xref: /llvm-project/llvm/lib/CodeGen/MachineSink.cpp (revision 6b87d84ff45d03c244e7511fba9359776ce27977)
1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===//
2 //
3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions.
4 // See https://llvm.org/LICENSE.txt for license information.
5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception
6 //
7 //===----------------------------------------------------------------------===//
8 //
9 // This pass moves instructions into successor blocks when possible, so that
10 // they aren't executed on paths where their results aren't needed.
11 //
12 // This pass is not intended to be a replacement or a complete alternative
13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple
14 // constructs that are not exposed before lowering and instruction selection.
15 //
16 //===----------------------------------------------------------------------===//
17 
18 #include "llvm/ADT/DenseSet.h"
19 #include "llvm/ADT/DepthFirstIterator.h"
20 #include "llvm/ADT/MapVector.h"
21 #include "llvm/ADT/PointerIntPair.h"
22 #include "llvm/ADT/PostOrderIterator.h"
23 #include "llvm/ADT/SetVector.h"
24 #include "llvm/ADT/SmallSet.h"
25 #include "llvm/ADT/SmallVector.h"
26 #include "llvm/ADT/Statistic.h"
27 #include "llvm/Analysis/AliasAnalysis.h"
28 #include "llvm/Analysis/CFG.h"
29 #include "llvm/CodeGen/MachineBasicBlock.h"
30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h"
31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h"
32 #include "llvm/CodeGen/MachineCycleAnalysis.h"
33 #include "llvm/CodeGen/MachineDominators.h"
34 #include "llvm/CodeGen/MachineFunction.h"
35 #include "llvm/CodeGen/MachineFunctionPass.h"
36 #include "llvm/CodeGen/MachineInstr.h"
37 #include "llvm/CodeGen/MachineLoopInfo.h"
38 #include "llvm/CodeGen/MachineOperand.h"
39 #include "llvm/CodeGen/MachinePostDominators.h"
40 #include "llvm/CodeGen/MachineRegisterInfo.h"
41 #include "llvm/CodeGen/RegisterClassInfo.h"
42 #include "llvm/CodeGen/RegisterPressure.h"
43 #include "llvm/CodeGen/TargetInstrInfo.h"
44 #include "llvm/CodeGen/TargetPassConfig.h"
45 #include "llvm/CodeGen/TargetRegisterInfo.h"
46 #include "llvm/CodeGen/TargetSubtargetInfo.h"
47 #include "llvm/IR/BasicBlock.h"
48 #include "llvm/IR/DebugInfoMetadata.h"
49 #include "llvm/IR/LLVMContext.h"
50 #include "llvm/InitializePasses.h"
51 #include "llvm/MC/MCRegisterInfo.h"
52 #include "llvm/Pass.h"
53 #include "llvm/Support/BranchProbability.h"
54 #include "llvm/Support/CommandLine.h"
55 #include "llvm/Support/Debug.h"
56 #include "llvm/Support/raw_ostream.h"
57 #include <algorithm>
58 #include <cassert>
59 #include <cstdint>
60 #include <utility>
61 #include <vector>
62 
63 using namespace llvm;
64 
65 #define DEBUG_TYPE "machine-sink"
66 
67 static cl::opt<bool>
68 SplitEdges("machine-sink-split",
69            cl::desc("Split critical edges during machine sinking"),
70            cl::init(true), cl::Hidden);
71 
72 static cl::opt<bool>
73 UseBlockFreqInfo("machine-sink-bfi",
74            cl::desc("Use block frequency info to find successors to sink"),
75            cl::init(true), cl::Hidden);
76 
77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold(
78     "machine-sink-split-probability-threshold",
79     cl::desc(
80         "Percentage threshold for splitting single-instruction critical edge. "
81         "If the branch threshold is higher than this threshold, we allow "
82         "speculative execution of up to 1 instruction to avoid branching to "
83         "splitted critical edge"),
84     cl::init(40), cl::Hidden);
85 
86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold(
87     "machine-sink-load-instrs-threshold",
88     cl::desc("Do not try to find alias store for a load if there is a in-path "
89              "block whose instruction number is higher than this threshold."),
90     cl::init(2000), cl::Hidden);
91 
92 static cl::opt<unsigned> SinkLoadBlocksThreshold(
93     "machine-sink-load-blocks-threshold",
94     cl::desc("Do not try to find alias store for a load if the block number in "
95              "the straight line is higher than this threshold."),
96     cl::init(20), cl::Hidden);
97 
98 static cl::opt<bool>
99     SinkInstsIntoCycle("sink-insts-to-avoid-spills",
100                        cl::desc("Sink instructions into cycles to avoid "
101                                 "register spills"),
102                        cl::init(false), cl::Hidden);
103 
104 static cl::opt<unsigned> SinkIntoCycleLimit(
105     "machine-sink-cycle-limit",
106     cl::desc("The maximum number of instructions considered for cycle sinking."),
107     cl::init(50), cl::Hidden);
108 
109 STATISTIC(NumSunk,      "Number of machine instructions sunk");
110 STATISTIC(NumCycleSunk,  "Number of machine instructions sunk into a cycle");
111 STATISTIC(NumSplit,     "Number of critical edges split");
112 STATISTIC(NumCoalesces, "Number of copies coalesced");
113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA");
114 
115 namespace {
116 
117   class MachineSinking : public MachineFunctionPass {
118     const TargetSubtargetInfo *STI = nullptr;
119     const TargetInstrInfo *TII = nullptr;
120     const TargetRegisterInfo *TRI = nullptr;
121     MachineRegisterInfo *MRI = nullptr;      // Machine register information
122     MachineDominatorTree *DT = nullptr;      // Machine dominator tree
123     MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree
124     MachineCycleInfo *CI = nullptr;
125     MachineBlockFrequencyInfo *MBFI = nullptr;
126     const MachineBranchProbabilityInfo *MBPI = nullptr;
127     AliasAnalysis *AA = nullptr;
128     RegisterClassInfo RegClassInfo;
129 
130     // Remember which edges have been considered for breaking.
131     SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8>
132     CEBCandidates;
133     // Remember which edges we are about to split.
134     // This is different from CEBCandidates since those edges
135     // will be split.
136     SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit;
137 
138     DenseSet<Register> RegsToClearKillFlags;
139 
140     using AllSuccsCache =
141         DenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>;
142 
143     /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is
144     /// post-dominated by another DBG_VALUE of the same variable location.
145     /// This is necessary to detect sequences such as:
146     ///     %0 = someinst
147     ///     DBG_VALUE %0, !123, !DIExpression()
148     ///     %1 = anotherinst
149     ///     DBG_VALUE %1, !123, !DIExpression()
150     /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that
151     /// would re-order assignments.
152     using SeenDbgUser = PointerIntPair<MachineInstr *, 1>;
153 
154     /// Record of DBG_VALUE uses of vregs in a block, so that we can identify
155     /// debug instructions to sink.
156     SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers;
157 
158     /// Record of debug variables that have had their locations set in the
159     /// current block.
160     DenseSet<DebugVariable> SeenDbgVars;
161 
162     DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool>
163         HasStoreCache;
164 
165     DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>,
166              SmallVector<MachineInstr *>>
167         StoreInstrCache;
168 
169     /// Cached BB's register pressure.
170     DenseMap<const MachineBasicBlock *, std::vector<unsigned>>
171         CachedRegisterPressure;
172 
173     bool EnableSinkAndFold;
174 
175   public:
176     static char ID; // Pass identification
177 
178     MachineSinking() : MachineFunctionPass(ID) {
179       initializeMachineSinkingPass(*PassRegistry::getPassRegistry());
180     }
181 
182     bool runOnMachineFunction(MachineFunction &MF) override;
183 
184     void getAnalysisUsage(AnalysisUsage &AU) const override {
185       MachineFunctionPass::getAnalysisUsage(AU);
186       AU.addRequired<AAResultsWrapperPass>();
187       AU.addRequired<MachineDominatorTree>();
188       AU.addRequired<MachinePostDominatorTree>();
189       AU.addRequired<MachineCycleInfoWrapperPass>();
190       AU.addRequired<MachineBranchProbabilityInfo>();
191       AU.addPreserved<MachineCycleInfoWrapperPass>();
192       AU.addPreserved<MachineLoopInfo>();
193       if (UseBlockFreqInfo)
194         AU.addRequired<MachineBlockFrequencyInfo>();
195       AU.addRequired<TargetPassConfig>();
196     }
197 
198     void releaseMemory() override {
199       CEBCandidates.clear();
200     }
201 
202   private:
203     bool ProcessBlock(MachineBasicBlock &MBB);
204     void ProcessDbgInst(MachineInstr &MI);
205     bool isWorthBreakingCriticalEdge(MachineInstr &MI,
206                                      MachineBasicBlock *From,
207                                      MachineBasicBlock *To);
208 
209     bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To,
210                          MachineInstr &MI);
211 
212     /// Postpone the splitting of the given critical
213     /// edge (\p From, \p To).
214     ///
215     /// We do not split the edges on the fly. Indeed, this invalidates
216     /// the dominance information and thus triggers a lot of updates
217     /// of that information underneath.
218     /// Instead, we postpone all the splits after each iteration of
219     /// the main loop. That way, the information is at least valid
220     /// for the lifetime of an iteration.
221     ///
222     /// \return True if the edge is marked as toSplit, false otherwise.
223     /// False can be returned if, for instance, this is not profitable.
224     bool PostponeSplitCriticalEdge(MachineInstr &MI,
225                                    MachineBasicBlock *From,
226                                    MachineBasicBlock *To,
227                                    bool BreakPHIEdge);
228     bool SinkInstruction(MachineInstr &MI, bool &SawStore,
229                          AllSuccsCache &AllSuccessors);
230 
231     /// If we sink a COPY inst, some debug users of it's destination may no
232     /// longer be dominated by the COPY, and will eventually be dropped.
233     /// This is easily rectified by forwarding the non-dominated debug uses
234     /// to the copy source.
235     void SalvageUnsunkDebugUsersOfCopy(MachineInstr &,
236                                        MachineBasicBlock *TargetBlock);
237     bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB,
238                                  MachineBasicBlock *DefMBB, bool &BreakPHIEdge,
239                                  bool &LocalUse) const;
240     MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
241                bool &BreakPHIEdge, AllSuccsCache &AllSuccessors);
242 
243     void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB,
244                                  SmallVectorImpl<MachineInstr *> &Candidates);
245     bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I);
246 
247     bool isProfitableToSinkTo(Register Reg, MachineInstr &MI,
248                               MachineBasicBlock *MBB,
249                               MachineBasicBlock *SuccToSinkTo,
250                               AllSuccsCache &AllSuccessors);
251 
252     bool PerformTrivialForwardCoalescing(MachineInstr &MI,
253                                          MachineBasicBlock *MBB);
254 
255     bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB);
256 
257     SmallVector<MachineBasicBlock *, 4> &
258     GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
259                            AllSuccsCache &AllSuccessors) const;
260 
261     std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB);
262 
263     bool registerPressureSetExceedsLimit(unsigned NRegs,
264                                          const TargetRegisterClass *RC,
265                                          const MachineBasicBlock &MBB);
266   };
267 
268 } // end anonymous namespace
269 
270 char MachineSinking::ID = 0;
271 
272 char &llvm::MachineSinkingID = MachineSinking::ID;
273 
274 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE,
275                       "Machine code sinking", false, false)
276 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo)
277 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree)
278 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass)
279 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass)
280 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE,
281                     "Machine code sinking", false, false)
282 
283 /// Return true if a target defined block prologue instruction interferes
284 /// with a sink candidate.
285 static bool blockPrologueInterferes(const MachineBasicBlock *BB,
286                                     MachineBasicBlock::const_iterator End,
287                                     const MachineInstr &MI,
288                                     const TargetRegisterInfo *TRI,
289                                     const TargetInstrInfo *TII,
290                                     const MachineRegisterInfo *MRI) {
291   for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End;
292        ++PI) {
293     // Only check target defined prologue instructions
294     if (!TII->isBasicBlockPrologue(*PI))
295       continue;
296     for (auto &MO : MI.operands()) {
297       if (!MO.isReg())
298         continue;
299       Register Reg = MO.getReg();
300       if (!Reg)
301         continue;
302       if (MO.isUse()) {
303         if (Reg.isPhysical() &&
304             (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg))))
305           continue;
306         if (PI->modifiesRegister(Reg, TRI))
307           return true;
308       } else {
309         if (PI->readsRegister(Reg, TRI))
310           return true;
311         // Check for interference with non-dead defs
312         auto *DefOp = PI->findRegisterDefOperand(Reg, false, true, TRI);
313         if (DefOp && !DefOp->isDead())
314           return true;
315       }
316     }
317   }
318 
319   return false;
320 }
321 
322 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI,
323                                                      MachineBasicBlock *MBB) {
324   if (!MI.isCopy())
325     return false;
326 
327   Register SrcReg = MI.getOperand(1).getReg();
328   Register DstReg = MI.getOperand(0).getReg();
329   if (!SrcReg.isVirtual() || !DstReg.isVirtual() ||
330       !MRI->hasOneNonDBGUse(SrcReg))
331     return false;
332 
333   const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg);
334   const TargetRegisterClass *DRC = MRI->getRegClass(DstReg);
335   if (SRC != DRC)
336     return false;
337 
338   MachineInstr *DefMI = MRI->getVRegDef(SrcReg);
339   if (DefMI->isCopyLike())
340     return false;
341   LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI);
342   LLVM_DEBUG(dbgs() << "*** to: " << MI);
343   MRI->replaceRegWith(DstReg, SrcReg);
344   MI.eraseFromParent();
345 
346   // Conservatively, clear any kill flags, since it's possible that they are no
347   // longer correct.
348   MRI->clearKillFlags(SrcReg);
349 
350   ++NumCoalesces;
351   return true;
352 }
353 
354 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI,
355                                         MachineBasicBlock *MBB) {
356   if (MI.isCopy() || MI.mayLoadOrStore() ||
357       MI.getOpcode() == TargetOpcode::REG_SEQUENCE)
358     return false;
359 
360   // Don't sink instructions that the target prefers not to sink.
361   if (!TII->shouldSink(MI))
362     return false;
363 
364   // Check if it's safe to move the instruction.
365   bool SawStore = true;
366   if (!MI.isSafeToMove(AA, SawStore))
367     return false;
368 
369   // Convergent operations may not be made control-dependent on additional
370   // values.
371   if (MI.isConvergent())
372     return false;
373 
374   // Don't sink defs/uses of hard registers or if the instruction defines more
375   // than one register.
376   // Don't sink more than two register uses - it'll cover most of the cases and
377   // greatly simplifies the register pressure checks.
378   Register DefReg;
379   Register UsedRegA, UsedRegB;
380   for (const MachineOperand &MO : MI.operands()) {
381     if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() ||
382         MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() ||
383         MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask())
384       continue;
385     if (!MO.isReg())
386       return false;
387 
388     Register Reg = MO.getReg();
389     if (Reg == 0)
390       continue;
391 
392     if (Reg.isVirtual()) {
393       if (MO.isDef()) {
394         if (DefReg)
395           return false;
396         DefReg = Reg;
397         continue;
398       }
399 
400       if (UsedRegA == 0)
401         UsedRegA = Reg;
402       else if (UsedRegB == 0)
403         UsedRegB = Reg;
404       else
405         return false;
406       continue;
407     }
408 
409     if (Reg.isPhysical() &&
410         (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO)))
411       continue;
412 
413     return false;
414   }
415 
416   // Scan uses of the destination register. Every use, except the last, must be
417   // a copy, with a chain of copies terminating with either a copy into a hard
418   // register, or a load/store instruction where the use is part of the
419   // address (*not* the stored value).
420   using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>;
421   SmallVector<SinkInfo> SinkInto;
422   SmallVector<Register> Worklist;
423 
424   const TargetRegisterClass *RC = MRI->getRegClass(DefReg);
425   const TargetRegisterClass *RCA =
426       UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA);
427   const TargetRegisterClass *RCB =
428       UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB);
429 
430   Worklist.push_back(DefReg);
431   while (!Worklist.empty()) {
432     Register Reg = Worklist.pop_back_val();
433 
434     for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
435       ExtAddrMode MaybeAM;
436       MachineInstr &UseInst = *MO.getParent();
437       if (UseInst.isCopy()) {
438         Register DstReg;
439         if (const MachineOperand &O = UseInst.getOperand(0); O.isReg())
440           DstReg = O.getReg();
441         if (DstReg == 0)
442           return false;
443         if (DstReg.isVirtual()) {
444           Worklist.push_back(DstReg);
445           continue;
446         }
447         // If we are going to replace a copy, the original instruction must be
448         // as cheap as a copy.
449         if (!TII->isAsCheapAsAMove(MI))
450           return false;
451         // The hard register must be in the register class of the original
452         // instruction's destination register.
453         if (!RC->contains(DstReg))
454           return false;
455       } else if (UseInst.mayLoadOrStore()) {
456         ExtAddrMode AM;
457         if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM))
458           return false;
459         MaybeAM = AM;
460       } else {
461         return false;
462       }
463 
464       if (UseInst.getParent() != MI.getParent()) {
465         // If the register class of the register we are replacing is a superset
466         // of any of the register classes of the operands of the materialized
467         // instruction don't consider that live range extended.
468         const TargetRegisterClass *RCS = MRI->getRegClass(Reg);
469         if (RCA && RCA->hasSuperClassEq(RCS))
470           RCA = nullptr;
471         else if (RCB && RCB->hasSuperClassEq(RCS))
472           RCB = nullptr;
473         if (RCA || RCB) {
474           if (RCA == nullptr) {
475             RCA = RCB;
476             RCB = nullptr;
477           }
478 
479           unsigned NRegs = !!RCA + !!RCB;
480           if (RCA == RCB)
481             RCB = nullptr;
482 
483           // Check we don't exceed register pressure at the destination.
484           const MachineBasicBlock &MBB = *UseInst.getParent();
485           if (RCB == nullptr) {
486             if (registerPressureSetExceedsLimit(NRegs, RCA, MBB))
487               return false;
488           } else if (registerPressureSetExceedsLimit(1, RCA, MBB) ||
489                      registerPressureSetExceedsLimit(1, RCB, MBB)) {
490             return false;
491           }
492         }
493       }
494 
495       SinkInto.emplace_back(&UseInst, MaybeAM);
496     }
497   }
498 
499   if (SinkInto.empty())
500     return false;
501 
502   // Now we know we can fold the instruction in all its users.
503   if (UsedRegA)
504     MRI->clearKillFlags(UsedRegA);
505   if (UsedRegB)
506     MRI->clearKillFlags(UsedRegB);
507 
508   for (auto &[SinkDst, MaybeAM] : SinkInto) {
509     MachineInstr *New = nullptr;
510     LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into";
511                SinkDst->dump());
512     if (SinkDst->isCopy()) {
513       // TODO: After performing the sink-and-fold, the original instruction is
514       // deleted. Its value is still available (in a hard register), so if there
515       // are debug instructions which refer to the (now deleted) virtual
516       // register they could be updated to refer to the hard register, in
517       // principle. However, it's not clear how to do that, moreover in some
518       // cases the debug instructions may need to be replicated proportionally
519       // to the number of the COPY instructions replaced and in some extreme
520       // cases we can end up with quadratic increase in the number of debug
521       // instructions.
522 
523       // Sink a copy of the instruction, replacing a COPY instruction.
524       MachineBasicBlock::iterator InsertPt = SinkDst->getIterator();
525       Register DstReg = SinkDst->getOperand(0).getReg();
526       TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI);
527       New = &*std::prev(InsertPt);
528       if (!New->getDebugLoc())
529         New->setDebugLoc(SinkDst->getDebugLoc());
530     } else {
531       // Fold instruction into the addressing mode of a memory instruction.
532       New = TII->emitLdStWithAddr(*SinkDst, MaybeAM);
533     }
534     LLVM_DEBUG(dbgs() << "yielding"; New->dump());
535     // Clear the StoreInstrCache, since we may invalidate it by erasing.
536     if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef())
537       StoreInstrCache.clear();
538     SinkDst->eraseFromParent();
539   }
540 
541   // Collect operands that need to be cleaned up because the registers no longer
542   // exist (in COPYs and debug instructions). We cannot delete instructions or
543   // clear operands while traversing register uses.
544   SmallVector<MachineOperand *> Cleanup;
545   Worklist.push_back(DefReg);
546   while (!Worklist.empty()) {
547     Register Reg = Worklist.pop_back_val();
548     for (MachineOperand &MO : MRI->use_operands(Reg)) {
549       MachineInstr *U = MO.getParent();
550       assert((U->isCopy() || U->isDebugInstr()) &&
551              "Only debug uses and copies must remain");
552       if (U->isCopy())
553         Worklist.push_back(U->getOperand(0).getReg());
554       Cleanup.push_back(&MO);
555     }
556   }
557 
558   // Delete the dead COPYs and clear operands in debug instructions
559   for (MachineOperand *MO : Cleanup) {
560     MachineInstr *I = MO->getParent();
561     if (I->isCopy()) {
562       I->eraseFromParent();
563     } else {
564       MO->setReg(0);
565       MO->setSubReg(0);
566     }
567   }
568 
569   MI.eraseFromParent();
570   return true;
571 }
572 
573 /// AllUsesDominatedByBlock - Return true if all uses of the specified register
574 /// occur in blocks dominated by the specified block. If any use is in the
575 /// definition block, then return false since it is never legal to move def
576 /// after uses.
577 bool MachineSinking::AllUsesDominatedByBlock(Register Reg,
578                                              MachineBasicBlock *MBB,
579                                              MachineBasicBlock *DefMBB,
580                                              bool &BreakPHIEdge,
581                                              bool &LocalUse) const {
582   assert(Reg.isVirtual() && "Only makes sense for vregs");
583 
584   // Ignore debug uses because debug info doesn't affect the code.
585   if (MRI->use_nodbg_empty(Reg))
586     return true;
587 
588   // BreakPHIEdge is true if all the uses are in the successor MBB being sunken
589   // into and they are all PHI nodes. In this case, machine-sink must break
590   // the critical edge first. e.g.
591   //
592   // %bb.1:
593   //   Predecessors according to CFG: %bb.0
594   //     ...
595   //     %def = DEC64_32r %x, implicit-def dead %eflags
596   //     ...
597   //     JE_4 <%bb.37>, implicit %eflags
598   //   Successors according to CFG: %bb.37 %bb.2
599   //
600   // %bb.2:
601   //     %p = PHI %y, %bb.0, %def, %bb.1
602   if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) {
603         MachineInstr *UseInst = MO.getParent();
604         unsigned OpNo = MO.getOperandNo();
605         MachineBasicBlock *UseBlock = UseInst->getParent();
606         return UseBlock == MBB && UseInst->isPHI() &&
607                UseInst->getOperand(OpNo + 1).getMBB() == DefMBB;
608       })) {
609     BreakPHIEdge = true;
610     return true;
611   }
612 
613   for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) {
614     // Determine the block of the use.
615     MachineInstr *UseInst = MO.getParent();
616     unsigned OpNo = &MO - &UseInst->getOperand(0);
617     MachineBasicBlock *UseBlock = UseInst->getParent();
618     if (UseInst->isPHI()) {
619       // PHI nodes use the operand in the predecessor block, not the block with
620       // the PHI.
621       UseBlock = UseInst->getOperand(OpNo+1).getMBB();
622     } else if (UseBlock == DefMBB) {
623       LocalUse = true;
624       return false;
625     }
626 
627     // Check that it dominates.
628     if (!DT->dominates(MBB, UseBlock))
629       return false;
630   }
631 
632   return true;
633 }
634 
635 /// Return true if this machine instruction loads from global offset table or
636 /// constant pool.
637 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) {
638   assert(MI.mayLoad() && "Expected MI that loads!");
639 
640   // If we lost memory operands, conservatively assume that the instruction
641   // reads from everything..
642   if (MI.memoperands_empty())
643     return true;
644 
645   for (MachineMemOperand *MemOp : MI.memoperands())
646     if (const PseudoSourceValue *PSV = MemOp->getPseudoValue())
647       if (PSV->isGOT() || PSV->isConstantPool())
648         return true;
649 
650   return false;
651 }
652 
653 void MachineSinking::FindCycleSinkCandidates(
654     MachineCycle *Cycle, MachineBasicBlock *BB,
655     SmallVectorImpl<MachineInstr *> &Candidates) {
656   for (auto &MI : *BB) {
657     LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI);
658     if (!TII->shouldSink(MI)) {
659       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this "
660                            "target\n");
661       continue;
662     }
663     if (!isCycleInvariant(Cycle, MI)) {
664       LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n");
665       continue;
666     }
667     bool DontMoveAcrossStore = true;
668     if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) {
669       LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n");
670       continue;
671     }
672     if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) {
673       LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n");
674       continue;
675     }
676     if (MI.isConvergent())
677       continue;
678 
679     const MachineOperand &MO = MI.getOperand(0);
680     if (!MO.isReg() || !MO.getReg() || !MO.isDef())
681       continue;
682     if (!MRI->hasOneDef(MO.getReg()))
683       continue;
684 
685     LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n");
686     Candidates.push_back(&MI);
687   }
688 }
689 
690 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) {
691   if (skipFunction(MF.getFunction()))
692     return false;
693 
694   LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n");
695 
696   STI = &MF.getSubtarget();
697   TII = STI->getInstrInfo();
698   TRI = STI->getRegisterInfo();
699   MRI = &MF.getRegInfo();
700   DT = &getAnalysis<MachineDominatorTree>();
701   PDT = &getAnalysis<MachinePostDominatorTree>();
702   CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo();
703   MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr;
704   MBPI = &getAnalysis<MachineBranchProbabilityInfo>();
705   AA = &getAnalysis<AAResultsWrapperPass>().getAAResults();
706   RegClassInfo.runOnMachineFunction(MF);
707   TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>();
708   EnableSinkAndFold = PassConfig->getEnableSinkAndFold();
709 
710   bool EverMadeChange = false;
711 
712   while (true) {
713     bool MadeChange = false;
714 
715     // Process all basic blocks.
716     CEBCandidates.clear();
717     ToSplit.clear();
718     for (auto &MBB: MF)
719       MadeChange |= ProcessBlock(MBB);
720 
721     // If we have anything we marked as toSplit, split it now.
722     for (const auto &Pair : ToSplit) {
723       auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this);
724       if (NewSucc != nullptr) {
725         LLVM_DEBUG(dbgs() << " *** Splitting critical edge: "
726                           << printMBBReference(*Pair.first) << " -- "
727                           << printMBBReference(*NewSucc) << " -- "
728                           << printMBBReference(*Pair.second) << '\n');
729         if (MBFI)
730           MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI);
731 
732         MadeChange = true;
733         ++NumSplit;
734         CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc);
735       } else
736         LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n");
737     }
738     // If this iteration over the code changed anything, keep iterating.
739     if (!MadeChange) break;
740     EverMadeChange = true;
741   }
742 
743   if (SinkInstsIntoCycle) {
744     SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(),
745                                           CI->toplevel_end());
746     for (auto *Cycle : Cycles) {
747       MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
748       if (!Preheader) {
749         LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n");
750         continue;
751       }
752       SmallVector<MachineInstr *, 8> Candidates;
753       FindCycleSinkCandidates(Cycle, Preheader, Candidates);
754 
755       // Walk the candidates in reverse order so that we start with the use
756       // of a def-use chain, if there is any.
757       // TODO: Sort the candidates using a cost-model.
758       unsigned i = 0;
759       for (MachineInstr *I : llvm::reverse(Candidates)) {
760         if (i++ == SinkIntoCycleLimit) {
761           LLVM_DEBUG(dbgs() << "CycleSink:   Limit reached of instructions to "
762                                "be analysed.");
763           break;
764         }
765 
766         if (!SinkIntoCycle(Cycle, *I))
767           break;
768         EverMadeChange = true;
769         ++NumCycleSunk;
770       }
771     }
772   }
773 
774   HasStoreCache.clear();
775   StoreInstrCache.clear();
776 
777   // Now clear any kill flags for recorded registers.
778   for (auto I : RegsToClearKillFlags)
779     MRI->clearKillFlags(I);
780   RegsToClearKillFlags.clear();
781 
782   return EverMadeChange;
783 }
784 
785 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) {
786   if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty())
787     return false;
788 
789   // Don't bother sinking code out of unreachable blocks. In addition to being
790   // unprofitable, it can also lead to infinite looping, because in an
791   // unreachable cycle there may be nowhere to stop.
792   if (!DT->isReachableFromEntry(&MBB)) return false;
793 
794   bool MadeChange = false;
795 
796   // Cache all successors, sorted by frequency info and cycle depth.
797   AllSuccsCache AllSuccessors;
798 
799   // Walk the basic block bottom-up.  Remember if we saw a store.
800   MachineBasicBlock::iterator I = MBB.end();
801   --I;
802   bool ProcessedBegin, SawStore = false;
803   do {
804     MachineInstr &MI = *I;  // The instruction to sink.
805 
806     // Predecrement I (if it's not begin) so that it isn't invalidated by
807     // sinking.
808     ProcessedBegin = I == MBB.begin();
809     if (!ProcessedBegin)
810       --I;
811 
812     if (MI.isDebugOrPseudoInstr()) {
813       if (MI.isDebugValue())
814         ProcessDbgInst(MI);
815       continue;
816     }
817 
818     if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) {
819       MadeChange = true;
820       continue;
821     }
822 
823     // Can't sink anything out of a block that has less than two successors.
824     if (MBB.succ_size() <= 1)
825       continue;
826 
827     if (PerformTrivialForwardCoalescing(MI, &MBB)) {
828       MadeChange = true;
829       continue;
830     }
831 
832     if (SinkInstruction(MI, SawStore, AllSuccessors)) {
833       ++NumSunk;
834       MadeChange = true;
835     }
836 
837     // If we just processed the first instruction in the block, we're done.
838   } while (!ProcessedBegin);
839 
840   SeenDbgUsers.clear();
841   SeenDbgVars.clear();
842   // recalculate the bb register pressure after sinking one BB.
843   CachedRegisterPressure.clear();
844   return MadeChange;
845 }
846 
847 void MachineSinking::ProcessDbgInst(MachineInstr &MI) {
848   // When we see DBG_VALUEs for registers, record any vreg it reads, so that
849   // we know what to sink if the vreg def sinks.
850   assert(MI.isDebugValue() && "Expected DBG_VALUE for processing");
851 
852   DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(),
853                     MI.getDebugLoc()->getInlinedAt());
854   bool SeenBefore = SeenDbgVars.contains(Var);
855 
856   for (MachineOperand &MO : MI.debug_operands()) {
857     if (MO.isReg() && MO.getReg().isVirtual())
858       SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore));
859   }
860 
861   // Record the variable for any DBG_VALUE, to avoid re-ordering any of them.
862   SeenDbgVars.insert(Var);
863 }
864 
865 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI,
866                                                  MachineBasicBlock *From,
867                                                  MachineBasicBlock *To) {
868   // FIXME: Need much better heuristics.
869 
870   // If the pass has already considered breaking this edge (during this pass
871   // through the function), then let's go ahead and break it. This means
872   // sinking multiple "cheap" instructions into the same block.
873   if (!CEBCandidates.insert(std::make_pair(From, To)).second)
874     return true;
875 
876   if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI))
877     return true;
878 
879   if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <=
880       BranchProbability(SplitEdgeProbabilityThreshold, 100))
881     return true;
882 
883   // MI is cheap, we probably don't want to break the critical edge for it.
884   // However, if this would allow some definitions of its source operands
885   // to be sunk then it's probably worth it.
886   for (const MachineOperand &MO : MI.all_uses()) {
887     Register Reg = MO.getReg();
888     if (Reg == 0)
889       continue;
890 
891     // We don't move live definitions of physical registers,
892     // so sinking their uses won't enable any opportunities.
893     if (Reg.isPhysical())
894       continue;
895 
896     // If this instruction is the only user of a virtual register,
897     // check if breaking the edge will enable sinking
898     // both this instruction and the defining instruction.
899     if (MRI->hasOneNonDBGUse(Reg)) {
900       // If the definition resides in same MBB,
901       // claim it's likely we can sink these together.
902       // If definition resides elsewhere, we aren't
903       // blocking it from being sunk so don't break the edge.
904       MachineInstr *DefMI = MRI->getVRegDef(Reg);
905       if (DefMI->getParent() == MI.getParent())
906         return true;
907     }
908   }
909 
910   return false;
911 }
912 
913 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI,
914                                                MachineBasicBlock *FromBB,
915                                                MachineBasicBlock *ToBB,
916                                                bool BreakPHIEdge) {
917   if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB))
918     return false;
919 
920   // Avoid breaking back edge. From == To means backedge for single BB cycle.
921   if (!SplitEdges || FromBB == ToBB)
922     return false;
923 
924   MachineCycle *FromCycle = CI->getCycle(FromBB);
925   MachineCycle *ToCycle = CI->getCycle(ToBB);
926 
927   // Check for backedges of more "complex" cycles.
928   if (FromCycle == ToCycle && FromCycle &&
929       (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB))
930     return false;
931 
932   // It's not always legal to break critical edges and sink the computation
933   // to the edge.
934   //
935   // %bb.1:
936   // v1024
937   // Beq %bb.3
938   // <fallthrough>
939   // %bb.2:
940   // ... no uses of v1024
941   // <fallthrough>
942   // %bb.3:
943   // ...
944   //       = v1024
945   //
946   // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted:
947   //
948   // %bb.1:
949   // ...
950   // Bne %bb.2
951   // %bb.4:
952   // v1024 =
953   // B %bb.3
954   // %bb.2:
955   // ... no uses of v1024
956   // <fallthrough>
957   // %bb.3:
958   // ...
959   //       = v1024
960   //
961   // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3
962   // flow. We need to ensure the new basic block where the computation is
963   // sunk to dominates all the uses.
964   // It's only legal to break critical edge and sink the computation to the
965   // new block if all the predecessors of "To", except for "From", are
966   // not dominated by "From". Given SSA property, this means these
967   // predecessors are dominated by "To".
968   //
969   // There is no need to do this check if all the uses are PHI nodes. PHI
970   // sources are only defined on the specific predecessor edges.
971   if (!BreakPHIEdge) {
972     for (MachineBasicBlock *Pred : ToBB->predecessors())
973       if (Pred != FromBB && !DT->dominates(ToBB, Pred))
974         return false;
975   }
976 
977   ToSplit.insert(std::make_pair(FromBB, ToBB));
978 
979   return true;
980 }
981 
982 std::vector<unsigned> &
983 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) {
984   // Currently to save compiling time, MBB's register pressure will not change
985   // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's
986   // register pressure is changed after sinking any instructions into it.
987   // FIXME: need a accurate and cheap register pressure estiminate model here.
988   auto RP = CachedRegisterPressure.find(&MBB);
989   if (RP != CachedRegisterPressure.end())
990     return RP->second;
991 
992   RegionPressure Pressure;
993   RegPressureTracker RPTracker(Pressure);
994 
995   // Initialize the register pressure tracker.
996   RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(),
997                  /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true);
998 
999   for (MachineBasicBlock::const_iterator MII = MBB.instr_end(),
1000                                          MIE = MBB.instr_begin();
1001        MII != MIE; --MII) {
1002     const MachineInstr &MI = *std::prev(MII);
1003     if (MI.isDebugInstr() || MI.isPseudoProbe())
1004       continue;
1005     RegisterOperands RegOpers;
1006     RegOpers.collect(MI, *TRI, *MRI, false, false);
1007     RPTracker.recedeSkipDebugValues();
1008     assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!");
1009     RPTracker.recede(RegOpers);
1010   }
1011 
1012   RPTracker.closeRegion();
1013   auto It = CachedRegisterPressure.insert(
1014       std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure));
1015   return It.first->second;
1016 }
1017 
1018 bool MachineSinking::registerPressureSetExceedsLimit(
1019     unsigned NRegs, const TargetRegisterClass *RC,
1020     const MachineBasicBlock &MBB) {
1021   unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight;
1022   const int *PS = TRI->getRegClassPressureSets(RC);
1023   std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB);
1024   for (; *PS != -1; PS++)
1025     if (Weight + BBRegisterPressure[*PS] >=
1026         TRI->getRegPressureSetLimit(*MBB.getParent(), *PS))
1027       return true;
1028   return false;
1029 }
1030 
1031 /// isProfitableToSinkTo - Return true if it is profitable to sink MI.
1032 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI,
1033                                           MachineBasicBlock *MBB,
1034                                           MachineBasicBlock *SuccToSinkTo,
1035                                           AllSuccsCache &AllSuccessors) {
1036   assert (SuccToSinkTo && "Invalid SinkTo Candidate BB");
1037 
1038   if (MBB == SuccToSinkTo)
1039     return false;
1040 
1041   // It is profitable if SuccToSinkTo does not post dominate current block.
1042   if (!PDT->dominates(SuccToSinkTo, MBB))
1043     return true;
1044 
1045   // It is profitable to sink an instruction from a deeper cycle to a shallower
1046   // cycle, even if the latter post-dominates the former (PR21115).
1047   if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo))
1048     return true;
1049 
1050   // Check if only use in post dominated block is PHI instruction.
1051   bool NonPHIUse = false;
1052   for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) {
1053     MachineBasicBlock *UseBlock = UseInst.getParent();
1054     if (UseBlock == SuccToSinkTo && !UseInst.isPHI())
1055       NonPHIUse = true;
1056   }
1057   if (!NonPHIUse)
1058     return true;
1059 
1060   // If SuccToSinkTo post dominates then also it may be profitable if MI
1061   // can further profitably sinked into another block in next round.
1062   bool BreakPHIEdge = false;
1063   // FIXME - If finding successor is compile time expensive then cache results.
1064   if (MachineBasicBlock *MBB2 =
1065           FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors))
1066     return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors);
1067 
1068   MachineCycle *MCycle = CI->getCycle(MBB);
1069 
1070   // If the instruction is not inside a cycle, it is not profitable to sink MI to
1071   // a post dominate block SuccToSinkTo.
1072   if (!MCycle)
1073     return false;
1074 
1075   // If this instruction is inside a Cycle and sinking this instruction can make
1076   // more registers live range shorten, it is still prifitable.
1077   for (const MachineOperand &MO : MI.operands()) {
1078     // Ignore non-register operands.
1079     if (!MO.isReg())
1080       continue;
1081     Register Reg = MO.getReg();
1082     if (Reg == 0)
1083       continue;
1084 
1085     if (Reg.isPhysical()) {
1086       // Don't handle non-constant and non-ignorable physical register uses.
1087       if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
1088         return false;
1089       continue;
1090     }
1091 
1092     // Users for the defs are all dominated by SuccToSinkTo.
1093     if (MO.isDef()) {
1094       // This def register's live range is shortened after sinking.
1095       bool LocalUse = false;
1096       if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge,
1097                                    LocalUse))
1098         return false;
1099     } else {
1100       MachineInstr *DefMI = MRI->getVRegDef(Reg);
1101       if (!DefMI)
1102         continue;
1103       MachineCycle *Cycle = CI->getCycle(DefMI->getParent());
1104       // DefMI is defined outside of cycle. There should be no live range
1105       // impact for this operand. Defination outside of cycle means:
1106       // 1: defination is outside of cycle.
1107       // 2: defination is in this cycle, but it is a PHI in the cycle header.
1108       if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() &&
1109                               Cycle->getHeader() == DefMI->getParent()))
1110         continue;
1111       // The DefMI is defined inside the cycle.
1112       // If sinking this operand makes some register pressure set exceed limit,
1113       // it is not profitable.
1114       if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg),
1115                                           *SuccToSinkTo)) {
1116         LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable.");
1117         return false;
1118       }
1119     }
1120   }
1121 
1122   // If MI is in cycle and all its operands are alive across the whole cycle or
1123   // if no operand sinking make register pressure set exceed limit, it is
1124   // profitable to sink MI.
1125   return true;
1126 }
1127 
1128 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly
1129 /// computing it if it was not already cached.
1130 SmallVector<MachineBasicBlock *, 4> &
1131 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB,
1132                                        AllSuccsCache &AllSuccessors) const {
1133   // Do we have the sorted successors in cache ?
1134   auto Succs = AllSuccessors.find(MBB);
1135   if (Succs != AllSuccessors.end())
1136     return Succs->second;
1137 
1138   SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors());
1139 
1140   // Handle cases where sinking can happen but where the sink point isn't a
1141   // successor. For example:
1142   //
1143   //   x = computation
1144   //   if () {} else {}
1145   //   use x
1146   //
1147   for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) {
1148     // DomTree children of MBB that have MBB as immediate dominator are added.
1149     if (DTChild->getIDom()->getBlock() == MI.getParent() &&
1150         // Skip MBBs already added to the AllSuccs vector above.
1151         !MBB->isSuccessor(DTChild->getBlock()))
1152       AllSuccs.push_back(DTChild->getBlock());
1153   }
1154 
1155   // Sort Successors according to their cycle depth or block frequency info.
1156   llvm::stable_sort(
1157       AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) {
1158         uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0;
1159         uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0;
1160         bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0;
1161         return HasBlockFreq ? LHSFreq < RHSFreq
1162                             : CI->getCycleDepth(L) < CI->getCycleDepth(R);
1163       });
1164 
1165   auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs));
1166 
1167   return it.first->second;
1168 }
1169 
1170 /// FindSuccToSinkTo - Find a successor to sink this instruction to.
1171 MachineBasicBlock *
1172 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB,
1173                                  bool &BreakPHIEdge,
1174                                  AllSuccsCache &AllSuccessors) {
1175   assert (MBB && "Invalid MachineBasicBlock!");
1176 
1177   // loop over all the operands of the specified instruction.  If there is
1178   // anything we can't handle, bail out.
1179 
1180   // SuccToSinkTo - This is the successor to sink this instruction to, once we
1181   // decide.
1182   MachineBasicBlock *SuccToSinkTo = nullptr;
1183   for (const MachineOperand &MO : MI.operands()) {
1184     if (!MO.isReg()) continue;  // Ignore non-register operands.
1185 
1186     Register Reg = MO.getReg();
1187     if (Reg == 0) continue;
1188 
1189     if (Reg.isPhysical()) {
1190       if (MO.isUse()) {
1191         // If the physreg has no defs anywhere, it's just an ambient register
1192         // and we can freely move its uses. Alternatively, if it's allocatable,
1193         // it could get allocated to something with a def during allocation.
1194         if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO))
1195           return nullptr;
1196       } else if (!MO.isDead()) {
1197         // A def that isn't dead. We can't move it.
1198         return nullptr;
1199       }
1200     } else {
1201       // Virtual register uses are always safe to sink.
1202       if (MO.isUse()) continue;
1203 
1204       // If it's not safe to move defs of the register class, then abort.
1205       if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg)))
1206         return nullptr;
1207 
1208       // Virtual register defs can only be sunk if all their uses are in blocks
1209       // dominated by one of the successors.
1210       if (SuccToSinkTo) {
1211         // If a previous operand picked a block to sink to, then this operand
1212         // must be sinkable to the same block.
1213         bool LocalUse = false;
1214         if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB,
1215                                      BreakPHIEdge, LocalUse))
1216           return nullptr;
1217 
1218         continue;
1219       }
1220 
1221       // Otherwise, we should look at all the successors and decide which one
1222       // we should sink to. If we have reliable block frequency information
1223       // (frequency != 0) available, give successors with smaller frequencies
1224       // higher priority, otherwise prioritize smaller cycle depths.
1225       for (MachineBasicBlock *SuccBlock :
1226            GetAllSortedSuccessors(MI, MBB, AllSuccessors)) {
1227         bool LocalUse = false;
1228         if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB,
1229                                     BreakPHIEdge, LocalUse)) {
1230           SuccToSinkTo = SuccBlock;
1231           break;
1232         }
1233         if (LocalUse)
1234           // Def is used locally, it's never safe to move this def.
1235           return nullptr;
1236       }
1237 
1238       // If we couldn't find a block to sink to, ignore this instruction.
1239       if (!SuccToSinkTo)
1240         return nullptr;
1241       if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors))
1242         return nullptr;
1243     }
1244   }
1245 
1246   // It is not possible to sink an instruction into its own block.  This can
1247   // happen with cycles.
1248   if (MBB == SuccToSinkTo)
1249     return nullptr;
1250 
1251   // It's not safe to sink instructions to EH landing pad. Control flow into
1252   // landing pad is implicitly defined.
1253   if (SuccToSinkTo && SuccToSinkTo->isEHPad())
1254     return nullptr;
1255 
1256   // It ought to be okay to sink instructions into an INLINEASM_BR target, but
1257   // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in
1258   // the source block (which this code does not yet do). So for now, forbid
1259   // doing so.
1260   if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget())
1261     return nullptr;
1262 
1263   if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI))
1264     return nullptr;
1265 
1266   return SuccToSinkTo;
1267 }
1268 
1269 /// Return true if MI is likely to be usable as a memory operation by the
1270 /// implicit null check optimization.
1271 ///
1272 /// This is a "best effort" heuristic, and should not be relied upon for
1273 /// correctness.  This returning true does not guarantee that the implicit null
1274 /// check optimization is legal over MI, and this returning false does not
1275 /// guarantee MI cannot possibly be used to do a null check.
1276 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI,
1277                                              const TargetInstrInfo *TII,
1278                                              const TargetRegisterInfo *TRI) {
1279   using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate;
1280 
1281   auto *MBB = MI.getParent();
1282   if (MBB->pred_size() != 1)
1283     return false;
1284 
1285   auto *PredMBB = *MBB->pred_begin();
1286   auto *PredBB = PredMBB->getBasicBlock();
1287 
1288   // Frontends that don't use implicit null checks have no reason to emit
1289   // branches with make.implicit metadata, and this function should always
1290   // return false for them.
1291   if (!PredBB ||
1292       !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit))
1293     return false;
1294 
1295   const MachineOperand *BaseOp;
1296   int64_t Offset;
1297   bool OffsetIsScalable;
1298   if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI))
1299     return false;
1300 
1301   if (!BaseOp->isReg())
1302     return false;
1303 
1304   if (!(MI.mayLoad() && !MI.isPredicable()))
1305     return false;
1306 
1307   MachineBranchPredicate MBP;
1308   if (TII->analyzeBranchPredicate(*PredMBB, MBP, false))
1309     return false;
1310 
1311   return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 &&
1312          (MBP.Predicate == MachineBranchPredicate::PRED_NE ||
1313           MBP.Predicate == MachineBranchPredicate::PRED_EQ) &&
1314          MBP.LHS.getReg() == BaseOp->getReg();
1315 }
1316 
1317 /// If the sunk instruction is a copy, try to forward the copy instead of
1318 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if
1319 /// there's any subregister weirdness involved. Returns true if copy
1320 /// propagation occurred.
1321 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI,
1322                                  Register Reg) {
1323   const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo();
1324   const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo();
1325 
1326   // Copy DBG_VALUE operand and set the original to undef. We then check to
1327   // see whether this is something that can be copy-forwarded. If it isn't,
1328   // continue around the loop.
1329 
1330   const MachineOperand *SrcMO = nullptr, *DstMO = nullptr;
1331   auto CopyOperands = TII.isCopyInstr(SinkInst);
1332   if (!CopyOperands)
1333     return false;
1334   SrcMO = CopyOperands->Source;
1335   DstMO = CopyOperands->Destination;
1336 
1337   // Check validity of forwarding this copy.
1338   bool PostRA = MRI.getNumVirtRegs() == 0;
1339 
1340   // Trying to forward between physical and virtual registers is too hard.
1341   if (Reg.isVirtual() != SrcMO->getReg().isVirtual())
1342     return false;
1343 
1344   // Only try virtual register copy-forwarding before regalloc, and physical
1345   // register copy-forwarding after regalloc.
1346   bool arePhysRegs = !Reg.isVirtual();
1347   if (arePhysRegs != PostRA)
1348     return false;
1349 
1350   // Pre-regalloc, only forward if all subregisters agree (or there are no
1351   // subregs at all). More analysis might recover some forwardable copies.
1352   if (!PostRA)
1353     for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg))
1354       if (DbgMO.getSubReg() != SrcMO->getSubReg() ||
1355           DbgMO.getSubReg() != DstMO->getSubReg())
1356         return false;
1357 
1358   // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register
1359   // of this copy. Only forward the copy if the DBG_VALUE operand exactly
1360   // matches the copy destination.
1361   if (PostRA && Reg != DstMO->getReg())
1362     return false;
1363 
1364   for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) {
1365     DbgMO.setReg(SrcMO->getReg());
1366     DbgMO.setSubReg(SrcMO->getSubReg());
1367   }
1368   return true;
1369 }
1370 
1371 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>;
1372 /// Sink an instruction and its associated debug instructions.
1373 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo,
1374                         MachineBasicBlock::iterator InsertPos,
1375                         ArrayRef<MIRegs> DbgValuesToSink) {
1376   // If we cannot find a location to use (merge with), then we erase the debug
1377   // location to prevent debug-info driven tools from potentially reporting
1378   // wrong location information.
1379   if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end())
1380     MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(),
1381                                                  InsertPos->getDebugLoc()));
1382   else
1383     MI.setDebugLoc(DebugLoc());
1384 
1385   // Move the instruction.
1386   MachineBasicBlock *ParentBlock = MI.getParent();
1387   SuccToSinkTo.splice(InsertPos, ParentBlock, MI,
1388                       ++MachineBasicBlock::iterator(MI));
1389 
1390   // Sink a copy of debug users to the insert position. Mark the original
1391   // DBG_VALUE location as 'undef', indicating that any earlier variable
1392   // location should be terminated as we've optimised away the value at this
1393   // point.
1394   for (const auto &DbgValueToSink : DbgValuesToSink) {
1395     MachineInstr *DbgMI = DbgValueToSink.first;
1396     MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI);
1397     SuccToSinkTo.insert(InsertPos, NewDbgMI);
1398 
1399     bool PropagatedAllSunkOps = true;
1400     for (unsigned Reg : DbgValueToSink.second) {
1401       if (DbgMI->hasDebugOperandForReg(Reg)) {
1402         if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) {
1403           PropagatedAllSunkOps = false;
1404           break;
1405         }
1406       }
1407     }
1408     if (!PropagatedAllSunkOps)
1409       DbgMI->setDebugValueUndef();
1410   }
1411 }
1412 
1413 /// hasStoreBetween - check if there is store betweeen straight line blocks From
1414 /// and To.
1415 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From,
1416                                      MachineBasicBlock *To, MachineInstr &MI) {
1417   // Make sure From and To are in straight line which means From dominates To
1418   // and To post dominates From.
1419   if (!DT->dominates(From, To) || !PDT->dominates(To, From))
1420     return true;
1421 
1422   auto BlockPair = std::make_pair(From, To);
1423 
1424   // Does these two blocks pair be queried before and have a definite cached
1425   // result?
1426   if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end())
1427     return It->second;
1428 
1429   if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end())
1430     return llvm::any_of(It->second, [&](MachineInstr *I) {
1431       return I->mayAlias(AA, MI, false);
1432     });
1433 
1434   bool SawStore = false;
1435   bool HasAliasedStore = false;
1436   DenseSet<MachineBasicBlock *> HandledBlocks;
1437   DenseSet<MachineBasicBlock *> HandledDomBlocks;
1438   // Go through all reachable blocks from From.
1439   for (MachineBasicBlock *BB : depth_first(From)) {
1440     // We insert the instruction at the start of block To, so no need to worry
1441     // about stores inside To.
1442     // Store in block From should be already considered when just enter function
1443     // SinkInstruction.
1444     if (BB == To || BB == From)
1445       continue;
1446 
1447     // We already handle this BB in previous iteration.
1448     if (HandledBlocks.count(BB))
1449       continue;
1450 
1451     HandledBlocks.insert(BB);
1452     // To post dominates BB, it must be a path from block From.
1453     if (PDT->dominates(To, BB)) {
1454       if (!HandledDomBlocks.count(BB))
1455         HandledDomBlocks.insert(BB);
1456 
1457       // If this BB is too big or the block number in straight line between From
1458       // and To is too big, stop searching to save compiling time.
1459       if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) ||
1460           HandledDomBlocks.size() > SinkLoadBlocksThreshold) {
1461         for (auto *DomBB : HandledDomBlocks) {
1462           if (DomBB != BB && DT->dominates(DomBB, BB))
1463             HasStoreCache[std::make_pair(DomBB, To)] = true;
1464           else if(DomBB != BB && DT->dominates(BB, DomBB))
1465             HasStoreCache[std::make_pair(From, DomBB)] = true;
1466         }
1467         HasStoreCache[BlockPair] = true;
1468         return true;
1469       }
1470 
1471       for (MachineInstr &I : *BB) {
1472         // Treat as alias conservatively for a call or an ordered memory
1473         // operation.
1474         if (I.isCall() || I.hasOrderedMemoryRef()) {
1475           for (auto *DomBB : HandledDomBlocks) {
1476             if (DomBB != BB && DT->dominates(DomBB, BB))
1477               HasStoreCache[std::make_pair(DomBB, To)] = true;
1478             else if(DomBB != BB && DT->dominates(BB, DomBB))
1479               HasStoreCache[std::make_pair(From, DomBB)] = true;
1480           }
1481           HasStoreCache[BlockPair] = true;
1482           return true;
1483         }
1484 
1485         if (I.mayStore()) {
1486           SawStore = true;
1487           // We still have chance to sink MI if all stores between are not
1488           // aliased to MI.
1489           // Cache all store instructions, so that we don't need to go through
1490           // all From reachable blocks for next load instruction.
1491           if (I.mayAlias(AA, MI, false))
1492             HasAliasedStore = true;
1493           StoreInstrCache[BlockPair].push_back(&I);
1494         }
1495       }
1496     }
1497   }
1498   // If there is no store at all, cache the result.
1499   if (!SawStore)
1500     HasStoreCache[BlockPair] = false;
1501   return HasAliasedStore;
1502 }
1503 
1504 /// Sink instructions into cycles if profitable. This especially tries to
1505 /// prevent register spills caused by register pressure if there is little to no
1506 /// overhead moving instructions into cycles.
1507 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) {
1508   LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I);
1509   MachineBasicBlock *Preheader = Cycle->getCyclePreheader();
1510   assert(Preheader && "Cycle sink needs a preheader block");
1511   MachineBasicBlock *SinkBlock = nullptr;
1512   bool CanSink = true;
1513   const MachineOperand &MO = I.getOperand(0);
1514 
1515   for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) {
1516     LLVM_DEBUG(dbgs() << "CycleSink:   Analysing use: " << MI);
1517     if (!Cycle->contains(MI.getParent())) {
1518       LLVM_DEBUG(dbgs() << "CycleSink:   Use not in cycle, can't sink.\n");
1519       CanSink = false;
1520       break;
1521     }
1522 
1523     // FIXME: Come up with a proper cost model that estimates whether sinking
1524     // the instruction (and thus possibly executing it on every cycle
1525     // iteration) is more expensive than a register.
1526     // For now assumes that copies are cheap and thus almost always worth it.
1527     if (!MI.isCopy()) {
1528       LLVM_DEBUG(dbgs() << "CycleSink:   Use is not a copy\n");
1529       CanSink = false;
1530       break;
1531     }
1532     if (!SinkBlock) {
1533       SinkBlock = MI.getParent();
1534       LLVM_DEBUG(dbgs() << "CycleSink:   Setting sink block to: "
1535                         << printMBBReference(*SinkBlock) << "\n");
1536       continue;
1537     }
1538     SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent());
1539     if (!SinkBlock) {
1540       LLVM_DEBUG(dbgs() << "CycleSink:   Can't find nearest dominator\n");
1541       CanSink = false;
1542       break;
1543     }
1544     LLVM_DEBUG(dbgs() << "CycleSink:   Setting nearest common dom block: " <<
1545                printMBBReference(*SinkBlock) << "\n");
1546   }
1547 
1548   if (!CanSink) {
1549     LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n");
1550     return false;
1551   }
1552   if (!SinkBlock) {
1553     LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n");
1554     return false;
1555   }
1556   if (SinkBlock == Preheader) {
1557     LLVM_DEBUG(
1558         dbgs() << "CycleSink: Not sinking, sink block is the preheader\n");
1559     return false;
1560   }
1561   if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) {
1562     LLVM_DEBUG(
1563         dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n");
1564     return false;
1565   }
1566 
1567   LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n");
1568   SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader,
1569                     I);
1570 
1571   // Conservatively clear any kill flags on uses of sunk instruction
1572   for (MachineOperand &MO : I.operands()) {
1573     if (MO.isReg() && MO.readsReg())
1574       RegsToClearKillFlags.insert(MO.getReg());
1575   }
1576 
1577   // The instruction is moved from its basic block, so do not retain the
1578   // debug information.
1579   assert(!I.isDebugInstr() && "Should not sink debug inst");
1580   I.setDebugLoc(DebugLoc());
1581   return true;
1582 }
1583 
1584 /// SinkInstruction - Determine whether it is safe to sink the specified machine
1585 /// instruction out of its current block into a successor.
1586 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore,
1587                                      AllSuccsCache &AllSuccessors) {
1588   // Don't sink instructions that the target prefers not to sink.
1589   if (!TII->shouldSink(MI))
1590     return false;
1591 
1592   // Check if it's safe to move the instruction.
1593   if (!MI.isSafeToMove(AA, SawStore))
1594     return false;
1595 
1596   // Convergent operations may not be made control-dependent on additional
1597   // values.
1598   if (MI.isConvergent())
1599     return false;
1600 
1601   // Don't break implicit null checks.  This is a performance heuristic, and not
1602   // required for correctness.
1603   if (SinkingPreventsImplicitNullCheck(MI, TII, TRI))
1604     return false;
1605 
1606   // FIXME: This should include support for sinking instructions within the
1607   // block they are currently in to shorten the live ranges.  We often get
1608   // instructions sunk into the top of a large block, but it would be better to
1609   // also sink them down before their first use in the block.  This xform has to
1610   // be careful not to *increase* register pressure though, e.g. sinking
1611   // "x = y + z" down if it kills y and z would increase the live ranges of y
1612   // and z and only shrink the live range of x.
1613 
1614   bool BreakPHIEdge = false;
1615   MachineBasicBlock *ParentBlock = MI.getParent();
1616   MachineBasicBlock *SuccToSinkTo =
1617       FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors);
1618 
1619   // If there are no outputs, it must have side-effects.
1620   if (!SuccToSinkTo)
1621     return false;
1622 
1623   // If the instruction to move defines a dead physical register which is live
1624   // when leaving the basic block, don't move it because it could turn into a
1625   // "zombie" define of that preg. E.g., EFLAGS.
1626   for (const MachineOperand &MO : MI.all_defs()) {
1627     Register Reg = MO.getReg();
1628     if (Reg == 0 || !Reg.isPhysical())
1629       continue;
1630     if (SuccToSinkTo->isLiveIn(Reg))
1631       return false;
1632   }
1633 
1634   LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo);
1635 
1636   // If the block has multiple predecessors, this is a critical edge.
1637   // Decide if we can sink along it or need to break the edge.
1638   if (SuccToSinkTo->pred_size() > 1) {
1639     // We cannot sink a load across a critical edge - there may be stores in
1640     // other code paths.
1641     bool TryBreak = false;
1642     bool Store =
1643         MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true;
1644     if (!MI.isSafeToMove(AA, Store)) {
1645       LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n");
1646       TryBreak = true;
1647     }
1648 
1649     // We don't want to sink across a critical edge if we don't dominate the
1650     // successor. We could be introducing calculations to new code paths.
1651     if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) {
1652       LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n");
1653       TryBreak = true;
1654     }
1655 
1656     // Don't sink instructions into a cycle.
1657     if (!TryBreak && CI->getCycle(SuccToSinkTo) &&
1658         (!CI->getCycle(SuccToSinkTo)->isReducible() ||
1659          CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) {
1660       LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n");
1661       TryBreak = true;
1662     }
1663 
1664     // Otherwise we are OK with sinking along a critical edge.
1665     if (!TryBreak)
1666       LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n");
1667     else {
1668       // Mark this edge as to be split.
1669       // If the edge can actually be split, the next iteration of the main loop
1670       // will sink MI in the newly created block.
1671       bool Status =
1672         PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge);
1673       if (!Status)
1674         LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1675                              "break critical edge\n");
1676       // The instruction will not be sunk this time.
1677       return false;
1678     }
1679   }
1680 
1681   if (BreakPHIEdge) {
1682     // BreakPHIEdge is true if all the uses are in the successor MBB being
1683     // sunken into and they are all PHI nodes. In this case, machine-sink must
1684     // break the critical edge first.
1685     bool Status = PostponeSplitCriticalEdge(MI, ParentBlock,
1686                                             SuccToSinkTo, BreakPHIEdge);
1687     if (!Status)
1688       LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to "
1689                            "break critical edge\n");
1690     // The instruction will not be sunk this time.
1691     return false;
1692   }
1693 
1694   // Determine where to insert into. Skip phi nodes.
1695   MachineBasicBlock::iterator InsertPos =
1696       SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin());
1697   if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) {
1698     LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n");
1699     return false;
1700   }
1701 
1702   // Collect debug users of any vreg that this inst defines.
1703   SmallVector<MIRegs, 4> DbgUsersToSink;
1704   for (auto &MO : MI.all_defs()) {
1705     if (!MO.getReg().isVirtual())
1706       continue;
1707     if (!SeenDbgUsers.count(MO.getReg()))
1708       continue;
1709 
1710     // Sink any users that don't pass any other DBG_VALUEs for this variable.
1711     auto &Users = SeenDbgUsers[MO.getReg()];
1712     for (auto &User : Users) {
1713       MachineInstr *DbgMI = User.getPointer();
1714       if (User.getInt()) {
1715         // This DBG_VALUE would re-order assignments. If we can't copy-propagate
1716         // it, it can't be recovered. Set it undef.
1717         if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg()))
1718           DbgMI->setDebugValueUndef();
1719       } else {
1720         DbgUsersToSink.push_back(
1721             {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())});
1722       }
1723     }
1724   }
1725 
1726   // After sinking, some debug users may not be dominated any more. If possible,
1727   // copy-propagate their operands. As it's expensive, don't do this if there's
1728   // no debuginfo in the program.
1729   if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy())
1730     SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo);
1731 
1732   performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink);
1733 
1734   // Conservatively, clear any kill flags, since it's possible that they are no
1735   // longer correct.
1736   // Note that we have to clear the kill flags for any register this instruction
1737   // uses as we may sink over another instruction which currently kills the
1738   // used registers.
1739   for (MachineOperand &MO : MI.all_uses())
1740     RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags.
1741 
1742   return true;
1743 }
1744 
1745 void MachineSinking::SalvageUnsunkDebugUsersOfCopy(
1746     MachineInstr &MI, MachineBasicBlock *TargetBlock) {
1747   assert(MI.isCopy());
1748   assert(MI.getOperand(1).isReg());
1749 
1750   // Enumerate all users of vreg operands that are def'd. Skip those that will
1751   // be sunk. For the rest, if they are not dominated by the block we will sink
1752   // MI into, propagate the copy source to them.
1753   SmallVector<MachineInstr *, 4> DbgDefUsers;
1754   SmallVector<Register, 4> DbgUseRegs;
1755   const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo();
1756   for (auto &MO : MI.all_defs()) {
1757     if (!MO.getReg().isVirtual())
1758       continue;
1759     DbgUseRegs.push_back(MO.getReg());
1760     for (auto &User : MRI.use_instructions(MO.getReg())) {
1761       if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent()))
1762         continue;
1763 
1764       // If is in same block, will either sink or be use-before-def.
1765       if (User.getParent() == MI.getParent())
1766         continue;
1767 
1768       assert(User.hasDebugOperandForReg(MO.getReg()) &&
1769              "DBG_VALUE user of vreg, but has no operand for it?");
1770       DbgDefUsers.push_back(&User);
1771     }
1772   }
1773 
1774   // Point the users of this copy that are no longer dominated, at the source
1775   // of the copy.
1776   for (auto *User : DbgDefUsers) {
1777     for (auto &Reg : DbgUseRegs) {
1778       for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) {
1779         DbgOp.setReg(MI.getOperand(1).getReg());
1780         DbgOp.setSubReg(MI.getOperand(1).getSubReg());
1781       }
1782     }
1783   }
1784 }
1785 
1786 //===----------------------------------------------------------------------===//
1787 // This pass is not intended to be a replacement or a complete alternative
1788 // for the pre-ra machine sink pass. It is only designed to sink COPY
1789 // instructions which should be handled after RA.
1790 //
1791 // This pass sinks COPY instructions into a successor block, if the COPY is not
1792 // used in the current block and the COPY is live-in to a single successor
1793 // (i.e., doesn't require the COPY to be duplicated).  This avoids executing the
1794 // copy on paths where their results aren't needed.  This also exposes
1795 // additional opportunites for dead copy elimination and shrink wrapping.
1796 //
1797 // These copies were either not handled by or are inserted after the MachineSink
1798 // pass. As an example of the former case, the MachineSink pass cannot sink
1799 // COPY instructions with allocatable source registers; for AArch64 these type
1800 // of copy instructions are frequently used to move function parameters (PhyReg)
1801 // into virtual registers in the entry block.
1802 //
1803 // For the machine IR below, this pass will sink %w19 in the entry into its
1804 // successor (%bb.1) because %w19 is only live-in in %bb.1.
1805 // %bb.0:
1806 //   %wzr = SUBSWri %w1, 1
1807 //   %w19 = COPY %w0
1808 //   Bcc 11, %bb.2
1809 // %bb.1:
1810 //   Live Ins: %w19
1811 //   BL @fun
1812 //   %w0 = ADDWrr %w0, %w19
1813 //   RET %w0
1814 // %bb.2:
1815 //   %w0 = COPY %wzr
1816 //   RET %w0
1817 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be
1818 // able to see %bb.0 as a candidate.
1819 //===----------------------------------------------------------------------===//
1820 namespace {
1821 
1822 class PostRAMachineSinking : public MachineFunctionPass {
1823 public:
1824   bool runOnMachineFunction(MachineFunction &MF) override;
1825 
1826   static char ID;
1827   PostRAMachineSinking() : MachineFunctionPass(ID) {}
1828   StringRef getPassName() const override { return "PostRA Machine Sink"; }
1829 
1830   void getAnalysisUsage(AnalysisUsage &AU) const override {
1831     AU.setPreservesCFG();
1832     MachineFunctionPass::getAnalysisUsage(AU);
1833   }
1834 
1835   MachineFunctionProperties getRequiredProperties() const override {
1836     return MachineFunctionProperties().set(
1837         MachineFunctionProperties::Property::NoVRegs);
1838   }
1839 
1840 private:
1841   /// Track which register units have been modified and used.
1842   LiveRegUnits ModifiedRegUnits, UsedRegUnits;
1843 
1844   /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an
1845   /// entry in this map for each unit it touches. The DBG_VALUE's entry
1846   /// consists of a pointer to the instruction itself, and a vector of registers
1847   /// referred to by the instruction that overlap the key register unit.
1848   DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs;
1849 
1850   /// Sink Copy instructions unused in the same block close to their uses in
1851   /// successors.
1852   bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF,
1853                      const TargetRegisterInfo *TRI, const TargetInstrInfo *TII);
1854 };
1855 } // namespace
1856 
1857 char PostRAMachineSinking::ID = 0;
1858 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID;
1859 
1860 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink",
1861                 "PostRA Machine Sink", false, false)
1862 
1863 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg,
1864                                   const TargetRegisterInfo *TRI) {
1865   LiveRegUnits LiveInRegUnits(*TRI);
1866   LiveInRegUnits.addLiveIns(MBB);
1867   return !LiveInRegUnits.available(Reg);
1868 }
1869 
1870 static MachineBasicBlock *
1871 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1872                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1873                       unsigned Reg, const TargetRegisterInfo *TRI) {
1874   // Try to find a single sinkable successor in which Reg is live-in.
1875   MachineBasicBlock *BB = nullptr;
1876   for (auto *SI : SinkableBBs) {
1877     if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) {
1878       // If BB is set here, Reg is live-in to at least two sinkable successors,
1879       // so quit.
1880       if (BB)
1881         return nullptr;
1882       BB = SI;
1883     }
1884   }
1885   // Reg is not live-in to any sinkable successors.
1886   if (!BB)
1887     return nullptr;
1888 
1889   // Check if any register aliased with Reg is live-in in other successors.
1890   for (auto *SI : CurBB.successors()) {
1891     if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI))
1892       return nullptr;
1893   }
1894   return BB;
1895 }
1896 
1897 static MachineBasicBlock *
1898 getSingleLiveInSuccBB(MachineBasicBlock &CurBB,
1899                       const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs,
1900                       ArrayRef<unsigned> DefedRegsInCopy,
1901                       const TargetRegisterInfo *TRI) {
1902   MachineBasicBlock *SingleBB = nullptr;
1903   for (auto DefReg : DefedRegsInCopy) {
1904     MachineBasicBlock *BB =
1905         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI);
1906     if (!BB || (SingleBB && SingleBB != BB))
1907       return nullptr;
1908     SingleBB = BB;
1909   }
1910   return SingleBB;
1911 }
1912 
1913 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB,
1914                            SmallVectorImpl<unsigned> &UsedOpsInCopy,
1915                            LiveRegUnits &UsedRegUnits,
1916                            const TargetRegisterInfo *TRI) {
1917   for (auto U : UsedOpsInCopy) {
1918     MachineOperand &MO = MI->getOperand(U);
1919     Register SrcReg = MO.getReg();
1920     if (!UsedRegUnits.available(SrcReg)) {
1921       MachineBasicBlock::iterator NI = std::next(MI->getIterator());
1922       for (MachineInstr &UI : make_range(NI, CurBB.end())) {
1923         if (UI.killsRegister(SrcReg, TRI)) {
1924           UI.clearRegisterKills(SrcReg, TRI);
1925           MO.setIsKill(true);
1926           break;
1927         }
1928       }
1929     }
1930   }
1931 }
1932 
1933 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB,
1934                          SmallVectorImpl<unsigned> &UsedOpsInCopy,
1935                          SmallVectorImpl<unsigned> &DefedRegsInCopy) {
1936   MachineFunction &MF = *SuccBB->getParent();
1937   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
1938   for (unsigned DefReg : DefedRegsInCopy)
1939     for (MCPhysReg S : TRI->subregs_inclusive(DefReg))
1940       SuccBB->removeLiveIn(S);
1941   for (auto U : UsedOpsInCopy) {
1942     Register SrcReg = MI->getOperand(U).getReg();
1943     LaneBitmask Mask;
1944     for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S)
1945       Mask |= (*S).second;
1946     SuccBB->addLiveIn(SrcReg, Mask);
1947   }
1948   SuccBB->sortUniqueLiveIns();
1949 }
1950 
1951 static bool hasRegisterDependency(MachineInstr *MI,
1952                                   SmallVectorImpl<unsigned> &UsedOpsInCopy,
1953                                   SmallVectorImpl<unsigned> &DefedRegsInCopy,
1954                                   LiveRegUnits &ModifiedRegUnits,
1955                                   LiveRegUnits &UsedRegUnits) {
1956   bool HasRegDependency = false;
1957   for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) {
1958     MachineOperand &MO = MI->getOperand(i);
1959     if (!MO.isReg())
1960       continue;
1961     Register Reg = MO.getReg();
1962     if (!Reg)
1963       continue;
1964     if (MO.isDef()) {
1965       if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) {
1966         HasRegDependency = true;
1967         break;
1968       }
1969       DefedRegsInCopy.push_back(Reg);
1970 
1971       // FIXME: instead of isUse(), readsReg() would be a better fix here,
1972       // For example, we can ignore modifications in reg with undef. However,
1973       // it's not perfectly clear if skipping the internal read is safe in all
1974       // other targets.
1975     } else if (MO.isUse()) {
1976       if (!ModifiedRegUnits.available(Reg)) {
1977         HasRegDependency = true;
1978         break;
1979       }
1980       UsedOpsInCopy.push_back(i);
1981     }
1982   }
1983   return HasRegDependency;
1984 }
1985 
1986 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB,
1987                                          MachineFunction &MF,
1988                                          const TargetRegisterInfo *TRI,
1989                                          const TargetInstrInfo *TII) {
1990   SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs;
1991   // FIXME: For now, we sink only to a successor which has a single predecessor
1992   // so that we can directly sink COPY instructions to the successor without
1993   // adding any new block or branch instruction.
1994   for (MachineBasicBlock *SI : CurBB.successors())
1995     if (!SI->livein_empty() && SI->pred_size() == 1)
1996       SinkableBBs.insert(SI);
1997 
1998   if (SinkableBBs.empty())
1999     return false;
2000 
2001   bool Changed = false;
2002 
2003   // Track which registers have been modified and used between the end of the
2004   // block and the current instruction.
2005   ModifiedRegUnits.clear();
2006   UsedRegUnits.clear();
2007   SeenDbgInstrs.clear();
2008 
2009   for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) {
2010     // Track the operand index for use in Copy.
2011     SmallVector<unsigned, 2> UsedOpsInCopy;
2012     // Track the register number defed in Copy.
2013     SmallVector<unsigned, 2> DefedRegsInCopy;
2014 
2015     // We must sink this DBG_VALUE if its operand is sunk. To avoid searching
2016     // for DBG_VALUEs later, record them when they're encountered.
2017     if (MI.isDebugValue() && !MI.isDebugRef()) {
2018       SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits;
2019       bool IsValid = true;
2020       for (MachineOperand &MO : MI.debug_operands()) {
2021         if (MO.isReg() && MO.getReg().isPhysical()) {
2022           // Bail if we can already tell the sink would be rejected, rather
2023           // than needlessly accumulating lots of DBG_VALUEs.
2024           if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
2025                                     ModifiedRegUnits, UsedRegUnits)) {
2026             IsValid = false;
2027             break;
2028           }
2029 
2030           // Record debug use of each reg unit.
2031           for (MCRegUnit Unit : TRI->regunits(MO.getReg()))
2032             MIUnits[Unit].push_back(MO.getReg());
2033         }
2034       }
2035       if (IsValid) {
2036         for (auto &RegOps : MIUnits)
2037           SeenDbgInstrs[RegOps.first].emplace_back(&MI,
2038                                                    std::move(RegOps.second));
2039       }
2040       continue;
2041     }
2042 
2043     if (MI.isDebugOrPseudoInstr())
2044       continue;
2045 
2046     // Do not move any instruction across function call.
2047     if (MI.isCall())
2048       return false;
2049 
2050     if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) {
2051       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2052                                         TRI);
2053       continue;
2054     }
2055 
2056     // Don't sink the COPY if it would violate a register dependency.
2057     if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy,
2058                               ModifiedRegUnits, UsedRegUnits)) {
2059       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2060                                         TRI);
2061       continue;
2062     }
2063     assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) &&
2064            "Unexpect SrcReg or DefReg");
2065     MachineBasicBlock *SuccBB =
2066         getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI);
2067     // Don't sink if we cannot find a single sinkable successor in which Reg
2068     // is live-in.
2069     if (!SuccBB) {
2070       LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits,
2071                                         TRI);
2072       continue;
2073     }
2074     assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) &&
2075            "Unexpected predecessor");
2076 
2077     // Collect DBG_VALUEs that must sink with this copy. We've previously
2078     // recorded which reg units that DBG_VALUEs read, if this instruction
2079     // writes any of those units then the corresponding DBG_VALUEs must sink.
2080     MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap;
2081     for (auto &MO : MI.all_defs()) {
2082       for (MCRegUnit Unit : TRI->regunits(MO.getReg())) {
2083         for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) {
2084           auto &Regs = DbgValsToSinkMap[MIRegs.first];
2085           for (unsigned Reg : MIRegs.second)
2086             Regs.push_back(Reg);
2087         }
2088       }
2089     }
2090     auto DbgValsToSink = DbgValsToSinkMap.takeVector();
2091 
2092     LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB);
2093 
2094     MachineBasicBlock::iterator InsertPos =
2095         SuccBB->SkipPHIsAndLabels(SuccBB->begin());
2096     if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) {
2097       LLVM_DEBUG(
2098           dbgs() << " *** Not sinking: prologue interference\n");
2099       continue;
2100     }
2101 
2102     // Clear the kill flag if SrcReg is killed between MI and the end of the
2103     // block.
2104     clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI);
2105     performSink(MI, *SuccBB, InsertPos, DbgValsToSink);
2106     updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy);
2107 
2108     Changed = true;
2109     ++NumPostRACopySink;
2110   }
2111   return Changed;
2112 }
2113 
2114 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) {
2115   if (skipFunction(MF.getFunction()))
2116     return false;
2117 
2118   bool Changed = false;
2119   const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo();
2120   const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo();
2121 
2122   ModifiedRegUnits.init(*TRI);
2123   UsedRegUnits.init(*TRI);
2124   for (auto &BB : MF)
2125     Changed |= tryToSinkCopy(BB, MF, TRI, TII);
2126 
2127   return Changed;
2128 }
2129