1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/RegisterClassInfo.h" 38 #include "llvm/CodeGen/RegisterPressure.h" 39 #include "llvm/CodeGen/TargetInstrInfo.h" 40 #include "llvm/CodeGen/TargetRegisterInfo.h" 41 #include "llvm/CodeGen/TargetSubtargetInfo.h" 42 #include "llvm/IR/BasicBlock.h" 43 #include "llvm/IR/DebugInfoMetadata.h" 44 #include "llvm/IR/LLVMContext.h" 45 #include "llvm/InitializePasses.h" 46 #include "llvm/MC/MCRegisterInfo.h" 47 #include "llvm/Pass.h" 48 #include "llvm/Support/BranchProbability.h" 49 #include "llvm/Support/CommandLine.h" 50 #include "llvm/Support/Debug.h" 51 #include "llvm/Support/raw_ostream.h" 52 #include <algorithm> 53 #include <cassert> 54 #include <cstdint> 55 #include <map> 56 #include <utility> 57 #include <vector> 58 59 using namespace llvm; 60 61 #define DEBUG_TYPE "machine-sink" 62 63 static cl::opt<bool> 64 SplitEdges("machine-sink-split", 65 cl::desc("Split critical edges during machine sinking"), 66 cl::init(true), cl::Hidden); 67 68 static cl::opt<bool> 69 UseBlockFreqInfo("machine-sink-bfi", 70 cl::desc("Use block frequency info to find successors to sink"), 71 cl::init(true), cl::Hidden); 72 73 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 74 "machine-sink-split-probability-threshold", 75 cl::desc( 76 "Percentage threshold for splitting single-instruction critical edge. " 77 "If the branch threshold is higher than this threshold, we allow " 78 "speculative execution of up to 1 instruction to avoid branching to " 79 "splitted critical edge"), 80 cl::init(40), cl::Hidden); 81 82 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 83 "machine-sink-load-instrs-threshold", 84 cl::desc("Do not try to find alias store for a load if there is a in-path " 85 "block whose instruction number is higher than this threshold."), 86 cl::init(2000), cl::Hidden); 87 88 static cl::opt<unsigned> SinkLoadBlocksThreshold( 89 "machine-sink-load-blocks-threshold", 90 cl::desc("Do not try to find alias store for a load if the block number in " 91 "the straight line is higher than this threshold."), 92 cl::init(20), cl::Hidden); 93 94 static cl::opt<bool> 95 SinkInstsIntoLoop("sink-insts-to-avoid-spills", 96 cl::desc("Sink instructions into loops to avoid " 97 "register spills"), 98 cl::init(false), cl::Hidden); 99 100 static cl::opt<unsigned> SinkIntoLoopLimit( 101 "machine-sink-loop-limit", 102 cl::desc("The maximum number of instructions considered for loop sinking."), 103 cl::init(50), cl::Hidden); 104 105 STATISTIC(NumSunk, "Number of machine instructions sunk"); 106 STATISTIC(NumLoopSunk, "Number of machine instructions sunk into a loop"); 107 STATISTIC(NumSplit, "Number of critical edges split"); 108 STATISTIC(NumCoalesces, "Number of copies coalesced"); 109 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 110 111 namespace { 112 113 class MachineSinking : public MachineFunctionPass { 114 const TargetInstrInfo *TII; 115 const TargetRegisterInfo *TRI; 116 MachineRegisterInfo *MRI; // Machine register information 117 MachineDominatorTree *DT; // Machine dominator tree 118 MachinePostDominatorTree *PDT; // Machine post dominator tree 119 MachineLoopInfo *LI; 120 MachineBlockFrequencyInfo *MBFI; 121 const MachineBranchProbabilityInfo *MBPI; 122 AliasAnalysis *AA; 123 RegisterClassInfo RegClassInfo; 124 125 // Remember which edges have been considered for breaking. 126 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 127 CEBCandidates; 128 // Remember which edges we are about to split. 129 // This is different from CEBCandidates since those edges 130 // will be split. 131 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 132 133 SparseBitVector<> RegsToClearKillFlags; 134 135 using AllSuccsCache = 136 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 137 138 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 139 /// post-dominated by another DBG_VALUE of the same variable location. 140 /// This is necessary to detect sequences such as: 141 /// %0 = someinst 142 /// DBG_VALUE %0, !123, !DIExpression() 143 /// %1 = anotherinst 144 /// DBG_VALUE %1, !123, !DIExpression() 145 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 146 /// would re-order assignments. 147 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 148 149 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 150 /// debug instructions to sink. 151 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 152 153 /// Record of debug variables that have had their locations set in the 154 /// current block. 155 DenseSet<DebugVariable> SeenDbgVars; 156 157 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 158 HasStoreCache; 159 std::map<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 160 std::vector<MachineInstr *>> 161 StoreInstrCache; 162 163 /// Cached BB's register pressure. 164 std::map<MachineBasicBlock *, std::vector<unsigned>> CachedRegisterPressure; 165 166 public: 167 static char ID; // Pass identification 168 169 MachineSinking() : MachineFunctionPass(ID) { 170 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 171 } 172 173 bool runOnMachineFunction(MachineFunction &MF) override; 174 175 void getAnalysisUsage(AnalysisUsage &AU) const override { 176 MachineFunctionPass::getAnalysisUsage(AU); 177 AU.addRequired<AAResultsWrapperPass>(); 178 AU.addRequired<MachineDominatorTree>(); 179 AU.addRequired<MachinePostDominatorTree>(); 180 AU.addRequired<MachineLoopInfo>(); 181 AU.addRequired<MachineBranchProbabilityInfo>(); 182 AU.addPreserved<MachineLoopInfo>(); 183 if (UseBlockFreqInfo) 184 AU.addRequired<MachineBlockFrequencyInfo>(); 185 } 186 187 void releaseMemory() override { 188 CEBCandidates.clear(); 189 } 190 191 private: 192 bool ProcessBlock(MachineBasicBlock &MBB); 193 void ProcessDbgInst(MachineInstr &MI); 194 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 195 MachineBasicBlock *From, 196 MachineBasicBlock *To); 197 198 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 199 MachineInstr &MI); 200 201 /// Postpone the splitting of the given critical 202 /// edge (\p From, \p To). 203 /// 204 /// We do not split the edges on the fly. Indeed, this invalidates 205 /// the dominance information and thus triggers a lot of updates 206 /// of that information underneath. 207 /// Instead, we postpone all the splits after each iteration of 208 /// the main loop. That way, the information is at least valid 209 /// for the lifetime of an iteration. 210 /// 211 /// \return True if the edge is marked as toSplit, false otherwise. 212 /// False can be returned if, for instance, this is not profitable. 213 bool PostponeSplitCriticalEdge(MachineInstr &MI, 214 MachineBasicBlock *From, 215 MachineBasicBlock *To, 216 bool BreakPHIEdge); 217 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 218 AllSuccsCache &AllSuccessors); 219 220 /// If we sink a COPY inst, some debug users of it's destination may no 221 /// longer be dominated by the COPY, and will eventually be dropped. 222 /// This is easily rectified by forwarding the non-dominated debug uses 223 /// to the copy source. 224 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 225 MachineBasicBlock *TargetBlock); 226 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 227 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 228 bool &LocalUse) const; 229 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 230 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 231 232 void FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 233 SmallVectorImpl<MachineInstr *> &Candidates); 234 bool SinkIntoLoop(MachineLoop *L, MachineInstr &I); 235 236 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 237 MachineBasicBlock *MBB, 238 MachineBasicBlock *SuccToSinkTo, 239 AllSuccsCache &AllSuccessors); 240 241 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 242 MachineBasicBlock *MBB); 243 244 SmallVector<MachineBasicBlock *, 4> & 245 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 246 AllSuccsCache &AllSuccessors) const; 247 248 std::vector<unsigned> &getBBRegisterPressure(MachineBasicBlock &MBB); 249 }; 250 251 } // end anonymous namespace 252 253 char MachineSinking::ID = 0; 254 255 char &llvm::MachineSinkingID = MachineSinking::ID; 256 257 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 258 "Machine code sinking", false, false) 259 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 260 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 261 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 262 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 263 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 264 "Machine code sinking", false, false) 265 266 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 267 MachineBasicBlock *MBB) { 268 if (!MI.isCopy()) 269 return false; 270 271 Register SrcReg = MI.getOperand(1).getReg(); 272 Register DstReg = MI.getOperand(0).getReg(); 273 if (!Register::isVirtualRegister(SrcReg) || 274 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 275 return false; 276 277 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 278 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 279 if (SRC != DRC) 280 return false; 281 282 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 283 if (DefMI->isCopyLike()) 284 return false; 285 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 286 LLVM_DEBUG(dbgs() << "*** to: " << MI); 287 MRI->replaceRegWith(DstReg, SrcReg); 288 MI.eraseFromParent(); 289 290 // Conservatively, clear any kill flags, since it's possible that they are no 291 // longer correct. 292 MRI->clearKillFlags(SrcReg); 293 294 ++NumCoalesces; 295 return true; 296 } 297 298 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 299 /// occur in blocks dominated by the specified block. If any use is in the 300 /// definition block, then return false since it is never legal to move def 301 /// after uses. 302 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 303 MachineBasicBlock *MBB, 304 MachineBasicBlock *DefMBB, 305 bool &BreakPHIEdge, 306 bool &LocalUse) const { 307 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 308 309 // Ignore debug uses because debug info doesn't affect the code. 310 if (MRI->use_nodbg_empty(Reg)) 311 return true; 312 313 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 314 // into and they are all PHI nodes. In this case, machine-sink must break 315 // the critical edge first. e.g. 316 // 317 // %bb.1: 318 // Predecessors according to CFG: %bb.0 319 // ... 320 // %def = DEC64_32r %x, implicit-def dead %eflags 321 // ... 322 // JE_4 <%bb.37>, implicit %eflags 323 // Successors according to CFG: %bb.37 %bb.2 324 // 325 // %bb.2: 326 // %p = PHI %y, %bb.0, %def, %bb.1 327 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 328 MachineInstr *UseInst = MO.getParent(); 329 unsigned OpNo = UseInst->getOperandNo(&MO); 330 MachineBasicBlock *UseBlock = UseInst->getParent(); 331 return UseBlock == MBB && UseInst->isPHI() && 332 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 333 })) { 334 BreakPHIEdge = true; 335 return true; 336 } 337 338 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 339 // Determine the block of the use. 340 MachineInstr *UseInst = MO.getParent(); 341 unsigned OpNo = &MO - &UseInst->getOperand(0); 342 MachineBasicBlock *UseBlock = UseInst->getParent(); 343 if (UseInst->isPHI()) { 344 // PHI nodes use the operand in the predecessor block, not the block with 345 // the PHI. 346 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 347 } else if (UseBlock == DefMBB) { 348 LocalUse = true; 349 return false; 350 } 351 352 // Check that it dominates. 353 if (!DT->dominates(MBB, UseBlock)) 354 return false; 355 } 356 357 return true; 358 } 359 360 /// Return true if this machine instruction loads from global offset table or 361 /// constant pool. 362 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 363 assert(MI.mayLoad() && "Expected MI that loads!"); 364 365 // If we lost memory operands, conservatively assume that the instruction 366 // reads from everything.. 367 if (MI.memoperands_empty()) 368 return true; 369 370 for (MachineMemOperand *MemOp : MI.memoperands()) 371 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 372 if (PSV->isGOT() || PSV->isConstantPool()) 373 return true; 374 375 return false; 376 } 377 378 void MachineSinking::FindLoopSinkCandidates(MachineLoop *L, MachineBasicBlock *BB, 379 SmallVectorImpl<MachineInstr *> &Candidates) { 380 for (auto &MI : *BB) { 381 LLVM_DEBUG(dbgs() << "LoopSink: Analysing candidate: " << MI); 382 if (!TII->shouldSink(MI)) { 383 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not a candidate for this " 384 "target\n"); 385 continue; 386 } 387 if (!L->isLoopInvariant(MI)) { 388 LLVM_DEBUG(dbgs() << "LoopSink: Instruction is not loop invariant\n"); 389 continue; 390 } 391 bool DontMoveAcrossStore = true; 392 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 393 LLVM_DEBUG(dbgs() << "LoopSink: Instruction not safe to move.\n"); 394 continue; 395 } 396 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 397 LLVM_DEBUG(dbgs() << "LoopSink: Dont sink GOT or constant pool loads\n"); 398 continue; 399 } 400 if (MI.isConvergent()) 401 continue; 402 403 const MachineOperand &MO = MI.getOperand(0); 404 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 405 continue; 406 if (!MRI->hasOneDef(MO.getReg())) 407 continue; 408 409 LLVM_DEBUG(dbgs() << "LoopSink: Instruction added as candidate.\n"); 410 Candidates.push_back(&MI); 411 } 412 } 413 414 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 415 if (skipFunction(MF.getFunction())) 416 return false; 417 418 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 419 420 TII = MF.getSubtarget().getInstrInfo(); 421 TRI = MF.getSubtarget().getRegisterInfo(); 422 MRI = &MF.getRegInfo(); 423 DT = &getAnalysis<MachineDominatorTree>(); 424 PDT = &getAnalysis<MachinePostDominatorTree>(); 425 LI = &getAnalysis<MachineLoopInfo>(); 426 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 427 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 428 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 429 RegClassInfo.runOnMachineFunction(MF); 430 431 bool EverMadeChange = false; 432 433 while (true) { 434 bool MadeChange = false; 435 436 // Process all basic blocks. 437 CEBCandidates.clear(); 438 ToSplit.clear(); 439 for (auto &MBB: MF) 440 MadeChange |= ProcessBlock(MBB); 441 442 // If we have anything we marked as toSplit, split it now. 443 for (auto &Pair : ToSplit) { 444 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 445 if (NewSucc != nullptr) { 446 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 447 << printMBBReference(*Pair.first) << " -- " 448 << printMBBReference(*NewSucc) << " -- " 449 << printMBBReference(*Pair.second) << '\n'); 450 if (MBFI) 451 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 452 453 MadeChange = true; 454 ++NumSplit; 455 } else 456 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 457 } 458 // If this iteration over the code changed anything, keep iterating. 459 if (!MadeChange) break; 460 EverMadeChange = true; 461 } 462 463 if (SinkInstsIntoLoop) { 464 SmallVector<MachineLoop *, 8> Loops(LI->begin(), LI->end()); 465 for (auto *L : Loops) { 466 MachineBasicBlock *Preheader = LI->findLoopPreheader(L); 467 if (!Preheader) { 468 LLVM_DEBUG(dbgs() << "LoopSink: Can't find preheader\n"); 469 continue; 470 } 471 SmallVector<MachineInstr *, 8> Candidates; 472 FindLoopSinkCandidates(L, Preheader, Candidates); 473 474 // Walk the candidates in reverse order so that we start with the use 475 // of a def-use chain, if there is any. 476 // TODO: Sort the candidates using a cost-model. 477 unsigned i = 0; 478 for (auto It = Candidates.rbegin(); It != Candidates.rend(); ++It) { 479 if (i++ == SinkIntoLoopLimit) { 480 LLVM_DEBUG(dbgs() << "LoopSink: Limit reached of instructions to " 481 "be analysed."); 482 break; 483 } 484 485 MachineInstr *I = *It; 486 if (!SinkIntoLoop(L, *I)) 487 break; 488 EverMadeChange = true; 489 ++NumLoopSunk; 490 } 491 } 492 } 493 494 HasStoreCache.clear(); 495 StoreInstrCache.clear(); 496 497 // Now clear any kill flags for recorded registers. 498 for (auto I : RegsToClearKillFlags) 499 MRI->clearKillFlags(I); 500 RegsToClearKillFlags.clear(); 501 502 return EverMadeChange; 503 } 504 505 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 506 // Can't sink anything out of a block that has less than two successors. 507 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 508 509 // Don't bother sinking code out of unreachable blocks. In addition to being 510 // unprofitable, it can also lead to infinite looping, because in an 511 // unreachable loop there may be nowhere to stop. 512 if (!DT->isReachableFromEntry(&MBB)) return false; 513 514 bool MadeChange = false; 515 516 // Cache all successors, sorted by frequency info and loop depth. 517 AllSuccsCache AllSuccessors; 518 519 // Walk the basic block bottom-up. Remember if we saw a store. 520 MachineBasicBlock::iterator I = MBB.end(); 521 --I; 522 bool ProcessedBegin, SawStore = false; 523 do { 524 MachineInstr &MI = *I; // The instruction to sink. 525 526 // Predecrement I (if it's not begin) so that it isn't invalidated by 527 // sinking. 528 ProcessedBegin = I == MBB.begin(); 529 if (!ProcessedBegin) 530 --I; 531 532 if (MI.isDebugInstr()) { 533 if (MI.isDebugValue()) 534 ProcessDbgInst(MI); 535 continue; 536 } 537 538 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 539 if (Joined) { 540 MadeChange = true; 541 continue; 542 } 543 544 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 545 ++NumSunk; 546 MadeChange = true; 547 } 548 549 // If we just processed the first instruction in the block, we're done. 550 } while (!ProcessedBegin); 551 552 SeenDbgUsers.clear(); 553 SeenDbgVars.clear(); 554 // recalculate the bb register pressure after sinking one BB. 555 CachedRegisterPressure.clear(); 556 557 return MadeChange; 558 } 559 560 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 561 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 562 // we know what to sink if the vreg def sinks. 563 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 564 565 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 566 MI.getDebugLoc()->getInlinedAt()); 567 bool SeenBefore = SeenDbgVars.contains(Var); 568 569 MachineOperand &MO = MI.getDebugOperand(0); 570 if (MO.isReg() && MO.getReg().isVirtual()) 571 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 572 573 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 574 SeenDbgVars.insert(Var); 575 } 576 577 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 578 MachineBasicBlock *From, 579 MachineBasicBlock *To) { 580 // FIXME: Need much better heuristics. 581 582 // If the pass has already considered breaking this edge (during this pass 583 // through the function), then let's go ahead and break it. This means 584 // sinking multiple "cheap" instructions into the same block. 585 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 586 return true; 587 588 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 589 return true; 590 591 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 592 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 593 return true; 594 595 // MI is cheap, we probably don't want to break the critical edge for it. 596 // However, if this would allow some definitions of its source operands 597 // to be sunk then it's probably worth it. 598 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 599 const MachineOperand &MO = MI.getOperand(i); 600 if (!MO.isReg() || !MO.isUse()) 601 continue; 602 Register Reg = MO.getReg(); 603 if (Reg == 0) 604 continue; 605 606 // We don't move live definitions of physical registers, 607 // so sinking their uses won't enable any opportunities. 608 if (Register::isPhysicalRegister(Reg)) 609 continue; 610 611 // If this instruction is the only user of a virtual register, 612 // check if breaking the edge will enable sinking 613 // both this instruction and the defining instruction. 614 if (MRI->hasOneNonDBGUse(Reg)) { 615 // If the definition resides in same MBB, 616 // claim it's likely we can sink these together. 617 // If definition resides elsewhere, we aren't 618 // blocking it from being sunk so don't break the edge. 619 MachineInstr *DefMI = MRI->getVRegDef(Reg); 620 if (DefMI->getParent() == MI.getParent()) 621 return true; 622 } 623 } 624 625 return false; 626 } 627 628 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 629 MachineBasicBlock *FromBB, 630 MachineBasicBlock *ToBB, 631 bool BreakPHIEdge) { 632 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 633 return false; 634 635 // Avoid breaking back edge. From == To means backedge for single BB loop. 636 if (!SplitEdges || FromBB == ToBB) 637 return false; 638 639 // Check for backedges of more "complex" loops. 640 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 641 LI->isLoopHeader(ToBB)) 642 return false; 643 644 // It's not always legal to break critical edges and sink the computation 645 // to the edge. 646 // 647 // %bb.1: 648 // v1024 649 // Beq %bb.3 650 // <fallthrough> 651 // %bb.2: 652 // ... no uses of v1024 653 // <fallthrough> 654 // %bb.3: 655 // ... 656 // = v1024 657 // 658 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 659 // 660 // %bb.1: 661 // ... 662 // Bne %bb.2 663 // %bb.4: 664 // v1024 = 665 // B %bb.3 666 // %bb.2: 667 // ... no uses of v1024 668 // <fallthrough> 669 // %bb.3: 670 // ... 671 // = v1024 672 // 673 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 674 // flow. We need to ensure the new basic block where the computation is 675 // sunk to dominates all the uses. 676 // It's only legal to break critical edge and sink the computation to the 677 // new block if all the predecessors of "To", except for "From", are 678 // not dominated by "From". Given SSA property, this means these 679 // predecessors are dominated by "To". 680 // 681 // There is no need to do this check if all the uses are PHI nodes. PHI 682 // sources are only defined on the specific predecessor edges. 683 if (!BreakPHIEdge) { 684 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 685 E = ToBB->pred_end(); PI != E; ++PI) { 686 if (*PI == FromBB) 687 continue; 688 if (!DT->dominates(ToBB, *PI)) 689 return false; 690 } 691 } 692 693 ToSplit.insert(std::make_pair(FromBB, ToBB)); 694 695 return true; 696 } 697 698 std::vector<unsigned> & 699 MachineSinking::getBBRegisterPressure(MachineBasicBlock &MBB) { 700 // Currently to save compiling time, MBB's register pressure will not change 701 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 702 // register pressure is changed after sinking any instructions into it. 703 // FIXME: need a accurate and cheap register pressure estiminate model here. 704 auto RP = CachedRegisterPressure.find(&MBB); 705 if (RP != CachedRegisterPressure.end()) 706 return RP->second; 707 708 RegionPressure Pressure; 709 RegPressureTracker RPTracker(Pressure); 710 711 // Initialize the register pressure tracker. 712 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 713 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 714 715 for (MachineBasicBlock::iterator MII = MBB.instr_end(), 716 MIE = MBB.instr_begin(); 717 MII != MIE; --MII) { 718 MachineInstr &MI = *std::prev(MII); 719 if (MI.isDebugValue() || MI.isDebugLabel()) 720 continue; 721 RegisterOperands RegOpers; 722 RegOpers.collect(MI, *TRI, *MRI, false, false); 723 RPTracker.recedeSkipDebugValues(); 724 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 725 RPTracker.recede(RegOpers); 726 } 727 728 RPTracker.closeRegion(); 729 auto It = CachedRegisterPressure.insert( 730 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 731 return It.first->second; 732 } 733 734 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 735 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 736 MachineBasicBlock *MBB, 737 MachineBasicBlock *SuccToSinkTo, 738 AllSuccsCache &AllSuccessors) { 739 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 740 741 if (MBB == SuccToSinkTo) 742 return false; 743 744 // It is profitable if SuccToSinkTo does not post dominate current block. 745 if (!PDT->dominates(SuccToSinkTo, MBB)) 746 return true; 747 748 // It is profitable to sink an instruction from a deeper loop to a shallower 749 // loop, even if the latter post-dominates the former (PR21115). 750 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 751 return true; 752 753 // Check if only use in post dominated block is PHI instruction. 754 bool NonPHIUse = false; 755 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 756 MachineBasicBlock *UseBlock = UseInst.getParent(); 757 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 758 NonPHIUse = true; 759 } 760 if (!NonPHIUse) 761 return true; 762 763 // If SuccToSinkTo post dominates then also it may be profitable if MI 764 // can further profitably sinked into another block in next round. 765 bool BreakPHIEdge = false; 766 // FIXME - If finding successor is compile time expensive then cache results. 767 if (MachineBasicBlock *MBB2 = 768 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 769 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 770 771 MachineLoop *ML = LI->getLoopFor(MBB); 772 773 // If the instruction is not inside a loop, it is not profitable to sink MI to 774 // a post dominate block SuccToSinkTo. 775 if (!ML) 776 return false; 777 778 auto isRegisterPressureSetExceedLimit = [&](const TargetRegisterClass *RC) { 779 unsigned Weight = TRI->getRegClassWeight(RC).RegWeight; 780 const int *PS = TRI->getRegClassPressureSets(RC); 781 // Get register pressure for block SuccToSinkTo. 782 std::vector<unsigned> BBRegisterPressure = 783 getBBRegisterPressure(*SuccToSinkTo); 784 for (; *PS != -1; PS++) 785 // check if any register pressure set exceeds limit in block SuccToSinkTo 786 // after sinking. 787 if (Weight + BBRegisterPressure[*PS] >= 788 TRI->getRegPressureSetLimit(*MBB->getParent(), *PS)) 789 return true; 790 return false; 791 }; 792 793 // If this instruction is inside a loop and sinking this instruction can make 794 // more registers live range shorten, it is still prifitable. 795 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 796 const MachineOperand &MO = MI.getOperand(i); 797 // Ignore non-register operands. 798 if (!MO.isReg()) 799 continue; 800 Register Reg = MO.getReg(); 801 if (Reg == 0) 802 continue; 803 804 // Don't handle physical register. 805 if (Register::isPhysicalRegister(Reg)) 806 return false; 807 808 // Users for the defs are all dominated by SuccToSinkTo. 809 if (MO.isDef()) { 810 // This def register's live range is shortened after sinking. 811 bool LocalUse = false; 812 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 813 LocalUse)) 814 return false; 815 } else { 816 MachineInstr *DefMI = MRI->getVRegDef(Reg); 817 // DefMI is defined outside of loop. There should be no live range 818 // impact for this operand. Defination outside of loop means: 819 // 1: defination is outside of loop. 820 // 2: defination is in this loop, but it is a PHI in the loop header. 821 if (LI->getLoopFor(DefMI->getParent()) != ML || 822 (DefMI->isPHI() && LI->isLoopHeader(DefMI->getParent()))) 823 continue; 824 // The DefMI is defined inside the loop. 825 // If sinking this operand makes some register pressure set exceed limit, 826 // it is not profitable. 827 if (isRegisterPressureSetExceedLimit(MRI->getRegClass(Reg))) { 828 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 829 return false; 830 } 831 } 832 } 833 834 // If MI is in loop and all its operands are alive across the whole loop or if 835 // no operand sinking make register pressure set exceed limit, it is 836 // profitable to sink MI. 837 return true; 838 } 839 840 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 841 /// computing it if it was not already cached. 842 SmallVector<MachineBasicBlock *, 4> & 843 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 844 AllSuccsCache &AllSuccessors) const { 845 // Do we have the sorted successors in cache ? 846 auto Succs = AllSuccessors.find(MBB); 847 if (Succs != AllSuccessors.end()) 848 return Succs->second; 849 850 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 851 852 // Handle cases where sinking can happen but where the sink point isn't a 853 // successor. For example: 854 // 855 // x = computation 856 // if () {} else {} 857 // use x 858 // 859 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 860 // DomTree children of MBB that have MBB as immediate dominator are added. 861 if (DTChild->getIDom()->getBlock() == MI.getParent() && 862 // Skip MBBs already added to the AllSuccs vector above. 863 !MBB->isSuccessor(DTChild->getBlock())) 864 AllSuccs.push_back(DTChild->getBlock()); 865 } 866 867 // Sort Successors according to their loop depth or block frequency info. 868 llvm::stable_sort( 869 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 870 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 871 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 872 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 873 return HasBlockFreq ? LHSFreq < RHSFreq 874 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 875 }); 876 877 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 878 879 return it.first->second; 880 } 881 882 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 883 MachineBasicBlock * 884 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 885 bool &BreakPHIEdge, 886 AllSuccsCache &AllSuccessors) { 887 assert (MBB && "Invalid MachineBasicBlock!"); 888 889 // Loop over all the operands of the specified instruction. If there is 890 // anything we can't handle, bail out. 891 892 // SuccToSinkTo - This is the successor to sink this instruction to, once we 893 // decide. 894 MachineBasicBlock *SuccToSinkTo = nullptr; 895 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 896 const MachineOperand &MO = MI.getOperand(i); 897 if (!MO.isReg()) continue; // Ignore non-register operands. 898 899 Register Reg = MO.getReg(); 900 if (Reg == 0) continue; 901 902 if (Register::isPhysicalRegister(Reg)) { 903 if (MO.isUse()) { 904 // If the physreg has no defs anywhere, it's just an ambient register 905 // and we can freely move its uses. Alternatively, if it's allocatable, 906 // it could get allocated to something with a def during allocation. 907 if (!MRI->isConstantPhysReg(Reg)) 908 return nullptr; 909 } else if (!MO.isDead()) { 910 // A def that isn't dead. We can't move it. 911 return nullptr; 912 } 913 } else { 914 // Virtual register uses are always safe to sink. 915 if (MO.isUse()) continue; 916 917 // If it's not safe to move defs of the register class, then abort. 918 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 919 return nullptr; 920 921 // Virtual register defs can only be sunk if all their uses are in blocks 922 // dominated by one of the successors. 923 if (SuccToSinkTo) { 924 // If a previous operand picked a block to sink to, then this operand 925 // must be sinkable to the same block. 926 bool LocalUse = false; 927 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 928 BreakPHIEdge, LocalUse)) 929 return nullptr; 930 931 continue; 932 } 933 934 // Otherwise, we should look at all the successors and decide which one 935 // we should sink to. If we have reliable block frequency information 936 // (frequency != 0) available, give successors with smaller frequencies 937 // higher priority, otherwise prioritize smaller loop depths. 938 for (MachineBasicBlock *SuccBlock : 939 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 940 bool LocalUse = false; 941 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 942 BreakPHIEdge, LocalUse)) { 943 SuccToSinkTo = SuccBlock; 944 break; 945 } 946 if (LocalUse) 947 // Def is used locally, it's never safe to move this def. 948 return nullptr; 949 } 950 951 // If we couldn't find a block to sink to, ignore this instruction. 952 if (!SuccToSinkTo) 953 return nullptr; 954 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 955 return nullptr; 956 } 957 } 958 959 // It is not possible to sink an instruction into its own block. This can 960 // happen with loops. 961 if (MBB == SuccToSinkTo) 962 return nullptr; 963 964 // It's not safe to sink instructions to EH landing pad. Control flow into 965 // landing pad is implicitly defined. 966 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 967 return nullptr; 968 969 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 970 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 971 // the source block (which this code does not yet do). So for now, forbid 972 // doing so. 973 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 974 return nullptr; 975 976 return SuccToSinkTo; 977 } 978 979 /// Return true if MI is likely to be usable as a memory operation by the 980 /// implicit null check optimization. 981 /// 982 /// This is a "best effort" heuristic, and should not be relied upon for 983 /// correctness. This returning true does not guarantee that the implicit null 984 /// check optimization is legal over MI, and this returning false does not 985 /// guarantee MI cannot possibly be used to do a null check. 986 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 987 const TargetInstrInfo *TII, 988 const TargetRegisterInfo *TRI) { 989 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 990 991 auto *MBB = MI.getParent(); 992 if (MBB->pred_size() != 1) 993 return false; 994 995 auto *PredMBB = *MBB->pred_begin(); 996 auto *PredBB = PredMBB->getBasicBlock(); 997 998 // Frontends that don't use implicit null checks have no reason to emit 999 // branches with make.implicit metadata, and this function should always 1000 // return false for them. 1001 if (!PredBB || 1002 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1003 return false; 1004 1005 const MachineOperand *BaseOp; 1006 int64_t Offset; 1007 bool OffsetIsScalable; 1008 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1009 return false; 1010 1011 if (!BaseOp->isReg()) 1012 return false; 1013 1014 if (!(MI.mayLoad() && !MI.isPredicable())) 1015 return false; 1016 1017 MachineBranchPredicate MBP; 1018 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1019 return false; 1020 1021 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1022 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1023 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1024 MBP.LHS.getReg() == BaseOp->getReg(); 1025 } 1026 1027 /// If the sunk instruction is a copy, try to forward the copy instead of 1028 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1029 /// there's any subregister weirdness involved. Returns true if copy 1030 /// propagation occurred. 1031 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 1032 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1033 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1034 1035 // Copy DBG_VALUE operand and set the original to undef. We then check to 1036 // see whether this is something that can be copy-forwarded. If it isn't, 1037 // continue around the loop. 1038 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 1039 1040 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1041 auto CopyOperands = TII.isCopyInstr(SinkInst); 1042 if (!CopyOperands) 1043 return false; 1044 SrcMO = CopyOperands->Source; 1045 DstMO = CopyOperands->Destination; 1046 1047 // Check validity of forwarding this copy. 1048 bool PostRA = MRI.getNumVirtRegs() == 0; 1049 1050 // Trying to forward between physical and virtual registers is too hard. 1051 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 1052 return false; 1053 1054 // Only try virtual register copy-forwarding before regalloc, and physical 1055 // register copy-forwarding after regalloc. 1056 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 1057 if (arePhysRegs != PostRA) 1058 return false; 1059 1060 // Pre-regalloc, only forward if all subregisters agree (or there are no 1061 // subregs at all). More analysis might recover some forwardable copies. 1062 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 1063 DbgMO.getSubReg() != DstMO->getSubReg())) 1064 return false; 1065 1066 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1067 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1068 // matches the copy destination. 1069 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 1070 return false; 1071 1072 DbgMO.setReg(SrcMO->getReg()); 1073 DbgMO.setSubReg(SrcMO->getSubReg()); 1074 return true; 1075 } 1076 1077 /// Sink an instruction and its associated debug instructions. 1078 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1079 MachineBasicBlock::iterator InsertPos, 1080 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 1081 1082 // If we cannot find a location to use (merge with), then we erase the debug 1083 // location to prevent debug-info driven tools from potentially reporting 1084 // wrong location information. 1085 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1086 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1087 InsertPos->getDebugLoc())); 1088 else 1089 MI.setDebugLoc(DebugLoc()); 1090 1091 // Move the instruction. 1092 MachineBasicBlock *ParentBlock = MI.getParent(); 1093 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1094 ++MachineBasicBlock::iterator(MI)); 1095 1096 // Sink a copy of debug users to the insert position. Mark the original 1097 // DBG_VALUE location as 'undef', indicating that any earlier variable 1098 // location should be terminated as we've optimised away the value at this 1099 // point. 1100 for (MachineInstr *DbgMI : DbgValuesToSink) { 1101 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1102 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1103 1104 if (!attemptDebugCopyProp(MI, *DbgMI)) 1105 DbgMI->setDebugValueUndef(); 1106 } 1107 } 1108 1109 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1110 /// and To. 1111 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1112 MachineBasicBlock *To, MachineInstr &MI) { 1113 // Make sure From and To are in straight line which means From dominates To 1114 // and To post dominates From. 1115 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1116 return true; 1117 1118 auto BlockPair = std::make_pair(From, To); 1119 1120 // Does these two blocks pair be queried before and have a definite cached 1121 // result? 1122 if (HasStoreCache.find(BlockPair) != HasStoreCache.end()) 1123 return HasStoreCache[BlockPair]; 1124 1125 if (StoreInstrCache.find(BlockPair) != StoreInstrCache.end()) 1126 return llvm::any_of(StoreInstrCache[BlockPair], [&](MachineInstr *I) { 1127 return I->mayAlias(AA, MI, false); 1128 }); 1129 1130 bool SawStore = false; 1131 bool HasAliasedStore = false; 1132 DenseSet<MachineBasicBlock *> HandledBlocks; 1133 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1134 // Go through all reachable blocks from From. 1135 for (MachineBasicBlock *BB : depth_first(From)) { 1136 // We insert the instruction at the start of block To, so no need to worry 1137 // about stores inside To. 1138 // Store in block From should be already considered when just enter function 1139 // SinkInstruction. 1140 if (BB == To || BB == From) 1141 continue; 1142 1143 // We already handle this BB in previous iteration. 1144 if (HandledBlocks.count(BB)) 1145 continue; 1146 1147 HandledBlocks.insert(BB); 1148 // To post dominates BB, it must be a path from block From. 1149 if (PDT->dominates(To, BB)) { 1150 if (!HandledDomBlocks.count(BB)) 1151 HandledDomBlocks.insert(BB); 1152 1153 // If this BB is too big or the block number in straight line between From 1154 // and To is too big, stop searching to save compiling time. 1155 if (BB->size() > SinkLoadInstsPerBlockThreshold || 1156 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1157 for (auto *DomBB : HandledDomBlocks) { 1158 if (DomBB != BB && DT->dominates(DomBB, BB)) 1159 HasStoreCache[std::make_pair(DomBB, To)] = true; 1160 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1161 HasStoreCache[std::make_pair(From, DomBB)] = true; 1162 } 1163 HasStoreCache[BlockPair] = true; 1164 return true; 1165 } 1166 1167 for (MachineInstr &I : *BB) { 1168 // Treat as alias conservatively for a call or an ordered memory 1169 // operation. 1170 if (I.isCall() || I.hasOrderedMemoryRef()) { 1171 for (auto *DomBB : HandledDomBlocks) { 1172 if (DomBB != BB && DT->dominates(DomBB, BB)) 1173 HasStoreCache[std::make_pair(DomBB, To)] = true; 1174 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1175 HasStoreCache[std::make_pair(From, DomBB)] = true; 1176 } 1177 HasStoreCache[BlockPair] = true; 1178 return true; 1179 } 1180 1181 if (I.mayStore()) { 1182 SawStore = true; 1183 // We still have chance to sink MI if all stores between are not 1184 // aliased to MI. 1185 // Cache all store instructions, so that we don't need to go through 1186 // all From reachable blocks for next load instruction. 1187 if (I.mayAlias(AA, MI, false)) 1188 HasAliasedStore = true; 1189 StoreInstrCache[BlockPair].push_back(&I); 1190 } 1191 } 1192 } 1193 } 1194 // If there is no store at all, cache the result. 1195 if (!SawStore) 1196 HasStoreCache[BlockPair] = false; 1197 return HasAliasedStore; 1198 } 1199 1200 /// Sink instructions into loops if profitable. This especially tries to prevent 1201 /// register spills caused by register pressure if there is little to no 1202 /// overhead moving instructions into loops. 1203 bool MachineSinking::SinkIntoLoop(MachineLoop *L, MachineInstr &I) { 1204 LLVM_DEBUG(dbgs() << "LoopSink: Finding sink block for: " << I); 1205 MachineBasicBlock *Preheader = L->getLoopPreheader(); 1206 assert(Preheader && "Loop sink needs a preheader block"); 1207 MachineBasicBlock *SinkBlock = nullptr; 1208 bool CanSink = true; 1209 const MachineOperand &MO = I.getOperand(0); 1210 1211 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1212 LLVM_DEBUG(dbgs() << "LoopSink: Analysing use: " << MI); 1213 if (!L->contains(&MI)) { 1214 LLVM_DEBUG(dbgs() << "LoopSink: Use not in loop, can't sink.\n"); 1215 CanSink = false; 1216 break; 1217 } 1218 1219 // FIXME: Come up with a proper cost model that estimates whether sinking 1220 // the instruction (and thus possibly executing it on every loop 1221 // iteration) is more expensive than a register. 1222 // For now assumes that copies are cheap and thus almost always worth it. 1223 if (!MI.isCopy()) { 1224 LLVM_DEBUG(dbgs() << "LoopSink: Use is not a copy\n"); 1225 CanSink = false; 1226 break; 1227 } 1228 if (!SinkBlock) { 1229 SinkBlock = MI.getParent(); 1230 LLVM_DEBUG(dbgs() << "LoopSink: Setting sink block to: " 1231 << printMBBReference(*SinkBlock) << "\n"); 1232 continue; 1233 } 1234 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1235 if (!SinkBlock) { 1236 LLVM_DEBUG(dbgs() << "LoopSink: Can't find nearest dominator\n"); 1237 CanSink = false; 1238 break; 1239 } 1240 LLVM_DEBUG(dbgs() << "LoopSink: Setting nearest common dom block: " << 1241 printMBBReference(*SinkBlock) << "\n"); 1242 } 1243 1244 if (!CanSink) { 1245 LLVM_DEBUG(dbgs() << "LoopSink: Can't sink instruction.\n"); 1246 return false; 1247 } 1248 if (!SinkBlock) { 1249 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, can't find sink block.\n"); 1250 return false; 1251 } 1252 if (SinkBlock == Preheader) { 1253 LLVM_DEBUG(dbgs() << "LoopSink: Not sinking, sink block is the preheader\n"); 1254 return false; 1255 } 1256 if (SinkBlock->size() > SinkLoadInstsPerBlockThreshold) { 1257 LLVM_DEBUG(dbgs() << "LoopSink: Not Sinking, block too large to analyse.\n"); 1258 return false; 1259 } 1260 1261 LLVM_DEBUG(dbgs() << "LoopSink: Sinking instruction!\n"); 1262 SinkBlock->splice(SinkBlock->getFirstNonPHI(), Preheader, I); 1263 1264 // The instruction is moved from its basic block, so do not retain the 1265 // debug information. 1266 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1267 I.setDebugLoc(DebugLoc()); 1268 return true; 1269 } 1270 1271 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1272 /// instruction out of its current block into a successor. 1273 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1274 AllSuccsCache &AllSuccessors) { 1275 // Don't sink instructions that the target prefers not to sink. 1276 if (!TII->shouldSink(MI)) 1277 return false; 1278 1279 // Check if it's safe to move the instruction. 1280 if (!MI.isSafeToMove(AA, SawStore)) 1281 return false; 1282 1283 // Convergent operations may not be made control-dependent on additional 1284 // values. 1285 if (MI.isConvergent()) 1286 return false; 1287 1288 // Don't break implicit null checks. This is a performance heuristic, and not 1289 // required for correctness. 1290 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1291 return false; 1292 1293 // FIXME: This should include support for sinking instructions within the 1294 // block they are currently in to shorten the live ranges. We often get 1295 // instructions sunk into the top of a large block, but it would be better to 1296 // also sink them down before their first use in the block. This xform has to 1297 // be careful not to *increase* register pressure though, e.g. sinking 1298 // "x = y + z" down if it kills y and z would increase the live ranges of y 1299 // and z and only shrink the live range of x. 1300 1301 bool BreakPHIEdge = false; 1302 MachineBasicBlock *ParentBlock = MI.getParent(); 1303 MachineBasicBlock *SuccToSinkTo = 1304 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1305 1306 // If there are no outputs, it must have side-effects. 1307 if (!SuccToSinkTo) 1308 return false; 1309 1310 // If the instruction to move defines a dead physical register which is live 1311 // when leaving the basic block, don't move it because it could turn into a 1312 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 1313 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 1314 const MachineOperand &MO = MI.getOperand(I); 1315 if (!MO.isReg()) continue; 1316 Register Reg = MO.getReg(); 1317 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 1318 continue; 1319 if (SuccToSinkTo->isLiveIn(Reg)) 1320 return false; 1321 } 1322 1323 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1324 1325 // If the block has multiple predecessors, this is a critical edge. 1326 // Decide if we can sink along it or need to break the edge. 1327 if (SuccToSinkTo->pred_size() > 1) { 1328 // We cannot sink a load across a critical edge - there may be stores in 1329 // other code paths. 1330 bool TryBreak = false; 1331 bool Store = 1332 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1333 if (!MI.isSafeToMove(AA, Store)) { 1334 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1335 TryBreak = true; 1336 } 1337 1338 // We don't want to sink across a critical edge if we don't dominate the 1339 // successor. We could be introducing calculations to new code paths. 1340 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1341 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1342 TryBreak = true; 1343 } 1344 1345 // Don't sink instructions into a loop. 1346 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 1347 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 1348 TryBreak = true; 1349 } 1350 1351 // Otherwise we are OK with sinking along a critical edge. 1352 if (!TryBreak) 1353 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1354 else { 1355 // Mark this edge as to be split. 1356 // If the edge can actually be split, the next iteration of the main loop 1357 // will sink MI in the newly created block. 1358 bool Status = 1359 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1360 if (!Status) 1361 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1362 "break critical edge\n"); 1363 // The instruction will not be sunk this time. 1364 return false; 1365 } 1366 } 1367 1368 if (BreakPHIEdge) { 1369 // BreakPHIEdge is true if all the uses are in the successor MBB being 1370 // sunken into and they are all PHI nodes. In this case, machine-sink must 1371 // break the critical edge first. 1372 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1373 SuccToSinkTo, BreakPHIEdge); 1374 if (!Status) 1375 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1376 "break critical edge\n"); 1377 // The instruction will not be sunk this time. 1378 return false; 1379 } 1380 1381 // Determine where to insert into. Skip phi nodes. 1382 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 1383 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 1384 ++InsertPos; 1385 1386 // Collect debug users of any vreg that this inst defines. 1387 SmallVector<MachineInstr *, 4> DbgUsersToSink; 1388 for (auto &MO : MI.operands()) { 1389 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1390 continue; 1391 if (!SeenDbgUsers.count(MO.getReg())) 1392 continue; 1393 1394 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1395 auto &Users = SeenDbgUsers[MO.getReg()]; 1396 for (auto &User : Users) { 1397 MachineInstr *DbgMI = User.getPointer(); 1398 if (User.getInt()) { 1399 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1400 // it, it can't be recovered. Set it undef. 1401 if (!attemptDebugCopyProp(MI, *DbgMI)) 1402 DbgMI->setDebugValueUndef(); 1403 } else { 1404 DbgUsersToSink.push_back(DbgMI); 1405 } 1406 } 1407 } 1408 1409 // After sinking, some debug users may not be dominated any more. If possible, 1410 // copy-propagate their operands. As it's expensive, don't do this if there's 1411 // no debuginfo in the program. 1412 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1413 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1414 1415 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1416 1417 // Conservatively, clear any kill flags, since it's possible that they are no 1418 // longer correct. 1419 // Note that we have to clear the kill flags for any register this instruction 1420 // uses as we may sink over another instruction which currently kills the 1421 // used registers. 1422 for (MachineOperand &MO : MI.operands()) { 1423 if (MO.isReg() && MO.isUse()) 1424 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1425 } 1426 1427 return true; 1428 } 1429 1430 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1431 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1432 assert(MI.isCopy()); 1433 assert(MI.getOperand(1).isReg()); 1434 1435 // Enumerate all users of vreg operands that are def'd. Skip those that will 1436 // be sunk. For the rest, if they are not dominated by the block we will sink 1437 // MI into, propagate the copy source to them. 1438 SmallVector<MachineInstr *, 4> DbgDefUsers; 1439 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1440 for (auto &MO : MI.operands()) { 1441 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1442 continue; 1443 for (auto &User : MRI.use_instructions(MO.getReg())) { 1444 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1445 continue; 1446 1447 // If is in same block, will either sink or be use-before-def. 1448 if (User.getParent() == MI.getParent()) 1449 continue; 1450 1451 assert(User.getDebugOperand(0).isReg() && 1452 "DBG_VALUE user of vreg, but non reg operand?"); 1453 DbgDefUsers.push_back(&User); 1454 } 1455 } 1456 1457 // Point the users of this copy that are no longer dominated, at the source 1458 // of the copy. 1459 for (auto *User : DbgDefUsers) { 1460 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1461 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1462 } 1463 } 1464 1465 //===----------------------------------------------------------------------===// 1466 // This pass is not intended to be a replacement or a complete alternative 1467 // for the pre-ra machine sink pass. It is only designed to sink COPY 1468 // instructions which should be handled after RA. 1469 // 1470 // This pass sinks COPY instructions into a successor block, if the COPY is not 1471 // used in the current block and the COPY is live-in to a single successor 1472 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1473 // copy on paths where their results aren't needed. This also exposes 1474 // additional opportunites for dead copy elimination and shrink wrapping. 1475 // 1476 // These copies were either not handled by or are inserted after the MachineSink 1477 // pass. As an example of the former case, the MachineSink pass cannot sink 1478 // COPY instructions with allocatable source registers; for AArch64 these type 1479 // of copy instructions are frequently used to move function parameters (PhyReg) 1480 // into virtual registers in the entry block. 1481 // 1482 // For the machine IR below, this pass will sink %w19 in the entry into its 1483 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1484 // %bb.0: 1485 // %wzr = SUBSWri %w1, 1 1486 // %w19 = COPY %w0 1487 // Bcc 11, %bb.2 1488 // %bb.1: 1489 // Live Ins: %w19 1490 // BL @fun 1491 // %w0 = ADDWrr %w0, %w19 1492 // RET %w0 1493 // %bb.2: 1494 // %w0 = COPY %wzr 1495 // RET %w0 1496 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1497 // able to see %bb.0 as a candidate. 1498 //===----------------------------------------------------------------------===// 1499 namespace { 1500 1501 class PostRAMachineSinking : public MachineFunctionPass { 1502 public: 1503 bool runOnMachineFunction(MachineFunction &MF) override; 1504 1505 static char ID; 1506 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1507 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1508 1509 void getAnalysisUsage(AnalysisUsage &AU) const override { 1510 AU.setPreservesCFG(); 1511 MachineFunctionPass::getAnalysisUsage(AU); 1512 } 1513 1514 MachineFunctionProperties getRequiredProperties() const override { 1515 return MachineFunctionProperties().set( 1516 MachineFunctionProperties::Property::NoVRegs); 1517 } 1518 1519 private: 1520 /// Track which register units have been modified and used. 1521 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1522 1523 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1524 /// entry in this map for each unit it touches. 1525 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1526 1527 /// Sink Copy instructions unused in the same block close to their uses in 1528 /// successors. 1529 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1530 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1531 }; 1532 } // namespace 1533 1534 char PostRAMachineSinking::ID = 0; 1535 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1536 1537 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1538 "PostRA Machine Sink", false, false) 1539 1540 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1541 const TargetRegisterInfo *TRI) { 1542 LiveRegUnits LiveInRegUnits(*TRI); 1543 LiveInRegUnits.addLiveIns(MBB); 1544 return !LiveInRegUnits.available(Reg); 1545 } 1546 1547 static MachineBasicBlock * 1548 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1549 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1550 unsigned Reg, const TargetRegisterInfo *TRI) { 1551 // Try to find a single sinkable successor in which Reg is live-in. 1552 MachineBasicBlock *BB = nullptr; 1553 for (auto *SI : SinkableBBs) { 1554 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1555 // If BB is set here, Reg is live-in to at least two sinkable successors, 1556 // so quit. 1557 if (BB) 1558 return nullptr; 1559 BB = SI; 1560 } 1561 } 1562 // Reg is not live-in to any sinkable successors. 1563 if (!BB) 1564 return nullptr; 1565 1566 // Check if any register aliased with Reg is live-in in other successors. 1567 for (auto *SI : CurBB.successors()) { 1568 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1569 return nullptr; 1570 } 1571 return BB; 1572 } 1573 1574 static MachineBasicBlock * 1575 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1576 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1577 ArrayRef<unsigned> DefedRegsInCopy, 1578 const TargetRegisterInfo *TRI) { 1579 MachineBasicBlock *SingleBB = nullptr; 1580 for (auto DefReg : DefedRegsInCopy) { 1581 MachineBasicBlock *BB = 1582 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1583 if (!BB || (SingleBB && SingleBB != BB)) 1584 return nullptr; 1585 SingleBB = BB; 1586 } 1587 return SingleBB; 1588 } 1589 1590 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1591 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1592 LiveRegUnits &UsedRegUnits, 1593 const TargetRegisterInfo *TRI) { 1594 for (auto U : UsedOpsInCopy) { 1595 MachineOperand &MO = MI->getOperand(U); 1596 Register SrcReg = MO.getReg(); 1597 if (!UsedRegUnits.available(SrcReg)) { 1598 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1599 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1600 if (UI.killsRegister(SrcReg, TRI)) { 1601 UI.clearRegisterKills(SrcReg, TRI); 1602 MO.setIsKill(true); 1603 break; 1604 } 1605 } 1606 } 1607 } 1608 } 1609 1610 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1611 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1612 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1613 MachineFunction &MF = *SuccBB->getParent(); 1614 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1615 for (unsigned DefReg : DefedRegsInCopy) 1616 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1617 SuccBB->removeLiveIn(*S); 1618 for (auto U : UsedOpsInCopy) { 1619 Register SrcReg = MI->getOperand(U).getReg(); 1620 LaneBitmask Mask; 1621 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1622 Mask |= (*S).second; 1623 } 1624 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1625 } 1626 SuccBB->sortUniqueLiveIns(); 1627 } 1628 1629 static bool hasRegisterDependency(MachineInstr *MI, 1630 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1631 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1632 LiveRegUnits &ModifiedRegUnits, 1633 LiveRegUnits &UsedRegUnits) { 1634 bool HasRegDependency = false; 1635 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1636 MachineOperand &MO = MI->getOperand(i); 1637 if (!MO.isReg()) 1638 continue; 1639 Register Reg = MO.getReg(); 1640 if (!Reg) 1641 continue; 1642 if (MO.isDef()) { 1643 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1644 HasRegDependency = true; 1645 break; 1646 } 1647 DefedRegsInCopy.push_back(Reg); 1648 1649 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1650 // For example, we can ignore modifications in reg with undef. However, 1651 // it's not perfectly clear if skipping the internal read is safe in all 1652 // other targets. 1653 } else if (MO.isUse()) { 1654 if (!ModifiedRegUnits.available(Reg)) { 1655 HasRegDependency = true; 1656 break; 1657 } 1658 UsedOpsInCopy.push_back(i); 1659 } 1660 } 1661 return HasRegDependency; 1662 } 1663 1664 static SmallSet<MCRegister, 4> getRegUnits(MCRegister Reg, 1665 const TargetRegisterInfo *TRI) { 1666 SmallSet<MCRegister, 4> RegUnits; 1667 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1668 RegUnits.insert(*RI); 1669 return RegUnits; 1670 } 1671 1672 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1673 MachineFunction &MF, 1674 const TargetRegisterInfo *TRI, 1675 const TargetInstrInfo *TII) { 1676 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1677 // FIXME: For now, we sink only to a successor which has a single predecessor 1678 // so that we can directly sink COPY instructions to the successor without 1679 // adding any new block or branch instruction. 1680 for (MachineBasicBlock *SI : CurBB.successors()) 1681 if (!SI->livein_empty() && SI->pred_size() == 1) 1682 SinkableBBs.insert(SI); 1683 1684 if (SinkableBBs.empty()) 1685 return false; 1686 1687 bool Changed = false; 1688 1689 // Track which registers have been modified and used between the end of the 1690 // block and the current instruction. 1691 ModifiedRegUnits.clear(); 1692 UsedRegUnits.clear(); 1693 SeenDbgInstrs.clear(); 1694 1695 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1696 MachineInstr *MI = &*I; 1697 ++I; 1698 1699 // Track the operand index for use in Copy. 1700 SmallVector<unsigned, 2> UsedOpsInCopy; 1701 // Track the register number defed in Copy. 1702 SmallVector<unsigned, 2> DefedRegsInCopy; 1703 1704 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1705 // for DBG_VALUEs later, record them when they're encountered. 1706 if (MI->isDebugValue()) { 1707 auto &MO = MI->getDebugOperand(0); 1708 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1709 // Bail if we can already tell the sink would be rejected, rather 1710 // than needlessly accumulating lots of DBG_VALUEs. 1711 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1712 ModifiedRegUnits, UsedRegUnits)) 1713 continue; 1714 1715 // Record debug use of each reg unit. 1716 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1717 for (MCRegister Reg : Units) 1718 SeenDbgInstrs[Reg].push_back(MI); 1719 } 1720 continue; 1721 } 1722 1723 if (MI->isDebugInstr()) 1724 continue; 1725 1726 // Do not move any instruction across function call. 1727 if (MI->isCall()) 1728 return false; 1729 1730 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1731 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1732 TRI); 1733 continue; 1734 } 1735 1736 // Don't sink the COPY if it would violate a register dependency. 1737 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1738 ModifiedRegUnits, UsedRegUnits)) { 1739 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1740 TRI); 1741 continue; 1742 } 1743 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1744 "Unexpect SrcReg or DefReg"); 1745 MachineBasicBlock *SuccBB = 1746 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1747 // Don't sink if we cannot find a single sinkable successor in which Reg 1748 // is live-in. 1749 if (!SuccBB) { 1750 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1751 TRI); 1752 continue; 1753 } 1754 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1755 "Unexpected predecessor"); 1756 1757 // Collect DBG_VALUEs that must sink with this copy. We've previously 1758 // recorded which reg units that DBG_VALUEs read, if this instruction 1759 // writes any of those units then the corresponding DBG_VALUEs must sink. 1760 SetVector<MachineInstr *> DbgValsToSinkSet; 1761 for (auto &MO : MI->operands()) { 1762 if (!MO.isReg() || !MO.isDef()) 1763 continue; 1764 1765 SmallSet<MCRegister, 4> Units = getRegUnits(MO.getReg(), TRI); 1766 for (MCRegister Reg : Units) 1767 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1768 DbgValsToSinkSet.insert(MI); 1769 } 1770 SmallVector<MachineInstr *, 4> DbgValsToSink(DbgValsToSinkSet.begin(), 1771 DbgValsToSinkSet.end()); 1772 1773 // Clear the kill flag if SrcReg is killed between MI and the end of the 1774 // block. 1775 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1776 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1777 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1778 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1779 1780 Changed = true; 1781 ++NumPostRACopySink; 1782 } 1783 return Changed; 1784 } 1785 1786 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1787 if (skipFunction(MF.getFunction())) 1788 return false; 1789 1790 bool Changed = false; 1791 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1792 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1793 1794 ModifiedRegUnits.init(*TRI); 1795 UsedRegUnits.init(*TRI); 1796 for (auto &BB : MF) 1797 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1798 1799 return Changed; 1800 } 1801