1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <map> 61 #include <utility> 62 #include <vector> 63 64 using namespace llvm; 65 66 #define DEBUG_TYPE "machine-sink" 67 68 static cl::opt<bool> 69 SplitEdges("machine-sink-split", 70 cl::desc("Split critical edges during machine sinking"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<bool> 74 UseBlockFreqInfo("machine-sink-bfi", 75 cl::desc("Use block frequency info to find successors to sink"), 76 cl::init(true), cl::Hidden); 77 78 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 79 "machine-sink-split-probability-threshold", 80 cl::desc( 81 "Percentage threshold for splitting single-instruction critical edge. " 82 "If the branch threshold is higher than this threshold, we allow " 83 "speculative execution of up to 1 instruction to avoid branching to " 84 "splitted critical edge"), 85 cl::init(40), cl::Hidden); 86 87 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 88 "machine-sink-load-instrs-threshold", 89 cl::desc("Do not try to find alias store for a load if there is a in-path " 90 "block whose instruction number is higher than this threshold."), 91 cl::init(2000), cl::Hidden); 92 93 static cl::opt<unsigned> SinkLoadBlocksThreshold( 94 "machine-sink-load-blocks-threshold", 95 cl::desc("Do not try to find alias store for a load if the block number in " 96 "the straight line is higher than this threshold."), 97 cl::init(20), cl::Hidden); 98 99 static cl::opt<bool> 100 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 101 cl::desc("Sink instructions into cycles to avoid " 102 "register spills"), 103 cl::init(false), cl::Hidden); 104 105 static cl::opt<unsigned> SinkIntoCycleLimit( 106 "machine-sink-cycle-limit", 107 cl::desc("The maximum number of instructions considered for cycle sinking."), 108 cl::init(50), cl::Hidden); 109 110 STATISTIC(NumSunk, "Number of machine instructions sunk"); 111 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 112 STATISTIC(NumSplit, "Number of critical edges split"); 113 STATISTIC(NumCoalesces, "Number of copies coalesced"); 114 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 115 116 namespace { 117 118 class MachineSinking : public MachineFunctionPass { 119 const TargetSubtargetInfo *STI = nullptr; 120 const TargetInstrInfo *TII = nullptr; 121 const TargetRegisterInfo *TRI = nullptr; 122 MachineRegisterInfo *MRI = nullptr; // Machine register information 123 MachineDominatorTree *DT = nullptr; // Machine dominator tree 124 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 125 MachineCycleInfo *CI = nullptr; 126 MachineBlockFrequencyInfo *MBFI = nullptr; 127 const MachineBranchProbabilityInfo *MBPI = nullptr; 128 AliasAnalysis *AA = nullptr; 129 RegisterClassInfo RegClassInfo; 130 131 // Remember which edges have been considered for breaking. 132 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 133 CEBCandidates; 134 // Remember which edges we are about to split. 135 // This is different from CEBCandidates since those edges 136 // will be split. 137 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 138 139 DenseSet<Register> RegsToClearKillFlags; 140 141 using AllSuccsCache = 142 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 143 144 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 145 /// post-dominated by another DBG_VALUE of the same variable location. 146 /// This is necessary to detect sequences such as: 147 /// %0 = someinst 148 /// DBG_VALUE %0, !123, !DIExpression() 149 /// %1 = anotherinst 150 /// DBG_VALUE %1, !123, !DIExpression() 151 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 152 /// would re-order assignments. 153 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 154 155 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 156 /// debug instructions to sink. 157 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 158 159 /// Record of debug variables that have had their locations set in the 160 /// current block. 161 DenseSet<DebugVariable> SeenDbgVars; 162 163 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 164 HasStoreCache; 165 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 std::vector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 std::map<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && 304 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 305 continue; 306 if (PI->modifiesRegister(Reg, TRI)) 307 return true; 308 } else { 309 if (PI->readsRegister(Reg, TRI)) 310 return true; 311 // Check for interference with non-dead defs 312 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 313 if (DefOp && !DefOp->isDead()) 314 return true; 315 } 316 } 317 } 318 319 return false; 320 } 321 322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 323 MachineBasicBlock *MBB) { 324 if (!MI.isCopy()) 325 return false; 326 327 Register SrcReg = MI.getOperand(1).getReg(); 328 Register DstReg = MI.getOperand(0).getReg(); 329 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 330 !MRI->hasOneNonDBGUse(SrcReg)) 331 return false; 332 333 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 334 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 335 if (SRC != DRC) 336 return false; 337 338 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 339 if (DefMI->isCopyLike()) 340 return false; 341 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 342 LLVM_DEBUG(dbgs() << "*** to: " << MI); 343 MRI->replaceRegWith(DstReg, SrcReg); 344 MI.eraseFromParent(); 345 346 // Conservatively, clear any kill flags, since it's possible that they are no 347 // longer correct. 348 MRI->clearKillFlags(SrcReg); 349 350 ++NumCoalesces; 351 return true; 352 } 353 354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 355 MachineBasicBlock *MBB) { 356 if (MI.isCopy() || MI.mayLoadOrStore() || 357 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 358 return false; 359 360 // Don't sink instructions that the target prefers not to sink. 361 if (!TII->shouldSink(MI)) 362 return false; 363 364 // Check if it's safe to move the instruction. 365 bool SawStore = true; 366 if (!MI.isSafeToMove(AA, SawStore)) 367 return false; 368 369 // Convergent operations may not be made control-dependent on additional 370 // values. 371 if (MI.isConvergent()) 372 return false; 373 374 // Don't sink defs/uses of hard registers or if the instruction defines more 375 // than one register. 376 // Don't sink more than two register uses - it'll cover most of the cases and 377 // greatly simplifies the register pressure checks. 378 Register DefReg; 379 Register UsedRegA, UsedRegB; 380 for (const MachineOperand &MO : MI.operands()) { 381 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 382 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 383 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 384 continue; 385 if (!MO.isReg()) 386 return false; 387 388 Register Reg = MO.getReg(); 389 if (Reg == 0) 390 continue; 391 392 if (Reg.isVirtual()) { 393 if (MO.isDef()) { 394 if (DefReg) 395 return false; 396 DefReg = Reg; 397 continue; 398 } 399 400 if (UsedRegA == 0) 401 UsedRegA = Reg; 402 else if (UsedRegB == 0) 403 UsedRegB = Reg; 404 else 405 return false; 406 continue; 407 } 408 409 if (Reg.isPhysical() && 410 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 411 continue; 412 413 return false; 414 } 415 416 // Scan uses of the destination register. Every use, except the last, must be 417 // a copy, with a chain of copies terminating with either a copy into a hard 418 // register, or a load/store instruction where the use is part of the 419 // address (*not* the stored value). 420 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 421 SmallVector<SinkInfo> SinkInto; 422 SmallVector<Register> Worklist; 423 424 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 425 const TargetRegisterClass *RCA = 426 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 427 const TargetRegisterClass *RCB = 428 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 429 430 Worklist.push_back(DefReg); 431 while (!Worklist.empty()) { 432 Register Reg = Worklist.pop_back_val(); 433 434 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 435 ExtAddrMode MaybeAM; 436 MachineInstr &UseInst = *MO.getParent(); 437 if (UseInst.isCopy()) { 438 Register DstReg; 439 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 440 DstReg = O.getReg(); 441 if (DstReg == 0) 442 return false; 443 if (DstReg.isVirtual()) { 444 Worklist.push_back(DstReg); 445 continue; 446 } 447 // If we are going to replace a copy, the original instruction must be 448 // as cheap as a copy. 449 if (!TII->isAsCheapAsAMove(MI)) 450 return false; 451 // The hard register must be in the register class of the original 452 // instruction's destination register. 453 if (!RC->contains(DstReg)) 454 return false; 455 } else if (UseInst.mayLoadOrStore()) { 456 ExtAddrMode AM; 457 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 458 return false; 459 MaybeAM = AM; 460 } else { 461 return false; 462 } 463 464 if (UseInst.getParent() != MI.getParent()) { 465 // If the register class of the register we are replacing is a superset 466 // of any of the register classes of the operands of the materialized 467 // instruction don't consider that live range extended. 468 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 469 if (RCA && RCA->hasSuperClassEq(RCS)) 470 RCA = nullptr; 471 else if (RCB && RCB->hasSuperClassEq(RCS)) 472 RCB = nullptr; 473 if (RCA || RCB) { 474 if (RCA == nullptr) { 475 RCA = RCB; 476 RCB = nullptr; 477 } 478 479 unsigned NRegs = !!RCA + !!RCB; 480 if (RCA == RCB) 481 RCB = nullptr; 482 483 // Check we don't exceed register pressure at the destination. 484 const MachineBasicBlock &MBB = *UseInst.getParent(); 485 if (RCB == nullptr) { 486 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 487 return false; 488 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 489 registerPressureSetExceedsLimit(1, RCB, MBB)) { 490 return false; 491 } 492 } 493 } 494 495 SinkInto.emplace_back(&UseInst, MaybeAM); 496 } 497 } 498 499 if (SinkInto.empty()) 500 return false; 501 502 // Now we know we can fold the instruction in all its users. 503 if (UsedRegA) 504 MRI->clearKillFlags(UsedRegA); 505 if (UsedRegB) 506 MRI->clearKillFlags(UsedRegB); 507 508 for (auto &[SinkDst, MaybeAM] : SinkInto) { 509 MachineInstr *New = nullptr; 510 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 511 SinkDst->dump()); 512 if (SinkDst->isCopy()) { 513 // Sink a copy of the instruction, replacing a COPY instruction. 514 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 515 Register DstReg = SinkDst->getOperand(0).getReg(); 516 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 517 // If the original instruction did not have source location, reuse a one 518 // from the COPY. 519 New = &*std::prev(InsertPt); 520 if (const DebugLoc &NewLoc = New->getDebugLoc(); !NewLoc) 521 New->setDebugLoc(SinkDst->getDebugLoc()); 522 // Sink DBG_VALUEs, which refer to the original instruction's destination 523 // (DefReg). 524 MachineBasicBlock &SinkMBB = *SinkDst->getParent(); 525 auto &DbgUsers = SeenDbgUsers[DefReg]; 526 for (auto &U : DbgUsers) { 527 MachineInstr *DbgMI = U.getPointer(); 528 if (U.getInt()) 529 continue; 530 MachineInstr *NewDbgMI = SinkDst->getMF()->CloneMachineInstr(DbgMI); 531 SinkMBB.insertAfter(InsertPt, NewDbgMI); 532 for (auto &SrcMO : DbgMI->getDebugOperandsForReg(DefReg)) { 533 auto &DstMO = NewDbgMI->getOperand(SrcMO.getOperandNo()); 534 DstMO.setReg(DstReg); 535 } 536 } 537 } else { 538 // Fold instruction into the addressing mode of a memory instruction. 539 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 540 } 541 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 542 SinkDst->eraseFromParent(); 543 // Clear the StoreInstrCache, since we may have invalidated it by erasing. 544 StoreInstrCache.clear(); 545 } 546 547 // Collect operands that need to be cleaned up because the registers no longer 548 // exist (in COPYs and debug instructions). We cannot delete instructions or 549 // clear operands while traversing register uses. 550 SmallVector<MachineOperand *> Cleanup; 551 Worklist.push_back(DefReg); 552 while (!Worklist.empty()) { 553 Register Reg = Worklist.pop_back_val(); 554 for (MachineOperand &MO : MRI->use_operands(Reg)) { 555 MachineInstr *U = MO.getParent(); 556 assert((U->isCopy() || U->isDebugInstr()) && 557 "Only debug uses and copies must remain"); 558 if (U->isCopy()) 559 Worklist.push_back(U->getOperand(0).getReg()); 560 Cleanup.push_back(&MO); 561 } 562 } 563 564 // Delete the dead COPYs and clear operands in debug instructions 565 for (MachineOperand *MO : Cleanup) { 566 MachineInstr *I = MO->getParent(); 567 if (I->isCopy()) { 568 I->eraseFromParent(); 569 } else { 570 MO->setReg(0); 571 MO->setSubReg(0); 572 } 573 } 574 575 MI.eraseFromParent(); 576 return true; 577 } 578 579 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 580 /// occur in blocks dominated by the specified block. If any use is in the 581 /// definition block, then return false since it is never legal to move def 582 /// after uses. 583 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 584 MachineBasicBlock *MBB, 585 MachineBasicBlock *DefMBB, 586 bool &BreakPHIEdge, 587 bool &LocalUse) const { 588 assert(Reg.isVirtual() && "Only makes sense for vregs"); 589 590 // Ignore debug uses because debug info doesn't affect the code. 591 if (MRI->use_nodbg_empty(Reg)) 592 return true; 593 594 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 595 // into and they are all PHI nodes. In this case, machine-sink must break 596 // the critical edge first. e.g. 597 // 598 // %bb.1: 599 // Predecessors according to CFG: %bb.0 600 // ... 601 // %def = DEC64_32r %x, implicit-def dead %eflags 602 // ... 603 // JE_4 <%bb.37>, implicit %eflags 604 // Successors according to CFG: %bb.37 %bb.2 605 // 606 // %bb.2: 607 // %p = PHI %y, %bb.0, %def, %bb.1 608 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 609 MachineInstr *UseInst = MO.getParent(); 610 unsigned OpNo = MO.getOperandNo(); 611 MachineBasicBlock *UseBlock = UseInst->getParent(); 612 return UseBlock == MBB && UseInst->isPHI() && 613 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 614 })) { 615 BreakPHIEdge = true; 616 return true; 617 } 618 619 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 620 // Determine the block of the use. 621 MachineInstr *UseInst = MO.getParent(); 622 unsigned OpNo = &MO - &UseInst->getOperand(0); 623 MachineBasicBlock *UseBlock = UseInst->getParent(); 624 if (UseInst->isPHI()) { 625 // PHI nodes use the operand in the predecessor block, not the block with 626 // the PHI. 627 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 628 } else if (UseBlock == DefMBB) { 629 LocalUse = true; 630 return false; 631 } 632 633 // Check that it dominates. 634 if (!DT->dominates(MBB, UseBlock)) 635 return false; 636 } 637 638 return true; 639 } 640 641 /// Return true if this machine instruction loads from global offset table or 642 /// constant pool. 643 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 644 assert(MI.mayLoad() && "Expected MI that loads!"); 645 646 // If we lost memory operands, conservatively assume that the instruction 647 // reads from everything.. 648 if (MI.memoperands_empty()) 649 return true; 650 651 for (MachineMemOperand *MemOp : MI.memoperands()) 652 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 653 if (PSV->isGOT() || PSV->isConstantPool()) 654 return true; 655 656 return false; 657 } 658 659 void MachineSinking::FindCycleSinkCandidates( 660 MachineCycle *Cycle, MachineBasicBlock *BB, 661 SmallVectorImpl<MachineInstr *> &Candidates) { 662 for (auto &MI : *BB) { 663 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 664 if (!TII->shouldSink(MI)) { 665 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 666 "target\n"); 667 continue; 668 } 669 if (!isCycleInvariant(Cycle, MI)) { 670 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 671 continue; 672 } 673 bool DontMoveAcrossStore = true; 674 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 675 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 676 continue; 677 } 678 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 679 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 680 continue; 681 } 682 if (MI.isConvergent()) 683 continue; 684 685 const MachineOperand &MO = MI.getOperand(0); 686 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 687 continue; 688 if (!MRI->hasOneDef(MO.getReg())) 689 continue; 690 691 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 692 Candidates.push_back(&MI); 693 } 694 } 695 696 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 697 if (skipFunction(MF.getFunction())) 698 return false; 699 700 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 701 702 STI = &MF.getSubtarget(); 703 TII = STI->getInstrInfo(); 704 TRI = STI->getRegisterInfo(); 705 MRI = &MF.getRegInfo(); 706 DT = &getAnalysis<MachineDominatorTree>(); 707 PDT = &getAnalysis<MachinePostDominatorTree>(); 708 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 709 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 710 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 711 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 712 RegClassInfo.runOnMachineFunction(MF); 713 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 714 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 715 716 bool EverMadeChange = false; 717 718 while (true) { 719 bool MadeChange = false; 720 721 // Process all basic blocks. 722 CEBCandidates.clear(); 723 ToSplit.clear(); 724 for (auto &MBB: MF) 725 MadeChange |= ProcessBlock(MBB); 726 727 // If we have anything we marked as toSplit, split it now. 728 for (const auto &Pair : ToSplit) { 729 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 730 if (NewSucc != nullptr) { 731 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 732 << printMBBReference(*Pair.first) << " -- " 733 << printMBBReference(*NewSucc) << " -- " 734 << printMBBReference(*Pair.second) << '\n'); 735 if (MBFI) 736 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 737 738 MadeChange = true; 739 ++NumSplit; 740 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 741 } else 742 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 743 } 744 // If this iteration over the code changed anything, keep iterating. 745 if (!MadeChange) break; 746 EverMadeChange = true; 747 } 748 749 if (SinkInstsIntoCycle) { 750 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 751 CI->toplevel_end()); 752 for (auto *Cycle : Cycles) { 753 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 754 if (!Preheader) { 755 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 756 continue; 757 } 758 SmallVector<MachineInstr *, 8> Candidates; 759 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 760 761 // Walk the candidates in reverse order so that we start with the use 762 // of a def-use chain, if there is any. 763 // TODO: Sort the candidates using a cost-model. 764 unsigned i = 0; 765 for (MachineInstr *I : llvm::reverse(Candidates)) { 766 if (i++ == SinkIntoCycleLimit) { 767 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 768 "be analysed."); 769 break; 770 } 771 772 if (!SinkIntoCycle(Cycle, *I)) 773 break; 774 EverMadeChange = true; 775 ++NumCycleSunk; 776 } 777 } 778 } 779 780 HasStoreCache.clear(); 781 StoreInstrCache.clear(); 782 783 // Now clear any kill flags for recorded registers. 784 for (auto I : RegsToClearKillFlags) 785 MRI->clearKillFlags(I); 786 RegsToClearKillFlags.clear(); 787 788 return EverMadeChange; 789 } 790 791 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 792 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 793 return false; 794 795 // Don't bother sinking code out of unreachable blocks. In addition to being 796 // unprofitable, it can also lead to infinite looping, because in an 797 // unreachable cycle there may be nowhere to stop. 798 if (!DT->isReachableFromEntry(&MBB)) return false; 799 800 bool MadeChange = false; 801 802 // Cache all successors, sorted by frequency info and cycle depth. 803 AllSuccsCache AllSuccessors; 804 805 // Walk the basic block bottom-up. Remember if we saw a store. 806 MachineBasicBlock::iterator I = MBB.end(); 807 --I; 808 bool ProcessedBegin, SawStore = false; 809 do { 810 MachineInstr &MI = *I; // The instruction to sink. 811 812 // Predecrement I (if it's not begin) so that it isn't invalidated by 813 // sinking. 814 ProcessedBegin = I == MBB.begin(); 815 if (!ProcessedBegin) 816 --I; 817 818 if (MI.isDebugOrPseudoInstr()) { 819 if (MI.isDebugValue()) 820 ProcessDbgInst(MI); 821 continue; 822 } 823 824 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 825 MadeChange = true; 826 continue; 827 } 828 829 // Can't sink anything out of a block that has less than two successors. 830 if (MBB.succ_size() <= 1) 831 continue; 832 833 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 834 MadeChange = true; 835 continue; 836 } 837 838 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 839 ++NumSunk; 840 MadeChange = true; 841 } 842 843 // If we just processed the first instruction in the block, we're done. 844 } while (!ProcessedBegin); 845 846 SeenDbgUsers.clear(); 847 SeenDbgVars.clear(); 848 // recalculate the bb register pressure after sinking one BB. 849 CachedRegisterPressure.clear(); 850 return MadeChange; 851 } 852 853 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 854 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 855 // we know what to sink if the vreg def sinks. 856 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 857 858 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 859 MI.getDebugLoc()->getInlinedAt()); 860 bool SeenBefore = SeenDbgVars.contains(Var); 861 862 for (MachineOperand &MO : MI.debug_operands()) { 863 if (MO.isReg() && MO.getReg().isVirtual()) 864 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 865 } 866 867 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 868 SeenDbgVars.insert(Var); 869 } 870 871 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 872 MachineBasicBlock *From, 873 MachineBasicBlock *To) { 874 // FIXME: Need much better heuristics. 875 876 // If the pass has already considered breaking this edge (during this pass 877 // through the function), then let's go ahead and break it. This means 878 // sinking multiple "cheap" instructions into the same block. 879 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 880 return true; 881 882 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 883 return true; 884 885 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 886 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 887 return true; 888 889 // MI is cheap, we probably don't want to break the critical edge for it. 890 // However, if this would allow some definitions of its source operands 891 // to be sunk then it's probably worth it. 892 for (const MachineOperand &MO : MI.all_uses()) { 893 Register Reg = MO.getReg(); 894 if (Reg == 0) 895 continue; 896 897 // We don't move live definitions of physical registers, 898 // so sinking their uses won't enable any opportunities. 899 if (Reg.isPhysical()) 900 continue; 901 902 // If this instruction is the only user of a virtual register, 903 // check if breaking the edge will enable sinking 904 // both this instruction and the defining instruction. 905 if (MRI->hasOneNonDBGUse(Reg)) { 906 // If the definition resides in same MBB, 907 // claim it's likely we can sink these together. 908 // If definition resides elsewhere, we aren't 909 // blocking it from being sunk so don't break the edge. 910 MachineInstr *DefMI = MRI->getVRegDef(Reg); 911 if (DefMI->getParent() == MI.getParent()) 912 return true; 913 } 914 } 915 916 return false; 917 } 918 919 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 920 MachineBasicBlock *FromBB, 921 MachineBasicBlock *ToBB, 922 bool BreakPHIEdge) { 923 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 924 return false; 925 926 // Avoid breaking back edge. From == To means backedge for single BB cycle. 927 if (!SplitEdges || FromBB == ToBB) 928 return false; 929 930 MachineCycle *FromCycle = CI->getCycle(FromBB); 931 MachineCycle *ToCycle = CI->getCycle(ToBB); 932 933 // Check for backedges of more "complex" cycles. 934 if (FromCycle == ToCycle && FromCycle && 935 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 936 return false; 937 938 // It's not always legal to break critical edges and sink the computation 939 // to the edge. 940 // 941 // %bb.1: 942 // v1024 943 // Beq %bb.3 944 // <fallthrough> 945 // %bb.2: 946 // ... no uses of v1024 947 // <fallthrough> 948 // %bb.3: 949 // ... 950 // = v1024 951 // 952 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 953 // 954 // %bb.1: 955 // ... 956 // Bne %bb.2 957 // %bb.4: 958 // v1024 = 959 // B %bb.3 960 // %bb.2: 961 // ... no uses of v1024 962 // <fallthrough> 963 // %bb.3: 964 // ... 965 // = v1024 966 // 967 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 968 // flow. We need to ensure the new basic block where the computation is 969 // sunk to dominates all the uses. 970 // It's only legal to break critical edge and sink the computation to the 971 // new block if all the predecessors of "To", except for "From", are 972 // not dominated by "From". Given SSA property, this means these 973 // predecessors are dominated by "To". 974 // 975 // There is no need to do this check if all the uses are PHI nodes. PHI 976 // sources are only defined on the specific predecessor edges. 977 if (!BreakPHIEdge) { 978 for (MachineBasicBlock *Pred : ToBB->predecessors()) 979 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 980 return false; 981 } 982 983 ToSplit.insert(std::make_pair(FromBB, ToBB)); 984 985 return true; 986 } 987 988 std::vector<unsigned> & 989 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 990 // Currently to save compiling time, MBB's register pressure will not change 991 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 992 // register pressure is changed after sinking any instructions into it. 993 // FIXME: need a accurate and cheap register pressure estiminate model here. 994 auto RP = CachedRegisterPressure.find(&MBB); 995 if (RP != CachedRegisterPressure.end()) 996 return RP->second; 997 998 RegionPressure Pressure; 999 RegPressureTracker RPTracker(Pressure); 1000 1001 // Initialize the register pressure tracker. 1002 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1003 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1004 1005 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1006 MIE = MBB.instr_begin(); 1007 MII != MIE; --MII) { 1008 const MachineInstr &MI = *std::prev(MII); 1009 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1010 continue; 1011 RegisterOperands RegOpers; 1012 RegOpers.collect(MI, *TRI, *MRI, false, false); 1013 RPTracker.recedeSkipDebugValues(); 1014 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1015 RPTracker.recede(RegOpers); 1016 } 1017 1018 RPTracker.closeRegion(); 1019 auto It = CachedRegisterPressure.insert( 1020 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1021 return It.first->second; 1022 } 1023 1024 bool MachineSinking::registerPressureSetExceedsLimit( 1025 unsigned NRegs, const TargetRegisterClass *RC, 1026 const MachineBasicBlock &MBB) { 1027 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1028 const int *PS = TRI->getRegClassPressureSets(RC); 1029 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1030 for (; *PS != -1; PS++) 1031 if (Weight + BBRegisterPressure[*PS] >= 1032 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1033 return true; 1034 return false; 1035 } 1036 1037 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1038 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1039 MachineBasicBlock *MBB, 1040 MachineBasicBlock *SuccToSinkTo, 1041 AllSuccsCache &AllSuccessors) { 1042 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1043 1044 if (MBB == SuccToSinkTo) 1045 return false; 1046 1047 // It is profitable if SuccToSinkTo does not post dominate current block. 1048 if (!PDT->dominates(SuccToSinkTo, MBB)) 1049 return true; 1050 1051 // It is profitable to sink an instruction from a deeper cycle to a shallower 1052 // cycle, even if the latter post-dominates the former (PR21115). 1053 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1054 return true; 1055 1056 // Check if only use in post dominated block is PHI instruction. 1057 bool NonPHIUse = false; 1058 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1059 MachineBasicBlock *UseBlock = UseInst.getParent(); 1060 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1061 NonPHIUse = true; 1062 } 1063 if (!NonPHIUse) 1064 return true; 1065 1066 // If SuccToSinkTo post dominates then also it may be profitable if MI 1067 // can further profitably sinked into another block in next round. 1068 bool BreakPHIEdge = false; 1069 // FIXME - If finding successor is compile time expensive then cache results. 1070 if (MachineBasicBlock *MBB2 = 1071 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1072 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1073 1074 MachineCycle *MCycle = CI->getCycle(MBB); 1075 1076 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1077 // a post dominate block SuccToSinkTo. 1078 if (!MCycle) 1079 return false; 1080 1081 // If this instruction is inside a Cycle and sinking this instruction can make 1082 // more registers live range shorten, it is still prifitable. 1083 for (const MachineOperand &MO : MI.operands()) { 1084 // Ignore non-register operands. 1085 if (!MO.isReg()) 1086 continue; 1087 Register Reg = MO.getReg(); 1088 if (Reg == 0) 1089 continue; 1090 1091 if (Reg.isPhysical()) { 1092 // Don't handle non-constant and non-ignorable physical register uses. 1093 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1094 return false; 1095 continue; 1096 } 1097 1098 // Users for the defs are all dominated by SuccToSinkTo. 1099 if (MO.isDef()) { 1100 // This def register's live range is shortened after sinking. 1101 bool LocalUse = false; 1102 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1103 LocalUse)) 1104 return false; 1105 } else { 1106 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1107 if (!DefMI) 1108 continue; 1109 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1110 // DefMI is defined outside of cycle. There should be no live range 1111 // impact for this operand. Defination outside of cycle means: 1112 // 1: defination is outside of cycle. 1113 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1114 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1115 Cycle->getHeader() == DefMI->getParent())) 1116 continue; 1117 // The DefMI is defined inside the cycle. 1118 // If sinking this operand makes some register pressure set exceed limit, 1119 // it is not profitable. 1120 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1121 *SuccToSinkTo)) { 1122 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1123 return false; 1124 } 1125 } 1126 } 1127 1128 // If MI is in cycle and all its operands are alive across the whole cycle or 1129 // if no operand sinking make register pressure set exceed limit, it is 1130 // profitable to sink MI. 1131 return true; 1132 } 1133 1134 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1135 /// computing it if it was not already cached. 1136 SmallVector<MachineBasicBlock *, 4> & 1137 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1138 AllSuccsCache &AllSuccessors) const { 1139 // Do we have the sorted successors in cache ? 1140 auto Succs = AllSuccessors.find(MBB); 1141 if (Succs != AllSuccessors.end()) 1142 return Succs->second; 1143 1144 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1145 1146 // Handle cases where sinking can happen but where the sink point isn't a 1147 // successor. For example: 1148 // 1149 // x = computation 1150 // if () {} else {} 1151 // use x 1152 // 1153 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1154 // DomTree children of MBB that have MBB as immediate dominator are added. 1155 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1156 // Skip MBBs already added to the AllSuccs vector above. 1157 !MBB->isSuccessor(DTChild->getBlock())) 1158 AllSuccs.push_back(DTChild->getBlock()); 1159 } 1160 1161 // Sort Successors according to their cycle depth or block frequency info. 1162 llvm::stable_sort( 1163 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1164 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1165 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1166 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1167 return HasBlockFreq ? LHSFreq < RHSFreq 1168 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1169 }); 1170 1171 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1172 1173 return it.first->second; 1174 } 1175 1176 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1177 MachineBasicBlock * 1178 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1179 bool &BreakPHIEdge, 1180 AllSuccsCache &AllSuccessors) { 1181 assert (MBB && "Invalid MachineBasicBlock!"); 1182 1183 // loop over all the operands of the specified instruction. If there is 1184 // anything we can't handle, bail out. 1185 1186 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1187 // decide. 1188 MachineBasicBlock *SuccToSinkTo = nullptr; 1189 for (const MachineOperand &MO : MI.operands()) { 1190 if (!MO.isReg()) continue; // Ignore non-register operands. 1191 1192 Register Reg = MO.getReg(); 1193 if (Reg == 0) continue; 1194 1195 if (Reg.isPhysical()) { 1196 if (MO.isUse()) { 1197 // If the physreg has no defs anywhere, it's just an ambient register 1198 // and we can freely move its uses. Alternatively, if it's allocatable, 1199 // it could get allocated to something with a def during allocation. 1200 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1201 return nullptr; 1202 } else if (!MO.isDead()) { 1203 // A def that isn't dead. We can't move it. 1204 return nullptr; 1205 } 1206 } else { 1207 // Virtual register uses are always safe to sink. 1208 if (MO.isUse()) continue; 1209 1210 // If it's not safe to move defs of the register class, then abort. 1211 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1212 return nullptr; 1213 1214 // Virtual register defs can only be sunk if all their uses are in blocks 1215 // dominated by one of the successors. 1216 if (SuccToSinkTo) { 1217 // If a previous operand picked a block to sink to, then this operand 1218 // must be sinkable to the same block. 1219 bool LocalUse = false; 1220 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1221 BreakPHIEdge, LocalUse)) 1222 return nullptr; 1223 1224 continue; 1225 } 1226 1227 // Otherwise, we should look at all the successors and decide which one 1228 // we should sink to. If we have reliable block frequency information 1229 // (frequency != 0) available, give successors with smaller frequencies 1230 // higher priority, otherwise prioritize smaller cycle depths. 1231 for (MachineBasicBlock *SuccBlock : 1232 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1233 bool LocalUse = false; 1234 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1235 BreakPHIEdge, LocalUse)) { 1236 SuccToSinkTo = SuccBlock; 1237 break; 1238 } 1239 if (LocalUse) 1240 // Def is used locally, it's never safe to move this def. 1241 return nullptr; 1242 } 1243 1244 // If we couldn't find a block to sink to, ignore this instruction. 1245 if (!SuccToSinkTo) 1246 return nullptr; 1247 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1248 return nullptr; 1249 } 1250 } 1251 1252 // It is not possible to sink an instruction into its own block. This can 1253 // happen with cycles. 1254 if (MBB == SuccToSinkTo) 1255 return nullptr; 1256 1257 // It's not safe to sink instructions to EH landing pad. Control flow into 1258 // landing pad is implicitly defined. 1259 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1260 return nullptr; 1261 1262 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1263 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1264 // the source block (which this code does not yet do). So for now, forbid 1265 // doing so. 1266 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1267 return nullptr; 1268 1269 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1270 return nullptr; 1271 1272 return SuccToSinkTo; 1273 } 1274 1275 /// Return true if MI is likely to be usable as a memory operation by the 1276 /// implicit null check optimization. 1277 /// 1278 /// This is a "best effort" heuristic, and should not be relied upon for 1279 /// correctness. This returning true does not guarantee that the implicit null 1280 /// check optimization is legal over MI, and this returning false does not 1281 /// guarantee MI cannot possibly be used to do a null check. 1282 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1283 const TargetInstrInfo *TII, 1284 const TargetRegisterInfo *TRI) { 1285 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1286 1287 auto *MBB = MI.getParent(); 1288 if (MBB->pred_size() != 1) 1289 return false; 1290 1291 auto *PredMBB = *MBB->pred_begin(); 1292 auto *PredBB = PredMBB->getBasicBlock(); 1293 1294 // Frontends that don't use implicit null checks have no reason to emit 1295 // branches with make.implicit metadata, and this function should always 1296 // return false for them. 1297 if (!PredBB || 1298 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1299 return false; 1300 1301 const MachineOperand *BaseOp; 1302 int64_t Offset; 1303 bool OffsetIsScalable; 1304 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1305 return false; 1306 1307 if (!BaseOp->isReg()) 1308 return false; 1309 1310 if (!(MI.mayLoad() && !MI.isPredicable())) 1311 return false; 1312 1313 MachineBranchPredicate MBP; 1314 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1315 return false; 1316 1317 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1318 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1319 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1320 MBP.LHS.getReg() == BaseOp->getReg(); 1321 } 1322 1323 /// If the sunk instruction is a copy, try to forward the copy instead of 1324 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1325 /// there's any subregister weirdness involved. Returns true if copy 1326 /// propagation occurred. 1327 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1328 Register Reg) { 1329 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1330 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1331 1332 // Copy DBG_VALUE operand and set the original to undef. We then check to 1333 // see whether this is something that can be copy-forwarded. If it isn't, 1334 // continue around the loop. 1335 1336 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1337 auto CopyOperands = TII.isCopyInstr(SinkInst); 1338 if (!CopyOperands) 1339 return false; 1340 SrcMO = CopyOperands->Source; 1341 DstMO = CopyOperands->Destination; 1342 1343 // Check validity of forwarding this copy. 1344 bool PostRA = MRI.getNumVirtRegs() == 0; 1345 1346 // Trying to forward between physical and virtual registers is too hard. 1347 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1348 return false; 1349 1350 // Only try virtual register copy-forwarding before regalloc, and physical 1351 // register copy-forwarding after regalloc. 1352 bool arePhysRegs = !Reg.isVirtual(); 1353 if (arePhysRegs != PostRA) 1354 return false; 1355 1356 // Pre-regalloc, only forward if all subregisters agree (or there are no 1357 // subregs at all). More analysis might recover some forwardable copies. 1358 if (!PostRA) 1359 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1360 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1361 DbgMO.getSubReg() != DstMO->getSubReg()) 1362 return false; 1363 1364 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1365 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1366 // matches the copy destination. 1367 if (PostRA && Reg != DstMO->getReg()) 1368 return false; 1369 1370 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1371 DbgMO.setReg(SrcMO->getReg()); 1372 DbgMO.setSubReg(SrcMO->getSubReg()); 1373 } 1374 return true; 1375 } 1376 1377 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1378 /// Sink an instruction and its associated debug instructions. 1379 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1380 MachineBasicBlock::iterator InsertPos, 1381 ArrayRef<MIRegs> DbgValuesToSink) { 1382 // If we cannot find a location to use (merge with), then we erase the debug 1383 // location to prevent debug-info driven tools from potentially reporting 1384 // wrong location information. 1385 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1386 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1387 InsertPos->getDebugLoc())); 1388 else 1389 MI.setDebugLoc(DebugLoc()); 1390 1391 // Move the instruction. 1392 MachineBasicBlock *ParentBlock = MI.getParent(); 1393 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1394 ++MachineBasicBlock::iterator(MI)); 1395 1396 // Sink a copy of debug users to the insert position. Mark the original 1397 // DBG_VALUE location as 'undef', indicating that any earlier variable 1398 // location should be terminated as we've optimised away the value at this 1399 // point. 1400 for (const auto &DbgValueToSink : DbgValuesToSink) { 1401 MachineInstr *DbgMI = DbgValueToSink.first; 1402 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1403 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1404 1405 bool PropagatedAllSunkOps = true; 1406 for (unsigned Reg : DbgValueToSink.second) { 1407 if (DbgMI->hasDebugOperandForReg(Reg)) { 1408 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1409 PropagatedAllSunkOps = false; 1410 break; 1411 } 1412 } 1413 } 1414 if (!PropagatedAllSunkOps) 1415 DbgMI->setDebugValueUndef(); 1416 } 1417 } 1418 1419 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1420 /// and To. 1421 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1422 MachineBasicBlock *To, MachineInstr &MI) { 1423 // Make sure From and To are in straight line which means From dominates To 1424 // and To post dominates From. 1425 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1426 return true; 1427 1428 auto BlockPair = std::make_pair(From, To); 1429 1430 // Does these two blocks pair be queried before and have a definite cached 1431 // result? 1432 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1433 return HasStoreCache[BlockPair]; 1434 1435 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1436 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1437 return I->mayAlias(AA, MI, false); 1438 }); 1439 1440 bool SawStore = false; 1441 bool HasAliasedStore = false; 1442 DenseSet<MachineBasicBlock *> HandledBlocks; 1443 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1444 // Go through all reachable blocks from From. 1445 for (MachineBasicBlock *BB : depth_first(From)) { 1446 // We insert the instruction at the start of block To, so no need to worry 1447 // about stores inside To. 1448 // Store in block From should be already considered when just enter function 1449 // SinkInstruction. 1450 if (BB == To || BB == From) 1451 continue; 1452 1453 // We already handle this BB in previous iteration. 1454 if (HandledBlocks.count(BB)) 1455 continue; 1456 1457 HandledBlocks.insert(BB); 1458 // To post dominates BB, it must be a path from block From. 1459 if (PDT->dominates(To, BB)) { 1460 if (!HandledDomBlocks.count(BB)) 1461 HandledDomBlocks.insert(BB); 1462 1463 // If this BB is too big or the block number in straight line between From 1464 // and To is too big, stop searching to save compiling time. 1465 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1466 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1467 for (auto *DomBB : HandledDomBlocks) { 1468 if (DomBB != BB && DT->dominates(DomBB, BB)) 1469 HasStoreCache[std::make_pair(DomBB, To)] = true; 1470 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1471 HasStoreCache[std::make_pair(From, DomBB)] = true; 1472 } 1473 HasStoreCache[BlockPair] = true; 1474 return true; 1475 } 1476 1477 for (MachineInstr &I : *BB) { 1478 // Treat as alias conservatively for a call or an ordered memory 1479 // operation. 1480 if (I.isCall() || I.hasOrderedMemoryRef()) { 1481 for (auto *DomBB : HandledDomBlocks) { 1482 if (DomBB != BB && DT->dominates(DomBB, BB)) 1483 HasStoreCache[std::make_pair(DomBB, To)] = true; 1484 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1485 HasStoreCache[std::make_pair(From, DomBB)] = true; 1486 } 1487 HasStoreCache[BlockPair] = true; 1488 return true; 1489 } 1490 1491 if (I.mayStore()) { 1492 SawStore = true; 1493 // We still have chance to sink MI if all stores between are not 1494 // aliased to MI. 1495 // Cache all store instructions, so that we don't need to go through 1496 // all From reachable blocks for next load instruction. 1497 if (I.mayAlias(AA, MI, false)) 1498 HasAliasedStore = true; 1499 StoreInstrCache[BlockPair].push_back(&I); 1500 } 1501 } 1502 } 1503 } 1504 // If there is no store at all, cache the result. 1505 if (!SawStore) 1506 HasStoreCache[BlockPair] = false; 1507 return HasAliasedStore; 1508 } 1509 1510 /// Sink instructions into cycles if profitable. This especially tries to 1511 /// prevent register spills caused by register pressure if there is little to no 1512 /// overhead moving instructions into cycles. 1513 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1514 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1515 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1516 assert(Preheader && "Cycle sink needs a preheader block"); 1517 MachineBasicBlock *SinkBlock = nullptr; 1518 bool CanSink = true; 1519 const MachineOperand &MO = I.getOperand(0); 1520 1521 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1522 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1523 if (!Cycle->contains(MI.getParent())) { 1524 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1525 CanSink = false; 1526 break; 1527 } 1528 1529 // FIXME: Come up with a proper cost model that estimates whether sinking 1530 // the instruction (and thus possibly executing it on every cycle 1531 // iteration) is more expensive than a register. 1532 // For now assumes that copies are cheap and thus almost always worth it. 1533 if (!MI.isCopy()) { 1534 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1535 CanSink = false; 1536 break; 1537 } 1538 if (!SinkBlock) { 1539 SinkBlock = MI.getParent(); 1540 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1541 << printMBBReference(*SinkBlock) << "\n"); 1542 continue; 1543 } 1544 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1545 if (!SinkBlock) { 1546 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1547 CanSink = false; 1548 break; 1549 } 1550 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1551 printMBBReference(*SinkBlock) << "\n"); 1552 } 1553 1554 if (!CanSink) { 1555 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1556 return false; 1557 } 1558 if (!SinkBlock) { 1559 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1560 return false; 1561 } 1562 if (SinkBlock == Preheader) { 1563 LLVM_DEBUG( 1564 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1565 return false; 1566 } 1567 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1568 LLVM_DEBUG( 1569 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1570 return false; 1571 } 1572 1573 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1574 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1575 I); 1576 1577 // Conservatively clear any kill flags on uses of sunk instruction 1578 for (MachineOperand &MO : I.operands()) { 1579 if (MO.isReg() && MO.readsReg()) 1580 RegsToClearKillFlags.insert(MO.getReg()); 1581 } 1582 1583 // The instruction is moved from its basic block, so do not retain the 1584 // debug information. 1585 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1586 I.setDebugLoc(DebugLoc()); 1587 return true; 1588 } 1589 1590 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1591 /// instruction out of its current block into a successor. 1592 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1593 AllSuccsCache &AllSuccessors) { 1594 // Don't sink instructions that the target prefers not to sink. 1595 if (!TII->shouldSink(MI)) 1596 return false; 1597 1598 // Check if it's safe to move the instruction. 1599 if (!MI.isSafeToMove(AA, SawStore)) 1600 return false; 1601 1602 // Convergent operations may not be made control-dependent on additional 1603 // values. 1604 if (MI.isConvergent()) 1605 return false; 1606 1607 // Don't break implicit null checks. This is a performance heuristic, and not 1608 // required for correctness. 1609 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1610 return false; 1611 1612 // FIXME: This should include support for sinking instructions within the 1613 // block they are currently in to shorten the live ranges. We often get 1614 // instructions sunk into the top of a large block, but it would be better to 1615 // also sink them down before their first use in the block. This xform has to 1616 // be careful not to *increase* register pressure though, e.g. sinking 1617 // "x = y + z" down if it kills y and z would increase the live ranges of y 1618 // and z and only shrink the live range of x. 1619 1620 bool BreakPHIEdge = false; 1621 MachineBasicBlock *ParentBlock = MI.getParent(); 1622 MachineBasicBlock *SuccToSinkTo = 1623 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1624 1625 // If there are no outputs, it must have side-effects. 1626 if (!SuccToSinkTo) 1627 return false; 1628 1629 // If the instruction to move defines a dead physical register which is live 1630 // when leaving the basic block, don't move it because it could turn into a 1631 // "zombie" define of that preg. E.g., EFLAGS. 1632 for (const MachineOperand &MO : MI.all_defs()) { 1633 Register Reg = MO.getReg(); 1634 if (Reg == 0 || !Reg.isPhysical()) 1635 continue; 1636 if (SuccToSinkTo->isLiveIn(Reg)) 1637 return false; 1638 } 1639 1640 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1641 1642 // If the block has multiple predecessors, this is a critical edge. 1643 // Decide if we can sink along it or need to break the edge. 1644 if (SuccToSinkTo->pred_size() > 1) { 1645 // We cannot sink a load across a critical edge - there may be stores in 1646 // other code paths. 1647 bool TryBreak = false; 1648 bool Store = 1649 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1650 if (!MI.isSafeToMove(AA, Store)) { 1651 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1652 TryBreak = true; 1653 } 1654 1655 // We don't want to sink across a critical edge if we don't dominate the 1656 // successor. We could be introducing calculations to new code paths. 1657 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1658 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1659 TryBreak = true; 1660 } 1661 1662 // Don't sink instructions into a cycle. 1663 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1664 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1665 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1666 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1667 TryBreak = true; 1668 } 1669 1670 // Otherwise we are OK with sinking along a critical edge. 1671 if (!TryBreak) 1672 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1673 else { 1674 // Mark this edge as to be split. 1675 // If the edge can actually be split, the next iteration of the main loop 1676 // will sink MI in the newly created block. 1677 bool Status = 1678 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1679 if (!Status) 1680 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1681 "break critical edge\n"); 1682 // The instruction will not be sunk this time. 1683 return false; 1684 } 1685 } 1686 1687 if (BreakPHIEdge) { 1688 // BreakPHIEdge is true if all the uses are in the successor MBB being 1689 // sunken into and they are all PHI nodes. In this case, machine-sink must 1690 // break the critical edge first. 1691 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1692 SuccToSinkTo, BreakPHIEdge); 1693 if (!Status) 1694 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1695 "break critical edge\n"); 1696 // The instruction will not be sunk this time. 1697 return false; 1698 } 1699 1700 // Determine where to insert into. Skip phi nodes. 1701 MachineBasicBlock::iterator InsertPos = 1702 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1703 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1704 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1705 return false; 1706 } 1707 1708 // Collect debug users of any vreg that this inst defines. 1709 SmallVector<MIRegs, 4> DbgUsersToSink; 1710 for (auto &MO : MI.all_defs()) { 1711 if (!MO.getReg().isVirtual()) 1712 continue; 1713 if (!SeenDbgUsers.count(MO.getReg())) 1714 continue; 1715 1716 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1717 auto &Users = SeenDbgUsers[MO.getReg()]; 1718 for (auto &User : Users) { 1719 MachineInstr *DbgMI = User.getPointer(); 1720 if (User.getInt()) { 1721 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1722 // it, it can't be recovered. Set it undef. 1723 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1724 DbgMI->setDebugValueUndef(); 1725 } else { 1726 DbgUsersToSink.push_back( 1727 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1728 } 1729 } 1730 } 1731 1732 // After sinking, some debug users may not be dominated any more. If possible, 1733 // copy-propagate their operands. As it's expensive, don't do this if there's 1734 // no debuginfo in the program. 1735 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1736 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1737 1738 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1739 1740 // Conservatively, clear any kill flags, since it's possible that they are no 1741 // longer correct. 1742 // Note that we have to clear the kill flags for any register this instruction 1743 // uses as we may sink over another instruction which currently kills the 1744 // used registers. 1745 for (MachineOperand &MO : MI.all_uses()) 1746 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1747 1748 return true; 1749 } 1750 1751 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1752 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1753 assert(MI.isCopy()); 1754 assert(MI.getOperand(1).isReg()); 1755 1756 // Enumerate all users of vreg operands that are def'd. Skip those that will 1757 // be sunk. For the rest, if they are not dominated by the block we will sink 1758 // MI into, propagate the copy source to them. 1759 SmallVector<MachineInstr *, 4> DbgDefUsers; 1760 SmallVector<Register, 4> DbgUseRegs; 1761 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1762 for (auto &MO : MI.all_defs()) { 1763 if (!MO.getReg().isVirtual()) 1764 continue; 1765 DbgUseRegs.push_back(MO.getReg()); 1766 for (auto &User : MRI.use_instructions(MO.getReg())) { 1767 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1768 continue; 1769 1770 // If is in same block, will either sink or be use-before-def. 1771 if (User.getParent() == MI.getParent()) 1772 continue; 1773 1774 assert(User.hasDebugOperandForReg(MO.getReg()) && 1775 "DBG_VALUE user of vreg, but has no operand for it?"); 1776 DbgDefUsers.push_back(&User); 1777 } 1778 } 1779 1780 // Point the users of this copy that are no longer dominated, at the source 1781 // of the copy. 1782 for (auto *User : DbgDefUsers) { 1783 for (auto &Reg : DbgUseRegs) { 1784 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1785 DbgOp.setReg(MI.getOperand(1).getReg()); 1786 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1787 } 1788 } 1789 } 1790 } 1791 1792 //===----------------------------------------------------------------------===// 1793 // This pass is not intended to be a replacement or a complete alternative 1794 // for the pre-ra machine sink pass. It is only designed to sink COPY 1795 // instructions which should be handled after RA. 1796 // 1797 // This pass sinks COPY instructions into a successor block, if the COPY is not 1798 // used in the current block and the COPY is live-in to a single successor 1799 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1800 // copy on paths where their results aren't needed. This also exposes 1801 // additional opportunites for dead copy elimination and shrink wrapping. 1802 // 1803 // These copies were either not handled by or are inserted after the MachineSink 1804 // pass. As an example of the former case, the MachineSink pass cannot sink 1805 // COPY instructions with allocatable source registers; for AArch64 these type 1806 // of copy instructions are frequently used to move function parameters (PhyReg) 1807 // into virtual registers in the entry block. 1808 // 1809 // For the machine IR below, this pass will sink %w19 in the entry into its 1810 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1811 // %bb.0: 1812 // %wzr = SUBSWri %w1, 1 1813 // %w19 = COPY %w0 1814 // Bcc 11, %bb.2 1815 // %bb.1: 1816 // Live Ins: %w19 1817 // BL @fun 1818 // %w0 = ADDWrr %w0, %w19 1819 // RET %w0 1820 // %bb.2: 1821 // %w0 = COPY %wzr 1822 // RET %w0 1823 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1824 // able to see %bb.0 as a candidate. 1825 //===----------------------------------------------------------------------===// 1826 namespace { 1827 1828 class PostRAMachineSinking : public MachineFunctionPass { 1829 public: 1830 bool runOnMachineFunction(MachineFunction &MF) override; 1831 1832 static char ID; 1833 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1834 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1835 1836 void getAnalysisUsage(AnalysisUsage &AU) const override { 1837 AU.setPreservesCFG(); 1838 MachineFunctionPass::getAnalysisUsage(AU); 1839 } 1840 1841 MachineFunctionProperties getRequiredProperties() const override { 1842 return MachineFunctionProperties().set( 1843 MachineFunctionProperties::Property::NoVRegs); 1844 } 1845 1846 private: 1847 /// Track which register units have been modified and used. 1848 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1849 1850 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1851 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1852 /// consists of a pointer to the instruction itself, and a vector of registers 1853 /// referred to by the instruction that overlap the key register unit. 1854 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1855 1856 /// Sink Copy instructions unused in the same block close to their uses in 1857 /// successors. 1858 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1859 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1860 }; 1861 } // namespace 1862 1863 char PostRAMachineSinking::ID = 0; 1864 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1865 1866 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1867 "PostRA Machine Sink", false, false) 1868 1869 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1870 const TargetRegisterInfo *TRI) { 1871 LiveRegUnits LiveInRegUnits(*TRI); 1872 LiveInRegUnits.addLiveIns(MBB); 1873 return !LiveInRegUnits.available(Reg); 1874 } 1875 1876 static MachineBasicBlock * 1877 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1878 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1879 unsigned Reg, const TargetRegisterInfo *TRI) { 1880 // Try to find a single sinkable successor in which Reg is live-in. 1881 MachineBasicBlock *BB = nullptr; 1882 for (auto *SI : SinkableBBs) { 1883 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1884 // If BB is set here, Reg is live-in to at least two sinkable successors, 1885 // so quit. 1886 if (BB) 1887 return nullptr; 1888 BB = SI; 1889 } 1890 } 1891 // Reg is not live-in to any sinkable successors. 1892 if (!BB) 1893 return nullptr; 1894 1895 // Check if any register aliased with Reg is live-in in other successors. 1896 for (auto *SI : CurBB.successors()) { 1897 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1898 return nullptr; 1899 } 1900 return BB; 1901 } 1902 1903 static MachineBasicBlock * 1904 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1905 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1906 ArrayRef<unsigned> DefedRegsInCopy, 1907 const TargetRegisterInfo *TRI) { 1908 MachineBasicBlock *SingleBB = nullptr; 1909 for (auto DefReg : DefedRegsInCopy) { 1910 MachineBasicBlock *BB = 1911 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1912 if (!BB || (SingleBB && SingleBB != BB)) 1913 return nullptr; 1914 SingleBB = BB; 1915 } 1916 return SingleBB; 1917 } 1918 1919 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1920 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1921 LiveRegUnits &UsedRegUnits, 1922 const TargetRegisterInfo *TRI) { 1923 for (auto U : UsedOpsInCopy) { 1924 MachineOperand &MO = MI->getOperand(U); 1925 Register SrcReg = MO.getReg(); 1926 if (!UsedRegUnits.available(SrcReg)) { 1927 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1928 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1929 if (UI.killsRegister(SrcReg, TRI)) { 1930 UI.clearRegisterKills(SrcReg, TRI); 1931 MO.setIsKill(true); 1932 break; 1933 } 1934 } 1935 } 1936 } 1937 } 1938 1939 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1940 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1941 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1942 MachineFunction &MF = *SuccBB->getParent(); 1943 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1944 for (unsigned DefReg : DefedRegsInCopy) 1945 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1946 SuccBB->removeLiveIn(S); 1947 for (auto U : UsedOpsInCopy) { 1948 Register SrcReg = MI->getOperand(U).getReg(); 1949 LaneBitmask Mask; 1950 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1951 Mask |= (*S).second; 1952 SuccBB->addLiveIn(SrcReg, Mask); 1953 } 1954 SuccBB->sortUniqueLiveIns(); 1955 } 1956 1957 static bool hasRegisterDependency(MachineInstr *MI, 1958 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1959 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1960 LiveRegUnits &ModifiedRegUnits, 1961 LiveRegUnits &UsedRegUnits) { 1962 bool HasRegDependency = false; 1963 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1964 MachineOperand &MO = MI->getOperand(i); 1965 if (!MO.isReg()) 1966 continue; 1967 Register Reg = MO.getReg(); 1968 if (!Reg) 1969 continue; 1970 if (MO.isDef()) { 1971 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1972 HasRegDependency = true; 1973 break; 1974 } 1975 DefedRegsInCopy.push_back(Reg); 1976 1977 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1978 // For example, we can ignore modifications in reg with undef. However, 1979 // it's not perfectly clear if skipping the internal read is safe in all 1980 // other targets. 1981 } else if (MO.isUse()) { 1982 if (!ModifiedRegUnits.available(Reg)) { 1983 HasRegDependency = true; 1984 break; 1985 } 1986 UsedOpsInCopy.push_back(i); 1987 } 1988 } 1989 return HasRegDependency; 1990 } 1991 1992 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1993 MachineFunction &MF, 1994 const TargetRegisterInfo *TRI, 1995 const TargetInstrInfo *TII) { 1996 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1997 // FIXME: For now, we sink only to a successor which has a single predecessor 1998 // so that we can directly sink COPY instructions to the successor without 1999 // adding any new block or branch instruction. 2000 for (MachineBasicBlock *SI : CurBB.successors()) 2001 if (!SI->livein_empty() && SI->pred_size() == 1) 2002 SinkableBBs.insert(SI); 2003 2004 if (SinkableBBs.empty()) 2005 return false; 2006 2007 bool Changed = false; 2008 2009 // Track which registers have been modified and used between the end of the 2010 // block and the current instruction. 2011 ModifiedRegUnits.clear(); 2012 UsedRegUnits.clear(); 2013 SeenDbgInstrs.clear(); 2014 2015 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2016 // Track the operand index for use in Copy. 2017 SmallVector<unsigned, 2> UsedOpsInCopy; 2018 // Track the register number defed in Copy. 2019 SmallVector<unsigned, 2> DefedRegsInCopy; 2020 2021 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2022 // for DBG_VALUEs later, record them when they're encountered. 2023 if (MI.isDebugValue() && !MI.isDebugRef()) { 2024 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2025 bool IsValid = true; 2026 for (MachineOperand &MO : MI.debug_operands()) { 2027 if (MO.isReg() && MO.getReg().isPhysical()) { 2028 // Bail if we can already tell the sink would be rejected, rather 2029 // than needlessly accumulating lots of DBG_VALUEs. 2030 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2031 ModifiedRegUnits, UsedRegUnits)) { 2032 IsValid = false; 2033 break; 2034 } 2035 2036 // Record debug use of each reg unit. 2037 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2038 MIUnits[Unit].push_back(MO.getReg()); 2039 } 2040 } 2041 if (IsValid) { 2042 for (auto &RegOps : MIUnits) 2043 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2044 std::move(RegOps.second)); 2045 } 2046 continue; 2047 } 2048 2049 if (MI.isDebugOrPseudoInstr()) 2050 continue; 2051 2052 // Do not move any instruction across function call. 2053 if (MI.isCall()) 2054 return false; 2055 2056 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2057 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2058 TRI); 2059 continue; 2060 } 2061 2062 // Don't sink the COPY if it would violate a register dependency. 2063 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2064 ModifiedRegUnits, UsedRegUnits)) { 2065 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2066 TRI); 2067 continue; 2068 } 2069 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2070 "Unexpect SrcReg or DefReg"); 2071 MachineBasicBlock *SuccBB = 2072 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2073 // Don't sink if we cannot find a single sinkable successor in which Reg 2074 // is live-in. 2075 if (!SuccBB) { 2076 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2077 TRI); 2078 continue; 2079 } 2080 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2081 "Unexpected predecessor"); 2082 2083 // Collect DBG_VALUEs that must sink with this copy. We've previously 2084 // recorded which reg units that DBG_VALUEs read, if this instruction 2085 // writes any of those units then the corresponding DBG_VALUEs must sink. 2086 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2087 for (auto &MO : MI.all_defs()) { 2088 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2089 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2090 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2091 for (unsigned Reg : MIRegs.second) 2092 Regs.push_back(Reg); 2093 } 2094 } 2095 } 2096 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2097 2098 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2099 2100 MachineBasicBlock::iterator InsertPos = 2101 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2102 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2103 LLVM_DEBUG( 2104 dbgs() << " *** Not sinking: prologue interference\n"); 2105 continue; 2106 } 2107 2108 // Clear the kill flag if SrcReg is killed between MI and the end of the 2109 // block. 2110 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2111 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2112 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2113 2114 Changed = true; 2115 ++NumPostRACopySink; 2116 } 2117 return Changed; 2118 } 2119 2120 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2121 if (skipFunction(MF.getFunction())) 2122 return false; 2123 2124 bool Changed = false; 2125 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2126 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2127 2128 ModifiedRegUnits.init(*TRI); 2129 UsedRegUnits.init(*TRI); 2130 for (auto &BB : MF) 2131 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2132 2133 return Changed; 2134 } 2135