindCycleSinkCandidates( 652 MachineCycle *Cycle, MachineBasicBlock *BB, 653 SmallVectorImpl<MachineInstr *> &Candidates) { 654 for (auto &MI : *BB) { 655 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 656 if (!TII->shouldSink(MI)) { 657 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 658 "target\n"); 659 continue; 660 } 661 if (!isCycleInvariant(Cycle, MI)) { 662 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 663 continue; 664 } 665 bool DontMoveAcrossStore = true; 666 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 667 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 668 continue; 669 } 670 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 671 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 672 continue; 673 } 674 if (MI.isConvergent()) 675 continue; 676 677 const MachineOperand &MO = MI.getOperand(0); 678 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 679 continue; 680 if (!MRI->hasOneDef(MO.getReg())) 681 continue; 682 683 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 684 Candidates.push_back(&MI); 685 } 686 } 687 688 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 689 if (skipFunction(MF.getFunction())) 690 return false; 691 692 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 693 694 STI = &MF.getSubtarget(); 695 TII = STI->getInstrInfo(); 696 TRI = STI->getRegisterInfo(); 697 MRI = &MF.getRegInfo(); 698 DT = &getAnalysis<MachineDominatorTree>(); 699 PDT = &getAnalysis<MachinePostDominatorTree>(); 700 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 701 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 702 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 703 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 704 RegClassInfo.runOnMachineFunction(MF); 705 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 706 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 707 708 bool EverMadeChange = false; 709 710 while (true) { 711 bool MadeChange = false; 712 713 // Process all basic blocks. 714 CEBCandidates.clear(); 715 ToSplit.clear(); 716 for (auto &MBB: MF) 717 MadeChange |= ProcessBlock(MBB); 718 719 // If we have anything we marked as toSplit, split it now. 720 for (const auto &Pair : ToSplit) { 721 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 722 if (NewSucc != nullptr) { 723 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 724 << printMBBReference(*Pair.first) << " -- " 725 << printMBBReference(*NewSucc) << " -- " 726 << printMBBReference(*Pair.second) << '\n'); 727 if (MBFI) 728 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 729 730 MadeChange = true; 731 ++NumSplit; 732 } else 733 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 734 } 735 // If this iteration over the code changed anything, keep iterating. 736 if (!MadeChange) break; 737 EverMadeChange = true; 738 } 739 740 if (SinkInstsIntoCycle) { 741 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 742 CI->toplevel_end()); 743 for (auto *Cycle : Cycles) { 744 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 745 if (!Preheader) { 746 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 747 continue; 748 } 749 SmallVector<MachineInstr *, 8> Candidates; 750 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 751 752 // Walk the candidates in reverse order so that we start with the use 753 // of a def-use chain, if there is any. 754 // TODO: Sort the candidates using a cost-model. 755 unsigned i = 0; 756 for (MachineInstr *I : llvm::reverse(Candidates)) { 757 if (i++ == SinkIntoCycleLimit) { 758 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 759 "be analysed."); 760 break; 761 } 762 763 if (!SinkIntoCycle(Cycle, *I)) 764 break; 765 EverMadeChange = true; 766 ++NumCycleSunk; 767 } 768 } 769 } 770 771 HasStoreCache.clear(); 772 StoreInstrCache.clear(); 773 774 // Now clear any kill flags for recorded registers. 775 for (auto I : RegsToClearKillFlags) 776 MRI->clearKillFlags(I); 777 RegsToClearKillFlags.clear(); 778 779 return EverMadeChange; 780 } 781 782 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 783 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 784 return false; 785 786 // Don't bother sinking code out of unreachable blocks. In addition to being 787 // unprofitable, it can also lead to infinite looping, because in an 788 // unreachable cycle there may be nowhere to stop. 789 if (!DT->isReachableFromEntry(&MBB)) return false; 790 791 bool MadeChange = false; 792 793 // Cache all successors, sorted by frequency info and cycle depth. 794 AllSuccsCache AllSuccessors; 795 796 // Walk the basic block bottom-up. Remember if we saw a store. 797 MachineBasicBlock::iterator I = MBB.end(); 798 --I; 799 bool ProcessedBegin, SawStore = false; 800 do { 801 MachineInstr &MI = *I; // The instruction to sink. 802 803 // Predecrement I (if it's not begin) so that it isn't invalidated by 804 // sinking. 805 ProcessedBegin = I == MBB.begin(); 806 if (!ProcessedBegin) 807 --I; 808 809 if (MI.isDebugOrPseudoInstr()) { 810 if (MI.isDebugValue()) 811 ProcessDbgInst(MI); 812 continue; 813 } 814 815 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 816 MadeChange = true; 817 continue; 818 } 819 820 // Can't sink anything out of a block that has less than two successors. 821 if (MBB.succ_size() <= 1) 822 continue; 823 824 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 825 MadeChange = true; 826 continue; 827 } 828 829 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 830 ++NumSunk; 831 MadeChange = true; 832 } 833 834 // If we just processed the first instruction in the block, we're done. 835 } while (!ProcessedBegin); 836 837 SeenDbgUsers.clear(); 838 SeenDbgVars.clear(); 839 // recalculate the bb register pressure after sinking one BB. 840 CachedRegisterPressure.clear(); 841 return MadeChange; 842 } 843 844 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 845 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 846 // we know what to sink if the vreg def sinks. 847 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 848 849 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 850 MI.getDebugLoc()->getInlinedAt()); 851 bool SeenBefore = SeenDbgVars.contains(Var); 852 853 for (MachineOperand &MO : MI.debug_operands()) { 854 if (MO.isReg() && MO.getReg().isVirtual()) 855 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 856 } 857 858 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 859 SeenDbgVars.insert(Var); 860 } 861 862 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 863 MachineBasicBlock *From, 864 MachineBasicBlock *To) { 865 // FIXME: Need much better heuristics. 866 867 // If the pass has already considered breaking this edge (during this pass 868 // through the function), then let's go ahead and break it. This means 869 // sinking multiple "cheap" instructions into the same block. 870 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 871 return true; 872 873 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 874 return true; 875 876 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 877 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 878 return true; 879 880 // MI is cheap, we probably don't want to break the critical edge for it. 881 // However, if this would allow some definitions of its source operands 882 // to be sunk then it's probably worth it. 883 for (const MachineOperand &MO : MI.all_uses()) { 884 Register Reg = MO.getReg(); 885 if (Reg == 0) 886 continue; 887 888 // We don't move live definitions of physical registers, 889 // so sinking their uses won't enable any opportunities. 890 if (Reg.isPhysical()) 891 continue; 892 893 // If this instruction is the only user of a virtual register, 894 // check if breaking the edge will enable sinking 895 // both this instruction and the defining instruction. 896 if (MRI->hasOneNonDBGUse(Reg)) { 897 // If the definition resides in same MBB, 898 // claim it's likely we can sink these together. 899 // If definition resides elsewhere, we aren't 900 // blocking it from being sunk so don't break the edge. 901 MachineInstr *DefMI = MRI->getVRegDef(Reg); 902 if (DefMI->getParent() == MI.getParent()) 903 return true; 904 } 905 } 906 907 return false; 908 } 909 910 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 911 MachineBasicBlock *FromBB, 912 MachineBasicBlock *ToBB, 913 bool BreakPHIEdge) { 914 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 915 return false; 916 917 // Avoid breaking back edge. From == To means backedge for single BB cycle. 918 if (!SplitEdges || FromBB == ToBB) 919 return false; 920 921 MachineCycle *FromCycle = CI->getCycle(FromBB); 922 MachineCycle *ToCycle = CI->getCycle(ToBB); 923 924 // Check for backedges of more "complex" cycles. 925 if (FromCycle == ToCycle && FromCycle && 926 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 927 return false; 928 929 // It's not always legal to break critical edges and sink the computation 930 // to the edge. 931 // 932 // %bb.1: 933 // v1024 934 // Beq %bb.3 935 // <fallthrough> 936 // %bb.2: 937 // ... no uses of v1024 938 // <fallthrough> 939 // %bb.3: 940 // ... 941 // = v1024 942 // 943 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 944 // 945 // %bb.1: 946 // ... 947 // Bne %bb.2 948 // %bb.4: 949 // v1024 = 950 // B %bb.3 951 // %bb.2: 952 // ... no uses of v1024 953 // <fallthrough> 954 // %bb.3: 955 // ... 956 // = v1024 957 // 958 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 959 // flow. We need to ensure the new basic block where the computation is 960 // sunk to dominates all the uses. 961 // It's only legal to break critical edge and sink the computation to the 962 // new block if all the predecessors of "To", except for "From", are 963 // not dominated by "From". Given SSA property, this means these 964 // predecessors are dominated by "To". 965 // 966 // There is no need to do this check if all the uses are PHI nodes. PHI 967 // sources are only defined on the specific predecessor edges. 968 if (!BreakPHIEdge) { 969 for (MachineBasicBlock *Pred : ToBB->predecessors()) 970 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 971 return false; 972 } 973 974 ToSplit.insert(std::make_pair(FromBB, ToBB)); 975 976 return true; 977 } 978 979 std::vector<unsigned> & 980 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 981 // Currently to save compiling time, MBB's register pressure will not change 982 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 983 // register pressure is changed after sinking any instructions into it. 984 // FIXME: need a accurate and cheap register pressure estiminate model here. 985 auto RP = CachedRegisterPressure.find(&MBB); 986 if (RP != CachedRegisterPressure.end()) 987 return RP->second; 988 989 RegionPressure Pressure; 990 RegPressureTracker RPTracker(Pressure); 991 992 // Initialize the register pressure tracker. 993 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 994 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 995 996 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 997 MIE = MBB.instr_begin(); 998 MII != MIE; --MII) { 999 const MachineInstr &MI = *std::prev(MII); 1000 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1001 continue; 1002 RegisterOperands RegOpers; 1003 RegOpers.collect(MI, *TRI, *MRI, false, false); 1004 RPTracker.recedeSkipDebugValues(); 1005 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1006 RPTracker.recede(RegOpers); 1007 } 1008 1009 RPTracker.closeRegion(); 1010 auto It = CachedRegisterPressure.insert( 1011 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1012 return It.first->second; 1013 } 1014 1015 bool MachineSinking::registerPressureSetExceedsLimit( 1016 unsigned NRegs, const TargetRegisterClass *RC, 1017 const MachineBasicBlock &MBB) { 1018 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1019 const int *PS = TRI->getRegClassPressureSets(RC); 1020 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1021 for (; *PS != -1; PS++) 1022 if (Weight + BBRegisterPressure[*PS] >= 1023 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1024 return true; 1025 return false; 1026 } 1027 1028 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1029 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1030 MachineBasicBlock *MBB, 1031 MachineBasicBlock *SuccToSinkTo, 1032 AllSuccsCache &AllSuccessors) { 1033 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1034 1035 if (MBB == SuccToSinkTo) 1036 return false; 1037 1038 // It is profitable if SuccToSinkTo does not post dominate current block. 1039 if (!PDT->dominates(SuccToSinkTo, MBB)) 1040 return true; 1041 1042 // It is profitable to sink an instruction from a deeper cycle to a shallower 1043 // cycle, even if the latter post-dominates the former (PR21115). 1044 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1045 return true; 1046 1047 // Check if only use in post dominated block is PHI instruction. 1048 bool NonPHIUse = false; 1049 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1050 MachineBasicBlock *UseBlock = UseInst.getParent(); 1051 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1052 NonPHIUse = true; 1053 } 1054 if (!NonPHIUse) 1055 return true; 1056 1057 // If SuccToSinkTo post dominates then also it may be profitable if MI 1058 // can further profitably sinked into another block in next round. 1059 bool BreakPHIEdge = false; 1060 // FIXME - If finding successor is compile time expensive then cache results. 1061 if (MachineBasicBlock *MBB2 = 1062 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1063 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1064 1065 MachineCycle *MCycle = CI->getCycle(MBB); 1066 1067 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1068 // a post dominate block SuccToSinkTo. 1069 if (!MCycle) 1070 return false; 1071 1072 // If this instruction is inside a Cycle and sinking this instruction can make 1073 // more registers live range shorten, it is still prifitable. 1074 for (const MachineOperand &MO : MI.operands()) { 1075 // Ignore non-register operands. 1076 if (!MO.isReg()) 1077 continue; 1078 Register Reg = MO.getReg(); 1079 if (Reg == 0) 1080 continue; 1081 1082 if (Reg.isPhysical()) { 1083 // Don't handle non-constant and non-ignorable physical register uses. 1084 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1085 return false; 1086 continue; 1087 } 1088 1089 // Users for the defs are all dominated by SuccToSinkTo. 1090 if (MO.isDef()) { 1091 // This def register's live range is shortened after sinking. 1092 bool LocalUse = false; 1093 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1094 LocalUse)) 1095 return false; 1096 } else { 1097 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1098 if (!DefMI) 1099 continue; 1100 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1101 // DefMI is defined outside of cycle. There should be no live range 1102 // impact for this operand. Defination outside of cycle means: 1103 // 1: defination is outside of cycle. 1104 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1105 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1106 Cycle->getHeader() == DefMI->getParent())) 1107 continue; 1108 // The DefMI is defined inside the cycle. 1109 // If sinking this operand makes some register pressure set exceed limit, 1110 // it is not profitable. 1111 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1112 *SuccToSinkTo)) { 1113 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1114 return false; 1115 } 1116 } 1117 } 1118 1119 // If MI is in cycle and all its operands are alive across the whole cycle or 1120 // if no operand sinking make register pressure set exceed limit, it is 1121 // profitable to sink MI. 1122 return true; 1123 } 1124 1125 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1126 /// computing it if it was not already cached. 1127 SmallVector<MachineBasicBlock *, 4> & 1128 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1129 AllSuccsCache &AllSuccessors) const { 1130 // Do we have the sorted successors in cache ? 1131 auto Succs = AllSuccessors.find(MBB); 1132 if (Succs != AllSuccessors.end()) 1133 return Succs->second; 1134 1135 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1136 1137 // Handle cases where sinking can happen but where the sink point isn't a 1138 // successor. For example: 1139 // 1140 // x = computation 1141 // if () {} else {} 1142 // use x 1143 // 1144 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1145 // DomTree children of MBB that have MBB as immediate dominator are added. 1146 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1147 // Skip MBBs already added to the AllSuccs vector above. 1148 !MBB->isSuccessor(DTChild->getBlock())) 1149 AllSuccs.push_back(DTChild->getBlock()); 1150 } 1151 1152 // Sort Successors according to their cycle depth or block frequency info. 1153 llvm::stable_sort( 1154 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1155 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1156 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1157 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1158 return HasBlockFreq ? LHSFreq < RHSFreq 1159 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1160 }); 1161 1162 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1163 1164 return it.first->second; 1165 } 1166 1167 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1168 MachineBasicBlock * 1169 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1170 bool &BreakPHIEdge, 1171 AllSuccsCache &AllSuccessors) { 1172 assert (MBB && "Invalid MachineBasicBlock!"); 1173 1174 // loop over all the operands of the specified instruction. If there is 1175 // anything we can't handle, bail out. 1176 1177 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1178 // decide. 1179 MachineBasicBlock *SuccToSinkTo = nullptr; 1180 for (const MachineOperand &MO : MI.operands()) { 1181 if (!MO.isReg()) continue; // Ignore non-register operands. 1182 1183 Register Reg = MO.getReg(); 1184 if (Reg == 0) continue; 1185 1186 if (Reg.isPhysical()) { 1187 if (MO.isUse()) { 1188 // If the physreg has no defs anywhere, it's just an ambient register 1189 // and we can freely move its uses. Alternatively, if it's allocatable, 1190 // it could get allocated to something with a def during allocation. 1191 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1192 return nullptr; 1193 } else if (!MO.isDead()) { 1194 // A def that isn't dead. We can't move it. 1195 return nullptr; 1196 } 1197 } else { 1198 // Virtual register uses are always safe to sink. 1199 if (MO.isUse()) continue; 1200 1201 // If it's not safe to move defs of the register class, then abort. 1202 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1203 return nullptr; 1204 1205 // Virtual register defs can only be sunk if all their uses are in blocks 1206 // dominated by one of the successors. 1207 if (SuccToSinkTo) { 1208 // If a previous operand picked a block to sink to, then this operand 1209 // must be sinkable to the same block. 1210 bool LocalUse = false; 1211 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1212 BreakPHIEdge, LocalUse)) 1213 return nullptr; 1214 1215 continue; 1216 } 1217 1218 // Otherwise, we should look at all the successors and decide which one 1219 // we should sink to. If we have reliable block frequency information 1220 // (frequency != 0) available, give successors with smaller frequencies 1221 // higher priority, otherwise prioritize smaller cycle depths. 1222 for (MachineBasicBlock *SuccBlock : 1223 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1224 bool LocalUse = false; 1225 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1226 BreakPHIEdge, LocalUse)) { 1227 SuccToSinkTo = SuccBlock; 1228 break; 1229 } 1230 if (LocalUse) 1231 // Def is used locally, it's never safe to move this def. 1232 return nullptr; 1233 } 1234 1235 // If we couldn't find a block to sink to, ignore this instruction. 1236 if (!SuccToSinkTo) 1237 return nullptr; 1238 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1239 return nullptr; 1240 } 1241 } 1242 1243 // It is not possible to sink an instruction into its own block. This can 1244 // happen with cycles. 1245 if (MBB == SuccToSinkTo) 1246 return nullptr; 1247 1248 if (!SuccToSinkTo) 1249 return nullptr; 1250 1251 // It's not safe to sink instructions to EH landing pad. Control flow into 1252 // landing pad is implicitly defined. 1253 if (SuccToSinkTo->isEHPad()) 1254 return nullptr; 1255 1256 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1257 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1258 // the source block (which this code does not yet do). So for now, forbid 1259 // doing so. 1260 if (SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1261 return nullptr; 1262 1263 MachineBasicBlock::const_iterator InsertPos = 1264 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1265 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) 1266 return nullptr; 1267 1268 return SuccToSinkTo; 1269 } 1270 1271 /// Return true if MI is likely to be usable as a memory operation by the 1272 /// implicit null check optimization. 1273 /// 1274 /// This is a "best effort" heuristic, and should not be relied upon for 1275 /// correctness. This returning true does not guarantee that the implicit null 1276 /// check optimization is legal over MI, and this returning false does not 1277 /// guarantee MI cannot possibly be used to do a null check. 1278 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1279 const TargetInstrInfo *TII, 1280 const TargetRegisterInfo *TRI) { 1281 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1282 1283 auto *MBB = MI.getParent(); 1284 if (MBB->pred_size() != 1) 1285 return false; 1286 1287 auto *PredMBB = *MBB->pred_begin(); 1288 auto *PredBB = PredMBB->getBasicBlock(); 1289 1290 // Frontends that don't use implicit null checks have no reason to emit 1291 // branches with make.implicit metadata, and this function should always 1292 // return false for them. 1293 if (!PredBB || 1294 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1295 return false; 1296 1297 const MachineOperand *BaseOp; 1298 int64_t Offset; 1299 bool OffsetIsScalable; 1300 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1301 return false; 1302 1303 if (!BaseOp->isReg()) 1304 return false; 1305 1306 if (!(MI.mayLoad() && !MI.isPredicable())) 1307 return false; 1308 1309 MachineBranchPredicate MBP; 1310 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1311 return false; 1312 1313 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1314 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1315 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1316 MBP.LHS.getReg() == BaseOp->getReg(); 1317 } 1318 1319 /// If the sunk instruction is a copy, try to forward the copy instead of 1320 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1321 /// there's any subregister weirdness involved. Returns true if copy 1322 /// propagation occurred. 1323 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1324 Register Reg) { 1325 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1326 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1327 1328 // Copy DBG_VALUE operand and set the original to undef. We then check to 1329 // see whether this is something that can be copy-forwarded. If it isn't, 1330 // continue around the loop. 1331 1332 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1333 auto CopyOperands = TII.isCopyInstr(SinkInst); 1334 if (!CopyOperands) 1335 return false; 1336 SrcMO = CopyOperands->Source; 1337 DstMO = CopyOperands->Destination; 1338 1339 // Check validity of forwarding this copy. 1340 bool PostRA = MRI.getNumVirtRegs() == 0; 1341 1342 // Trying to forward between physical and virtual registers is too hard. 1343 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1344 return false; 1345 1346 // Only try virtual register copy-forwarding before regalloc, and physical 1347 // register copy-forwarding after regalloc. 1348 bool arePhysRegs = !Reg.isVirtual(); 1349 if (arePhysRegs != PostRA) 1350 return false; 1351 1352 // Pre-regalloc, only forward if all subregisters agree (or there are no 1353 // subregs at all). More analysis might recover some forwardable copies. 1354 if (!PostRA) 1355 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1356 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1357 DbgMO.getSubReg() != DstMO->getSubReg()) 1358 return false; 1359 1360 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1361 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1362 // matches the copy destination. 1363 if (PostRA && Reg != DstMO->getReg()) 1364 return false; 1365 1366 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1367 DbgMO.setReg(SrcMO->getReg()); 1368 DbgMO.setSubReg(SrcMO->getSubReg()); 1369 } 1370 return true; 1371 } 1372 1373 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1374 /// Sink an instruction and its associated debug instructions. 1375 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1376 MachineBasicBlock::iterator InsertPos, 1377 ArrayRef<MIRegs> DbgValuesToSink) { 1378 // If we cannot find a location to use (merge with), then we erase the debug 1379 // location to prevent debug-info driven tools from potentially reporting 1380 // wrong location information. 1381 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1382 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1383 InsertPos->getDebugLoc())); 1384 else 1385 MI.setDebugLoc(DebugLoc()); 1386 1387 // Move the instruction. 1388 MachineBasicBlock *ParentBlock = MI.getParent(); 1389 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1390 ++MachineBasicBlock::iterator(MI)); 1391 1392 // Sink a copy of debug users to the insert position. Mark the original 1393 // DBG_VALUE location as 'undef', indicating that any earlier variable 1394 // location should be terminated as we've optimised away the value at this 1395 // point. 1396 for (const auto &DbgValueToSink : DbgValuesToSink) { 1397 MachineInstr *DbgMI = DbgValueToSink.first; 1398 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1399 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1400 1401 bool PropagatedAllSunkOps = true; 1402 for (unsigned Reg : DbgValueToSink.second) { 1403 if (DbgMI->hasDebugOperandForReg(Reg)) { 1404 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1405 PropagatedAllSunkOps = false; 1406 break; 1407 } 1408 } 1409 } 1410 if (!PropagatedAllSunkOps) 1411 DbgMI->setDebugValueUndef(); 1412 } 1413 } 1414 1415 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1416 /// and To. 1417 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1418 MachineBasicBlock *To, MachineInstr &MI) { 1419 // Make sure From and To are in straight line which means From dominates To 1420 // and To post dominates From. 1421 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1422 return true; 1423 1424 auto BlockPair = std::make_pair(From, To); 1425 1426 // Does these two blocks pair be queried before and have a definite cached 1427 // result? 1428 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1429 return HasStoreCache[BlockPair]; 1430 1431 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1432 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1433 return I->mayAlias(AA, MI, false); 1434 }); 1435 1436 bool SawStore = false; 1437 bool HasAliasedStore = false; 1438 DenseSet<MachineBasicBlock *> HandledBlocks; 1439 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1440 // Go through all reachable blocks from From. 1441 for (MachineBasicBlock *BB : depth_first(From)) { 1442 // We insert the instruction at the start of block To, so no need to worry 1443 // about stores inside To. 1444 // Store in block From should be already considered when just enter function 1445 // SinkInstruction. 1446 if (BB == To || BB == From) 1447 continue; 1448 1449 // We already handle this BB in previous iteration. 1450 if (HandledBlocks.count(BB)) 1451 continue; 1452 1453 HandledBlocks.insert(BB); 1454 // To post dominates BB, it must be a path from block From. 1455 if (PDT->dominates(To, BB)) { 1456 if (!HandledDomBlocks.count(BB)) 1457 HandledDomBlocks.insert(BB); 1458 1459 // If this BB is too big or the block number in straight line between From 1460 // and To is too big, stop searching to save compiling time. 1461 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1462 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1463 for (auto *DomBB : HandledDomBlocks) { 1464 if (DomBB != BB && DT->dominates(DomBB, BB)) 1465 HasStoreCache[std::make_pair(DomBB, To)] = true; 1466 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1467 HasStoreCache[std::make_pair(From, DomBB)] = true; 1468 } 1469 HasStoreCache[BlockPair] = true; 1470 return true; 1471 } 1472 1473 for (MachineInstr &I : *BB) { 1474 // Treat as alias conservatively for a call or an ordered memory 1475 // operation. 1476 if (I.isCall() || I.hasOrderedMemoryRef()) { 1477 for (auto *DomBB : HandledDomBlocks) { 1478 if (DomBB != BB && DT->dominates(DomBB, BB)) 1479 HasStoreCache[std::make_pair(DomBB, To)] = true; 1480 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1481 HasStoreCache[std::make_pair(From, DomBB)] = true; 1482 } 1483 HasStoreCache[BlockPair] = true; 1484 return true; 1485 } 1486 1487 if (I.mayStore()) { 1488 SawStore = true; 1489 // We still have chance to sink MI if all stores between are not 1490 // aliased to MI. 1491 // Cache all store instructions, so that we don't need to go through 1492 // all From reachable blocks for next load instruction. 1493 if (I.mayAlias(AA, MI, false)) 1494 HasAliasedStore = true; 1495 StoreInstrCache[BlockPair].push_back(&I); 1496 } 1497 } 1498 } 1499 } 1500 // If there is no store at all, cache the result. 1501 if (!SawStore) 1502 HasStoreCache[BlockPair] = false; 1503 return HasAliasedStore; 1504 } 1505 1506 /// Sink instructions into cycles if profitable. This especially tries to 1507 /// prevent register spills caused by register pressure if there is little to no 1508 /// overhead moving instructions into cycles. 1509 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1510 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1511 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1512 assert(Preheader && "Cycle sink needs a preheader block"); 1513 MachineBasicBlock *SinkBlock = nullptr; 1514 bool CanSink = true; 1515 const MachineOperand &MO = I.getOperand(0); 1516 1517 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1518 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1519 if (!Cycle->contains(MI.getParent())) { 1520 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1521 CanSink = false; 1522 break; 1523 } 1524 1525 // FIXME: Come up with a proper cost model that estimates whether sinking 1526 // the instruction (and thus possibly executing it on every cycle 1527 // iteration) is more expensive than a register. 1528 // For now assumes that copies are cheap and thus almost always worth it. 1529 if (!MI.isCopy()) { 1530 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1531 CanSink = false; 1532 break; 1533 } 1534 if (!SinkBlock) { 1535 SinkBlock = MI.getParent(); 1536 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1537 << printMBBReference(*SinkBlock) << "\n"); 1538 continue; 1539 } 1540 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1541 if (!SinkBlock) { 1542 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1543 CanSink = false; 1544 break; 1545 } 1546 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1547 printMBBReference(*SinkBlock) << "\n"); 1548 } 1549 1550 if (!CanSink) { 1551 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1552 return false; 1553 } 1554 if (!SinkBlock) { 1555 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1556 return false; 1557 } 1558 if (SinkBlock == Preheader) { 1559 LLVM_DEBUG( 1560 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1561 return false; 1562 } 1563 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1564 LLVM_DEBUG( 1565 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1566 return false; 1567 } 1568 1569 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1570 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1571 I); 1572 1573 // Conservatively clear any kill flags on uses of sunk instruction 1574 for (MachineOperand &MO : I.operands()) { 1575 if (MO.isReg() && MO.readsReg()) 1576 RegsToClearKillFlags.insert(MO.getReg()); 1577 } 1578 1579 // The instruction is moved from its basic block, so do not retain the 1580 // debug information. 1581 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1582 I.setDebugLoc(DebugLoc()); 1583 return true; 1584 } 1585 1586 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1587 /// instruction out of its current block into a successor. 1588 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1589 AllSuccsCache &AllSuccessors) { 1590 // Don't sink instructions that the target prefers not to sink. 1591 if (!TII->shouldSink(MI)) 1592 return false; 1593 1594 // Check if it's safe to move the instruction. 1595 if (!MI.isSafeToMove(AA, SawStore)) 1596 return false; 1597 1598 // Convergent operations may not be made control-dependent on additional 1599 // values. 1600 if (MI.isConvergent()) 1601 return false; 1602 1603 // Don't break implicit null checks. This is a performance heuristic, and not 1604 // required for correctness. 1605 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1606 return false; 1607 1608 // FIXME: This should include support for sinking instructions within the 1609 // block they are currently in to shorten the live ranges. We often get 1610 // instructions sunk into the top of a large block, but it would be better to 1611 // also sink them down before their first use in the block. This xform has to 1612 // be careful not to *increase* register pressure though, e.g. sinking 1613 // "x = y + z" down if it kills y and z would increase the live ranges of y 1614 // and z and only shrink the live range of x. 1615 1616 bool BreakPHIEdge = false; 1617 MachineBasicBlock *ParentBlock = MI.getParent(); 1618 MachineBasicBlock *SuccToSinkTo = 1619 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1620 1621 // If there are no outputs, it must have side-effects. 1622 if (!SuccToSinkTo) 1623 return false; 1624 1625 // If the instruction to move defines a dead physical register which is live 1626 // when leaving the basic block, don't move it because it could turn into a 1627 // "zombie" define of that preg. E.g., EFLAGS. 1628 for (const MachineOperand &MO : MI.all_defs()) { 1629 Register Reg = MO.getReg(); 1630 if (Reg == 0 || !Reg.isPhysical()) 1631 continue; 1632 if (SuccToSinkTo->isLiveIn(Reg)) 1633 return false; 1634 } 1635 1636 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1637 1638 // If the block has multiple predecessors, this is a critical edge. 1639 // Decide if we can sink along it or need to break the edge. 1640 if (SuccToSinkTo->pred_size() > 1) { 1641 // We cannot sink a load across a critical edge - there may be stores in 1642 // other code paths. 1643 bool TryBreak = false; 1644 bool Store = 1645 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1646 if (!MI.isSafeToMove(AA, Store)) { 1647 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1648 TryBreak = true; 1649 } 1650 1651 // We don't want to sink across a critical edge if we don't dominate the 1652 // successor. We could be introducing calculations to new code paths. 1653 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1654 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1655 TryBreak = true; 1656 } 1657 1658 // Don't sink instructions into a cycle. 1659 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1660 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1661 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1662 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1663 TryBreak = true; 1664 } 1665 1666 // Otherwise we are OK with sinking along a critical edge. 1667 if (!TryBreak) 1668 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1669 else { 1670 // Mark this edge as to be split. 1671 // If the edge can actually be split, the next iteration of the main loop 1672 // will sink MI in the newly created block. 1673 bool Status = 1674 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1675 if (!Status) 1676 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1677 "break critical edge\n"); 1678 // The instruction will not be sunk this time. 1679 return false; 1680 } 1681 } 1682 1683 if (BreakPHIEdge) { 1684 // BreakPHIEdge is true if all the uses are in the successor MBB being 1685 // sunken into and they are all PHI nodes. In this case, machine-sink must 1686 // break the critical edge first. 1687 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1688 SuccToSinkTo, BreakPHIEdge); 1689 if (!Status) 1690 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1691 "break critical edge\n"); 1692 // The instruction will not be sunk this time. 1693 return false; 1694 } 1695 1696 // Determine where to insert into. Skip phi nodes. 1697 MachineBasicBlock::iterator InsertPos = 1698 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1699 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1700 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1701 return false; 1702 } 1703 1704 // Collect debug users of any vreg that this inst defines. 1705 SmallVector<MIRegs, 4> DbgUsersToSink; 1706 for (auto &MO : MI.all_defs()) { 1707 if (!MO.getReg().isVirtual()) 1708 continue; 1709 if (!SeenDbgUsers.count(MO.getReg())) 1710 continue; 1711 1712 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1713 auto &Users = SeenDbgUsers[MO.getReg()]; 1714 for (auto &User : Users) { 1715 MachineInstr *DbgMI = User.getPointer(); 1716 if (User.getInt()) { 1717 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1718 // it, it can't be recovered. Set it undef. 1719 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1720 DbgMI->setDebugValueUndef(); 1721 } else { 1722 DbgUsersToSink.push_back( 1723 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1724 } 1725 } 1726 } 1727 1728 // After sinking, some debug users may not be dominated any more. If possible, 1729 // copy-propagate their operands. As it's expensive, don't do this if there's 1730 // no debuginfo in the program. 1731 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1732 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1733 1734 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1735 1736 // Conservatively, clear any kill flags, since it's possible that they are no 1737 // longer correct. 1738 // Note that we have to clear the kill flags for any register this instruction 1739 // uses as we may sink over another instruction which currently kills the 1740 // used registers. 1741 for (MachineOperand &MO : MI.all_uses()) 1742 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1743 1744 return true; 1745 } 1746 1747 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1748 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1749 assert(MI.isCopy()); 1750 assert(MI.getOperand(1).isReg()); 1751 1752 // Enumerate all users of vreg operands that are def'd. Skip those that will 1753 // be sunk. For the rest, if they are not dominated by the block we will sink 1754 // MI into, propagate the copy source to them. 1755 SmallVector<MachineInstr *, 4> DbgDefUsers; 1756 SmallVector<Register, 4> DbgUseRegs; 1757 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1758 for (auto &MO : MI.all_defs()) { 1759 if (!MO.getReg().isVirtual()) 1760 continue; 1761 DbgUseRegs.push_back(MO.getReg()); 1762 for (auto &User : MRI.use_instructions(MO.getReg())) { 1763 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1764 continue; 1765 1766 // If is in same block, will either sink or be use-before-def. 1767 if (User.getParent() == MI.getParent()) 1768 continue; 1769 1770 assert(User.hasDebugOperandForReg(MO.getReg()) && 1771 "DBG_VALUE user of vreg, but has no operand for it?"); 1772 DbgDefUsers.push_back(&User); 1773 } 1774 } 1775 1776 // Point the users of this copy that are no longer dominated, at the source 1777 // of the copy. 1778 for (auto *User : DbgDefUsers) { 1779 for (auto &Reg : DbgUseRegs) { 1780 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1781 DbgOp.setReg(MI.getOperand(1).getReg()); 1782 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1783 } 1784 } 1785 } 1786 } 1787 1788 //===----------------------------------------------------------------------===// 1789 // This pass is not intended to be a replacement or a complete alternative 1790 // for the pre-ra machine sink pass. It is only designed to sink COPY 1791 // instructions which should be handled after RA. 1792 // 1793 // This pass sinks COPY instructions into a successor block, if the COPY is not 1794 // used in the current block and the COPY is live-in to a single successor 1795 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1796 // copy on paths where their results aren't needed. This also exposes 1797 // additional opportunites for dead copy elimination and shrink wrapping. 1798 // 1799 // These copies were either not handled by or are inserted after the MachineSink 1800 // pass. As an example of the former case, the MachineSink pass cannot sink 1801 // COPY instructions with allocatable source registers; for AArch64 these type 1802 // of copy instructions are frequently used to move function parameters (PhyReg) 1803 // into virtual registers in the entry block. 1804 // 1805 // For the machine IR below, this pass will sink %w19 in the entry into its 1806 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1807 // %bb.0: 1808 // %wzr = SUBSWri %w1, 1 1809 // %w19 = COPY %w0 1810 // Bcc 11, %bb.2 1811 // %bb.1: 1812 // Live Ins: %w19 1813 // BL @fun 1814 // %w0 = ADDWrr %w0, %w19 1815 // RET %w0 1816 // %bb.2: 1817 // %w0 = COPY %wzr 1818 // RET %w0 1819 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1820 // able to see %bb.0 as a candidate. 1821 //===----------------------------------------------------------------------===// 1822 namespace { 1823 1824 class PostRAMachineSinking : public MachineFunctionPass { 1825 public: 1826 bool runOnMachineFunction(MachineFunction &MF) override; 1827 1828 static char ID; 1829 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1830 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1831 1832 void getAnalysisUsage(AnalysisUsage &AU) const override { 1833 AU.setPreservesCFG(); 1834 MachineFunctionPass::getAnalysisUsage(AU); 1835 } 1836 1837 MachineFunctionProperties getRequiredProperties() const override { 1838 return MachineFunctionProperties().set( 1839 MachineFunctionProperties::Property::NoVRegs); 1840 } 1841 1842 private: 1843 /// Track which register units have been modified and used. 1844 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1845 1846 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1847 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1848 /// consists of a pointer to the instruction itself, and a vector of registers 1849 /// referred to by the instruction that overlap the key register unit. 1850 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1851 1852 /// Sink Copy instructions unused in the same block close to their uses in 1853 /// successors. 1854 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1855 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1856 }; 1857 } // namespace 1858 1859 char PostRAMachineSinking::ID = 0; 1860 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1861 1862 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1863 "PostRA Machine Sink", false, false) 1864 1865 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1866 const TargetRegisterInfo *TRI) { 1867 LiveRegUnits LiveInRegUnits(*TRI); 1868 LiveInRegUnits.addLiveIns(MBB); 1869 return !LiveInRegUnits.available(Reg); 1870 } 1871 1872 static MachineBasicBlock * 1873 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1874 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1875 unsigned Reg, const TargetRegisterInfo *TRI) { 1876 // Try to find a single sinkable successor in which Reg is live-in. 1877 MachineBasicBlock *BB = nullptr; 1878 for (auto *SI : SinkableBBs) { 1879 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1880 // If BB is set here, Reg is live-in to at least two sinkable successors, 1881 // so quit. 1882 if (BB) 1883 return nullptr; 1884 BB = SI; 1885 } 1886 } 1887 // Reg is not live-in to any sinkable successors. 1888 if (!BB) 1889 return nullptr; 1890 1891 // Check if any register aliased with Reg is live-in in other successors. 1892 for (auto *SI : CurBB.successors()) { 1893 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1894 return nullptr; 1895 } 1896 return BB; 1897 } 1898 1899 static MachineBasicBlock * 1900 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1901 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1902 ArrayRef<unsigned> DefedRegsInCopy, 1903 const TargetRegisterInfo *TRI) { 1904 MachineBasicBlock *SingleBB = nullptr; 1905 for (auto DefReg : DefedRegsInCopy) { 1906 MachineBasicBlock *BB = 1907 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1908 if (!BB || (SingleBB && SingleBB != BB)) 1909 return nullptr; 1910 SingleBB = BB; 1911 } 1912 return SingleBB; 1913 } 1914 1915 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1916 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1917 LiveRegUnits &UsedRegUnits, 1918 const TargetRegisterInfo *TRI) { 1919 for (auto U : UsedOpsInCopy) { 1920 MachineOperand &MO = MI->getOperand(U); 1921 Register SrcReg = MO.getReg(); 1922 if (!UsedRegUnits.available(SrcReg)) { 1923 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1924 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1925 if (UI.killsRegister(SrcReg, TRI)) { 1926 UI.clearRegisterKills(SrcReg, TRI); 1927 MO.setIsKill(true); 1928 break; 1929 } 1930 } 1931 } 1932 } 1933 } 1934 1935 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1936 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1937 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1938 MachineFunction &MF = *SuccBB->getParent(); 1939 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1940 for (unsigned DefReg : DefedRegsInCopy) 1941 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1942 SuccBB->removeLiveIn(S); 1943 for (auto U : UsedOpsInCopy) { 1944 Register SrcReg = MI->getOperand(U).getReg(); 1945 LaneBitmask Mask; 1946 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1947 Mask |= (*S).second; 1948 SuccBB->addLiveIn(SrcReg, Mask); 1949 } 1950 SuccBB->sortUniqueLiveIns(); 1951 } 1952 1953 static bool hasRegisterDependency(MachineInstr *MI, 1954 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1955 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1956 LiveRegUnits &ModifiedRegUnits, 1957 LiveRegUnits &UsedRegUnits) { 1958 bool HasRegDependency = false; 1959 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1960 MachineOperand &MO = MI->getOperand(i); 1961 if (!MO.isReg()) 1962 continue; 1963 Register Reg = MO.getReg(); 1964 if (!Reg) 1965 continue; 1966 if (MO.isDef()) { 1967 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1968 HasRegDependency = true; 1969 break; 1970 } 1971 DefedRegsInCopy.push_back(Reg); 1972 1973 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1974 // For example, we can ignore modifications in reg with undef. However, 1975 // it's not perfectly clear if skipping the internal read is safe in all 1976 // other targets. 1977 } else if (MO.isUse()) { 1978 if (!ModifiedRegUnits.available(Reg)) { 1979 HasRegDependency = true; 1980 break; 1981 } 1982 UsedOpsInCopy.push_back(i); 1983 } 1984 } 1985 return HasRegDependency; 1986 } 1987 1988 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1989 MachineFunction &MF, 1990 const TargetRegisterInfo *TRI, 1991 const TargetInstrInfo *TII) { 1992 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1993 // FIXME: For now, we sink only to a successor which has a single predecessor 1994 // so that we can directly sink COPY instructions to the successor without 1995 // adding any new block or branch instruction. 1996 for (MachineBasicBlock *SI : CurBB.successors()) 1997 if (!SI->livein_empty() && SI->pred_size() == 1) 1998 SinkableBBs.insert(SI); 1999 2000 if (SinkableBBs.empty()) 2001 return false; 2002 2003 bool Changed = false; 2004 2005 // Track which registers have been modified and used between the end of the 2006 // block and the current instruction. 2007 ModifiedRegUnits.clear(); 2008 UsedRegUnits.clear(); 2009 SeenDbgInstrs.clear(); 2010 2011 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2012 // Track the operand index for use in Copy. 2013 SmallVector<unsigned, 2> UsedOpsInCopy; 2014 // Track the register number defed in Copy. 2015 SmallVector<unsigned, 2> DefedRegsInCopy; 2016 2017 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2018 // for DBG_VALUEs later, record them when they're encountered. 2019 if (MI.isDebugValue() && !MI.isDebugRef()) { 2020 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2021 bool IsValid = true; 2022 for (MachineOperand &MO : MI.debug_operands()) { 2023 if (MO.isReg() && MO.getReg().isPhysical()) { 2024 // Bail if we can already tell the sink would be rejected, rather 2025 // than needlessly accumulating lots of DBG_VALUEs. 2026 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2027 ModifiedRegUnits, UsedRegUnits)) { 2028 IsValid = false; 2029 break; 2030 } 2031 2032 // Record debug use of each reg unit. 2033 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2034 MIUnits[Unit].push_back(MO.getReg()); 2035 } 2036 } 2037 if (IsValid) { 2038 for (auto &RegOps : MIUnits) 2039 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2040 std::move(RegOps.second)); 2041 } 2042 continue; 2043 } 2044 2045 if (MI.isDebugOrPseudoInstr()) 2046 continue; 2047 2048 // Do not move any instruction across function call. 2049 if (MI.isCall()) 2050 return false; 2051 2052 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2053 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2054 TRI); 2055 continue; 2056 } 2057 2058 // Don't sink the COPY if it would violate a register dependency. 2059 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2060 ModifiedRegUnits, UsedRegUnits)) { 2061 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2062 TRI); 2063 continue; 2064 } 2065 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2066 "Unexpect SrcReg or DefReg"); 2067 MachineBasicBlock *SuccBB = 2068 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2069 // Don't sink if we cannot find a single sinkable successor in which Reg 2070 // is live-in. 2071 if (!SuccBB) { 2072 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2073 TRI); 2074 continue; 2075 } 2076 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2077 "Unexpected predecessor"); 2078 2079 // Collect DBG_VALUEs that must sink with this copy. We've previously 2080 // recorded which reg units that DBG_VALUEs read, if this instruction 2081 // writes any of those units then the corresponding DBG_VALUEs must sink. 2082 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2083 for (auto &MO : MI.all_defs()) { 2084 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2085 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2086 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2087 for (unsigned Reg : MIRegs.second) 2088 Regs.push_back(Reg); 2089 } 2090 } 2091 } 2092 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2093 2094 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2095 2096 MachineBasicBlock::iterator InsertPos = 2097 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2098 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2099 LLVM_DEBUG( 2100 dbgs() << " *** Not sinking: prologue interference\n"); 2101 continue; 2102 } 2103 2104 // Clear the kill flag if SrcReg is killed between MI and the end of the 2105 // block. 2106 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2107 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2108 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2109 2110 Changed = true; 2111 ++NumPostRACopySink; 2112 } 2113 return Changed; 2114 } 2115 2116 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2117 if (skipFunction(MF.getFunction())) 2118 return false; 2119 2120 bool Changed = false; 2121 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2122 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2123 2124 ModifiedRegUnits.init(*TRI); 2125 UsedRegUnits.init(*TRI); 2126 for (auto &BB : MF) 2127 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2128 2129 return Changed; 2130 } 2131