1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Remember which edges we are about to split. 134 // This is different from CEBCandidates since those edges 135 // will be split. 136 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 137 138 DenseSet<Register> RegsToClearKillFlags; 139 140 using AllSuccsCache = 141 DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 142 143 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 144 /// post-dominated by another DBG_VALUE of the same variable location. 145 /// This is necessary to detect sequences such as: 146 /// %0 = someinst 147 /// DBG_VALUE %0, !123, !DIExpression() 148 /// %1 = anotherinst 149 /// DBG_VALUE %1, !123, !DIExpression() 150 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 151 /// would re-order assignments. 152 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 153 154 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 155 /// debug instructions to sink. 156 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 157 158 /// Record of debug variables that have had their locations set in the 159 /// current block. 160 DenseSet<DebugVariable> SeenDbgVars; 161 162 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 163 HasStoreCache; 164 165 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 166 SmallVector<MachineInstr *>> 167 StoreInstrCache; 168 169 /// Cached BB's register pressure. 170 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 171 CachedRegisterPressure; 172 173 bool EnableSinkAndFold; 174 175 public: 176 static char ID; // Pass identification 177 178 MachineSinking() : MachineFunctionPass(ID) { 179 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 180 } 181 182 bool runOnMachineFunction(MachineFunction &MF) override; 183 184 void getAnalysisUsage(AnalysisUsage &AU) const override { 185 MachineFunctionPass::getAnalysisUsage(AU); 186 AU.addRequired<AAResultsWrapperPass>(); 187 AU.addRequired<MachineDominatorTree>(); 188 AU.addRequired<MachinePostDominatorTree>(); 189 AU.addRequired<MachineCycleInfoWrapperPass>(); 190 AU.addRequired<MachineBranchProbabilityInfo>(); 191 AU.addPreserved<MachineCycleInfoWrapperPass>(); 192 AU.addPreserved<MachineLoopInfo>(); 193 if (UseBlockFreqInfo) 194 AU.addRequired<MachineBlockFrequencyInfo>(); 195 AU.addRequired<TargetPassConfig>(); 196 } 197 198 void releaseMemory() override { 199 CEBCandidates.clear(); 200 } 201 202 private: 203 bool ProcessBlock(MachineBasicBlock &MBB); 204 void ProcessDbgInst(MachineInstr &MI); 205 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 206 MachineBasicBlock *From, 207 MachineBasicBlock *To); 208 209 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 210 MachineInstr &MI); 211 212 /// Postpone the splitting of the given critical 213 /// edge (\p From, \p To). 214 /// 215 /// We do not split the edges on the fly. Indeed, this invalidates 216 /// the dominance information and thus triggers a lot of updates 217 /// of that information underneath. 218 /// Instead, we postpone all the splits after each iteration of 219 /// the main loop. That way, the information is at least valid 220 /// for the lifetime of an iteration. 221 /// 222 /// \return True if the edge is marked as toSplit, false otherwise. 223 /// False can be returned if, for instance, this is not profitable. 224 bool PostponeSplitCriticalEdge(MachineInstr &MI, 225 MachineBasicBlock *From, 226 MachineBasicBlock *To, 227 bool BreakPHIEdge); 228 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 229 AllSuccsCache &AllSuccessors); 230 231 /// If we sink a COPY inst, some debug users of it's destination may no 232 /// longer be dominated by the COPY, and will eventually be dropped. 233 /// This is easily rectified by forwarding the non-dominated debug uses 234 /// to the copy source. 235 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 236 MachineBasicBlock *TargetBlock); 237 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 238 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 239 bool &LocalUse) const; 240 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 241 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 242 243 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 244 SmallVectorImpl<MachineInstr *> &Candidates); 245 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 246 247 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 248 MachineBasicBlock *MBB, 249 MachineBasicBlock *SuccToSinkTo, 250 AllSuccsCache &AllSuccessors); 251 252 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 253 MachineBasicBlock *MBB); 254 255 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 256 257 SmallVector<MachineBasicBlock *, 4> & 258 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 259 AllSuccsCache &AllSuccessors) const; 260 261 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 262 263 bool registerPressureSetExceedsLimit(unsigned NRegs, 264 const TargetRegisterClass *RC, 265 const MachineBasicBlock &MBB); 266 }; 267 268 } // end anonymous namespace 269 270 char MachineSinking::ID = 0; 271 272 char &llvm::MachineSinkingID = MachineSinking::ID; 273 274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 275 "Machine code sinking", false, false) 276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 281 "Machine code sinking", false, false) 282 283 /// Return true if a target defined block prologue instruction interferes 284 /// with a sink candidate. 285 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 286 MachineBasicBlock::const_iterator End, 287 const MachineInstr &MI, 288 const TargetRegisterInfo *TRI, 289 const TargetInstrInfo *TII, 290 const MachineRegisterInfo *MRI) { 291 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 292 ++PI) { 293 // Only check target defined prologue instructions 294 if (!TII->isBasicBlockPrologue(*PI)) 295 continue; 296 for (auto &MO : MI.operands()) { 297 if (!MO.isReg()) 298 continue; 299 Register Reg = MO.getReg(); 300 if (!Reg) 301 continue; 302 if (MO.isUse()) { 303 if (Reg.isPhysical() && 304 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 305 continue; 306 if (PI->modifiesRegister(Reg, TRI)) 307 return true; 308 } else { 309 if (PI->readsRegister(Reg, TRI)) 310 return true; 311 // Check for interference with non-dead defs 312 auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI); 313 if (DefOp && !DefOp->isDead()) 314 return true; 315 } 316 } 317 } 318 319 return false; 320 } 321 322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 323 MachineBasicBlock *MBB) { 324 if (!MI.isCopy()) 325 return false; 326 327 Register SrcReg = MI.getOperand(1).getReg(); 328 Register DstReg = MI.getOperand(0).getReg(); 329 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 330 !MRI->hasOneNonDBGUse(SrcReg)) 331 return false; 332 333 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 334 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 335 if (SRC != DRC) 336 return false; 337 338 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 339 if (DefMI->isCopyLike()) 340 return false; 341 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 342 LLVM_DEBUG(dbgs() << "*** to: " << MI); 343 MRI->replaceRegWith(DstReg, SrcReg); 344 MI.eraseFromParent(); 345 346 // Conservatively, clear any kill flags, since it's possible that they are no 347 // longer correct. 348 MRI->clearKillFlags(SrcReg); 349 350 ++NumCoalesces; 351 return true; 352 } 353 354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 355 MachineBasicBlock *MBB) { 356 if (MI.isCopy() || MI.mayLoadOrStore() || 357 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 358 return false; 359 360 // Don't sink instructions that the target prefers not to sink. 361 if (!TII->shouldSink(MI)) 362 return false; 363 364 // Check if it's safe to move the instruction. 365 bool SawStore = true; 366 if (!MI.isSafeToMove(AA, SawStore)) 367 return false; 368 369 // Convergent operations may not be made control-dependent on additional 370 // values. 371 if (MI.isConvergent()) 372 return false; 373 374 // Don't sink defs/uses of hard registers or if the instruction defines more 375 // than one register. 376 // Don't sink more than two register uses - it'll cover most of the cases and 377 // greatly simplifies the register pressure checks. 378 Register DefReg; 379 Register UsedRegA, UsedRegB; 380 for (const MachineOperand &MO : MI.operands()) { 381 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 382 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 383 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 384 continue; 385 if (!MO.isReg()) 386 return false; 387 388 Register Reg = MO.getReg(); 389 if (Reg == 0) 390 continue; 391 392 if (Reg.isVirtual()) { 393 if (MO.isDef()) { 394 if (DefReg) 395 return false; 396 DefReg = Reg; 397 continue; 398 } 399 400 if (UsedRegA == 0) 401 UsedRegA = Reg; 402 else if (UsedRegB == 0) 403 UsedRegB = Reg; 404 else 405 return false; 406 continue; 407 } 408 409 if (Reg.isPhysical() && 410 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 411 continue; 412 413 return false; 414 } 415 416 // Scan uses of the destination register. Every use, except the last, must be 417 // a copy, with a chain of copies terminating with either a copy into a hard 418 // register, or a load/store instruction where the use is part of the 419 // address (*not* the stored value). 420 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 421 SmallVector<SinkInfo> SinkInto; 422 SmallVector<Register> Worklist; 423 424 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 425 const TargetRegisterClass *RCA = 426 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 427 const TargetRegisterClass *RCB = 428 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 429 430 Worklist.push_back(DefReg); 431 while (!Worklist.empty()) { 432 Register Reg = Worklist.pop_back_val(); 433 434 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 435 ExtAddrMode MaybeAM; 436 MachineInstr &UseInst = *MO.getParent(); 437 if (UseInst.isCopy()) { 438 Register DstReg; 439 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 440 DstReg = O.getReg(); 441 if (DstReg == 0) 442 return false; 443 if (DstReg.isVirtual()) { 444 Worklist.push_back(DstReg); 445 continue; 446 } 447 // If we are going to replace a copy, the original instruction must be 448 // as cheap as a copy. 449 if (!TII->isAsCheapAsAMove(MI)) 450 return false; 451 // The hard register must be in the register class of the original 452 // instruction's destination register. 453 if (!RC->contains(DstReg)) 454 return false; 455 } else if (UseInst.mayLoadOrStore()) { 456 ExtAddrMode AM; 457 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 458 return false; 459 MaybeAM = AM; 460 } else { 461 return false; 462 } 463 464 if (UseInst.getParent() != MI.getParent()) { 465 // If the register class of the register we are replacing is a superset 466 // of any of the register classes of the operands of the materialized 467 // instruction don't consider that live range extended. 468 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 469 if (RCA && RCA->hasSuperClassEq(RCS)) 470 RCA = nullptr; 471 else if (RCB && RCB->hasSuperClassEq(RCS)) 472 RCB = nullptr; 473 if (RCA || RCB) { 474 if (RCA == nullptr) { 475 RCA = RCB; 476 RCB = nullptr; 477 } 478 479 unsigned NRegs = !!RCA + !!RCB; 480 if (RCA == RCB) 481 RCB = nullptr; 482 483 // Check we don't exceed register pressure at the destination. 484 const MachineBasicBlock &MBB = *UseInst.getParent(); 485 if (RCB == nullptr) { 486 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 487 return false; 488 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 489 registerPressureSetExceedsLimit(1, RCB, MBB)) { 490 return false; 491 } 492 } 493 } 494 495 SinkInto.emplace_back(&UseInst, MaybeAM); 496 } 497 } 498 499 if (SinkInto.empty()) 500 return false; 501 502 // Now we know we can fold the instruction in all its users. 503 if (UsedRegA) 504 MRI->clearKillFlags(UsedRegA); 505 if (UsedRegB) 506 MRI->clearKillFlags(UsedRegB); 507 508 for (auto &[SinkDst, MaybeAM] : SinkInto) { 509 MachineInstr *New = nullptr; 510 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 511 SinkDst->dump()); 512 if (SinkDst->isCopy()) { 513 // TODO: After performing the sink-and-fold, the original instruction is 514 // deleted. Its value is still available (in a hard register), so if there 515 // are debug instructions which refer to the (now deleted) virtual 516 // register they could be updated to refer to the hard register, in 517 // principle. However, it's not clear how to do that, moreover in some 518 // cases the debug instructions may need to be replicated proportionally 519 // to the number of the COPY instructions replaced and in some extreme 520 // cases we can end up with quadratic increase in the number of debug 521 // instructions. 522 523 // Sink a copy of the instruction, replacing a COPY instruction. 524 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 525 Register DstReg = SinkDst->getOperand(0).getReg(); 526 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 527 New = &*std::prev(InsertPt); 528 if (!New->getDebugLoc()) 529 New->setDebugLoc(SinkDst->getDebugLoc()); 530 } else { 531 // Fold instruction into the addressing mode of a memory instruction. 532 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 533 } 534 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 535 // Clear the StoreInstrCache, since we may invalidate it by erasing. 536 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 537 StoreInstrCache.clear(); 538 SinkDst->eraseFromParent(); 539 } 540 541 // Collect operands that need to be cleaned up because the registers no longer 542 // exist (in COPYs and debug instructions). We cannot delete instructions or 543 // clear operands while traversing register uses. 544 SmallVector<MachineOperand *> Cleanup; 545 Worklist.push_back(DefReg); 546 while (!Worklist.empty()) { 547 Register Reg = Worklist.pop_back_val(); 548 for (MachineOperand &MO : MRI->use_operands(Reg)) { 549 MachineInstr *U = MO.getParent(); 550 assert((U->isCopy() || U->isDebugInstr()) && 551 "Only debug uses and copies must remain"); 552 if (U->isCopy()) 553 Worklist.push_back(U->getOperand(0).getReg()); 554 Cleanup.push_back(&MO); 555 } 556 } 557 558 // Delete the dead COPYs and clear operands in debug instructions 559 for (MachineOperand *MO : Cleanup) { 560 MachineInstr *I = MO->getParent(); 561 if (I->isCopy()) { 562 I->eraseFromParent(); 563 } else { 564 MO->setReg(0); 565 MO->setSubReg(0); 566 } 567 } 568 569 MI.eraseFromParent(); 570 return true; 571 } 572 573 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 574 /// occur in blocks dominated by the specified block. If any use is in the 575 /// definition block, then return false since it is never legal to move def 576 /// after uses. 577 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 578 MachineBasicBlock *MBB, 579 MachineBasicBlock *DefMBB, 580 bool &BreakPHIEdge, 581 bool &LocalUse) const { 582 assert(Reg.isVirtual() && "Only makes sense for vregs"); 583 584 // Ignore debug uses because debug info doesn't affect the code. 585 if (MRI->use_nodbg_empty(Reg)) 586 return true; 587 588 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 589 // into and they are all PHI nodes. In this case, machine-sink must break 590 // the critical edge first. e.g. 591 // 592 // %bb.1: 593 // Predecessors according to CFG: %bb.0 594 // ... 595 // %def = DEC64_32r %x, implicit-def dead %eflags 596 // ... 597 // JE_4 <%bb.37>, implicit %eflags 598 // Successors according to CFG: %bb.37 %bb.2 599 // 600 // %bb.2: 601 // %p = PHI %y, %bb.0, %def, %bb.1 602 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 603 MachineInstr *UseInst = MO.getParent(); 604 unsigned OpNo = MO.getOperandNo(); 605 MachineBasicBlock *UseBlock = UseInst->getParent(); 606 return UseBlock == MBB && UseInst->isPHI() && 607 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 608 })) { 609 BreakPHIEdge = true; 610 return true; 611 } 612 613 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 614 // Determine the block of the use. 615 MachineInstr *UseInst = MO.getParent(); 616 unsigned OpNo = &MO - &UseInst->getOperand(0); 617 MachineBasicBlock *UseBlock = UseInst->getParent(); 618 if (UseInst->isPHI()) { 619 // PHI nodes use the operand in the predecessor block, not the block with 620 // the PHI. 621 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 622 } else if (UseBlock == DefMBB) { 623 LocalUse = true; 624 return false; 625 } 626 627 // Check that it dominates. 628 if (!DT->dominates(MBB, UseBlock)) 629 return false; 630 } 631 632 return true; 633 } 634 635 /// Return true if this machine instruction loads from global offset table or 636 /// constant pool. 637 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 638 assert(MI.mayLoad() && "Expected MI that loads!"); 639 640 // If we lost memory operands, conservatively assume that the instruction 641 // reads from everything.. 642 if (MI.memoperands_empty()) 643 return true; 644 645 for (MachineMemOperand *MemOp : MI.memoperands()) 646 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 647 if (PSV->isGOT() || PSV->isConstantPool()) 648 return true; 649 650 return false; 651 } 652 653 void MachineSinking::FindCycleSinkCandidates( 654 MachineCycle *Cycle, MachineBasicBlock *BB, 655 SmallVectorImpl<MachineInstr *> &Candidates) { 656 for (auto &MI : *BB) { 657 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 658 if (!TII->shouldSink(MI)) { 659 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 660 "target\n"); 661 continue; 662 } 663 if (!isCycleInvariant(Cycle, MI)) { 664 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 665 continue; 666 } 667 bool DontMoveAcrossStore = true; 668 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 669 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 670 continue; 671 } 672 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 673 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 674 continue; 675 } 676 if (MI.isConvergent()) 677 continue; 678 679 const MachineOperand &MO = MI.getOperand(0); 680 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 681 continue; 682 if (!MRI->hasOneDef(MO.getReg())) 683 continue; 684 685 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 686 Candidates.push_back(&MI); 687 } 688 } 689 690 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 691 if (skipFunction(MF.getFunction())) 692 return false; 693 694 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 695 696 STI = &MF.getSubtarget(); 697 TII = STI->getInstrInfo(); 698 TRI = STI->getRegisterInfo(); 699 MRI = &MF.getRegInfo(); 700 DT = &getAnalysis<MachineDominatorTree>(); 701 PDT = &getAnalysis<MachinePostDominatorTree>(); 702 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 703 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 704 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 705 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 706 RegClassInfo.runOnMachineFunction(MF); 707 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 708 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 709 710 bool EverMadeChange = false; 711 712 while (true) { 713 bool MadeChange = false; 714 715 // Process all basic blocks. 716 CEBCandidates.clear(); 717 ToSplit.clear(); 718 for (auto &MBB: MF) 719 MadeChange |= ProcessBlock(MBB); 720 721 // If we have anything we marked as toSplit, split it now. 722 for (const auto &Pair : ToSplit) { 723 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 724 if (NewSucc != nullptr) { 725 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 726 << printMBBReference(*Pair.first) << " -- " 727 << printMBBReference(*NewSucc) << " -- " 728 << printMBBReference(*Pair.second) << '\n'); 729 if (MBFI) 730 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 731 732 MadeChange = true; 733 ++NumSplit; 734 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 735 } else 736 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 737 } 738 // If this iteration over the code changed anything, keep iterating. 739 if (!MadeChange) break; 740 EverMadeChange = true; 741 } 742 743 if (SinkInstsIntoCycle) { 744 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 745 CI->toplevel_end()); 746 for (auto *Cycle : Cycles) { 747 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 748 if (!Preheader) { 749 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 750 continue; 751 } 752 SmallVector<MachineInstr *, 8> Candidates; 753 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 754 755 // Walk the candidates in reverse order so that we start with the use 756 // of a def-use chain, if there is any. 757 // TODO: Sort the candidates using a cost-model. 758 unsigned i = 0; 759 for (MachineInstr *I : llvm::reverse(Candidates)) { 760 if (i++ == SinkIntoCycleLimit) { 761 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 762 "be analysed."); 763 break; 764 } 765 766 if (!SinkIntoCycle(Cycle, *I)) 767 break; 768 EverMadeChange = true; 769 ++NumCycleSunk; 770 } 771 } 772 } 773 774 HasStoreCache.clear(); 775 StoreInstrCache.clear(); 776 777 // Now clear any kill flags for recorded registers. 778 for (auto I : RegsToClearKillFlags) 779 MRI->clearKillFlags(I); 780 RegsToClearKillFlags.clear(); 781 782 return EverMadeChange; 783 } 784 785 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 786 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 787 return false; 788 789 // Don't bother sinking code out of unreachable blocks. In addition to being 790 // unprofitable, it can also lead to infinite looping, because in an 791 // unreachable cycle there may be nowhere to stop. 792 if (!DT->isReachableFromEntry(&MBB)) return false; 793 794 bool MadeChange = false; 795 796 // Cache all successors, sorted by frequency info and cycle depth. 797 AllSuccsCache AllSuccessors; 798 799 // Walk the basic block bottom-up. Remember if we saw a store. 800 MachineBasicBlock::iterator I = MBB.end(); 801 --I; 802 bool ProcessedBegin, SawStore = false; 803 do { 804 MachineInstr &MI = *I; // The instruction to sink. 805 806 // Predecrement I (if it's not begin) so that it isn't invalidated by 807 // sinking. 808 ProcessedBegin = I == MBB.begin(); 809 if (!ProcessedBegin) 810 --I; 811 812 if (MI.isDebugOrPseudoInstr()) { 813 if (MI.isDebugValue()) 814 ProcessDbgInst(MI); 815 continue; 816 } 817 818 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 819 MadeChange = true; 820 continue; 821 } 822 823 // Can't sink anything out of a block that has less than two successors. 824 if (MBB.succ_size() <= 1) 825 continue; 826 827 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 828 MadeChange = true; 829 continue; 830 } 831 832 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 833 ++NumSunk; 834 MadeChange = true; 835 } 836 837 // If we just processed the first instruction in the block, we're done. 838 } while (!ProcessedBegin); 839 840 SeenDbgUsers.clear(); 841 SeenDbgVars.clear(); 842 // recalculate the bb register pressure after sinking one BB. 843 CachedRegisterPressure.clear(); 844 return MadeChange; 845 } 846 847 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 848 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 849 // we know what to sink if the vreg def sinks. 850 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 851 852 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 853 MI.getDebugLoc()->getInlinedAt()); 854 bool SeenBefore = SeenDbgVars.contains(Var); 855 856 for (MachineOperand &MO : MI.debug_operands()) { 857 if (MO.isReg() && MO.getReg().isVirtual()) 858 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 859 } 860 861 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 862 SeenDbgVars.insert(Var); 863 } 864 865 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 866 MachineBasicBlock *From, 867 MachineBasicBlock *To) { 868 // FIXME: Need much better heuristics. 869 870 // If the pass has already considered breaking this edge (during this pass 871 // through the function), then let's go ahead and break it. This means 872 // sinking multiple "cheap" instructions into the same block. 873 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 874 return true; 875 876 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 877 return true; 878 879 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 880 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 881 return true; 882 883 // MI is cheap, we probably don't want to break the critical edge for it. 884 // However, if this would allow some definitions of its source operands 885 // to be sunk then it's probably worth it. 886 for (const MachineOperand &MO : MI.all_uses()) { 887 Register Reg = MO.getReg(); 888 if (Reg == 0) 889 continue; 890 891 // We don't move live definitions of physical registers, 892 // so sinking their uses won't enable any opportunities. 893 if (Reg.isPhysical()) 894 continue; 895 896 // If this instruction is the only user of a virtual register, 897 // check if breaking the edge will enable sinking 898 // both this instruction and the defining instruction. 899 if (MRI->hasOneNonDBGUse(Reg)) { 900 // If the definition resides in same MBB, 901 // claim it's likely we can sink these together. 902 // If definition resides elsewhere, we aren't 903 // blocking it from being sunk so don't break the edge. 904 MachineInstr *DefMI = MRI->getVRegDef(Reg); 905 if (DefMI->getParent() == MI.getParent()) 906 return true; 907 } 908 } 909 910 return false; 911 } 912 913 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 914 MachineBasicBlock *FromBB, 915 MachineBasicBlock *ToBB, 916 bool BreakPHIEdge) { 917 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 918 return false; 919 920 // Avoid breaking back edge. From == To means backedge for single BB cycle. 921 if (!SplitEdges || FromBB == ToBB) 922 return false; 923 924 MachineCycle *FromCycle = CI->getCycle(FromBB); 925 MachineCycle *ToCycle = CI->getCycle(ToBB); 926 927 // Check for backedges of more "complex" cycles. 928 if (FromCycle == ToCycle && FromCycle && 929 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 930 return false; 931 932 // It's not always legal to break critical edges and sink the computation 933 // to the edge. 934 // 935 // %bb.1: 936 // v1024 937 // Beq %bb.3 938 // <fallthrough> 939 // %bb.2: 940 // ... no uses of v1024 941 // <fallthrough> 942 // %bb.3: 943 // ... 944 // = v1024 945 // 946 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 947 // 948 // %bb.1: 949 // ... 950 // Bne %bb.2 951 // %bb.4: 952 // v1024 = 953 // B %bb.3 954 // %bb.2: 955 // ... no uses of v1024 956 // <fallthrough> 957 // %bb.3: 958 // ... 959 // = v1024 960 // 961 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 962 // flow. We need to ensure the new basic block where the computation is 963 // sunk to dominates all the uses. 964 // It's only legal to break critical edge and sink the computation to the 965 // new block if all the predecessors of "To", except for "From", are 966 // not dominated by "From". Given SSA property, this means these 967 // predecessors are dominated by "To". 968 // 969 // There is no need to do this check if all the uses are PHI nodes. PHI 970 // sources are only defined on the specific predecessor edges. 971 if (!BreakPHIEdge) { 972 for (MachineBasicBlock *Pred : ToBB->predecessors()) 973 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 974 return false; 975 } 976 977 ToSplit.insert(std::make_pair(FromBB, ToBB)); 978 979 return true; 980 } 981 982 std::vector<unsigned> & 983 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 984 // Currently to save compiling time, MBB's register pressure will not change 985 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 986 // register pressure is changed after sinking any instructions into it. 987 // FIXME: need a accurate and cheap register pressure estiminate model here. 988 auto RP = CachedRegisterPressure.find(&MBB); 989 if (RP != CachedRegisterPressure.end()) 990 return RP->second; 991 992 RegionPressure Pressure; 993 RegPressureTracker RPTracker(Pressure); 994 995 // Initialize the register pressure tracker. 996 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 997 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 998 999 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1000 MIE = MBB.instr_begin(); 1001 MII != MIE; --MII) { 1002 const MachineInstr &MI = *std::prev(MII); 1003 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1004 continue; 1005 RegisterOperands RegOpers; 1006 RegOpers.collect(MI, *TRI, *MRI, false, false); 1007 RPTracker.recedeSkipDebugValues(); 1008 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1009 RPTracker.recede(RegOpers); 1010 } 1011 1012 RPTracker.closeRegion(); 1013 auto It = CachedRegisterPressure.insert( 1014 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1015 return It.first->second; 1016 } 1017 1018 bool MachineSinking::registerPressureSetExceedsLimit( 1019 unsigned NRegs, const TargetRegisterClass *RC, 1020 const MachineBasicBlock &MBB) { 1021 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1022 const int *PS = TRI->getRegClassPressureSets(RC); 1023 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1024 for (; *PS != -1; PS++) 1025 if (Weight + BBRegisterPressure[*PS] >= 1026 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1027 return true; 1028 return false; 1029 } 1030 1031 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1032 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1033 MachineBasicBlock *MBB, 1034 MachineBasicBlock *SuccToSinkTo, 1035 AllSuccsCache &AllSuccessors) { 1036 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1037 1038 if (MBB == SuccToSinkTo) 1039 return false; 1040 1041 // It is profitable if SuccToSinkTo does not post dominate current block. 1042 if (!PDT->dominates(SuccToSinkTo, MBB)) 1043 return true; 1044 1045 // It is profitable to sink an instruction from a deeper cycle to a shallower 1046 // cycle, even if the latter post-dominates the former (PR21115). 1047 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1048 return true; 1049 1050 // Check if only use in post dominated block is PHI instruction. 1051 bool NonPHIUse = false; 1052 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1053 MachineBasicBlock *UseBlock = UseInst.getParent(); 1054 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1055 NonPHIUse = true; 1056 } 1057 if (!NonPHIUse) 1058 return true; 1059 1060 // If SuccToSinkTo post dominates then also it may be profitable if MI 1061 // can further profitably sinked into another block in next round. 1062 bool BreakPHIEdge = false; 1063 // FIXME - If finding successor is compile time expensive then cache results. 1064 if (MachineBasicBlock *MBB2 = 1065 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1066 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1067 1068 MachineCycle *MCycle = CI->getCycle(MBB); 1069 1070 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1071 // a post dominate block SuccToSinkTo. 1072 if (!MCycle) 1073 return false; 1074 1075 // If this instruction is inside a Cycle and sinking this instruction can make 1076 // more registers live range shorten, it is still prifitable. 1077 for (const MachineOperand &MO : MI.operands()) { 1078 // Ignore non-register operands. 1079 if (!MO.isReg()) 1080 continue; 1081 Register Reg = MO.getReg(); 1082 if (Reg == 0) 1083 continue; 1084 1085 if (Reg.isPhysical()) { 1086 // Don't handle non-constant and non-ignorable physical register uses. 1087 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1088 return false; 1089 continue; 1090 } 1091 1092 // Users for the defs are all dominated by SuccToSinkTo. 1093 if (MO.isDef()) { 1094 // This def register's live range is shortened after sinking. 1095 bool LocalUse = false; 1096 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1097 LocalUse)) 1098 return false; 1099 } else { 1100 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1101 if (!DefMI) 1102 continue; 1103 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1104 // DefMI is defined outside of cycle. There should be no live range 1105 // impact for this operand. Defination outside of cycle means: 1106 // 1: defination is outside of cycle. 1107 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1108 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1109 Cycle->getHeader() == DefMI->getParent())) 1110 continue; 1111 // The DefMI is defined inside the cycle. 1112 // If sinking this operand makes some register pressure set exceed limit, 1113 // it is not profitable. 1114 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1115 *SuccToSinkTo)) { 1116 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1117 return false; 1118 } 1119 } 1120 } 1121 1122 // If MI is in cycle and all its operands are alive across the whole cycle or 1123 // if no operand sinking make register pressure set exceed limit, it is 1124 // profitable to sink MI. 1125 return true; 1126 } 1127 1128 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1129 /// computing it if it was not already cached. 1130 SmallVector<MachineBasicBlock *, 4> & 1131 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1132 AllSuccsCache &AllSuccessors) const { 1133 // Do we have the sorted successors in cache ? 1134 auto Succs = AllSuccessors.find(MBB); 1135 if (Succs != AllSuccessors.end()) 1136 return Succs->second; 1137 1138 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1139 1140 // Handle cases where sinking can happen but where the sink point isn't a 1141 // successor. For example: 1142 // 1143 // x = computation 1144 // if () {} else {} 1145 // use x 1146 // 1147 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1148 // DomTree children of MBB that have MBB as immediate dominator are added. 1149 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1150 // Skip MBBs already added to the AllSuccs vector above. 1151 !MBB->isSuccessor(DTChild->getBlock())) 1152 AllSuccs.push_back(DTChild->getBlock()); 1153 } 1154 1155 // Sort Successors according to their cycle depth or block frequency info. 1156 llvm::stable_sort( 1157 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1158 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1159 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1160 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1161 return HasBlockFreq ? LHSFreq < RHSFreq 1162 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1163 }); 1164 1165 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1166 1167 return it.first->second; 1168 } 1169 1170 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1171 MachineBasicBlock * 1172 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1173 bool &BreakPHIEdge, 1174 AllSuccsCache &AllSuccessors) { 1175 assert (MBB && "Invalid MachineBasicBlock!"); 1176 1177 // loop over all the operands of the specified instruction. If there is 1178 // anything we can't handle, bail out. 1179 1180 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1181 // decide. 1182 MachineBasicBlock *SuccToSinkTo = nullptr; 1183 for (const MachineOperand &MO : MI.operands()) { 1184 if (!MO.isReg()) continue; // Ignore non-register operands. 1185 1186 Register Reg = MO.getReg(); 1187 if (Reg == 0) continue; 1188 1189 if (Reg.isPhysical()) { 1190 if (MO.isUse()) { 1191 // If the physreg has no defs anywhere, it's just an ambient register 1192 // and we can freely move its uses. Alternatively, if it's allocatable, 1193 // it could get allocated to something with a def during allocation. 1194 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1195 return nullptr; 1196 } else if (!MO.isDead()) { 1197 // A def that isn't dead. We can't move it. 1198 return nullptr; 1199 } 1200 } else { 1201 // Virtual register uses are always safe to sink. 1202 if (MO.isUse()) continue; 1203 1204 // If it's not safe to move defs of the register class, then abort. 1205 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1206 return nullptr; 1207 1208 // Virtual register defs can only be sunk if all their uses are in blocks 1209 // dominated by one of the successors. 1210 if (SuccToSinkTo) { 1211 // If a previous operand picked a block to sink to, then this operand 1212 // must be sinkable to the same block. 1213 bool LocalUse = false; 1214 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1215 BreakPHIEdge, LocalUse)) 1216 return nullptr; 1217 1218 continue; 1219 } 1220 1221 // Otherwise, we should look at all the successors and decide which one 1222 // we should sink to. If we have reliable block frequency information 1223 // (frequency != 0) available, give successors with smaller frequencies 1224 // higher priority, otherwise prioritize smaller cycle depths. 1225 for (MachineBasicBlock *SuccBlock : 1226 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1227 bool LocalUse = false; 1228 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1229 BreakPHIEdge, LocalUse)) { 1230 SuccToSinkTo = SuccBlock; 1231 break; 1232 } 1233 if (LocalUse) 1234 // Def is used locally, it's never safe to move this def. 1235 return nullptr; 1236 } 1237 1238 // If we couldn't find a block to sink to, ignore this instruction. 1239 if (!SuccToSinkTo) 1240 return nullptr; 1241 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1242 return nullptr; 1243 } 1244 } 1245 1246 // It is not possible to sink an instruction into its own block. This can 1247 // happen with cycles. 1248 if (MBB == SuccToSinkTo) 1249 return nullptr; 1250 1251 // It's not safe to sink instructions to EH landing pad. Control flow into 1252 // landing pad is implicitly defined. 1253 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1254 return nullptr; 1255 1256 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1257 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1258 // the source block (which this code does not yet do). So for now, forbid 1259 // doing so. 1260 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1261 return nullptr; 1262 1263 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1264 return nullptr; 1265 1266 return SuccToSinkTo; 1267 } 1268 1269 /// Return true if MI is likely to be usable as a memory operation by the 1270 /// implicit null check optimization. 1271 /// 1272 /// This is a "best effort" heuristic, and should not be relied upon for 1273 /// correctness. This returning true does not guarantee that the implicit null 1274 /// check optimization is legal over MI, and this returning false does not 1275 /// guarantee MI cannot possibly be used to do a null check. 1276 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1277 const TargetInstrInfo *TII, 1278 const TargetRegisterInfo *TRI) { 1279 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1280 1281 auto *MBB = MI.getParent(); 1282 if (MBB->pred_size() != 1) 1283 return false; 1284 1285 auto *PredMBB = *MBB->pred_begin(); 1286 auto *PredBB = PredMBB->getBasicBlock(); 1287 1288 // Frontends that don't use implicit null checks have no reason to emit 1289 // branches with make.implicit metadata, and this function should always 1290 // return false for them. 1291 if (!PredBB || 1292 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1293 return false; 1294 1295 const MachineOperand *BaseOp; 1296 int64_t Offset; 1297 bool OffsetIsScalable; 1298 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1299 return false; 1300 1301 if (!BaseOp->isReg()) 1302 return false; 1303 1304 if (!(MI.mayLoad() && !MI.isPredicable())) 1305 return false; 1306 1307 MachineBranchPredicate MBP; 1308 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1309 return false; 1310 1311 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1312 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1313 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1314 MBP.LHS.getReg() == BaseOp->getReg(); 1315 } 1316 1317 /// If the sunk instruction is a copy, try to forward the copy instead of 1318 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1319 /// there's any subregister weirdness involved. Returns true if copy 1320 /// propagation occurred. 1321 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1322 Register Reg) { 1323 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1324 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1325 1326 // Copy DBG_VALUE operand and set the original to undef. We then check to 1327 // see whether this is something that can be copy-forwarded. If it isn't, 1328 // continue around the loop. 1329 1330 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1331 auto CopyOperands = TII.isCopyInstr(SinkInst); 1332 if (!CopyOperands) 1333 return false; 1334 SrcMO = CopyOperands->Source; 1335 DstMO = CopyOperands->Destination; 1336 1337 // Check validity of forwarding this copy. 1338 bool PostRA = MRI.getNumVirtRegs() == 0; 1339 1340 // Trying to forward between physical and virtual registers is too hard. 1341 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1342 return false; 1343 1344 // Only try virtual register copy-forwarding before regalloc, and physical 1345 // register copy-forwarding after regalloc. 1346 bool arePhysRegs = !Reg.isVirtual(); 1347 if (arePhysRegs != PostRA) 1348 return false; 1349 1350 // Pre-regalloc, only forward if all subregisters agree (or there are no 1351 // subregs at all). More analysis might recover some forwardable copies. 1352 if (!PostRA) 1353 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1354 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1355 DbgMO.getSubReg() != DstMO->getSubReg()) 1356 return false; 1357 1358 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1359 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1360 // matches the copy destination. 1361 if (PostRA && Reg != DstMO->getReg()) 1362 return false; 1363 1364 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1365 DbgMO.setReg(SrcMO->getReg()); 1366 DbgMO.setSubReg(SrcMO->getSubReg()); 1367 } 1368 return true; 1369 } 1370 1371 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1372 /// Sink an instruction and its associated debug instructions. 1373 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1374 MachineBasicBlock::iterator InsertPos, 1375 ArrayRef<MIRegs> DbgValuesToSink) { 1376 // If we cannot find a location to use (merge with), then we erase the debug 1377 // location to prevent debug-info driven tools from potentially reporting 1378 // wrong location information. 1379 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1380 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1381 InsertPos->getDebugLoc())); 1382 else 1383 MI.setDebugLoc(DebugLoc()); 1384 1385 // Move the instruction. 1386 MachineBasicBlock *ParentBlock = MI.getParent(); 1387 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1388 ++MachineBasicBlock::iterator(MI)); 1389 1390 // Sink a copy of debug users to the insert position. Mark the original 1391 // DBG_VALUE location as 'undef', indicating that any earlier variable 1392 // location should be terminated as we've optimised away the value at this 1393 // point. 1394 for (const auto &DbgValueToSink : DbgValuesToSink) { 1395 MachineInstr *DbgMI = DbgValueToSink.first; 1396 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1397 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1398 1399 bool PropagatedAllSunkOps = true; 1400 for (unsigned Reg : DbgValueToSink.second) { 1401 if (DbgMI->hasDebugOperandForReg(Reg)) { 1402 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1403 PropagatedAllSunkOps = false; 1404 break; 1405 } 1406 } 1407 } 1408 if (!PropagatedAllSunkOps) 1409 DbgMI->setDebugValueUndef(); 1410 } 1411 } 1412 1413 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1414 /// and To. 1415 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1416 MachineBasicBlock *To, MachineInstr &MI) { 1417 // Make sure From and To are in straight line which means From dominates To 1418 // and To post dominates From. 1419 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1420 return true; 1421 1422 auto BlockPair = std::make_pair(From, To); 1423 1424 // Does these two blocks pair be queried before and have a definite cached 1425 // result? 1426 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1427 return It->second; 1428 1429 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1430 return llvm::any_of(It->second, [&](MachineInstr *I) { 1431 return I->mayAlias(AA, MI, false); 1432 }); 1433 1434 bool SawStore = false; 1435 bool HasAliasedStore = false; 1436 DenseSet<MachineBasicBlock *> HandledBlocks; 1437 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1438 // Go through all reachable blocks from From. 1439 for (MachineBasicBlock *BB : depth_first(From)) { 1440 // We insert the instruction at the start of block To, so no need to worry 1441 // about stores inside To. 1442 // Store in block From should be already considered when just enter function 1443 // SinkInstruction. 1444 if (BB == To || BB == From) 1445 continue; 1446 1447 // We already handle this BB in previous iteration. 1448 if (HandledBlocks.count(BB)) 1449 continue; 1450 1451 HandledBlocks.insert(BB); 1452 // To post dominates BB, it must be a path from block From. 1453 if (PDT->dominates(To, BB)) { 1454 if (!HandledDomBlocks.count(BB)) 1455 HandledDomBlocks.insert(BB); 1456 1457 // If this BB is too big or the block number in straight line between From 1458 // and To is too big, stop searching to save compiling time. 1459 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1460 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1461 for (auto *DomBB : HandledDomBlocks) { 1462 if (DomBB != BB && DT->dominates(DomBB, BB)) 1463 HasStoreCache[std::make_pair(DomBB, To)] = true; 1464 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1465 HasStoreCache[std::make_pair(From, DomBB)] = true; 1466 } 1467 HasStoreCache[BlockPair] = true; 1468 return true; 1469 } 1470 1471 for (MachineInstr &I : *BB) { 1472 // Treat as alias conservatively for a call or an ordered memory 1473 // operation. 1474 if (I.isCall() || I.hasOrderedMemoryRef()) { 1475 for (auto *DomBB : HandledDomBlocks) { 1476 if (DomBB != BB && DT->dominates(DomBB, BB)) 1477 HasStoreCache[std::make_pair(DomBB, To)] = true; 1478 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1479 HasStoreCache[std::make_pair(From, DomBB)] = true; 1480 } 1481 HasStoreCache[BlockPair] = true; 1482 return true; 1483 } 1484 1485 if (I.mayStore()) { 1486 SawStore = true; 1487 // We still have chance to sink MI if all stores between are not 1488 // aliased to MI. 1489 // Cache all store instructions, so that we don't need to go through 1490 // all From reachable blocks for next load instruction. 1491 if (I.mayAlias(AA, MI, false)) 1492 HasAliasedStore = true; 1493 StoreInstrCache[BlockPair].push_back(&I); 1494 } 1495 } 1496 } 1497 } 1498 // If there is no store at all, cache the result. 1499 if (!SawStore) 1500 HasStoreCache[BlockPair] = false; 1501 return HasAliasedStore; 1502 } 1503 1504 /// Sink instructions into cycles if profitable. This especially tries to 1505 /// prevent register spills caused by register pressure if there is little to no 1506 /// overhead moving instructions into cycles. 1507 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1508 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1509 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1510 assert(Preheader && "Cycle sink needs a preheader block"); 1511 MachineBasicBlock *SinkBlock = nullptr; 1512 bool CanSink = true; 1513 const MachineOperand &MO = I.getOperand(0); 1514 1515 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1516 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1517 if (!Cycle->contains(MI.getParent())) { 1518 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1519 CanSink = false; 1520 break; 1521 } 1522 1523 // FIXME: Come up with a proper cost model that estimates whether sinking 1524 // the instruction (and thus possibly executing it on every cycle 1525 // iteration) is more expensive than a register. 1526 // For now assumes that copies are cheap and thus almost always worth it. 1527 if (!MI.isCopy()) { 1528 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1529 CanSink = false; 1530 break; 1531 } 1532 if (!SinkBlock) { 1533 SinkBlock = MI.getParent(); 1534 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1535 << printMBBReference(*SinkBlock) << "\n"); 1536 continue; 1537 } 1538 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1539 if (!SinkBlock) { 1540 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1541 CanSink = false; 1542 break; 1543 } 1544 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1545 printMBBReference(*SinkBlock) << "\n"); 1546 } 1547 1548 if (!CanSink) { 1549 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1550 return false; 1551 } 1552 if (!SinkBlock) { 1553 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1554 return false; 1555 } 1556 if (SinkBlock == Preheader) { 1557 LLVM_DEBUG( 1558 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1559 return false; 1560 } 1561 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1562 LLVM_DEBUG( 1563 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1564 return false; 1565 } 1566 1567 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1568 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1569 I); 1570 1571 // Conservatively clear any kill flags on uses of sunk instruction 1572 for (MachineOperand &MO : I.operands()) { 1573 if (MO.isReg() && MO.readsReg()) 1574 RegsToClearKillFlags.insert(MO.getReg()); 1575 } 1576 1577 // The instruction is moved from its basic block, so do not retain the 1578 // debug information. 1579 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1580 I.setDebugLoc(DebugLoc()); 1581 return true; 1582 } 1583 1584 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1585 /// instruction out of its current block into a successor. 1586 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1587 AllSuccsCache &AllSuccessors) { 1588 // Don't sink instructions that the target prefers not to sink. 1589 if (!TII->shouldSink(MI)) 1590 return false; 1591 1592 // Check if it's safe to move the instruction. 1593 if (!MI.isSafeToMove(AA, SawStore)) 1594 return false; 1595 1596 // Convergent operations may not be made control-dependent on additional 1597 // values. 1598 if (MI.isConvergent()) 1599 return false; 1600 1601 // Don't break implicit null checks. This is a performance heuristic, and not 1602 // required for correctness. 1603 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1604 return false; 1605 1606 // FIXME: This should include support for sinking instructions within the 1607 // block they are currently in to shorten the live ranges. We often get 1608 // instructions sunk into the top of a large block, but it would be better to 1609 // also sink them down before their first use in the block. This xform has to 1610 // be careful not to *increase* register pressure though, e.g. sinking 1611 // "x = y + z" down if it kills y and z would increase the live ranges of y 1612 // and z and only shrink the live range of x. 1613 1614 bool BreakPHIEdge = false; 1615 MachineBasicBlock *ParentBlock = MI.getParent(); 1616 MachineBasicBlock *SuccToSinkTo = 1617 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1618 1619 // If there are no outputs, it must have side-effects. 1620 if (!SuccToSinkTo) 1621 return false; 1622 1623 // If the instruction to move defines a dead physical register which is live 1624 // when leaving the basic block, don't move it because it could turn into a 1625 // "zombie" define of that preg. E.g., EFLAGS. 1626 for (const MachineOperand &MO : MI.all_defs()) { 1627 Register Reg = MO.getReg(); 1628 if (Reg == 0 || !Reg.isPhysical()) 1629 continue; 1630 if (SuccToSinkTo->isLiveIn(Reg)) 1631 return false; 1632 } 1633 1634 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1635 1636 // If the block has multiple predecessors, this is a critical edge. 1637 // Decide if we can sink along it or need to break the edge. 1638 if (SuccToSinkTo->pred_size() > 1) { 1639 // We cannot sink a load across a critical edge - there may be stores in 1640 // other code paths. 1641 bool TryBreak = false; 1642 bool Store = 1643 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1644 if (!MI.isSafeToMove(AA, Store)) { 1645 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1646 TryBreak = true; 1647 } 1648 1649 // We don't want to sink across a critical edge if we don't dominate the 1650 // successor. We could be introducing calculations to new code paths. 1651 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1652 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1653 TryBreak = true; 1654 } 1655 1656 // Don't sink instructions into a cycle. 1657 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1658 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1659 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1660 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1661 TryBreak = true; 1662 } 1663 1664 // Otherwise we are OK with sinking along a critical edge. 1665 if (!TryBreak) 1666 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1667 else { 1668 // Mark this edge as to be split. 1669 // If the edge can actually be split, the next iteration of the main loop 1670 // will sink MI in the newly created block. 1671 bool Status = 1672 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1673 if (!Status) 1674 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1675 "break critical edge\n"); 1676 // The instruction will not be sunk this time. 1677 return false; 1678 } 1679 } 1680 1681 if (BreakPHIEdge) { 1682 // BreakPHIEdge is true if all the uses are in the successor MBB being 1683 // sunken into and they are all PHI nodes. In this case, machine-sink must 1684 // break the critical edge first. 1685 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1686 SuccToSinkTo, BreakPHIEdge); 1687 if (!Status) 1688 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1689 "break critical edge\n"); 1690 // The instruction will not be sunk this time. 1691 return false; 1692 } 1693 1694 // Determine where to insert into. Skip phi nodes. 1695 MachineBasicBlock::iterator InsertPos = 1696 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1697 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1698 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1699 return false; 1700 } 1701 1702 // Collect debug users of any vreg that this inst defines. 1703 SmallVector<MIRegs, 4> DbgUsersToSink; 1704 for (auto &MO : MI.all_defs()) { 1705 if (!MO.getReg().isVirtual()) 1706 continue; 1707 if (!SeenDbgUsers.count(MO.getReg())) 1708 continue; 1709 1710 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1711 auto &Users = SeenDbgUsers[MO.getReg()]; 1712 for (auto &User : Users) { 1713 MachineInstr *DbgMI = User.getPointer(); 1714 if (User.getInt()) { 1715 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1716 // it, it can't be recovered. Set it undef. 1717 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1718 DbgMI->setDebugValueUndef(); 1719 } else { 1720 DbgUsersToSink.push_back( 1721 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1722 } 1723 } 1724 } 1725 1726 // After sinking, some debug users may not be dominated any more. If possible, 1727 // copy-propagate their operands. As it's expensive, don't do this if there's 1728 // no debuginfo in the program. 1729 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1730 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1731 1732 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1733 1734 // Conservatively, clear any kill flags, since it's possible that they are no 1735 // longer correct. 1736 // Note that we have to clear the kill flags for any register this instruction 1737 // uses as we may sink over another instruction which currently kills the 1738 // used registers. 1739 for (MachineOperand &MO : MI.all_uses()) 1740 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1741 1742 return true; 1743 } 1744 1745 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1746 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1747 assert(MI.isCopy()); 1748 assert(MI.getOperand(1).isReg()); 1749 1750 // Enumerate all users of vreg operands that are def'd. Skip those that will 1751 // be sunk. For the rest, if they are not dominated by the block we will sink 1752 // MI into, propagate the copy source to them. 1753 SmallVector<MachineInstr *, 4> DbgDefUsers; 1754 SmallVector<Register, 4> DbgUseRegs; 1755 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1756 for (auto &MO : MI.all_defs()) { 1757 if (!MO.getReg().isVirtual()) 1758 continue; 1759 DbgUseRegs.push_back(MO.getReg()); 1760 for (auto &User : MRI.use_instructions(MO.getReg())) { 1761 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1762 continue; 1763 1764 // If is in same block, will either sink or be use-before-def. 1765 if (User.getParent() == MI.getParent()) 1766 continue; 1767 1768 assert(User.hasDebugOperandForReg(MO.getReg()) && 1769 "DBG_VALUE user of vreg, but has no operand for it?"); 1770 DbgDefUsers.push_back(&User); 1771 } 1772 } 1773 1774 // Point the users of this copy that are no longer dominated, at the source 1775 // of the copy. 1776 for (auto *User : DbgDefUsers) { 1777 for (auto &Reg : DbgUseRegs) { 1778 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1779 DbgOp.setReg(MI.getOperand(1).getReg()); 1780 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1781 } 1782 } 1783 } 1784 } 1785 1786 //===----------------------------------------------------------------------===// 1787 // This pass is not intended to be a replacement or a complete alternative 1788 // for the pre-ra machine sink pass. It is only designed to sink COPY 1789 // instructions which should be handled after RA. 1790 // 1791 // This pass sinks COPY instructions into a successor block, if the COPY is not 1792 // used in the current block and the COPY is live-in to a single successor 1793 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1794 // copy on paths where their results aren't needed. This also exposes 1795 // additional opportunites for dead copy elimination and shrink wrapping. 1796 // 1797 // These copies were either not handled by or are inserted after the MachineSink 1798 // pass. As an example of the former case, the MachineSink pass cannot sink 1799 // COPY instructions with allocatable source registers; for AArch64 these type 1800 // of copy instructions are frequently used to move function parameters (PhyReg) 1801 // into virtual registers in the entry block. 1802 // 1803 // For the machine IR below, this pass will sink %w19 in the entry into its 1804 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1805 // %bb.0: 1806 // %wzr = SUBSWri %w1, 1 1807 // %w19 = COPY %w0 1808 // Bcc 11, %bb.2 1809 // %bb.1: 1810 // Live Ins: %w19 1811 // BL @fun 1812 // %w0 = ADDWrr %w0, %w19 1813 // RET %w0 1814 // %bb.2: 1815 // %w0 = COPY %wzr 1816 // RET %w0 1817 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1818 // able to see %bb.0 as a candidate. 1819 //===----------------------------------------------------------------------===// 1820 namespace { 1821 1822 class PostRAMachineSinking : public MachineFunctionPass { 1823 public: 1824 bool runOnMachineFunction(MachineFunction &MF) override; 1825 1826 static char ID; 1827 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1828 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1829 1830 void getAnalysisUsage(AnalysisUsage &AU) const override { 1831 AU.setPreservesCFG(); 1832 MachineFunctionPass::getAnalysisUsage(AU); 1833 } 1834 1835 MachineFunctionProperties getRequiredProperties() const override { 1836 return MachineFunctionProperties().set( 1837 MachineFunctionProperties::Property::NoVRegs); 1838 } 1839 1840 private: 1841 /// Track which register units have been modified and used. 1842 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1843 1844 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1845 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1846 /// consists of a pointer to the instruction itself, and a vector of registers 1847 /// referred to by the instruction that overlap the key register unit. 1848 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1849 1850 /// Sink Copy instructions unused in the same block close to their uses in 1851 /// successors. 1852 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1853 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1854 }; 1855 } // namespace 1856 1857 char PostRAMachineSinking::ID = 0; 1858 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1859 1860 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1861 "PostRA Machine Sink", false, false) 1862 1863 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1864 const TargetRegisterInfo *TRI) { 1865 LiveRegUnits LiveInRegUnits(*TRI); 1866 LiveInRegUnits.addLiveIns(MBB); 1867 return !LiveInRegUnits.available(Reg); 1868 } 1869 1870 static MachineBasicBlock * 1871 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1872 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1873 unsigned Reg, const TargetRegisterInfo *TRI) { 1874 // Try to find a single sinkable successor in which Reg is live-in. 1875 MachineBasicBlock *BB = nullptr; 1876 for (auto *SI : SinkableBBs) { 1877 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1878 // If BB is set here, Reg is live-in to at least two sinkable successors, 1879 // so quit. 1880 if (BB) 1881 return nullptr; 1882 BB = SI; 1883 } 1884 } 1885 // Reg is not live-in to any sinkable successors. 1886 if (!BB) 1887 return nullptr; 1888 1889 // Check if any register aliased with Reg is live-in in other successors. 1890 for (auto *SI : CurBB.successors()) { 1891 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1892 return nullptr; 1893 } 1894 return BB; 1895 } 1896 1897 static MachineBasicBlock * 1898 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1899 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1900 ArrayRef<unsigned> DefedRegsInCopy, 1901 const TargetRegisterInfo *TRI) { 1902 MachineBasicBlock *SingleBB = nullptr; 1903 for (auto DefReg : DefedRegsInCopy) { 1904 MachineBasicBlock *BB = 1905 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1906 if (!BB || (SingleBB && SingleBB != BB)) 1907 return nullptr; 1908 SingleBB = BB; 1909 } 1910 return SingleBB; 1911 } 1912 1913 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1914 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1915 LiveRegUnits &UsedRegUnits, 1916 const TargetRegisterInfo *TRI) { 1917 for (auto U : UsedOpsInCopy) { 1918 MachineOperand &MO = MI->getOperand(U); 1919 Register SrcReg = MO.getReg(); 1920 if (!UsedRegUnits.available(SrcReg)) { 1921 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1922 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1923 if (UI.killsRegister(SrcReg, TRI)) { 1924 UI.clearRegisterKills(SrcReg, TRI); 1925 MO.setIsKill(true); 1926 break; 1927 } 1928 } 1929 } 1930 } 1931 } 1932 1933 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1934 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1935 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1936 MachineFunction &MF = *SuccBB->getParent(); 1937 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1938 for (unsigned DefReg : DefedRegsInCopy) 1939 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 1940 SuccBB->removeLiveIn(S); 1941 for (auto U : UsedOpsInCopy) { 1942 Register SrcReg = MI->getOperand(U).getReg(); 1943 LaneBitmask Mask; 1944 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) 1945 Mask |= (*S).second; 1946 SuccBB->addLiveIn(SrcReg, Mask); 1947 } 1948 SuccBB->sortUniqueLiveIns(); 1949 } 1950 1951 static bool hasRegisterDependency(MachineInstr *MI, 1952 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1953 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1954 LiveRegUnits &ModifiedRegUnits, 1955 LiveRegUnits &UsedRegUnits) { 1956 bool HasRegDependency = false; 1957 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1958 MachineOperand &MO = MI->getOperand(i); 1959 if (!MO.isReg()) 1960 continue; 1961 Register Reg = MO.getReg(); 1962 if (!Reg) 1963 continue; 1964 if (MO.isDef()) { 1965 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1966 HasRegDependency = true; 1967 break; 1968 } 1969 DefedRegsInCopy.push_back(Reg); 1970 1971 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1972 // For example, we can ignore modifications in reg with undef. However, 1973 // it's not perfectly clear if skipping the internal read is safe in all 1974 // other targets. 1975 } else if (MO.isUse()) { 1976 if (!ModifiedRegUnits.available(Reg)) { 1977 HasRegDependency = true; 1978 break; 1979 } 1980 UsedOpsInCopy.push_back(i); 1981 } 1982 } 1983 return HasRegDependency; 1984 } 1985 1986 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1987 MachineFunction &MF, 1988 const TargetRegisterInfo *TRI, 1989 const TargetInstrInfo *TII) { 1990 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1991 // FIXME: For now, we sink only to a successor which has a single predecessor 1992 // so that we can directly sink COPY instructions to the successor without 1993 // adding any new block or branch instruction. 1994 for (MachineBasicBlock *SI : CurBB.successors()) 1995 if (!SI->livein_empty() && SI->pred_size() == 1) 1996 SinkableBBs.insert(SI); 1997 1998 if (SinkableBBs.empty()) 1999 return false; 2000 2001 bool Changed = false; 2002 2003 // Track which registers have been modified and used between the end of the 2004 // block and the current instruction. 2005 ModifiedRegUnits.clear(); 2006 UsedRegUnits.clear(); 2007 SeenDbgInstrs.clear(); 2008 2009 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2010 // Track the operand index for use in Copy. 2011 SmallVector<unsigned, 2> UsedOpsInCopy; 2012 // Track the register number defed in Copy. 2013 SmallVector<unsigned, 2> DefedRegsInCopy; 2014 2015 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2016 // for DBG_VALUEs later, record them when they're encountered. 2017 if (MI.isDebugValue() && !MI.isDebugRef()) { 2018 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2019 bool IsValid = true; 2020 for (MachineOperand &MO : MI.debug_operands()) { 2021 if (MO.isReg() && MO.getReg().isPhysical()) { 2022 // Bail if we can already tell the sink would be rejected, rather 2023 // than needlessly accumulating lots of DBG_VALUEs. 2024 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2025 ModifiedRegUnits, UsedRegUnits)) { 2026 IsValid = false; 2027 break; 2028 } 2029 2030 // Record debug use of each reg unit. 2031 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2032 MIUnits[Unit].push_back(MO.getReg()); 2033 } 2034 } 2035 if (IsValid) { 2036 for (auto &RegOps : MIUnits) 2037 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2038 std::move(RegOps.second)); 2039 } 2040 continue; 2041 } 2042 2043 if (MI.isDebugOrPseudoInstr()) 2044 continue; 2045 2046 // Do not move any instruction across function call. 2047 if (MI.isCall()) 2048 return false; 2049 2050 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2051 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2052 TRI); 2053 continue; 2054 } 2055 2056 // Don't sink the COPY if it would violate a register dependency. 2057 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2058 ModifiedRegUnits, UsedRegUnits)) { 2059 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2060 TRI); 2061 continue; 2062 } 2063 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2064 "Unexpect SrcReg or DefReg"); 2065 MachineBasicBlock *SuccBB = 2066 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2067 // Don't sink if we cannot find a single sinkable successor in which Reg 2068 // is live-in. 2069 if (!SuccBB) { 2070 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2071 TRI); 2072 continue; 2073 } 2074 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2075 "Unexpected predecessor"); 2076 2077 // Collect DBG_VALUEs that must sink with this copy. We've previously 2078 // recorded which reg units that DBG_VALUEs read, if this instruction 2079 // writes any of those units then the corresponding DBG_VALUEs must sink. 2080 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2081 for (auto &MO : MI.all_defs()) { 2082 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2083 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2084 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2085 for (unsigned Reg : MIRegs.second) 2086 Regs.push_back(Reg); 2087 } 2088 } 2089 } 2090 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2091 2092 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2093 2094 MachineBasicBlock::iterator InsertPos = 2095 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2096 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2097 LLVM_DEBUG( 2098 dbgs() << " *** Not sinking: prologue interference\n"); 2099 continue; 2100 } 2101 2102 // Clear the kill flag if SrcReg is killed between MI and the end of the 2103 // block. 2104 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2105 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2106 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2107 2108 Changed = true; 2109 ++NumPostRACopySink; 2110 } 2111 return Changed; 2112 } 2113 2114 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2115 if (skipFunction(MF.getFunction())) 2116 return false; 2117 2118 bool Changed = false; 2119 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2120 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2121 2122 ModifiedRegUnits.init(*TRI); 2123 UsedRegUnits.init(*TRI); 2124 for (auto &BB : MF) 2125 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2126 2127 return Changed; 2128 } 2129