1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/MachineSizeOpts.h" 42 #include "llvm/CodeGen/RegisterClassInfo.h" 43 #include "llvm/CodeGen/RegisterPressure.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "machine-sink" 65 66 static cl::opt<bool> 67 SplitEdges("machine-sink-split", 68 cl::desc("Split critical edges during machine sinking"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<bool> 72 UseBlockFreqInfo("machine-sink-bfi", 73 cl::desc("Use block frequency info to find successors to sink"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 77 "machine-sink-split-probability-threshold", 78 cl::desc( 79 "Percentage threshold for splitting single-instruction critical edge. " 80 "If the branch threshold is higher than this threshold, we allow " 81 "speculative execution of up to 1 instruction to avoid branching to " 82 "splitted critical edge"), 83 cl::init(40), cl::Hidden); 84 85 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 86 "machine-sink-load-instrs-threshold", 87 cl::desc("Do not try to find alias store for a load if there is a in-path " 88 "block whose instruction number is higher than this threshold."), 89 cl::init(2000), cl::Hidden); 90 91 static cl::opt<unsigned> SinkLoadBlocksThreshold( 92 "machine-sink-load-blocks-threshold", 93 cl::desc("Do not try to find alias store for a load if the block number in " 94 "the straight line is higher than this threshold."), 95 cl::init(20), cl::Hidden); 96 97 static cl::opt<bool> 98 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 99 cl::desc("Sink instructions into cycles to avoid " 100 "register spills"), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> SinkIntoCycleLimit( 104 "machine-sink-cycle-limit", 105 cl::desc("The maximum number of instructions considered for cycle sinking."), 106 cl::init(50), cl::Hidden); 107 108 STATISTIC(NumSunk, "Number of machine instructions sunk"); 109 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 110 STATISTIC(NumSplit, "Number of critical edges split"); 111 STATISTIC(NumCoalesces, "Number of copies coalesced"); 112 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 113 114 namespace { 115 116 class MachineSinking : public MachineFunctionPass { 117 const TargetSubtargetInfo *STI = nullptr; 118 const TargetInstrInfo *TII = nullptr; 119 const TargetRegisterInfo *TRI = nullptr; 120 MachineRegisterInfo *MRI = nullptr; // Machine register information 121 MachineDominatorTree *DT = nullptr; // Machine dominator tree 122 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 123 MachineCycleInfo *CI = nullptr; 124 ProfileSummaryInfo *PSI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Memorize the register that also wanted to sink into the same block along 134 // a different critical edge. 135 // {register to sink, sink-to block} -> the first sink-from block. 136 // We're recording the first sink-from block because that (critical) edge 137 // was deferred until we see another register that's going to sink into the 138 // same block. 139 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 140 CEMergeCandidates; 141 // Remember which edges we are about to split. 142 // This is different from CEBCandidates since those edges 143 // will be split. 144 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 145 146 DenseSet<Register> RegsToClearKillFlags; 147 148 using AllSuccsCache = 149 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 150 151 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 152 /// post-dominated by another DBG_VALUE of the same variable location. 153 /// This is necessary to detect sequences such as: 154 /// %0 = someinst 155 /// DBG_VALUE %0, !123, !DIExpression() 156 /// %1 = anotherinst 157 /// DBG_VALUE %1, !123, !DIExpression() 158 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 159 /// would re-order assignments. 160 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 161 162 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 163 /// debug instructions to sink. 164 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 165 166 /// Record of debug variables that have had their locations set in the 167 /// current block. 168 DenseSet<DebugVariable> SeenDbgVars; 169 170 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 171 HasStoreCache; 172 173 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 174 SmallVector<MachineInstr *>> 175 StoreInstrCache; 176 177 /// Cached BB's register pressure. 178 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 179 CachedRegisterPressure; 180 181 bool EnableSinkAndFold; 182 183 public: 184 static char ID; // Pass identification 185 186 MachineSinking() : MachineFunctionPass(ID) { 187 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 188 } 189 190 bool runOnMachineFunction(MachineFunction &MF) override; 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 MachineFunctionPass::getAnalysisUsage(AU); 194 AU.addRequired<AAResultsWrapperPass>(); 195 AU.addRequired<MachineDominatorTreeWrapperPass>(); 196 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 197 AU.addRequired<MachineCycleInfoWrapperPass>(); 198 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 199 AU.addPreserved<MachineCycleInfoWrapperPass>(); 200 AU.addPreserved<MachineLoopInfoWrapperPass>(); 201 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 202 if (UseBlockFreqInfo) 203 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 204 AU.addRequired<TargetPassConfig>(); 205 } 206 207 void releaseMemory() override { 208 CEBCandidates.clear(); 209 CEMergeCandidates.clear(); 210 } 211 212 private: 213 bool ProcessBlock(MachineBasicBlock &MBB); 214 void ProcessDbgInst(MachineInstr &MI); 215 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 216 MachineBasicBlock *To, bool BreakPHIEdge); 217 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 218 MachineBasicBlock *To, 219 MachineBasicBlock *&DeferredFromBlock); 220 221 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 222 MachineInstr &MI); 223 224 /// Postpone the splitting of the given critical 225 /// edge (\p From, \p To). 226 /// 227 /// We do not split the edges on the fly. Indeed, this invalidates 228 /// the dominance information and thus triggers a lot of updates 229 /// of that information underneath. 230 /// Instead, we postpone all the splits after each iteration of 231 /// the main loop. That way, the information is at least valid 232 /// for the lifetime of an iteration. 233 /// 234 /// \return True if the edge is marked as toSplit, false otherwise. 235 /// False can be returned if, for instance, this is not profitable. 236 bool PostponeSplitCriticalEdge(MachineInstr &MI, 237 MachineBasicBlock *From, 238 MachineBasicBlock *To, 239 bool BreakPHIEdge); 240 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 241 AllSuccsCache &AllSuccessors); 242 243 /// If we sink a COPY inst, some debug users of it's destination may no 244 /// longer be dominated by the COPY, and will eventually be dropped. 245 /// This is easily rectified by forwarding the non-dominated debug uses 246 /// to the copy source. 247 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 248 MachineBasicBlock *TargetBlock); 249 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 250 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 251 bool &LocalUse) const; 252 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 253 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 254 255 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 256 SmallVectorImpl<MachineInstr *> &Candidates); 257 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 258 259 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 260 MachineBasicBlock *MBB, 261 MachineBasicBlock *SuccToSinkTo, 262 AllSuccsCache &AllSuccessors); 263 264 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 265 MachineBasicBlock *MBB); 266 267 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 268 269 SmallVector<MachineBasicBlock *, 4> & 270 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 271 AllSuccsCache &AllSuccessors) const; 272 273 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 274 275 bool registerPressureSetExceedsLimit(unsigned NRegs, 276 const TargetRegisterClass *RC, 277 const MachineBasicBlock &MBB); 278 }; 279 280 } // end anonymous namespace 281 282 char MachineSinking::ID = 0; 283 284 char &llvm::MachineSinkingID = MachineSinking::ID; 285 286 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 287 "Machine code sinking", false, false) 288 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 289 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 290 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 291 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 293 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 294 "Machine code sinking", false, false) 295 296 /// Return true if a target defined block prologue instruction interferes 297 /// with a sink candidate. 298 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 299 MachineBasicBlock::const_iterator End, 300 const MachineInstr &MI, 301 const TargetRegisterInfo *TRI, 302 const TargetInstrInfo *TII, 303 const MachineRegisterInfo *MRI) { 304 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 305 ++PI) { 306 // Only check target defined prologue instructions 307 if (!TII->isBasicBlockPrologue(*PI)) 308 continue; 309 for (auto &MO : MI.operands()) { 310 if (!MO.isReg()) 311 continue; 312 Register Reg = MO.getReg(); 313 if (!Reg) 314 continue; 315 if (MO.isUse()) { 316 if (Reg.isPhysical() && 317 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 318 continue; 319 if (PI->modifiesRegister(Reg, TRI)) 320 return true; 321 } else { 322 if (PI->readsRegister(Reg, TRI)) 323 return true; 324 // Check for interference with non-dead defs 325 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 326 if (DefOp && !DefOp->isDead()) 327 return true; 328 } 329 } 330 } 331 332 return false; 333 } 334 335 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 336 MachineBasicBlock *MBB) { 337 if (!MI.isCopy()) 338 return false; 339 340 Register SrcReg = MI.getOperand(1).getReg(); 341 Register DstReg = MI.getOperand(0).getReg(); 342 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 343 !MRI->hasOneNonDBGUse(SrcReg)) 344 return false; 345 346 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 347 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 348 if (SRC != DRC) 349 return false; 350 351 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 352 if (DefMI->isCopyLike()) 353 return false; 354 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 355 LLVM_DEBUG(dbgs() << "*** to: " << MI); 356 MRI->replaceRegWith(DstReg, SrcReg); 357 MI.eraseFromParent(); 358 359 // Conservatively, clear any kill flags, since it's possible that they are no 360 // longer correct. 361 MRI->clearKillFlags(SrcReg); 362 363 ++NumCoalesces; 364 return true; 365 } 366 367 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 368 MachineBasicBlock *MBB) { 369 if (MI.isCopy() || MI.mayLoadOrStore() || 370 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 371 return false; 372 373 // Don't sink instructions that the target prefers not to sink. 374 if (!TII->shouldSink(MI)) 375 return false; 376 377 // Check if it's safe to move the instruction. 378 bool SawStore = true; 379 if (!MI.isSafeToMove(SawStore)) 380 return false; 381 382 // Convergent operations may not be made control-dependent on additional 383 // values. 384 if (MI.isConvergent()) 385 return false; 386 387 // Don't sink defs/uses of hard registers or if the instruction defines more 388 // than one register. 389 // Don't sink more than two register uses - it'll cover most of the cases and 390 // greatly simplifies the register pressure checks. 391 Register DefReg; 392 Register UsedRegA, UsedRegB; 393 for (const MachineOperand &MO : MI.operands()) { 394 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 395 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 396 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 397 continue; 398 if (!MO.isReg()) 399 return false; 400 401 Register Reg = MO.getReg(); 402 if (Reg == 0) 403 continue; 404 405 if (Reg.isVirtual()) { 406 if (MO.isDef()) { 407 if (DefReg) 408 return false; 409 DefReg = Reg; 410 continue; 411 } 412 413 if (UsedRegA == 0) 414 UsedRegA = Reg; 415 else if (UsedRegB == 0) 416 UsedRegB = Reg; 417 else 418 return false; 419 continue; 420 } 421 422 if (Reg.isPhysical() && MO.isUse() && 423 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 424 continue; 425 426 return false; 427 } 428 429 // Scan uses of the destination register. Every use, except the last, must be 430 // a copy, with a chain of copies terminating with either a copy into a hard 431 // register, or a load/store instruction where the use is part of the 432 // address (*not* the stored value). 433 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 434 SmallVector<SinkInfo> SinkInto; 435 SmallVector<Register> Worklist; 436 437 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 438 const TargetRegisterClass *RCA = 439 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 440 const TargetRegisterClass *RCB = 441 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 442 443 Worklist.push_back(DefReg); 444 while (!Worklist.empty()) { 445 Register Reg = Worklist.pop_back_val(); 446 447 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 448 ExtAddrMode MaybeAM; 449 MachineInstr &UseInst = *MO.getParent(); 450 if (UseInst.isCopy()) { 451 Register DstReg; 452 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 453 DstReg = O.getReg(); 454 if (DstReg == 0) 455 return false; 456 if (DstReg.isVirtual()) { 457 Worklist.push_back(DstReg); 458 continue; 459 } 460 // If we are going to replace a copy, the original instruction must be 461 // as cheap as a copy. 462 if (!TII->isAsCheapAsAMove(MI)) 463 return false; 464 // The hard register must be in the register class of the original 465 // instruction's destination register. 466 if (!RC->contains(DstReg)) 467 return false; 468 } else if (UseInst.mayLoadOrStore()) { 469 ExtAddrMode AM; 470 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 471 return false; 472 MaybeAM = AM; 473 } else { 474 return false; 475 } 476 477 if (UseInst.getParent() != MI.getParent()) { 478 // If the register class of the register we are replacing is a superset 479 // of any of the register classes of the operands of the materialized 480 // instruction don't consider that live range extended. 481 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 482 if (RCA && RCA->hasSuperClassEq(RCS)) 483 RCA = nullptr; 484 else if (RCB && RCB->hasSuperClassEq(RCS)) 485 RCB = nullptr; 486 if (RCA || RCB) { 487 if (RCA == nullptr) { 488 RCA = RCB; 489 RCB = nullptr; 490 } 491 492 unsigned NRegs = !!RCA + !!RCB; 493 if (RCA == RCB) 494 RCB = nullptr; 495 496 // Check we don't exceed register pressure at the destination. 497 const MachineBasicBlock &MBB = *UseInst.getParent(); 498 if (RCB == nullptr) { 499 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 500 return false; 501 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 502 registerPressureSetExceedsLimit(1, RCB, MBB)) { 503 return false; 504 } 505 } 506 } 507 508 SinkInto.emplace_back(&UseInst, MaybeAM); 509 } 510 } 511 512 if (SinkInto.empty()) 513 return false; 514 515 // Now we know we can fold the instruction in all its users. 516 for (auto &[SinkDst, MaybeAM] : SinkInto) { 517 MachineInstr *New = nullptr; 518 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 519 SinkDst->dump()); 520 if (SinkDst->isCopy()) { 521 // TODO: After performing the sink-and-fold, the original instruction is 522 // deleted. Its value is still available (in a hard register), so if there 523 // are debug instructions which refer to the (now deleted) virtual 524 // register they could be updated to refer to the hard register, in 525 // principle. However, it's not clear how to do that, moreover in some 526 // cases the debug instructions may need to be replicated proportionally 527 // to the number of the COPY instructions replaced and in some extreme 528 // cases we can end up with quadratic increase in the number of debug 529 // instructions. 530 531 // Sink a copy of the instruction, replacing a COPY instruction. 532 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 533 Register DstReg = SinkDst->getOperand(0).getReg(); 534 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 535 New = &*std::prev(InsertPt); 536 if (!New->getDebugLoc()) 537 New->setDebugLoc(SinkDst->getDebugLoc()); 538 539 // The operand registers of the "sunk" instruction have their live range 540 // extended and their kill flags may no longer be correct. Conservatively 541 // clear the kill flags. 542 if (UsedRegA) 543 MRI->clearKillFlags(UsedRegA); 544 if (UsedRegB) 545 MRI->clearKillFlags(UsedRegB); 546 } else { 547 // Fold instruction into the addressing mode of a memory instruction. 548 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 549 550 // The registers of the addressing mode may have their live range extended 551 // and their kill flags may no longer be correct. Conservatively clear the 552 // kill flags. 553 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 554 MRI->clearKillFlags(R); 555 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 556 MRI->clearKillFlags(R); 557 } 558 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 559 // Clear the StoreInstrCache, since we may invalidate it by erasing. 560 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 561 StoreInstrCache.clear(); 562 SinkDst->eraseFromParent(); 563 } 564 565 // Collect operands that need to be cleaned up because the registers no longer 566 // exist (in COPYs and debug instructions). We cannot delete instructions or 567 // clear operands while traversing register uses. 568 SmallVector<MachineOperand *> Cleanup; 569 Worklist.push_back(DefReg); 570 while (!Worklist.empty()) { 571 Register Reg = Worklist.pop_back_val(); 572 for (MachineOperand &MO : MRI->use_operands(Reg)) { 573 MachineInstr *U = MO.getParent(); 574 assert((U->isCopy() || U->isDebugInstr()) && 575 "Only debug uses and copies must remain"); 576 if (U->isCopy()) 577 Worklist.push_back(U->getOperand(0).getReg()); 578 Cleanup.push_back(&MO); 579 } 580 } 581 582 // Delete the dead COPYs and clear operands in debug instructions 583 for (MachineOperand *MO : Cleanup) { 584 MachineInstr *I = MO->getParent(); 585 if (I->isCopy()) { 586 I->eraseFromParent(); 587 } else { 588 MO->setReg(0); 589 MO->setSubReg(0); 590 } 591 } 592 593 MI.eraseFromParent(); 594 return true; 595 } 596 597 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 598 /// occur in blocks dominated by the specified block. If any use is in the 599 /// definition block, then return false since it is never legal to move def 600 /// after uses. 601 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 602 MachineBasicBlock *MBB, 603 MachineBasicBlock *DefMBB, 604 bool &BreakPHIEdge, 605 bool &LocalUse) const { 606 assert(Reg.isVirtual() && "Only makes sense for vregs"); 607 608 // Ignore debug uses because debug info doesn't affect the code. 609 if (MRI->use_nodbg_empty(Reg)) 610 return true; 611 612 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 613 // into and they are all PHI nodes. In this case, machine-sink must break 614 // the critical edge first. e.g. 615 // 616 // %bb.1: 617 // Predecessors according to CFG: %bb.0 618 // ... 619 // %def = DEC64_32r %x, implicit-def dead %eflags 620 // ... 621 // JE_4 <%bb.37>, implicit %eflags 622 // Successors according to CFG: %bb.37 %bb.2 623 // 624 // %bb.2: 625 // %p = PHI %y, %bb.0, %def, %bb.1 626 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 627 MachineInstr *UseInst = MO.getParent(); 628 unsigned OpNo = MO.getOperandNo(); 629 MachineBasicBlock *UseBlock = UseInst->getParent(); 630 return UseBlock == MBB && UseInst->isPHI() && 631 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 632 })) { 633 BreakPHIEdge = true; 634 return true; 635 } 636 637 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 638 // Determine the block of the use. 639 MachineInstr *UseInst = MO.getParent(); 640 unsigned OpNo = &MO - &UseInst->getOperand(0); 641 MachineBasicBlock *UseBlock = UseInst->getParent(); 642 if (UseInst->isPHI()) { 643 // PHI nodes use the operand in the predecessor block, not the block with 644 // the PHI. 645 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 646 } else if (UseBlock == DefMBB) { 647 LocalUse = true; 648 return false; 649 } 650 651 // Check that it dominates. 652 if (!DT->dominates(MBB, UseBlock)) 653 return false; 654 } 655 656 return true; 657 } 658 659 /// Return true if this machine instruction loads from global offset table or 660 /// constant pool. 661 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 662 assert(MI.mayLoad() && "Expected MI that loads!"); 663 664 // If we lost memory operands, conservatively assume that the instruction 665 // reads from everything.. 666 if (MI.memoperands_empty()) 667 return true; 668 669 for (MachineMemOperand *MemOp : MI.memoperands()) 670 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 671 if (PSV->isGOT() || PSV->isConstantPool()) 672 return true; 673 674 return false; 675 } 676 677 void MachineSinking::FindCycleSinkCandidates( 678 MachineCycle *Cycle, MachineBasicBlock *BB, 679 SmallVectorImpl<MachineInstr *> &Candidates) { 680 for (auto &MI : *BB) { 681 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 682 if (!TII->shouldSink(MI)) { 683 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 684 "target\n"); 685 continue; 686 } 687 if (!isCycleInvariant(Cycle, MI)) { 688 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 689 continue; 690 } 691 bool DontMoveAcrossStore = true; 692 if (!MI.isSafeToMove(DontMoveAcrossStore)) { 693 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 694 continue; 695 } 696 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 697 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 698 continue; 699 } 700 if (MI.isConvergent()) 701 continue; 702 703 const MachineOperand &MO = MI.getOperand(0); 704 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 705 continue; 706 if (!MRI->hasOneDef(MO.getReg())) 707 continue; 708 709 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 710 Candidates.push_back(&MI); 711 } 712 } 713 714 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 715 if (skipFunction(MF.getFunction())) 716 return false; 717 718 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 719 720 STI = &MF.getSubtarget(); 721 TII = STI->getInstrInfo(); 722 TRI = STI->getRegisterInfo(); 723 MRI = &MF.getRegInfo(); 724 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 725 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 726 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 727 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 728 MBFI = UseBlockFreqInfo 729 ? &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI() 730 : nullptr; 731 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 732 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 733 RegClassInfo.runOnMachineFunction(MF); 734 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 735 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 736 737 bool EverMadeChange = false; 738 739 while (true) { 740 bool MadeChange = false; 741 742 // Process all basic blocks. 743 CEBCandidates.clear(); 744 CEMergeCandidates.clear(); 745 ToSplit.clear(); 746 for (auto &MBB: MF) 747 MadeChange |= ProcessBlock(MBB); 748 749 // If we have anything we marked as toSplit, split it now. 750 for (const auto &Pair : ToSplit) { 751 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 752 if (NewSucc != nullptr) { 753 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 754 << printMBBReference(*Pair.first) << " -- " 755 << printMBBReference(*NewSucc) << " -- " 756 << printMBBReference(*Pair.second) << '\n'); 757 if (MBFI) 758 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 759 760 MadeChange = true; 761 ++NumSplit; 762 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 763 } else 764 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 765 } 766 // If this iteration over the code changed anything, keep iterating. 767 if (!MadeChange) break; 768 EverMadeChange = true; 769 } 770 771 if (SinkInstsIntoCycle) { 772 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_cycles()); 773 for (auto *Cycle : Cycles) { 774 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 775 if (!Preheader) { 776 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 777 continue; 778 } 779 SmallVector<MachineInstr *, 8> Candidates; 780 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 781 782 // Walk the candidates in reverse order so that we start with the use 783 // of a def-use chain, if there is any. 784 // TODO: Sort the candidates using a cost-model. 785 unsigned i = 0; 786 for (MachineInstr *I : llvm::reverse(Candidates)) { 787 if (i++ == SinkIntoCycleLimit) { 788 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 789 "be analysed."); 790 break; 791 } 792 793 if (!SinkIntoCycle(Cycle, *I)) 794 break; 795 EverMadeChange = true; 796 ++NumCycleSunk; 797 } 798 } 799 } 800 801 HasStoreCache.clear(); 802 StoreInstrCache.clear(); 803 804 // Now clear any kill flags for recorded registers. 805 for (auto I : RegsToClearKillFlags) 806 MRI->clearKillFlags(I); 807 RegsToClearKillFlags.clear(); 808 809 return EverMadeChange; 810 } 811 812 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 813 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 814 return false; 815 816 // Don't bother sinking code out of unreachable blocks. In addition to being 817 // unprofitable, it can also lead to infinite looping, because in an 818 // unreachable cycle there may be nowhere to stop. 819 if (!DT->isReachableFromEntry(&MBB)) return false; 820 821 bool MadeChange = false; 822 823 // Cache all successors, sorted by frequency info and cycle depth. 824 AllSuccsCache AllSuccessors; 825 826 // Walk the basic block bottom-up. Remember if we saw a store. 827 MachineBasicBlock::iterator I = MBB.end(); 828 --I; 829 bool ProcessedBegin, SawStore = false; 830 do { 831 MachineInstr &MI = *I; // The instruction to sink. 832 833 // Predecrement I (if it's not begin) so that it isn't invalidated by 834 // sinking. 835 ProcessedBegin = I == MBB.begin(); 836 if (!ProcessedBegin) 837 --I; 838 839 if (MI.isDebugOrPseudoInstr() || MI.isFakeUse()) { 840 if (MI.isDebugValue()) 841 ProcessDbgInst(MI); 842 continue; 843 } 844 845 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 846 MadeChange = true; 847 continue; 848 } 849 850 // Can't sink anything out of a block that has less than two successors. 851 if (MBB.succ_size() <= 1) 852 continue; 853 854 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 855 MadeChange = true; 856 continue; 857 } 858 859 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 860 ++NumSunk; 861 MadeChange = true; 862 } 863 864 // If we just processed the first instruction in the block, we're done. 865 } while (!ProcessedBegin); 866 867 SeenDbgUsers.clear(); 868 SeenDbgVars.clear(); 869 // recalculate the bb register pressure after sinking one BB. 870 CachedRegisterPressure.clear(); 871 return MadeChange; 872 } 873 874 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 875 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 876 // we know what to sink if the vreg def sinks. 877 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 878 879 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 880 MI.getDebugLoc()->getInlinedAt()); 881 bool SeenBefore = SeenDbgVars.contains(Var); 882 883 for (MachineOperand &MO : MI.debug_operands()) { 884 if (MO.isReg() && MO.getReg().isVirtual()) 885 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 886 } 887 888 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 889 SeenDbgVars.insert(Var); 890 } 891 892 bool MachineSinking::isWorthBreakingCriticalEdge( 893 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 894 MachineBasicBlock *&DeferredFromBlock) { 895 // FIXME: Need much better heuristics. 896 897 // If the pass has already considered breaking this edge (during this pass 898 // through the function), then let's go ahead and break it. This means 899 // sinking multiple "cheap" instructions into the same block. 900 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 901 return true; 902 903 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 904 return true; 905 906 // Check and record the register and the destination block we want to sink 907 // into. Note that we want to do the following before the next check on branch 908 // probability. Because we want to record the initial candidate even if it's 909 // on hot edge, so that other candidates that might not on hot edges can be 910 // sinked as well. 911 for (const auto &MO : MI.all_defs()) { 912 Register Reg = MO.getReg(); 913 if (!Reg) 914 continue; 915 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 916 auto Key = std::make_pair(SrcReg, To); 917 auto Res = CEMergeCandidates.try_emplace(Key, From); 918 // We wanted to sink the same register into the same block, consider it to 919 // be profitable. 920 if (!Res.second) { 921 // Return the source block that was previously held off. 922 DeferredFromBlock = Res.first->second; 923 return true; 924 } 925 } 926 927 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 928 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 929 return true; 930 931 // MI is cheap, we probably don't want to break the critical edge for it. 932 // However, if this would allow some definitions of its source operands 933 // to be sunk then it's probably worth it. 934 for (const MachineOperand &MO : MI.all_uses()) { 935 Register Reg = MO.getReg(); 936 if (Reg == 0) 937 continue; 938 939 // We don't move live definitions of physical registers, 940 // so sinking their uses won't enable any opportunities. 941 if (Reg.isPhysical()) 942 continue; 943 944 // If this instruction is the only user of a virtual register, 945 // check if breaking the edge will enable sinking 946 // both this instruction and the defining instruction. 947 if (MRI->hasOneNonDBGUse(Reg)) { 948 // If the definition resides in same MBB, 949 // claim it's likely we can sink these together. 950 // If definition resides elsewhere, we aren't 951 // blocking it from being sunk so don't break the edge. 952 MachineInstr *DefMI = MRI->getVRegDef(Reg); 953 if (DefMI->getParent() == MI.getParent()) 954 return true; 955 } 956 } 957 958 return false; 959 } 960 961 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 962 MachineBasicBlock *FromBB, 963 MachineBasicBlock *ToBB, 964 bool BreakPHIEdge) { 965 // Avoid breaking back edge. From == To means backedge for single BB cycle. 966 if (!SplitEdges || FromBB == ToBB || !FromBB->isSuccessor(ToBB)) 967 return false; 968 969 MachineCycle *FromCycle = CI->getCycle(FromBB); 970 MachineCycle *ToCycle = CI->getCycle(ToBB); 971 972 // Check for backedges of more "complex" cycles. 973 if (FromCycle == ToCycle && FromCycle && 974 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 975 return false; 976 977 // It's not always legal to break critical edges and sink the computation 978 // to the edge. 979 // 980 // %bb.1: 981 // v1024 982 // Beq %bb.3 983 // <fallthrough> 984 // %bb.2: 985 // ... no uses of v1024 986 // <fallthrough> 987 // %bb.3: 988 // ... 989 // = v1024 990 // 991 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 992 // 993 // %bb.1: 994 // ... 995 // Bne %bb.2 996 // %bb.4: 997 // v1024 = 998 // B %bb.3 999 // %bb.2: 1000 // ... no uses of v1024 1001 // <fallthrough> 1002 // %bb.3: 1003 // ... 1004 // = v1024 1005 // 1006 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1007 // flow. We need to ensure the new basic block where the computation is 1008 // sunk to dominates all the uses. 1009 // It's only legal to break critical edge and sink the computation to the 1010 // new block if all the predecessors of "To", except for "From", are 1011 // not dominated by "From". Given SSA property, this means these 1012 // predecessors are dominated by "To". 1013 // 1014 // There is no need to do this check if all the uses are PHI nodes. PHI 1015 // sources are only defined on the specific predecessor edges. 1016 if (!BreakPHIEdge) { 1017 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1018 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1019 return false; 1020 } 1021 1022 return true; 1023 } 1024 1025 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1026 MachineBasicBlock *FromBB, 1027 MachineBasicBlock *ToBB, 1028 bool BreakPHIEdge) { 1029 bool Status = false; 1030 MachineBasicBlock *DeferredFromBB = nullptr; 1031 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1032 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1033 // of them are legal to split. 1034 if ((!DeferredFromBB || 1035 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1036 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1037 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1038 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1039 if (DeferredFromBB) 1040 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1041 Status = true; 1042 } 1043 } 1044 1045 return Status; 1046 } 1047 1048 std::vector<unsigned> & 1049 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 1050 // Currently to save compiling time, MBB's register pressure will not change 1051 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1052 // register pressure is changed after sinking any instructions into it. 1053 // FIXME: need a accurate and cheap register pressure estiminate model here. 1054 auto RP = CachedRegisterPressure.find(&MBB); 1055 if (RP != CachedRegisterPressure.end()) 1056 return RP->second; 1057 1058 RegionPressure Pressure; 1059 RegPressureTracker RPTracker(Pressure); 1060 1061 // Initialize the register pressure tracker. 1062 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1063 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1064 1065 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1066 MIE = MBB.instr_begin(); 1067 MII != MIE; --MII) { 1068 const MachineInstr &MI = *std::prev(MII); 1069 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1070 continue; 1071 RegisterOperands RegOpers; 1072 RegOpers.collect(MI, *TRI, *MRI, false, false); 1073 RPTracker.recedeSkipDebugValues(); 1074 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1075 RPTracker.recede(RegOpers); 1076 } 1077 1078 RPTracker.closeRegion(); 1079 auto It = CachedRegisterPressure.insert( 1080 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1081 return It.first->second; 1082 } 1083 1084 bool MachineSinking::registerPressureSetExceedsLimit( 1085 unsigned NRegs, const TargetRegisterClass *RC, 1086 const MachineBasicBlock &MBB) { 1087 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1088 const int *PS = TRI->getRegClassPressureSets(RC); 1089 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1090 for (; *PS != -1; PS++) 1091 if (Weight + BBRegisterPressure[*PS] >= 1092 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1093 return true; 1094 return false; 1095 } 1096 1097 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1098 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1099 MachineBasicBlock *MBB, 1100 MachineBasicBlock *SuccToSinkTo, 1101 AllSuccsCache &AllSuccessors) { 1102 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1103 1104 if (MBB == SuccToSinkTo) 1105 return false; 1106 1107 // It is profitable if SuccToSinkTo does not post dominate current block. 1108 if (!PDT->dominates(SuccToSinkTo, MBB)) 1109 return true; 1110 1111 // It is profitable to sink an instruction from a deeper cycle to a shallower 1112 // cycle, even if the latter post-dominates the former (PR21115). 1113 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1114 return true; 1115 1116 // Check if only use in post dominated block is PHI instruction. 1117 bool NonPHIUse = false; 1118 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1119 MachineBasicBlock *UseBlock = UseInst.getParent(); 1120 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1121 NonPHIUse = true; 1122 } 1123 if (!NonPHIUse) 1124 return true; 1125 1126 // If SuccToSinkTo post dominates then also it may be profitable if MI 1127 // can further profitably sinked into another block in next round. 1128 bool BreakPHIEdge = false; 1129 // FIXME - If finding successor is compile time expensive then cache results. 1130 if (MachineBasicBlock *MBB2 = 1131 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1132 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1133 1134 MachineCycle *MCycle = CI->getCycle(MBB); 1135 1136 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1137 // a post dominate block SuccToSinkTo. 1138 if (!MCycle) 1139 return false; 1140 1141 // If this instruction is inside a Cycle and sinking this instruction can make 1142 // more registers live range shorten, it is still prifitable. 1143 for (const MachineOperand &MO : MI.operands()) { 1144 // Ignore non-register operands. 1145 if (!MO.isReg()) 1146 continue; 1147 Register Reg = MO.getReg(); 1148 if (Reg == 0) 1149 continue; 1150 1151 if (Reg.isPhysical()) { 1152 // Don't handle non-constant and non-ignorable physical register uses. 1153 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1154 return false; 1155 continue; 1156 } 1157 1158 // Users for the defs are all dominated by SuccToSinkTo. 1159 if (MO.isDef()) { 1160 // This def register's live range is shortened after sinking. 1161 bool LocalUse = false; 1162 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1163 LocalUse)) 1164 return false; 1165 } else { 1166 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1167 if (!DefMI) 1168 continue; 1169 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1170 // DefMI is defined outside of cycle. There should be no live range 1171 // impact for this operand. Defination outside of cycle means: 1172 // 1: defination is outside of cycle. 1173 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1174 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1175 Cycle->getHeader() == DefMI->getParent())) 1176 continue; 1177 // The DefMI is defined inside the cycle. 1178 // If sinking this operand makes some register pressure set exceed limit, 1179 // it is not profitable. 1180 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1181 *SuccToSinkTo)) { 1182 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1183 return false; 1184 } 1185 } 1186 } 1187 1188 // If MI is in cycle and all its operands are alive across the whole cycle or 1189 // if no operand sinking make register pressure set exceed limit, it is 1190 // profitable to sink MI. 1191 return true; 1192 } 1193 1194 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1195 /// computing it if it was not already cached. 1196 SmallVector<MachineBasicBlock *, 4> & 1197 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1198 AllSuccsCache &AllSuccessors) const { 1199 // Do we have the sorted successors in cache ? 1200 auto Succs = AllSuccessors.find(MBB); 1201 if (Succs != AllSuccessors.end()) 1202 return Succs->second; 1203 1204 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1205 1206 // Handle cases where sinking can happen but where the sink point isn't a 1207 // successor. For example: 1208 // 1209 // x = computation 1210 // if () {} else {} 1211 // use x 1212 // 1213 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1214 // DomTree children of MBB that have MBB as immediate dominator are added. 1215 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1216 // Skip MBBs already added to the AllSuccs vector above. 1217 !MBB->isSuccessor(DTChild->getBlock())) 1218 AllSuccs.push_back(DTChild->getBlock()); 1219 } 1220 1221 // Sort Successors according to their cycle depth or block frequency info. 1222 llvm::stable_sort( 1223 AllSuccs, [&](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1224 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1225 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1226 if (llvm::shouldOptimizeForSize(MBB, PSI, MBFI) || !LHSFreq || !RHSFreq) 1227 return CI->getCycleDepth(L) < CI->getCycleDepth(R); 1228 return LHSFreq < RHSFreq; 1229 }); 1230 1231 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1232 1233 return it.first->second; 1234 } 1235 1236 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1237 MachineBasicBlock * 1238 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1239 bool &BreakPHIEdge, 1240 AllSuccsCache &AllSuccessors) { 1241 assert (MBB && "Invalid MachineBasicBlock!"); 1242 1243 // loop over all the operands of the specified instruction. If there is 1244 // anything we can't handle, bail out. 1245 1246 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1247 // decide. 1248 MachineBasicBlock *SuccToSinkTo = nullptr; 1249 for (const MachineOperand &MO : MI.operands()) { 1250 if (!MO.isReg()) continue; // Ignore non-register operands. 1251 1252 Register Reg = MO.getReg(); 1253 if (Reg == 0) continue; 1254 1255 if (Reg.isPhysical()) { 1256 if (MO.isUse()) { 1257 // If the physreg has no defs anywhere, it's just an ambient register 1258 // and we can freely move its uses. Alternatively, if it's allocatable, 1259 // it could get allocated to something with a def during allocation. 1260 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1261 return nullptr; 1262 } else if (!MO.isDead()) { 1263 // A def that isn't dead. We can't move it. 1264 return nullptr; 1265 } 1266 } else { 1267 // Virtual register uses are always safe to sink. 1268 if (MO.isUse()) continue; 1269 1270 // If it's not safe to move defs of the register class, then abort. 1271 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1272 return nullptr; 1273 1274 // Virtual register defs can only be sunk if all their uses are in blocks 1275 // dominated by one of the successors. 1276 if (SuccToSinkTo) { 1277 // If a previous operand picked a block to sink to, then this operand 1278 // must be sinkable to the same block. 1279 bool LocalUse = false; 1280 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1281 BreakPHIEdge, LocalUse)) 1282 return nullptr; 1283 1284 continue; 1285 } 1286 1287 // Otherwise, we should look at all the successors and decide which one 1288 // we should sink to. If we have reliable block frequency information 1289 // (frequency != 0) available, give successors with smaller frequencies 1290 // higher priority, otherwise prioritize smaller cycle depths. 1291 for (MachineBasicBlock *SuccBlock : 1292 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1293 bool LocalUse = false; 1294 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1295 BreakPHIEdge, LocalUse)) { 1296 SuccToSinkTo = SuccBlock; 1297 break; 1298 } 1299 if (LocalUse) 1300 // Def is used locally, it's never safe to move this def. 1301 return nullptr; 1302 } 1303 1304 // If we couldn't find a block to sink to, ignore this instruction. 1305 if (!SuccToSinkTo) 1306 return nullptr; 1307 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1308 return nullptr; 1309 } 1310 } 1311 1312 // It is not possible to sink an instruction into its own block. This can 1313 // happen with cycles. 1314 if (MBB == SuccToSinkTo) 1315 return nullptr; 1316 1317 // It's not safe to sink instructions to EH landing pad. Control flow into 1318 // landing pad is implicitly defined. 1319 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1320 return nullptr; 1321 1322 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1323 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1324 // the source block (which this code does not yet do). So for now, forbid 1325 // doing so. 1326 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1327 return nullptr; 1328 1329 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1330 return nullptr; 1331 1332 return SuccToSinkTo; 1333 } 1334 1335 /// Return true if MI is likely to be usable as a memory operation by the 1336 /// implicit null check optimization. 1337 /// 1338 /// This is a "best effort" heuristic, and should not be relied upon for 1339 /// correctness. This returning true does not guarantee that the implicit null 1340 /// check optimization is legal over MI, and this returning false does not 1341 /// guarantee MI cannot possibly be used to do a null check. 1342 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1343 const TargetInstrInfo *TII, 1344 const TargetRegisterInfo *TRI) { 1345 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1346 1347 auto *MBB = MI.getParent(); 1348 if (MBB->pred_size() != 1) 1349 return false; 1350 1351 auto *PredMBB = *MBB->pred_begin(); 1352 auto *PredBB = PredMBB->getBasicBlock(); 1353 1354 // Frontends that don't use implicit null checks have no reason to emit 1355 // branches with make.implicit metadata, and this function should always 1356 // return false for them. 1357 if (!PredBB || 1358 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1359 return false; 1360 1361 const MachineOperand *BaseOp; 1362 int64_t Offset; 1363 bool OffsetIsScalable; 1364 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1365 return false; 1366 1367 if (!BaseOp->isReg()) 1368 return false; 1369 1370 if (!(MI.mayLoad() && !MI.isPredicable())) 1371 return false; 1372 1373 MachineBranchPredicate MBP; 1374 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1375 return false; 1376 1377 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1378 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1379 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1380 MBP.LHS.getReg() == BaseOp->getReg(); 1381 } 1382 1383 /// If the sunk instruction is a copy, try to forward the copy instead of 1384 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1385 /// there's any subregister weirdness involved. Returns true if copy 1386 /// propagation occurred. 1387 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1388 Register Reg) { 1389 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1390 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1391 1392 // Copy DBG_VALUE operand and set the original to undef. We then check to 1393 // see whether this is something that can be copy-forwarded. If it isn't, 1394 // continue around the loop. 1395 1396 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1397 auto CopyOperands = TII.isCopyInstr(SinkInst); 1398 if (!CopyOperands) 1399 return false; 1400 SrcMO = CopyOperands->Source; 1401 DstMO = CopyOperands->Destination; 1402 1403 // Check validity of forwarding this copy. 1404 bool PostRA = MRI.getNumVirtRegs() == 0; 1405 1406 // Trying to forward between physical and virtual registers is too hard. 1407 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1408 return false; 1409 1410 // Only try virtual register copy-forwarding before regalloc, and physical 1411 // register copy-forwarding after regalloc. 1412 bool arePhysRegs = !Reg.isVirtual(); 1413 if (arePhysRegs != PostRA) 1414 return false; 1415 1416 // Pre-regalloc, only forward if all subregisters agree (or there are no 1417 // subregs at all). More analysis might recover some forwardable copies. 1418 if (!PostRA) 1419 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1420 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1421 DbgMO.getSubReg() != DstMO->getSubReg()) 1422 return false; 1423 1424 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1425 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1426 // matches the copy destination. 1427 if (PostRA && Reg != DstMO->getReg()) 1428 return false; 1429 1430 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1431 DbgMO.setReg(SrcMO->getReg()); 1432 DbgMO.setSubReg(SrcMO->getSubReg()); 1433 } 1434 return true; 1435 } 1436 1437 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1438 /// Sink an instruction and its associated debug instructions. 1439 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1440 MachineBasicBlock::iterator InsertPos, 1441 ArrayRef<MIRegs> DbgValuesToSink) { 1442 // If we cannot find a location to use (merge with), then we erase the debug 1443 // location to prevent debug-info driven tools from potentially reporting 1444 // wrong location information. 1445 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1446 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1447 InsertPos->getDebugLoc())); 1448 else 1449 MI.setDebugLoc(DebugLoc()); 1450 1451 // Move the instruction. 1452 MachineBasicBlock *ParentBlock = MI.getParent(); 1453 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1454 ++MachineBasicBlock::iterator(MI)); 1455 1456 // Sink a copy of debug users to the insert position. Mark the original 1457 // DBG_VALUE location as 'undef', indicating that any earlier variable 1458 // location should be terminated as we've optimised away the value at this 1459 // point. 1460 for (const auto &DbgValueToSink : DbgValuesToSink) { 1461 MachineInstr *DbgMI = DbgValueToSink.first; 1462 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1463 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1464 1465 bool PropagatedAllSunkOps = true; 1466 for (unsigned Reg : DbgValueToSink.second) { 1467 if (DbgMI->hasDebugOperandForReg(Reg)) { 1468 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1469 PropagatedAllSunkOps = false; 1470 break; 1471 } 1472 } 1473 } 1474 if (!PropagatedAllSunkOps) 1475 DbgMI->setDebugValueUndef(); 1476 } 1477 } 1478 1479 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1480 /// and To. 1481 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1482 MachineBasicBlock *To, MachineInstr &MI) { 1483 // Make sure From and To are in straight line which means From dominates To 1484 // and To post dominates From. 1485 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1486 return true; 1487 1488 auto BlockPair = std::make_pair(From, To); 1489 1490 // Does these two blocks pair be queried before and have a definite cached 1491 // result? 1492 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1493 return It->second; 1494 1495 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1496 return llvm::any_of(It->second, [&](MachineInstr *I) { 1497 return I->mayAlias(AA, MI, false); 1498 }); 1499 1500 bool SawStore = false; 1501 bool HasAliasedStore = false; 1502 DenseSet<MachineBasicBlock *> HandledBlocks; 1503 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1504 // Go through all reachable blocks from From. 1505 for (MachineBasicBlock *BB : depth_first(From)) { 1506 // We insert the instruction at the start of block To, so no need to worry 1507 // about stores inside To. 1508 // Store in block From should be already considered when just enter function 1509 // SinkInstruction. 1510 if (BB == To || BB == From) 1511 continue; 1512 1513 // We already handle this BB in previous iteration. 1514 if (HandledBlocks.count(BB)) 1515 continue; 1516 1517 HandledBlocks.insert(BB); 1518 // To post dominates BB, it must be a path from block From. 1519 if (PDT->dominates(To, BB)) { 1520 if (!HandledDomBlocks.count(BB)) 1521 HandledDomBlocks.insert(BB); 1522 1523 // If this BB is too big or the block number in straight line between From 1524 // and To is too big, stop searching to save compiling time. 1525 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1526 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1527 for (auto *DomBB : HandledDomBlocks) { 1528 if (DomBB != BB && DT->dominates(DomBB, BB)) 1529 HasStoreCache[std::make_pair(DomBB, To)] = true; 1530 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1531 HasStoreCache[std::make_pair(From, DomBB)] = true; 1532 } 1533 HasStoreCache[BlockPair] = true; 1534 return true; 1535 } 1536 1537 for (MachineInstr &I : *BB) { 1538 // Treat as alias conservatively for a call or an ordered memory 1539 // operation. 1540 if (I.isCall() || I.hasOrderedMemoryRef()) { 1541 for (auto *DomBB : HandledDomBlocks) { 1542 if (DomBB != BB && DT->dominates(DomBB, BB)) 1543 HasStoreCache[std::make_pair(DomBB, To)] = true; 1544 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1545 HasStoreCache[std::make_pair(From, DomBB)] = true; 1546 } 1547 HasStoreCache[BlockPair] = true; 1548 return true; 1549 } 1550 1551 if (I.mayStore()) { 1552 SawStore = true; 1553 // We still have chance to sink MI if all stores between are not 1554 // aliased to MI. 1555 // Cache all store instructions, so that we don't need to go through 1556 // all From reachable blocks for next load instruction. 1557 if (I.mayAlias(AA, MI, false)) 1558 HasAliasedStore = true; 1559 StoreInstrCache[BlockPair].push_back(&I); 1560 } 1561 } 1562 } 1563 } 1564 // If there is no store at all, cache the result. 1565 if (!SawStore) 1566 HasStoreCache[BlockPair] = false; 1567 return HasAliasedStore; 1568 } 1569 1570 /// Sink instructions into cycles if profitable. This especially tries to 1571 /// prevent register spills caused by register pressure if there is little to no 1572 /// overhead moving instructions into cycles. 1573 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1574 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1575 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1576 assert(Preheader && "Cycle sink needs a preheader block"); 1577 MachineBasicBlock *SinkBlock = nullptr; 1578 bool CanSink = true; 1579 const MachineOperand &MO = I.getOperand(0); 1580 1581 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1582 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1583 if (!Cycle->contains(MI.getParent())) { 1584 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1585 CanSink = false; 1586 break; 1587 } 1588 1589 // FIXME: Come up with a proper cost model that estimates whether sinking 1590 // the instruction (and thus possibly executing it on every cycle 1591 // iteration) is more expensive than a register. 1592 // For now assumes that copies are cheap and thus almost always worth it. 1593 if (!MI.isCopy()) { 1594 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1595 CanSink = false; 1596 break; 1597 } 1598 if (!SinkBlock) { 1599 SinkBlock = MI.getParent(); 1600 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1601 << printMBBReference(*SinkBlock) << "\n"); 1602 continue; 1603 } 1604 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1605 if (!SinkBlock) { 1606 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1607 CanSink = false; 1608 break; 1609 } 1610 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1611 printMBBReference(*SinkBlock) << "\n"); 1612 } 1613 1614 if (!CanSink) { 1615 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1616 return false; 1617 } 1618 if (!SinkBlock) { 1619 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1620 return false; 1621 } 1622 if (SinkBlock == Preheader) { 1623 LLVM_DEBUG( 1624 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1625 return false; 1626 } 1627 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1628 LLVM_DEBUG( 1629 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1630 return false; 1631 } 1632 1633 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1634 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1635 I); 1636 1637 // Conservatively clear any kill flags on uses of sunk instruction 1638 for (MachineOperand &MO : I.operands()) { 1639 if (MO.isReg() && MO.readsReg()) 1640 RegsToClearKillFlags.insert(MO.getReg()); 1641 } 1642 1643 // The instruction is moved from its basic block, so do not retain the 1644 // debug information. 1645 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1646 I.setDebugLoc(DebugLoc()); 1647 return true; 1648 } 1649 1650 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1651 /// instruction out of its current block into a successor. 1652 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1653 AllSuccsCache &AllSuccessors) { 1654 // Don't sink instructions that the target prefers not to sink. 1655 if (!TII->shouldSink(MI)) 1656 return false; 1657 1658 // Check if it's safe to move the instruction. 1659 if (!MI.isSafeToMove(SawStore)) 1660 return false; 1661 1662 // Convergent operations may not be made control-dependent on additional 1663 // values. 1664 if (MI.isConvergent()) 1665 return false; 1666 1667 // Don't break implicit null checks. This is a performance heuristic, and not 1668 // required for correctness. 1669 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1670 return false; 1671 1672 // FIXME: This should include support for sinking instructions within the 1673 // block they are currently in to shorten the live ranges. We often get 1674 // instructions sunk into the top of a large block, but it would be better to 1675 // also sink them down before their first use in the block. This xform has to 1676 // be careful not to *increase* register pressure though, e.g. sinking 1677 // "x = y + z" down if it kills y and z would increase the live ranges of y 1678 // and z and only shrink the live range of x. 1679 1680 bool BreakPHIEdge = false; 1681 MachineBasicBlock *ParentBlock = MI.getParent(); 1682 MachineBasicBlock *SuccToSinkTo = 1683 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1684 1685 // If there are no outputs, it must have side-effects. 1686 if (!SuccToSinkTo) 1687 return false; 1688 1689 // If the instruction to move defines a dead physical register which is live 1690 // when leaving the basic block, don't move it because it could turn into a 1691 // "zombie" define of that preg. E.g., EFLAGS. 1692 for (const MachineOperand &MO : MI.all_defs()) { 1693 Register Reg = MO.getReg(); 1694 if (Reg == 0 || !Reg.isPhysical()) 1695 continue; 1696 if (SuccToSinkTo->isLiveIn(Reg)) 1697 return false; 1698 } 1699 1700 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1701 1702 // If the block has multiple predecessors, this is a critical edge. 1703 // Decide if we can sink along it or need to break the edge. 1704 if (SuccToSinkTo->pred_size() > 1) { 1705 // We cannot sink a load across a critical edge - there may be stores in 1706 // other code paths. 1707 bool TryBreak = false; 1708 bool Store = 1709 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1710 if (!MI.isSafeToMove(Store)) { 1711 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1712 TryBreak = true; 1713 } 1714 1715 // We don't want to sink across a critical edge if we don't dominate the 1716 // successor. We could be introducing calculations to new code paths. 1717 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1718 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1719 TryBreak = true; 1720 } 1721 1722 // Don't sink instructions into a cycle. 1723 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1724 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1725 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1726 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1727 TryBreak = true; 1728 } 1729 1730 // Otherwise we are OK with sinking along a critical edge. 1731 if (!TryBreak) 1732 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1733 else { 1734 // Mark this edge as to be split. 1735 // If the edge can actually be split, the next iteration of the main loop 1736 // will sink MI in the newly created block. 1737 bool Status = 1738 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1739 if (!Status) 1740 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1741 "break critical edge\n"); 1742 // The instruction will not be sunk this time. 1743 return false; 1744 } 1745 } 1746 1747 if (BreakPHIEdge) { 1748 // BreakPHIEdge is true if all the uses are in the successor MBB being 1749 // sunken into and they are all PHI nodes. In this case, machine-sink must 1750 // break the critical edge first. 1751 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1752 SuccToSinkTo, BreakPHIEdge); 1753 if (!Status) 1754 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1755 "break critical edge\n"); 1756 // The instruction will not be sunk this time. 1757 return false; 1758 } 1759 1760 // Determine where to insert into. Skip phi nodes. 1761 MachineBasicBlock::iterator InsertPos = 1762 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1763 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1764 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1765 return false; 1766 } 1767 1768 // Collect debug users of any vreg that this inst defines. 1769 SmallVector<MIRegs, 4> DbgUsersToSink; 1770 for (auto &MO : MI.all_defs()) { 1771 if (!MO.getReg().isVirtual()) 1772 continue; 1773 if (!SeenDbgUsers.count(MO.getReg())) 1774 continue; 1775 1776 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1777 auto &Users = SeenDbgUsers[MO.getReg()]; 1778 for (auto &User : Users) { 1779 MachineInstr *DbgMI = User.getPointer(); 1780 if (User.getInt()) { 1781 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1782 // it, it can't be recovered. Set it undef. 1783 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1784 DbgMI->setDebugValueUndef(); 1785 } else { 1786 DbgUsersToSink.push_back( 1787 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1788 } 1789 } 1790 } 1791 1792 // After sinking, some debug users may not be dominated any more. If possible, 1793 // copy-propagate their operands. As it's expensive, don't do this if there's 1794 // no debuginfo in the program. 1795 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1796 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1797 1798 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1799 1800 // Conservatively, clear any kill flags, since it's possible that they are no 1801 // longer correct. 1802 // Note that we have to clear the kill flags for any register this instruction 1803 // uses as we may sink over another instruction which currently kills the 1804 // used registers. 1805 for (MachineOperand &MO : MI.all_uses()) 1806 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1807 1808 return true; 1809 } 1810 1811 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1812 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1813 assert(MI.isCopy()); 1814 assert(MI.getOperand(1).isReg()); 1815 1816 // Enumerate all users of vreg operands that are def'd. Skip those that will 1817 // be sunk. For the rest, if they are not dominated by the block we will sink 1818 // MI into, propagate the copy source to them. 1819 SmallVector<MachineInstr *, 4> DbgDefUsers; 1820 SmallVector<Register, 4> DbgUseRegs; 1821 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1822 for (auto &MO : MI.all_defs()) { 1823 if (!MO.getReg().isVirtual()) 1824 continue; 1825 DbgUseRegs.push_back(MO.getReg()); 1826 for (auto &User : MRI.use_instructions(MO.getReg())) { 1827 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1828 continue; 1829 1830 // If is in same block, will either sink or be use-before-def. 1831 if (User.getParent() == MI.getParent()) 1832 continue; 1833 1834 assert(User.hasDebugOperandForReg(MO.getReg()) && 1835 "DBG_VALUE user of vreg, but has no operand for it?"); 1836 DbgDefUsers.push_back(&User); 1837 } 1838 } 1839 1840 // Point the users of this copy that are no longer dominated, at the source 1841 // of the copy. 1842 for (auto *User : DbgDefUsers) { 1843 for (auto &Reg : DbgUseRegs) { 1844 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1845 DbgOp.setReg(MI.getOperand(1).getReg()); 1846 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1847 } 1848 } 1849 } 1850 } 1851 1852 //===----------------------------------------------------------------------===// 1853 // This pass is not intended to be a replacement or a complete alternative 1854 // for the pre-ra machine sink pass. It is only designed to sink COPY 1855 // instructions which should be handled after RA. 1856 // 1857 // This pass sinks COPY instructions into a successor block, if the COPY is not 1858 // used in the current block and the COPY is live-in to a single successor 1859 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1860 // copy on paths where their results aren't needed. This also exposes 1861 // additional opportunites for dead copy elimination and shrink wrapping. 1862 // 1863 // These copies were either not handled by or are inserted after the MachineSink 1864 // pass. As an example of the former case, the MachineSink pass cannot sink 1865 // COPY instructions with allocatable source registers; for AArch64 these type 1866 // of copy instructions are frequently used to move function parameters (PhyReg) 1867 // into virtual registers in the entry block. 1868 // 1869 // For the machine IR below, this pass will sink %w19 in the entry into its 1870 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1871 // %bb.0: 1872 // %wzr = SUBSWri %w1, 1 1873 // %w19 = COPY %w0 1874 // Bcc 11, %bb.2 1875 // %bb.1: 1876 // Live Ins: %w19 1877 // BL @fun 1878 // %w0 = ADDWrr %w0, %w19 1879 // RET %w0 1880 // %bb.2: 1881 // %w0 = COPY %wzr 1882 // RET %w0 1883 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1884 // able to see %bb.0 as a candidate. 1885 //===----------------------------------------------------------------------===// 1886 namespace { 1887 1888 class PostRAMachineSinking : public MachineFunctionPass { 1889 public: 1890 bool runOnMachineFunction(MachineFunction &MF) override; 1891 1892 static char ID; 1893 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1894 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1895 1896 void getAnalysisUsage(AnalysisUsage &AU) const override { 1897 AU.setPreservesCFG(); 1898 MachineFunctionPass::getAnalysisUsage(AU); 1899 } 1900 1901 MachineFunctionProperties getRequiredProperties() const override { 1902 return MachineFunctionProperties().set( 1903 MachineFunctionProperties::Property::NoVRegs); 1904 } 1905 1906 private: 1907 /// Track which register units have been modified and used. 1908 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1909 1910 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1911 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1912 /// consists of a pointer to the instruction itself, and a vector of registers 1913 /// referred to by the instruction that overlap the key register unit. 1914 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1915 1916 /// Sink Copy instructions unused in the same block close to their uses in 1917 /// successors. 1918 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1919 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1920 }; 1921 } // namespace 1922 1923 char PostRAMachineSinking::ID = 0; 1924 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1925 1926 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1927 "PostRA Machine Sink", false, false) 1928 1929 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1930 const TargetRegisterInfo *TRI) { 1931 LiveRegUnits LiveInRegUnits(*TRI); 1932 LiveInRegUnits.addLiveIns(MBB); 1933 return !LiveInRegUnits.available(Reg); 1934 } 1935 1936 static MachineBasicBlock * 1937 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1938 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1939 unsigned Reg, const TargetRegisterInfo *TRI) { 1940 // Try to find a single sinkable successor in which Reg is live-in. 1941 MachineBasicBlock *BB = nullptr; 1942 for (auto *SI : SinkableBBs) { 1943 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1944 // If BB is set here, Reg is live-in to at least two sinkable successors, 1945 // so quit. 1946 if (BB) 1947 return nullptr; 1948 BB = SI; 1949 } 1950 } 1951 // Reg is not live-in to any sinkable successors. 1952 if (!BB) 1953 return nullptr; 1954 1955 // Check if any register aliased with Reg is live-in in other successors. 1956 for (auto *SI : CurBB.successors()) { 1957 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1958 return nullptr; 1959 } 1960 return BB; 1961 } 1962 1963 static MachineBasicBlock * 1964 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1965 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1966 ArrayRef<unsigned> DefedRegsInCopy, 1967 const TargetRegisterInfo *TRI) { 1968 MachineBasicBlock *SingleBB = nullptr; 1969 for (auto DefReg : DefedRegsInCopy) { 1970 MachineBasicBlock *BB = 1971 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1972 if (!BB || (SingleBB && SingleBB != BB)) 1973 return nullptr; 1974 SingleBB = BB; 1975 } 1976 return SingleBB; 1977 } 1978 1979 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1980 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1981 LiveRegUnits &UsedRegUnits, 1982 const TargetRegisterInfo *TRI) { 1983 for (auto U : UsedOpsInCopy) { 1984 MachineOperand &MO = MI->getOperand(U); 1985 Register SrcReg = MO.getReg(); 1986 if (!UsedRegUnits.available(SrcReg)) { 1987 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1988 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1989 if (UI.killsRegister(SrcReg, TRI)) { 1990 UI.clearRegisterKills(SrcReg, TRI); 1991 MO.setIsKill(true); 1992 break; 1993 } 1994 } 1995 } 1996 } 1997 } 1998 1999 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 2000 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2001 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 2002 MachineFunction &MF = *SuccBB->getParent(); 2003 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2004 for (unsigned DefReg : DefedRegsInCopy) 2005 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2006 SuccBB->removeLiveIn(S); 2007 for (auto U : UsedOpsInCopy) 2008 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2009 SuccBB->sortUniqueLiveIns(); 2010 } 2011 2012 static bool hasRegisterDependency(MachineInstr *MI, 2013 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2014 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2015 LiveRegUnits &ModifiedRegUnits, 2016 LiveRegUnits &UsedRegUnits) { 2017 bool HasRegDependency = false; 2018 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2019 MachineOperand &MO = MI->getOperand(i); 2020 if (!MO.isReg()) 2021 continue; 2022 Register Reg = MO.getReg(); 2023 if (!Reg) 2024 continue; 2025 if (MO.isDef()) { 2026 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2027 HasRegDependency = true; 2028 break; 2029 } 2030 DefedRegsInCopy.push_back(Reg); 2031 2032 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2033 // For example, we can ignore modifications in reg with undef. However, 2034 // it's not perfectly clear if skipping the internal read is safe in all 2035 // other targets. 2036 } else if (MO.isUse()) { 2037 if (!ModifiedRegUnits.available(Reg)) { 2038 HasRegDependency = true; 2039 break; 2040 } 2041 UsedOpsInCopy.push_back(i); 2042 } 2043 } 2044 return HasRegDependency; 2045 } 2046 2047 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2048 MachineFunction &MF, 2049 const TargetRegisterInfo *TRI, 2050 const TargetInstrInfo *TII) { 2051 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2052 // FIXME: For now, we sink only to a successor which has a single predecessor 2053 // so that we can directly sink COPY instructions to the successor without 2054 // adding any new block or branch instruction. 2055 for (MachineBasicBlock *SI : CurBB.successors()) 2056 if (!SI->livein_empty() && SI->pred_size() == 1) 2057 SinkableBBs.insert(SI); 2058 2059 if (SinkableBBs.empty()) 2060 return false; 2061 2062 bool Changed = false; 2063 2064 // Track which registers have been modified and used between the end of the 2065 // block and the current instruction. 2066 ModifiedRegUnits.clear(); 2067 UsedRegUnits.clear(); 2068 SeenDbgInstrs.clear(); 2069 2070 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2071 // Track the operand index for use in Copy. 2072 SmallVector<unsigned, 2> UsedOpsInCopy; 2073 // Track the register number defed in Copy. 2074 SmallVector<unsigned, 2> DefedRegsInCopy; 2075 2076 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2077 // for DBG_VALUEs later, record them when they're encountered. 2078 if (MI.isDebugValue() && !MI.isDebugRef()) { 2079 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2080 bool IsValid = true; 2081 for (MachineOperand &MO : MI.debug_operands()) { 2082 if (MO.isReg() && MO.getReg().isPhysical()) { 2083 // Bail if we can already tell the sink would be rejected, rather 2084 // than needlessly accumulating lots of DBG_VALUEs. 2085 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2086 ModifiedRegUnits, UsedRegUnits)) { 2087 IsValid = false; 2088 break; 2089 } 2090 2091 // Record debug use of each reg unit. 2092 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2093 MIUnits[Unit].push_back(MO.getReg()); 2094 } 2095 } 2096 if (IsValid) { 2097 for (auto &RegOps : MIUnits) 2098 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2099 std::move(RegOps.second)); 2100 } 2101 continue; 2102 } 2103 2104 if (MI.isDebugOrPseudoInstr()) 2105 continue; 2106 2107 // Do not move any instruction across function call. 2108 if (MI.isCall()) 2109 return false; 2110 2111 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2112 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2113 TRI); 2114 continue; 2115 } 2116 2117 // Don't sink the COPY if it would violate a register dependency. 2118 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2119 ModifiedRegUnits, UsedRegUnits)) { 2120 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2121 TRI); 2122 continue; 2123 } 2124 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2125 "Unexpect SrcReg or DefReg"); 2126 MachineBasicBlock *SuccBB = 2127 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2128 // Don't sink if we cannot find a single sinkable successor in which Reg 2129 // is live-in. 2130 if (!SuccBB) { 2131 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2132 TRI); 2133 continue; 2134 } 2135 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2136 "Unexpected predecessor"); 2137 2138 // Collect DBG_VALUEs that must sink with this copy. We've previously 2139 // recorded which reg units that DBG_VALUEs read, if this instruction 2140 // writes any of those units then the corresponding DBG_VALUEs must sink. 2141 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2142 for (auto &MO : MI.all_defs()) { 2143 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2144 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2145 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2146 for (unsigned Reg : MIRegs.second) 2147 Regs.push_back(Reg); 2148 } 2149 } 2150 } 2151 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2152 2153 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2154 2155 MachineBasicBlock::iterator InsertPos = 2156 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2157 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2158 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2159 TRI); 2160 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 2161 continue; 2162 } 2163 2164 // Clear the kill flag if SrcReg is killed between MI and the end of the 2165 // block. 2166 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2167 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2168 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2169 2170 Changed = true; 2171 ++NumPostRACopySink; 2172 } 2173 return Changed; 2174 } 2175 2176 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2177 if (skipFunction(MF.getFunction())) 2178 return false; 2179 2180 bool Changed = false; 2181 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2182 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2183 2184 ModifiedRegUnits.init(*TRI); 2185 UsedRegUnits.init(*TRI); 2186 for (auto &BB : MF) 2187 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2188 2189 return Changed; 2190 } 2191