xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision c1e2f39b3503869bd471a867c177f6486da5fee0)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 //                     The LLVM Compiler Infrastructure
4 //
5 // This file is distributed under the University of Illinois Open Source
6 // License. See LICENSE.TXT for details.
7 //
8 //===----------------------------------------------------------------------===//
9 //
10 // This pass moves instructions into successor blocks when possible, so that
11 // they aren't executed on paths where their results aren't needed.
12 //
13 // This pass is not intended to be a replacement or a complete alternative
14 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
15 // constructs that are not exposed before lowering and instruction selection.
16 //
17 //===----------------------------------------------------------------------===//
18 
19 #include "llvm/ADT/SetVector.h"
20 #include "llvm/ADT/SmallSet.h"
21 #include "llvm/ADT/SmallVector.h"
22 #include "llvm/ADT/SparseBitVector.h"
23 #include "llvm/ADT/Statistic.h"
24 #include "llvm/Analysis/AliasAnalysis.h"
25 #include "llvm/CodeGen/MachineBasicBlock.h"
26 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
27 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
28 #include "llvm/CodeGen/MachineDominators.h"
29 #include "llvm/CodeGen/MachineFunction.h"
30 #include "llvm/CodeGen/MachineFunctionPass.h"
31 #include "llvm/CodeGen/MachineInstr.h"
32 #include "llvm/CodeGen/MachineLoopInfo.h"
33 #include "llvm/CodeGen/MachineOperand.h"
34 #include "llvm/CodeGen/MachinePostDominators.h"
35 #include "llvm/CodeGen/MachineRegisterInfo.h"
36 #include "llvm/CodeGen/TargetInstrInfo.h"
37 #include "llvm/CodeGen/TargetRegisterInfo.h"
38 #include "llvm/CodeGen/TargetSubtargetInfo.h"
39 #include "llvm/IR/BasicBlock.h"
40 #include "llvm/IR/LLVMContext.h"
41 #include "llvm/IR/DebugInfoMetadata.h"
42 #include "llvm/Pass.h"
43 #include "llvm/Support/BranchProbability.h"
44 #include "llvm/Support/CommandLine.h"
45 #include "llvm/Support/Debug.h"
46 #include "llvm/Support/raw_ostream.h"
47 #include <algorithm>
48 #include <cassert>
49 #include <cstdint>
50 #include <map>
51 #include <utility>
52 #include <vector>
53 
54 using namespace llvm;
55 
56 #define DEBUG_TYPE "machine-sink"
57 
58 static cl::opt<bool>
59 SplitEdges("machine-sink-split",
60            cl::desc("Split critical edges during machine sinking"),
61            cl::init(true), cl::Hidden);
62 
63 static cl::opt<bool>
64 UseBlockFreqInfo("machine-sink-bfi",
65            cl::desc("Use block frequency info to find successors to sink"),
66            cl::init(true), cl::Hidden);
67 
68 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
69     "machine-sink-split-probability-threshold",
70     cl::desc(
71         "Percentage threshold for splitting single-instruction critical edge. "
72         "If the branch threshold is higher than this threshold, we allow "
73         "speculative execution of up to 1 instruction to avoid branching to "
74         "splitted critical edge"),
75     cl::init(40), cl::Hidden);
76 
77 STATISTIC(NumSunk,      "Number of machine instructions sunk");
78 STATISTIC(NumSplit,     "Number of critical edges split");
79 STATISTIC(NumCoalesces, "Number of copies coalesced");
80 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
81 
82 namespace {
83 
84   class MachineSinking : public MachineFunctionPass {
85     const TargetInstrInfo *TII;
86     const TargetRegisterInfo *TRI;
87     MachineRegisterInfo  *MRI;     // Machine register information
88     MachineDominatorTree *DT;      // Machine dominator tree
89     MachinePostDominatorTree *PDT; // Machine post dominator tree
90     MachineLoopInfo *LI;
91     const MachineBlockFrequencyInfo *MBFI;
92     const MachineBranchProbabilityInfo *MBPI;
93     AliasAnalysis *AA;
94 
95     // Remember which edges have been considered for breaking.
96     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
97     CEBCandidates;
98     // Remember which edges we are about to split.
99     // This is different from CEBCandidates since those edges
100     // will be split.
101     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
102 
103     SparseBitVector<> RegsToClearKillFlags;
104 
105     using AllSuccsCache =
106         std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
107 
108   public:
109     static char ID; // Pass identification
110 
111     MachineSinking() : MachineFunctionPass(ID) {
112       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
113     }
114 
115     bool runOnMachineFunction(MachineFunction &MF) override;
116 
117     void getAnalysisUsage(AnalysisUsage &AU) const override {
118       AU.setPreservesCFG();
119       MachineFunctionPass::getAnalysisUsage(AU);
120       AU.addRequired<AAResultsWrapperPass>();
121       AU.addRequired<MachineDominatorTree>();
122       AU.addRequired<MachinePostDominatorTree>();
123       AU.addRequired<MachineLoopInfo>();
124       AU.addRequired<MachineBranchProbabilityInfo>();
125       AU.addPreserved<MachineDominatorTree>();
126       AU.addPreserved<MachinePostDominatorTree>();
127       AU.addPreserved<MachineLoopInfo>();
128       if (UseBlockFreqInfo)
129         AU.addRequired<MachineBlockFrequencyInfo>();
130     }
131 
132     void releaseMemory() override {
133       CEBCandidates.clear();
134     }
135 
136   private:
137     bool ProcessBlock(MachineBasicBlock &MBB);
138     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
139                                      MachineBasicBlock *From,
140                                      MachineBasicBlock *To);
141 
142     /// Postpone the splitting of the given critical
143     /// edge (\p From, \p To).
144     ///
145     /// We do not split the edges on the fly. Indeed, this invalidates
146     /// the dominance information and thus triggers a lot of updates
147     /// of that information underneath.
148     /// Instead, we postpone all the splits after each iteration of
149     /// the main loop. That way, the information is at least valid
150     /// for the lifetime of an iteration.
151     ///
152     /// \return True if the edge is marked as toSplit, false otherwise.
153     /// False can be returned if, for instance, this is not profitable.
154     bool PostponeSplitCriticalEdge(MachineInstr &MI,
155                                    MachineBasicBlock *From,
156                                    MachineBasicBlock *To,
157                                    bool BreakPHIEdge);
158     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
159 
160                          AllSuccsCache &AllSuccessors);
161     bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB,
162                                  MachineBasicBlock *DefMBB,
163                                  bool &BreakPHIEdge, bool &LocalUse) const;
164     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
165                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
166     bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
167                               MachineBasicBlock *MBB,
168                               MachineBasicBlock *SuccToSinkTo,
169                               AllSuccsCache &AllSuccessors);
170 
171     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
172                                          MachineBasicBlock *MBB);
173 
174     SmallVector<MachineBasicBlock *, 4> &
175     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
176                            AllSuccsCache &AllSuccessors) const;
177   };
178 
179 } // end anonymous namespace
180 
181 char MachineSinking::ID = 0;
182 
183 char &llvm::MachineSinkingID = MachineSinking::ID;
184 
185 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
186                       "Machine code sinking", false, false)
187 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
188 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
189 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo)
190 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
191 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
192                     "Machine code sinking", false, false)
193 
194 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
195                                                      MachineBasicBlock *MBB) {
196   if (!MI.isCopy())
197     return false;
198 
199   unsigned SrcReg = MI.getOperand(1).getReg();
200   unsigned DstReg = MI.getOperand(0).getReg();
201   if (!TargetRegisterInfo::isVirtualRegister(SrcReg) ||
202       !TargetRegisterInfo::isVirtualRegister(DstReg) ||
203       !MRI->hasOneNonDBGUse(SrcReg))
204     return false;
205 
206   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
207   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
208   if (SRC != DRC)
209     return false;
210 
211   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
212   if (DefMI->isCopyLike())
213     return false;
214   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
215   LLVM_DEBUG(dbgs() << "*** to: " << MI);
216   MRI->replaceRegWith(DstReg, SrcReg);
217   MI.eraseFromParent();
218 
219   // Conservatively, clear any kill flags, since it's possible that they are no
220   // longer correct.
221   MRI->clearKillFlags(SrcReg);
222 
223   ++NumCoalesces;
224   return true;
225 }
226 
227 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
228 /// occur in blocks dominated by the specified block. If any use is in the
229 /// definition block, then return false since it is never legal to move def
230 /// after uses.
231 bool
232 MachineSinking::AllUsesDominatedByBlock(unsigned Reg,
233                                         MachineBasicBlock *MBB,
234                                         MachineBasicBlock *DefMBB,
235                                         bool &BreakPHIEdge,
236                                         bool &LocalUse) const {
237   assert(TargetRegisterInfo::isVirtualRegister(Reg) &&
238          "Only makes sense for vregs");
239 
240   // Ignore debug uses because debug info doesn't affect the code.
241   if (MRI->use_nodbg_empty(Reg))
242     return true;
243 
244   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
245   // into and they are all PHI nodes. In this case, machine-sink must break
246   // the critical edge first. e.g.
247   //
248   // %bb.1: derived from LLVM BB %bb4.preheader
249   //   Predecessors according to CFG: %bb.0
250   //     ...
251   //     %reg16385 = DEC64_32r %reg16437, implicit-def dead %eflags
252   //     ...
253   //     JE_4 <%bb.37>, implicit %eflags
254   //   Successors according to CFG: %bb.37 %bb.2
255   //
256   // %bb.2: derived from LLVM BB %bb.nph
257   //   Predecessors according to CFG: %bb.0 %bb.1
258   //     %reg16386 = PHI %reg16434, %bb.0, %reg16385, %bb.1
259   BreakPHIEdge = true;
260   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
261     MachineInstr *UseInst = MO.getParent();
262     unsigned OpNo = &MO - &UseInst->getOperand(0);
263     MachineBasicBlock *UseBlock = UseInst->getParent();
264     if (!(UseBlock == MBB && UseInst->isPHI() &&
265           UseInst->getOperand(OpNo+1).getMBB() == DefMBB)) {
266       BreakPHIEdge = false;
267       break;
268     }
269   }
270   if (BreakPHIEdge)
271     return true;
272 
273   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
274     // Determine the block of the use.
275     MachineInstr *UseInst = MO.getParent();
276     unsigned OpNo = &MO - &UseInst->getOperand(0);
277     MachineBasicBlock *UseBlock = UseInst->getParent();
278     if (UseInst->isPHI()) {
279       // PHI nodes use the operand in the predecessor block, not the block with
280       // the PHI.
281       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
282     } else if (UseBlock == DefMBB) {
283       LocalUse = true;
284       return false;
285     }
286 
287     // Check that it dominates.
288     if (!DT->dominates(MBB, UseBlock))
289       return false;
290   }
291 
292   return true;
293 }
294 
295 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
296   if (skipFunction(MF.getFunction()))
297     return false;
298 
299   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
300 
301   TII = MF.getSubtarget().getInstrInfo();
302   TRI = MF.getSubtarget().getRegisterInfo();
303   MRI = &MF.getRegInfo();
304   DT = &getAnalysis<MachineDominatorTree>();
305   PDT = &getAnalysis<MachinePostDominatorTree>();
306   LI = &getAnalysis<MachineLoopInfo>();
307   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
308   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
309   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
310 
311   bool EverMadeChange = false;
312 
313   while (true) {
314     bool MadeChange = false;
315 
316     // Process all basic blocks.
317     CEBCandidates.clear();
318     ToSplit.clear();
319     for (auto &MBB: MF)
320       MadeChange |= ProcessBlock(MBB);
321 
322     // If we have anything we marked as toSplit, split it now.
323     for (auto &Pair : ToSplit) {
324       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
325       if (NewSucc != nullptr) {
326         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
327                           << printMBBReference(*Pair.first) << " -- "
328                           << printMBBReference(*NewSucc) << " -- "
329                           << printMBBReference(*Pair.second) << '\n');
330         MadeChange = true;
331         ++NumSplit;
332       } else
333         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
334     }
335     // If this iteration over the code changed anything, keep iterating.
336     if (!MadeChange) break;
337     EverMadeChange = true;
338   }
339 
340   // Now clear any kill flags for recorded registers.
341   for (auto I : RegsToClearKillFlags)
342     MRI->clearKillFlags(I);
343   RegsToClearKillFlags.clear();
344 
345   return EverMadeChange;
346 }
347 
348 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
349   // Can't sink anything out of a block that has less than two successors.
350   if (MBB.succ_size() <= 1 || MBB.empty()) return false;
351 
352   // Don't bother sinking code out of unreachable blocks. In addition to being
353   // unprofitable, it can also lead to infinite looping, because in an
354   // unreachable loop there may be nowhere to stop.
355   if (!DT->isReachableFromEntry(&MBB)) return false;
356 
357   bool MadeChange = false;
358 
359   // Cache all successors, sorted by frequency info and loop depth.
360   AllSuccsCache AllSuccessors;
361 
362   // Walk the basic block bottom-up.  Remember if we saw a store.
363   MachineBasicBlock::iterator I = MBB.end();
364   --I;
365   bool ProcessedBegin, SawStore = false;
366   do {
367     MachineInstr &MI = *I;  // The instruction to sink.
368 
369     // Predecrement I (if it's not begin) so that it isn't invalidated by
370     // sinking.
371     ProcessedBegin = I == MBB.begin();
372     if (!ProcessedBegin)
373       --I;
374 
375     if (MI.isDebugInstr())
376       continue;
377 
378     bool Joined = PerformTrivialForwardCoalescing(MI, &MBB);
379     if (Joined) {
380       MadeChange = true;
381       continue;
382     }
383 
384     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
385       ++NumSunk;
386       MadeChange = true;
387     }
388 
389     // If we just processed the first instruction in the block, we're done.
390   } while (!ProcessedBegin);
391 
392   return MadeChange;
393 }
394 
395 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
396                                                  MachineBasicBlock *From,
397                                                  MachineBasicBlock *To) {
398   // FIXME: Need much better heuristics.
399 
400   // If the pass has already considered breaking this edge (during this pass
401   // through the function), then let's go ahead and break it. This means
402   // sinking multiple "cheap" instructions into the same block.
403   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
404     return true;
405 
406   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
407     return true;
408 
409   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
410       BranchProbability(SplitEdgeProbabilityThreshold, 100))
411     return true;
412 
413   // MI is cheap, we probably don't want to break the critical edge for it.
414   // However, if this would allow some definitions of its source operands
415   // to be sunk then it's probably worth it.
416   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
417     const MachineOperand &MO = MI.getOperand(i);
418     if (!MO.isReg() || !MO.isUse())
419       continue;
420     unsigned Reg = MO.getReg();
421     if (Reg == 0)
422       continue;
423 
424     // We don't move live definitions of physical registers,
425     // so sinking their uses won't enable any opportunities.
426     if (TargetRegisterInfo::isPhysicalRegister(Reg))
427       continue;
428 
429     // If this instruction is the only user of a virtual register,
430     // check if breaking the edge will enable sinking
431     // both this instruction and the defining instruction.
432     if (MRI->hasOneNonDBGUse(Reg)) {
433       // If the definition resides in same MBB,
434       // claim it's likely we can sink these together.
435       // If definition resides elsewhere, we aren't
436       // blocking it from being sunk so don't break the edge.
437       MachineInstr *DefMI = MRI->getVRegDef(Reg);
438       if (DefMI->getParent() == MI.getParent())
439         return true;
440     }
441   }
442 
443   return false;
444 }
445 
446 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
447                                                MachineBasicBlock *FromBB,
448                                                MachineBasicBlock *ToBB,
449                                                bool BreakPHIEdge) {
450   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
451     return false;
452 
453   // Avoid breaking back edge. From == To means backedge for single BB loop.
454   if (!SplitEdges || FromBB == ToBB)
455     return false;
456 
457   // Check for backedges of more "complex" loops.
458   if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) &&
459       LI->isLoopHeader(ToBB))
460     return false;
461 
462   // It's not always legal to break critical edges and sink the computation
463   // to the edge.
464   //
465   // %bb.1:
466   // v1024
467   // Beq %bb.3
468   // <fallthrough>
469   // %bb.2:
470   // ... no uses of v1024
471   // <fallthrough>
472   // %bb.3:
473   // ...
474   //       = v1024
475   //
476   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
477   //
478   // %bb.1:
479   // ...
480   // Bne %bb.2
481   // %bb.4:
482   // v1024 =
483   // B %bb.3
484   // %bb.2:
485   // ... no uses of v1024
486   // <fallthrough>
487   // %bb.3:
488   // ...
489   //       = v1024
490   //
491   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
492   // flow. We need to ensure the new basic block where the computation is
493   // sunk to dominates all the uses.
494   // It's only legal to break critical edge and sink the computation to the
495   // new block if all the predecessors of "To", except for "From", are
496   // not dominated by "From". Given SSA property, this means these
497   // predecessors are dominated by "To".
498   //
499   // There is no need to do this check if all the uses are PHI nodes. PHI
500   // sources are only defined on the specific predecessor edges.
501   if (!BreakPHIEdge) {
502     for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(),
503            E = ToBB->pred_end(); PI != E; ++PI) {
504       if (*PI == FromBB)
505         continue;
506       if (!DT->dominates(ToBB, *PI))
507         return false;
508     }
509   }
510 
511   ToSplit.insert(std::make_pair(FromBB, ToBB));
512 
513   return true;
514 }
515 
516 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
517 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI,
518                                           MachineBasicBlock *MBB,
519                                           MachineBasicBlock *SuccToSinkTo,
520                                           AllSuccsCache &AllSuccessors) {
521   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
522 
523   if (MBB == SuccToSinkTo)
524     return false;
525 
526   // It is profitable if SuccToSinkTo does not post dominate current block.
527   if (!PDT->dominates(SuccToSinkTo, MBB))
528     return true;
529 
530   // It is profitable to sink an instruction from a deeper loop to a shallower
531   // loop, even if the latter post-dominates the former (PR21115).
532   if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo))
533     return true;
534 
535   // Check if only use in post dominated block is PHI instruction.
536   bool NonPHIUse = false;
537   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
538     MachineBasicBlock *UseBlock = UseInst.getParent();
539     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
540       NonPHIUse = true;
541   }
542   if (!NonPHIUse)
543     return true;
544 
545   // If SuccToSinkTo post dominates then also it may be profitable if MI
546   // can further profitably sinked into another block in next round.
547   bool BreakPHIEdge = false;
548   // FIXME - If finding successor is compile time expensive then cache results.
549   if (MachineBasicBlock *MBB2 =
550           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
551     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
552 
553   // If SuccToSinkTo is final destination and it is a post dominator of current
554   // block then it is not profitable to sink MI into SuccToSinkTo block.
555   return false;
556 }
557 
558 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
559 /// computing it if it was not already cached.
560 SmallVector<MachineBasicBlock *, 4> &
561 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
562                                        AllSuccsCache &AllSuccessors) const {
563   // Do we have the sorted successors in cache ?
564   auto Succs = AllSuccessors.find(MBB);
565   if (Succs != AllSuccessors.end())
566     return Succs->second;
567 
568   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(),
569                                                MBB->succ_end());
570 
571   // Handle cases where sinking can happen but where the sink point isn't a
572   // successor. For example:
573   //
574   //   x = computation
575   //   if () {} else {}
576   //   use x
577   //
578   const std::vector<MachineDomTreeNode *> &Children =
579     DT->getNode(MBB)->getChildren();
580   for (const auto &DTChild : Children)
581     // DomTree children of MBB that have MBB as immediate dominator are added.
582     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
583         // Skip MBBs already added to the AllSuccs vector above.
584         !MBB->isSuccessor(DTChild->getBlock()))
585       AllSuccs.push_back(DTChild->getBlock());
586 
587   // Sort Successors according to their loop depth or block frequency info.
588   std::stable_sort(
589       AllSuccs.begin(), AllSuccs.end(),
590       [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
591         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
592         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
593         bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0;
594         return HasBlockFreq ? LHSFreq < RHSFreq
595                             : LI->getLoopDepth(L) < LI->getLoopDepth(R);
596       });
597 
598   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
599 
600   return it.first->second;
601 }
602 
603 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
604 MachineBasicBlock *
605 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
606                                  bool &BreakPHIEdge,
607                                  AllSuccsCache &AllSuccessors) {
608   assert (MBB && "Invalid MachineBasicBlock!");
609 
610   // Loop over all the operands of the specified instruction.  If there is
611   // anything we can't handle, bail out.
612 
613   // SuccToSinkTo - This is the successor to sink this instruction to, once we
614   // decide.
615   MachineBasicBlock *SuccToSinkTo = nullptr;
616   for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) {
617     const MachineOperand &MO = MI.getOperand(i);
618     if (!MO.isReg()) continue;  // Ignore non-register operands.
619 
620     unsigned Reg = MO.getReg();
621     if (Reg == 0) continue;
622 
623     if (TargetRegisterInfo::isPhysicalRegister(Reg)) {
624       if (MO.isUse()) {
625         // If the physreg has no defs anywhere, it's just an ambient register
626         // and we can freely move its uses. Alternatively, if it's allocatable,
627         // it could get allocated to something with a def during allocation.
628         if (!MRI->isConstantPhysReg(Reg))
629           return nullptr;
630       } else if (!MO.isDead()) {
631         // A def that isn't dead. We can't move it.
632         return nullptr;
633       }
634     } else {
635       // Virtual register uses are always safe to sink.
636       if (MO.isUse()) continue;
637 
638       // If it's not safe to move defs of the register class, then abort.
639       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
640         return nullptr;
641 
642       // Virtual register defs can only be sunk if all their uses are in blocks
643       // dominated by one of the successors.
644       if (SuccToSinkTo) {
645         // If a previous operand picked a block to sink to, then this operand
646         // must be sinkable to the same block.
647         bool LocalUse = false;
648         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
649                                      BreakPHIEdge, LocalUse))
650           return nullptr;
651 
652         continue;
653       }
654 
655       // Otherwise, we should look at all the successors and decide which one
656       // we should sink to. If we have reliable block frequency information
657       // (frequency != 0) available, give successors with smaller frequencies
658       // higher priority, otherwise prioritize smaller loop depths.
659       for (MachineBasicBlock *SuccBlock :
660            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
661         bool LocalUse = false;
662         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
663                                     BreakPHIEdge, LocalUse)) {
664           SuccToSinkTo = SuccBlock;
665           break;
666         }
667         if (LocalUse)
668           // Def is used locally, it's never safe to move this def.
669           return nullptr;
670       }
671 
672       // If we couldn't find a block to sink to, ignore this instruction.
673       if (!SuccToSinkTo)
674         return nullptr;
675       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
676         return nullptr;
677     }
678   }
679 
680   // It is not possible to sink an instruction into its own block.  This can
681   // happen with loops.
682   if (MBB == SuccToSinkTo)
683     return nullptr;
684 
685   // It's not safe to sink instructions to EH landing pad. Control flow into
686   // landing pad is implicitly defined.
687   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
688     return nullptr;
689 
690   return SuccToSinkTo;
691 }
692 
693 /// Return true if MI is likely to be usable as a memory operation by the
694 /// implicit null check optimization.
695 ///
696 /// This is a "best effort" heuristic, and should not be relied upon for
697 /// correctness.  This returning true does not guarantee that the implicit null
698 /// check optimization is legal over MI, and this returning false does not
699 /// guarantee MI cannot possibly be used to do a null check.
700 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
701                                              const TargetInstrInfo *TII,
702                                              const TargetRegisterInfo *TRI) {
703   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
704 
705   auto *MBB = MI.getParent();
706   if (MBB->pred_size() != 1)
707     return false;
708 
709   auto *PredMBB = *MBB->pred_begin();
710   auto *PredBB = PredMBB->getBasicBlock();
711 
712   // Frontends that don't use implicit null checks have no reason to emit
713   // branches with make.implicit metadata, and this function should always
714   // return false for them.
715   if (!PredBB ||
716       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
717     return false;
718 
719   unsigned BaseReg;
720   int64_t Offset;
721   if (!TII->getMemOpBaseRegImmOfs(MI, BaseReg, Offset, TRI))
722     return false;
723 
724   if (!(MI.mayLoad() && !MI.isPredicable()))
725     return false;
726 
727   MachineBranchPredicate MBP;
728   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
729     return false;
730 
731   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
732          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
733           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
734          MBP.LHS.getReg() == BaseReg;
735 }
736 
737 /// Sink an instruction and its associated debug instructions.
738 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
739                         MachineBasicBlock::iterator InsertPos) {
740   // Collect matching debug values.
741   SmallVector<MachineInstr *, 2> DbgValuesToSink;
742   MI.collectDebugValues(DbgValuesToSink);
743 
744   // If we cannot find a location to use (merge with), then we erase the debug
745   // location to prevent debug-info driven tools from potentially reporting
746   // wrong location information.
747   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
748     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
749                                                  InsertPos->getDebugLoc()));
750   else
751     MI.setDebugLoc(DebugLoc());
752 
753   // Move the instruction.
754   MachineBasicBlock *ParentBlock = MI.getParent();
755   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
756                       ++MachineBasicBlock::iterator(MI));
757 
758   // Move previously adjacent debug value instructions to the insert position.
759   for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(),
760                                                  DBE = DbgValuesToSink.end();
761        DBI != DBE; ++DBI) {
762     MachineInstr *DbgMI = *DBI;
763     SuccToSinkTo.splice(InsertPos, ParentBlock, DbgMI,
764                         ++MachineBasicBlock::iterator(DbgMI));
765   }
766 }
767 
768 /// SinkInstruction - Determine whether it is safe to sink the specified machine
769 /// instruction out of its current block into a successor.
770 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
771                                      AllSuccsCache &AllSuccessors) {
772   // Don't sink instructions that the target prefers not to sink.
773   if (!TII->shouldSink(MI))
774     return false;
775 
776   // Check if it's safe to move the instruction.
777   if (!MI.isSafeToMove(AA, SawStore))
778     return false;
779 
780   // Convergent operations may not be made control-dependent on additional
781   // values.
782   if (MI.isConvergent())
783     return false;
784 
785   // Don't break implicit null checks.  This is a performance heuristic, and not
786   // required for correctness.
787   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
788     return false;
789 
790   // FIXME: This should include support for sinking instructions within the
791   // block they are currently in to shorten the live ranges.  We often get
792   // instructions sunk into the top of a large block, but it would be better to
793   // also sink them down before their first use in the block.  This xform has to
794   // be careful not to *increase* register pressure though, e.g. sinking
795   // "x = y + z" down if it kills y and z would increase the live ranges of y
796   // and z and only shrink the live range of x.
797 
798   bool BreakPHIEdge = false;
799   MachineBasicBlock *ParentBlock = MI.getParent();
800   MachineBasicBlock *SuccToSinkTo =
801       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
802 
803   // If there are no outputs, it must have side-effects.
804   if (!SuccToSinkTo)
805     return false;
806 
807   // If the instruction to move defines a dead physical register which is live
808   // when leaving the basic block, don't move it because it could turn into a
809   // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>)
810   for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) {
811     const MachineOperand &MO = MI.getOperand(I);
812     if (!MO.isReg()) continue;
813     unsigned Reg = MO.getReg();
814     if (Reg == 0 || !TargetRegisterInfo::isPhysicalRegister(Reg)) continue;
815     if (SuccToSinkTo->isLiveIn(Reg))
816       return false;
817   }
818 
819   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
820 
821   // If the block has multiple predecessors, this is a critical edge.
822   // Decide if we can sink along it or need to break the edge.
823   if (SuccToSinkTo->pred_size() > 1) {
824     // We cannot sink a load across a critical edge - there may be stores in
825     // other code paths.
826     bool TryBreak = false;
827     bool store = true;
828     if (!MI.isSafeToMove(AA, store)) {
829       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
830       TryBreak = true;
831     }
832 
833     // We don't want to sink across a critical edge if we don't dominate the
834     // successor. We could be introducing calculations to new code paths.
835     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
836       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
837       TryBreak = true;
838     }
839 
840     // Don't sink instructions into a loop.
841     if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) {
842       LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n");
843       TryBreak = true;
844     }
845 
846     // Otherwise we are OK with sinking along a critical edge.
847     if (!TryBreak)
848       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
849     else {
850       // Mark this edge as to be split.
851       // If the edge can actually be split, the next iteration of the main loop
852       // will sink MI in the newly created block.
853       bool Status =
854         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
855       if (!Status)
856         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
857                              "break critical edge\n");
858       // The instruction will not be sunk this time.
859       return false;
860     }
861   }
862 
863   if (BreakPHIEdge) {
864     // BreakPHIEdge is true if all the uses are in the successor MBB being
865     // sunken into and they are all PHI nodes. In this case, machine-sink must
866     // break the critical edge first.
867     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
868                                             SuccToSinkTo, BreakPHIEdge);
869     if (!Status)
870       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
871                            "break critical edge\n");
872     // The instruction will not be sunk this time.
873     return false;
874   }
875 
876   // Determine where to insert into. Skip phi nodes.
877   MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin();
878   while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI())
879     ++InsertPos;
880 
881   performSink(MI, *SuccToSinkTo, InsertPos);
882 
883   // Conservatively, clear any kill flags, since it's possible that they are no
884   // longer correct.
885   // Note that we have to clear the kill flags for any register this instruction
886   // uses as we may sink over another instruction which currently kills the
887   // used registers.
888   for (MachineOperand &MO : MI.operands()) {
889     if (MO.isReg() && MO.isUse())
890       RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags.
891   }
892 
893   return true;
894 }
895 
896 //===----------------------------------------------------------------------===//
897 // This pass is not intended to be a replacement or a complete alternative
898 // for the pre-ra machine sink pass. It is only designed to sink COPY
899 // instructions which should be handled after RA.
900 //
901 // This pass sinks COPY instructions into a successor block, if the COPY is not
902 // used in the current block and the COPY is live-in to a single successor
903 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
904 // copy on paths where their results aren't needed.  This also exposes
905 // additional opportunites for dead copy elimination and shrink wrapping.
906 //
907 // These copies were either not handled by or are inserted after the MachineSink
908 // pass. As an example of the former case, the MachineSink pass cannot sink
909 // COPY instructions with allocatable source registers; for AArch64 these type
910 // of copy instructions are frequently used to move function parameters (PhyReg)
911 // into virtual registers in the entry block.
912 //
913 // For the machine IR below, this pass will sink %w19 in the entry into its
914 // successor (%bb.1) because %w19 is only live-in in %bb.1.
915 // %bb.0:
916 //   %wzr = SUBSWri %w1, 1
917 //   %w19 = COPY %w0
918 //   Bcc 11, %bb.2
919 // %bb.1:
920 //   Live Ins: %w19
921 //   BL @fun
922 //   %w0 = ADDWrr %w0, %w19
923 //   RET %w0
924 // %bb.2:
925 //   %w0 = COPY %wzr
926 //   RET %w0
927 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
928 // able to see %bb.0 as a candidate.
929 //===----------------------------------------------------------------------===//
930 namespace {
931 
932 class PostRAMachineSinking : public MachineFunctionPass {
933 public:
934   bool runOnMachineFunction(MachineFunction &MF) override;
935 
936   static char ID;
937   PostRAMachineSinking() : MachineFunctionPass(ID) {}
938   StringRef getPassName() const override { return "PostRA Machine Sink"; }
939 
940   void getAnalysisUsage(AnalysisUsage &AU) const override {
941     AU.setPreservesCFG();
942     MachineFunctionPass::getAnalysisUsage(AU);
943   }
944 
945   MachineFunctionProperties getRequiredProperties() const override {
946     return MachineFunctionProperties().set(
947         MachineFunctionProperties::Property::NoVRegs);
948   }
949 
950 private:
951   /// Track which register units have been modified and used.
952   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
953 
954   /// Sink Copy instructions unused in the same block close to their uses in
955   /// successors.
956   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
957                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
958 };
959 } // namespace
960 
961 char PostRAMachineSinking::ID = 0;
962 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
963 
964 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
965                 "PostRA Machine Sink", false, false)
966 
967 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
968                                   const TargetRegisterInfo *TRI) {
969   LiveRegUnits LiveInRegUnits(*TRI);
970   LiveInRegUnits.addLiveIns(MBB);
971   return !LiveInRegUnits.available(Reg);
972 }
973 
974 static MachineBasicBlock *
975 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
976                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
977                       unsigned Reg, const TargetRegisterInfo *TRI) {
978   // Try to find a single sinkable successor in which Reg is live-in.
979   MachineBasicBlock *BB = nullptr;
980   for (auto *SI : SinkableBBs) {
981     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
982       // If BB is set here, Reg is live-in to at least two sinkable successors,
983       // so quit.
984       if (BB)
985         return nullptr;
986       BB = SI;
987     }
988   }
989   // Reg is not live-in to any sinkable successors.
990   if (!BB)
991     return nullptr;
992 
993   // Check if any register aliased with Reg is live-in in other successors.
994   for (auto *SI : CurBB.successors()) {
995     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
996       return nullptr;
997   }
998   return BB;
999 }
1000 
1001 static MachineBasicBlock *
1002 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1003                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1004                       ArrayRef<unsigned> DefedRegsInCopy,
1005                       const TargetRegisterInfo *TRI) {
1006   MachineBasicBlock *SingleBB = nullptr;
1007   for (auto DefReg : DefedRegsInCopy) {
1008     MachineBasicBlock *BB =
1009         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1010     if (!BB || (SingleBB && SingleBB != BB))
1011       return nullptr;
1012     SingleBB = BB;
1013   }
1014   return SingleBB;
1015 }
1016 
1017 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1018                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1019                            LiveRegUnits &UsedRegUnits,
1020                            const TargetRegisterInfo *TRI) {
1021   for (auto U : UsedOpsInCopy) {
1022     MachineOperand &MO = MI->getOperand(U);
1023     unsigned SrcReg = MO.getReg();
1024     if (!UsedRegUnits.available(SrcReg)) {
1025       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1026       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1027         if (UI.killsRegister(SrcReg, TRI)) {
1028           UI.clearRegisterKills(SrcReg, TRI);
1029           MO.setIsKill(true);
1030           break;
1031         }
1032       }
1033     }
1034   }
1035 }
1036 
1037 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1038                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1039                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1040   MachineFunction &MF = *SuccBB->getParent();
1041   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1042   for (unsigned DefReg : DefedRegsInCopy)
1043     for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S)
1044       SuccBB->removeLiveIn(*S);
1045   for (auto U : UsedOpsInCopy) {
1046     unsigned Reg = MI->getOperand(U).getReg();
1047     if (!SuccBB->isLiveIn(Reg))
1048       SuccBB->addLiveIn(Reg);
1049   }
1050 }
1051 
1052 static bool hasRegisterDependency(MachineInstr *MI,
1053                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1054                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1055                                   LiveRegUnits &ModifiedRegUnits,
1056                                   LiveRegUnits &UsedRegUnits) {
1057   bool HasRegDependency = false;
1058   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1059     MachineOperand &MO = MI->getOperand(i);
1060     if (!MO.isReg())
1061       continue;
1062     unsigned Reg = MO.getReg();
1063     if (!Reg)
1064       continue;
1065     if (MO.isDef()) {
1066       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1067         HasRegDependency = true;
1068         break;
1069       }
1070       DefedRegsInCopy.push_back(Reg);
1071 
1072       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1073       // For example, we can ignore modifications in reg with undef. However,
1074       // it's not perfectly clear if skipping the internal read is safe in all
1075       // other targets.
1076     } else if (MO.isUse()) {
1077       if (!ModifiedRegUnits.available(Reg)) {
1078         HasRegDependency = true;
1079         break;
1080       }
1081       UsedOpsInCopy.push_back(i);
1082     }
1083   }
1084   return HasRegDependency;
1085 }
1086 
1087 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1088                                          MachineFunction &MF,
1089                                          const TargetRegisterInfo *TRI,
1090                                          const TargetInstrInfo *TII) {
1091   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1092   // FIXME: For now, we sink only to a successor which has a single predecessor
1093   // so that we can directly sink COPY instructions to the successor without
1094   // adding any new block or branch instruction.
1095   for (MachineBasicBlock *SI : CurBB.successors())
1096     if (!SI->livein_empty() && SI->pred_size() == 1)
1097       SinkableBBs.insert(SI);
1098 
1099   if (SinkableBBs.empty())
1100     return false;
1101 
1102   bool Changed = false;
1103 
1104   // Track which registers have been modified and used between the end of the
1105   // block and the current instruction.
1106   ModifiedRegUnits.clear();
1107   UsedRegUnits.clear();
1108 
1109   for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) {
1110     MachineInstr *MI = &*I;
1111     ++I;
1112 
1113     if (MI->isDebugInstr())
1114       continue;
1115 
1116     // Do not move any instruction across function call.
1117     if (MI->isCall())
1118       return false;
1119 
1120     if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) {
1121       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1122                                         TRI);
1123       continue;
1124     }
1125 
1126     // Track the operand index for use in Copy.
1127     SmallVector<unsigned, 2> UsedOpsInCopy;
1128     // Track the register number defed in Copy.
1129     SmallVector<unsigned, 2> DefedRegsInCopy;
1130 
1131     // Don't sink the COPY if it would violate a register dependency.
1132     if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy,
1133                               ModifiedRegUnits, UsedRegUnits)) {
1134       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1135                                         TRI);
1136       continue;
1137     }
1138     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
1139            "Unexpect SrcReg or DefReg");
1140     MachineBasicBlock *SuccBB =
1141         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
1142     // Don't sink if we cannot find a single sinkable successor in which Reg
1143     // is live-in.
1144     if (!SuccBB) {
1145       LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits,
1146                                         TRI);
1147       continue;
1148     }
1149     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
1150            "Unexpected predecessor");
1151 
1152     // Clear the kill flag if SrcReg is killed between MI and the end of the
1153     // block.
1154     clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
1155     MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI();
1156     performSink(*MI, *SuccBB, InsertPos);
1157     updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
1158 
1159     Changed = true;
1160     ++NumPostRACopySink;
1161   }
1162   return Changed;
1163 }
1164 
1165 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
1166   bool Changed = false;
1167   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1168   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
1169 
1170   ModifiedRegUnits.init(*TRI);
1171   UsedRegUnits.init(*TRI);
1172   for (auto &BB : MF)
1173     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
1174 
1175   return Changed;
1176 }
1177