1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/SetVector.h" 23 #include "llvm/ADT/SmallSet.h" 24 #include "llvm/ADT/SmallVector.h" 25 #include "llvm/ADT/Statistic.h" 26 #include "llvm/Analysis/AliasAnalysis.h" 27 #include "llvm/Analysis/CFG.h" 28 #include "llvm/Analysis/ProfileSummaryInfo.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/MachineSizeOpts.h" 42 #include "llvm/CodeGen/RegisterClassInfo.h" 43 #include "llvm/CodeGen/RegisterPressure.h" 44 #include "llvm/CodeGen/TargetInstrInfo.h" 45 #include "llvm/CodeGen/TargetPassConfig.h" 46 #include "llvm/CodeGen/TargetRegisterInfo.h" 47 #include "llvm/CodeGen/TargetSubtargetInfo.h" 48 #include "llvm/IR/BasicBlock.h" 49 #include "llvm/IR/DebugInfoMetadata.h" 50 #include "llvm/IR/LLVMContext.h" 51 #include "llvm/InitializePasses.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <cassert> 58 #include <cstdint> 59 #include <utility> 60 #include <vector> 61 62 using namespace llvm; 63 64 #define DEBUG_TYPE "machine-sink" 65 66 static cl::opt<bool> 67 SplitEdges("machine-sink-split", 68 cl::desc("Split critical edges during machine sinking"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<bool> UseBlockFreqInfo( 72 "machine-sink-bfi", 73 cl::desc("Use block frequency info to find successors to sink"), 74 cl::init(true), cl::Hidden); 75 76 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 77 "machine-sink-split-probability-threshold", 78 cl::desc( 79 "Percentage threshold for splitting single-instruction critical edge. " 80 "If the branch threshold is higher than this threshold, we allow " 81 "speculative execution of up to 1 instruction to avoid branching to " 82 "splitted critical edge"), 83 cl::init(40), cl::Hidden); 84 85 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 86 "machine-sink-load-instrs-threshold", 87 cl::desc("Do not try to find alias store for a load if there is a in-path " 88 "block whose instruction number is higher than this threshold."), 89 cl::init(2000), cl::Hidden); 90 91 static cl::opt<unsigned> SinkLoadBlocksThreshold( 92 "machine-sink-load-blocks-threshold", 93 cl::desc("Do not try to find alias store for a load if the block number in " 94 "the straight line is higher than this threshold."), 95 cl::init(20), cl::Hidden); 96 97 static cl::opt<bool> 98 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 99 cl::desc("Sink instructions into cycles to avoid " 100 "register spills"), 101 cl::init(false), cl::Hidden); 102 103 static cl::opt<unsigned> SinkIntoCycleLimit( 104 "machine-sink-cycle-limit", 105 cl::desc( 106 "The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 ProfileSummaryInfo *PSI = nullptr; 126 MachineBlockFrequencyInfo *MBFI = nullptr; 127 const MachineBranchProbabilityInfo *MBPI = nullptr; 128 AliasAnalysis *AA = nullptr; 129 RegisterClassInfo RegClassInfo; 130 131 // Remember which edges have been considered for breaking. 132 SmallSet<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 8> 133 CEBCandidates; 134 // Memorize the register that also wanted to sink into the same block along 135 // a different critical edge. 136 // {register to sink, sink-to block} -> the first sink-from block. 137 // We're recording the first sink-from block because that (critical) edge 138 // was deferred until we see another register that's going to sink into the 139 // same block. 140 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 141 CEMergeCandidates; 142 // Remember which edges we are about to split. 143 // This is different from CEBCandidates since those edges 144 // will be split. 145 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 146 147 DenseSet<Register> RegsToClearKillFlags; 148 149 using AllSuccsCache = 150 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 151 152 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 153 /// post-dominated by another DBG_VALUE of the same variable location. 154 /// This is necessary to detect sequences such as: 155 /// %0 = someinst 156 /// DBG_VALUE %0, !123, !DIExpression() 157 /// %1 = anotherinst 158 /// DBG_VALUE %1, !123, !DIExpression() 159 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 160 /// would re-order assignments. 161 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 162 163 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 164 /// debug instructions to sink. 165 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 166 167 /// Record of debug variables that have had their locations set in the 168 /// current block. 169 DenseSet<DebugVariable> SeenDbgVars; 170 171 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 172 HasStoreCache; 173 174 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 175 SmallVector<MachineInstr *>> 176 StoreInstrCache; 177 178 /// Cached BB's register pressure. 179 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 180 CachedRegisterPressure; 181 182 bool EnableSinkAndFold; 183 184 public: 185 static char ID; // Pass identification 186 187 MachineSinking() : MachineFunctionPass(ID) { 188 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 189 } 190 191 bool runOnMachineFunction(MachineFunction &MF) override; 192 193 void getAnalysisUsage(AnalysisUsage &AU) const override { 194 MachineFunctionPass::getAnalysisUsage(AU); 195 AU.addRequired<AAResultsWrapperPass>(); 196 AU.addRequired<MachineDominatorTreeWrapperPass>(); 197 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 198 AU.addRequired<MachineCycleInfoWrapperPass>(); 199 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 200 AU.addPreserved<MachineCycleInfoWrapperPass>(); 201 AU.addPreserved<MachineLoopInfoWrapperPass>(); 202 AU.addRequired<ProfileSummaryInfoWrapperPass>(); 203 if (UseBlockFreqInfo) 204 AU.addRequired<MachineBlockFrequencyInfoWrapperPass>(); 205 AU.addRequired<TargetPassConfig>(); 206 } 207 208 void releaseMemory() override { 209 CEBCandidates.clear(); 210 CEMergeCandidates.clear(); 211 } 212 213 private: 214 bool ProcessBlock(MachineBasicBlock &MBB); 215 void ProcessDbgInst(MachineInstr &MI); 216 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 217 MachineBasicBlock *To, bool BreakPHIEdge); 218 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 219 MachineBasicBlock *To, 220 MachineBasicBlock *&DeferredFromBlock); 221 222 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 223 MachineInstr &MI); 224 225 /// Postpone the splitting of the given critical 226 /// edge (\p From, \p To). 227 /// 228 /// We do not split the edges on the fly. Indeed, this invalidates 229 /// the dominance information and thus triggers a lot of updates 230 /// of that information underneath. 231 /// Instead, we postpone all the splits after each iteration of 232 /// the main loop. That way, the information is at least valid 233 /// for the lifetime of an iteration. 234 /// 235 /// \return True if the edge is marked as toSplit, false otherwise. 236 /// False can be returned if, for instance, this is not profitable. 237 bool PostponeSplitCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 238 MachineBasicBlock *To, bool BreakPHIEdge); 239 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 240 AllSuccsCache &AllSuccessors); 241 242 /// If we sink a COPY inst, some debug users of it's destination may no 243 /// longer be dominated by the COPY, and will eventually be dropped. 244 /// This is easily rectified by forwarding the non-dominated debug uses 245 /// to the copy source. 246 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 247 MachineBasicBlock *TargetBlock); 248 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 249 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 250 bool &LocalUse) const; 251 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 252 bool &BreakPHIEdge, 253 AllSuccsCache &AllSuccessors); 254 255 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 256 SmallVectorImpl<MachineInstr *> &Candidates); 257 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 258 259 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 260 MachineBasicBlock *MBB, 261 MachineBasicBlock *SuccToSinkTo, 262 AllSuccsCache &AllSuccessors); 263 264 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 265 MachineBasicBlock *MBB); 266 267 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 268 269 SmallVector<MachineBasicBlock *, 4> & 270 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 271 AllSuccsCache &AllSuccessors) const; 272 273 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 274 275 bool registerPressureSetExceedsLimit(unsigned NRegs, 276 const TargetRegisterClass *RC, 277 const MachineBasicBlock &MBB); 278 }; 279 280 } // end anonymous namespace 281 282 char MachineSinking::ID = 0; 283 284 char &llvm::MachineSinkingID = MachineSinking::ID; 285 286 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 287 false) 288 INITIALIZE_PASS_DEPENDENCY(ProfileSummaryInfoWrapperPass) 289 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 290 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 291 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 292 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 293 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, "Machine code sinking", false, 294 false) 295 296 /// Return true if a target defined block prologue instruction interferes 297 /// with a sink candidate. 298 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 299 MachineBasicBlock::const_iterator End, 300 const MachineInstr &MI, 301 const TargetRegisterInfo *TRI, 302 const TargetInstrInfo *TII, 303 const MachineRegisterInfo *MRI) { 304 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 305 ++PI) { 306 // Only check target defined prologue instructions 307 if (!TII->isBasicBlockPrologue(*PI)) 308 continue; 309 for (auto &MO : MI.operands()) { 310 if (!MO.isReg()) 311 continue; 312 Register Reg = MO.getReg(); 313 if (!Reg) 314 continue; 315 if (MO.isUse()) { 316 if (Reg.isPhysical() && 317 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 318 continue; 319 if (PI->modifiesRegister(Reg, TRI)) 320 return true; 321 } else { 322 if (PI->readsRegister(Reg, TRI)) 323 return true; 324 // Check for interference with non-dead defs 325 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 326 if (DefOp && !DefOp->isDead()) 327 return true; 328 } 329 } 330 } 331 332 return false; 333 } 334 335 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 336 MachineBasicBlock *MBB) { 337 if (!MI.isCopy()) 338 return false; 339 340 Register SrcReg = MI.getOperand(1).getReg(); 341 Register DstReg = MI.getOperand(0).getReg(); 342 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 343 !MRI->hasOneNonDBGUse(SrcReg)) 344 return false; 345 346 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 347 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 348 if (SRC != DRC) 349 return false; 350 351 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 352 if (DefMI->isCopyLike()) 353 return false; 354 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 355 LLVM_DEBUG(dbgs() << "*** to: " << MI); 356 MRI->replaceRegWith(DstReg, SrcReg); 357 MI.eraseFromParent(); 358 359 // Conservatively, clear any kill flags, since it's possible that they are no 360 // longer correct. 361 MRI->clearKillFlags(SrcReg); 362 363 ++NumCoalesces; 364 return true; 365 } 366 367 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 368 MachineBasicBlock *MBB) { 369 if (MI.isCopy() || MI.mayLoadOrStore() || 370 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 371 return false; 372 373 // Don't sink instructions that the target prefers not to sink. 374 if (!TII->shouldSink(MI)) 375 return false; 376 377 // Check if it's safe to move the instruction. 378 bool SawStore = true; 379 if (!MI.isSafeToMove(SawStore)) 380 return false; 381 382 // Convergent operations may not be made control-dependent on additional 383 // values. 384 if (MI.isConvergent()) 385 return false; 386 387 // Don't sink defs/uses of hard registers or if the instruction defines more 388 // than one register. 389 // Don't sink more than two register uses - it'll cover most of the cases and 390 // greatly simplifies the register pressure checks. 391 Register DefReg; 392 Register UsedRegA, UsedRegB; 393 for (const MachineOperand &MO : MI.operands()) { 394 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 395 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 396 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 397 continue; 398 if (!MO.isReg()) 399 return false; 400 401 Register Reg = MO.getReg(); 402 if (Reg == 0) 403 continue; 404 405 if (Reg.isVirtual()) { 406 if (MO.isDef()) { 407 if (DefReg) 408 return false; 409 DefReg = Reg; 410 continue; 411 } 412 413 if (UsedRegA == 0) 414 UsedRegA = Reg; 415 else if (UsedRegB == 0) 416 UsedRegB = Reg; 417 else 418 return false; 419 continue; 420 } 421 422 if (Reg.isPhysical() && MO.isUse() && 423 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 424 continue; 425 426 return false; 427 } 428 429 // Scan uses of the destination register. Every use, except the last, must be 430 // a copy, with a chain of copies terminating with either a copy into a hard 431 // register, or a load/store instruction where the use is part of the 432 // address (*not* the stored value). 433 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 434 SmallVector<SinkInfo> SinkInto; 435 SmallVector<Register> Worklist; 436 437 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 438 const TargetRegisterClass *RCA = 439 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 440 const TargetRegisterClass *RCB = 441 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 442 443 Worklist.push_back(DefReg); 444 while (!Worklist.empty()) { 445 Register Reg = Worklist.pop_back_val(); 446 447 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 448 ExtAddrMode MaybeAM; 449 MachineInstr &UseInst = *MO.getParent(); 450 if (UseInst.isCopy()) { 451 Register DstReg; 452 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 453 DstReg = O.getReg(); 454 if (DstReg == 0) 455 return false; 456 if (DstReg.isVirtual()) { 457 Worklist.push_back(DstReg); 458 continue; 459 } 460 // If we are going to replace a copy, the original instruction must be 461 // as cheap as a copy. 462 if (!TII->isAsCheapAsAMove(MI)) 463 return false; 464 // The hard register must be in the register class of the original 465 // instruction's destination register. 466 if (!RC->contains(DstReg)) 467 return false; 468 } else if (UseInst.mayLoadOrStore()) { 469 ExtAddrMode AM; 470 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 471 return false; 472 MaybeAM = AM; 473 } else { 474 return false; 475 } 476 477 if (UseInst.getParent() != MI.getParent()) { 478 // If the register class of the register we are replacing is a superset 479 // of any of the register classes of the operands of the materialized 480 // instruction don't consider that live range extended. 481 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 482 if (RCA && RCA->hasSuperClassEq(RCS)) 483 RCA = nullptr; 484 else if (RCB && RCB->hasSuperClassEq(RCS)) 485 RCB = nullptr; 486 if (RCA || RCB) { 487 if (RCA == nullptr) { 488 RCA = RCB; 489 RCB = nullptr; 490 } 491 492 unsigned NRegs = !!RCA + !!RCB; 493 if (RCA == RCB) 494 RCB = nullptr; 495 496 // Check we don't exceed register pressure at the destination. 497 const MachineBasicBlock &MBB = *UseInst.getParent(); 498 if (RCB == nullptr) { 499 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 500 return false; 501 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 502 registerPressureSetExceedsLimit(1, RCB, MBB)) { 503 return false; 504 } 505 } 506 } 507 508 SinkInto.emplace_back(&UseInst, MaybeAM); 509 } 510 } 511 512 if (SinkInto.empty()) 513 return false; 514 515 // Now we know we can fold the instruction in all its users. 516 for (auto &[SinkDst, MaybeAM] : SinkInto) { 517 MachineInstr *New = nullptr; 518 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 519 SinkDst->dump()); 520 if (SinkDst->isCopy()) { 521 // TODO: After performing the sink-and-fold, the original instruction is 522 // deleted. Its value is still available (in a hard register), so if there 523 // are debug instructions which refer to the (now deleted) virtual 524 // register they could be updated to refer to the hard register, in 525 // principle. However, it's not clear how to do that, moreover in some 526 // cases the debug instructions may need to be replicated proportionally 527 // to the number of the COPY instructions replaced and in some extreme 528 // cases we can end up with quadratic increase in the number of debug 529 // instructions. 530 531 // Sink a copy of the instruction, replacing a COPY instruction. 532 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 533 Register DstReg = SinkDst->getOperand(0).getReg(); 534 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 535 New = &*std::prev(InsertPt); 536 if (!New->getDebugLoc()) 537 New->setDebugLoc(SinkDst->getDebugLoc()); 538 539 // The operand registers of the "sunk" instruction have their live range 540 // extended and their kill flags may no longer be correct. Conservatively 541 // clear the kill flags. 542 if (UsedRegA) 543 MRI->clearKillFlags(UsedRegA); 544 if (UsedRegB) 545 MRI->clearKillFlags(UsedRegB); 546 } else { 547 // Fold instruction into the addressing mode of a memory instruction. 548 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 549 550 // The registers of the addressing mode may have their live range extended 551 // and their kill flags may no longer be correct. Conservatively clear the 552 // kill flags. 553 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 554 MRI->clearKillFlags(R); 555 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 556 MRI->clearKillFlags(R); 557 } 558 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 559 // Clear the StoreInstrCache, since we may invalidate it by erasing. 560 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 561 StoreInstrCache.clear(); 562 SinkDst->eraseFromParent(); 563 } 564 565 // Collect operands that need to be cleaned up because the registers no longer 566 // exist (in COPYs and debug instructions). We cannot delete instructions or 567 // clear operands while traversing register uses. 568 SmallVector<MachineOperand *> Cleanup; 569 Worklist.push_back(DefReg); 570 while (!Worklist.empty()) { 571 Register Reg = Worklist.pop_back_val(); 572 for (MachineOperand &MO : MRI->use_operands(Reg)) { 573 MachineInstr *U = MO.getParent(); 574 assert((U->isCopy() || U->isDebugInstr()) && 575 "Only debug uses and copies must remain"); 576 if (U->isCopy()) 577 Worklist.push_back(U->getOperand(0).getReg()); 578 Cleanup.push_back(&MO); 579 } 580 } 581 582 // Delete the dead COPYs and clear operands in debug instructions 583 for (MachineOperand *MO : Cleanup) { 584 MachineInstr *I = MO->getParent(); 585 if (I->isCopy()) { 586 I->eraseFromParent(); 587 } else { 588 MO->setReg(0); 589 MO->setSubReg(0); 590 } 591 } 592 593 MI.eraseFromParent(); 594 return true; 595 } 596 597 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 598 /// occur in blocks dominated by the specified block. If any use is in the 599 /// definition block, then return false since it is never legal to move def 600 /// after uses. 601 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 602 MachineBasicBlock *MBB, 603 MachineBasicBlock *DefMBB, 604 bool &BreakPHIEdge, 605 bool &LocalUse) const { 606 assert(Reg.isVirtual() && "Only makes sense for vregs"); 607 608 // Ignore debug uses because debug info doesn't affect the code. 609 if (MRI->use_nodbg_empty(Reg)) 610 return true; 611 612 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 613 // into and they are all PHI nodes. In this case, machine-sink must break 614 // the critical edge first. e.g. 615 // 616 // %bb.1: 617 // Predecessors according to CFG: %bb.0 618 // ... 619 // %def = DEC64_32r %x, implicit-def dead %eflags 620 // ... 621 // JE_4 <%bb.37>, implicit %eflags 622 // Successors according to CFG: %bb.37 %bb.2 623 // 624 // %bb.2: 625 // %p = PHI %y, %bb.0, %def, %bb.1 626 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 627 MachineInstr *UseInst = MO.getParent(); 628 unsigned OpNo = MO.getOperandNo(); 629 MachineBasicBlock *UseBlock = UseInst->getParent(); 630 return UseBlock == MBB && UseInst->isPHI() && 631 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 632 })) { 633 BreakPHIEdge = true; 634 return true; 635 } 636 637 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 638 // Determine the block of the use. 639 MachineInstr *UseInst = MO.getParent(); 640 unsigned OpNo = &MO - &UseInst->getOperand(0); 641 MachineBasicBlock *UseBlock = UseInst->getParent(); 642 if (UseInst->isPHI()) { 643 // PHI nodes use the operand in the predecessor block, not the block with 644 // the PHI. 645 UseBlock = UseInst->getOperand(OpNo + 1).getMBB(); 646 } else if (UseBlock == DefMBB) { 647 LocalUse = true; 648 return false; 649 } 650 651 // Check that it dominates. 652 if (!DT->dominates(MBB, UseBlock)) 653 return false; 654 } 655 656 return true; 657 } 658 659 /// Return true if this machine instruction loads from global offset table or 660 /// constant pool. 661 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 662 assert(MI.mayLoad() && "Expected MI that loads!"); 663 664 // If we lost memory operands, conservatively assume that the instruction 665 // reads from everything.. 666 if (MI.memoperands_empty()) 667 return true; 668 669 for (MachineMemOperand *MemOp : MI.memoperands()) 670 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 671 if (PSV->isGOT() || PSV->isConstantPool()) 672 return true; 673 674 return false; 675 } 676 677 void MachineSinking::FindCycleSinkCandidates( 678 MachineCycle *Cycle, MachineBasicBlock *BB, 679 SmallVectorImpl<MachineInstr *> &Candidates) { 680 for (auto &MI : *BB) { 681 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 682 if (!TII->shouldSink(MI)) { 683 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 684 "target\n"); 685 continue; 686 } 687 if (!isCycleInvariant(Cycle, MI)) { 688 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 689 continue; 690 } 691 bool DontMoveAcrossStore = true; 692 if (!MI.isSafeToMove(DontMoveAcrossStore)) { 693 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 694 continue; 695 } 696 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 697 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 698 continue; 699 } 700 if (MI.isConvergent()) 701 continue; 702 703 const MachineOperand &MO = MI.getOperand(0); 704 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 705 continue; 706 if (!MRI->hasOneDef(MO.getReg())) 707 continue; 708 709 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 710 Candidates.push_back(&MI); 711 } 712 } 713 714 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 715 if (skipFunction(MF.getFunction())) 716 return false; 717 718 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 719 720 STI = &MF.getSubtarget(); 721 TII = STI->getInstrInfo(); 722 TRI = STI->getRegisterInfo(); 723 MRI = &MF.getRegInfo(); 724 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 725 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 726 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 727 PSI = &getAnalysis<ProfileSummaryInfoWrapperPass>().getPSI(); 728 MBFI = UseBlockFreqInfo 729 ? &getAnalysis<MachineBlockFrequencyInfoWrapperPass>().getMBFI() 730 : nullptr; 731 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 732 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 733 RegClassInfo.runOnMachineFunction(MF); 734 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 735 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 736 737 bool EverMadeChange = false; 738 739 while (true) { 740 bool MadeChange = false; 741 742 // Process all basic blocks. 743 CEBCandidates.clear(); 744 CEMergeCandidates.clear(); 745 ToSplit.clear(); 746 for (auto &MBB : MF) 747 MadeChange |= ProcessBlock(MBB); 748 749 // If we have anything we marked as toSplit, split it now. 750 for (const auto &Pair : ToSplit) { 751 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 752 if (NewSucc != nullptr) { 753 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 754 << printMBBReference(*Pair.first) << " -- " 755 << printMBBReference(*NewSucc) << " -- " 756 << printMBBReference(*Pair.second) << '\n'); 757 if (MBFI) 758 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 759 760 MadeChange = true; 761 ++NumSplit; 762 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 763 } else 764 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 765 } 766 // If this iteration over the code changed anything, keep iterating. 767 if (!MadeChange) 768 break; 769 EverMadeChange = true; 770 } 771 772 if (SinkInstsIntoCycle) { 773 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_cycles()); 774 for (auto *Cycle : Cycles) { 775 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 776 if (!Preheader) { 777 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 778 continue; 779 } 780 SmallVector<MachineInstr *, 8> Candidates; 781 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 782 783 // Walk the candidates in reverse order so that we start with the use 784 // of a def-use chain, if there is any. 785 // TODO: Sort the candidates using a cost-model. 786 unsigned i = 0; 787 for (MachineInstr *I : llvm::reverse(Candidates)) { 788 if (i++ == SinkIntoCycleLimit) { 789 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 790 "be analysed."); 791 break; 792 } 793 794 if (!SinkIntoCycle(Cycle, *I)) 795 break; 796 EverMadeChange = true; 797 ++NumCycleSunk; 798 } 799 } 800 } 801 802 HasStoreCache.clear(); 803 StoreInstrCache.clear(); 804 805 // Now clear any kill flags for recorded registers. 806 for (auto I : RegsToClearKillFlags) 807 MRI->clearKillFlags(I); 808 RegsToClearKillFlags.clear(); 809 810 return EverMadeChange; 811 } 812 813 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 814 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 815 return false; 816 817 // Don't bother sinking code out of unreachable blocks. In addition to being 818 // unprofitable, it can also lead to infinite looping, because in an 819 // unreachable cycle there may be nowhere to stop. 820 if (!DT->isReachableFromEntry(&MBB)) 821 return false; 822 823 bool MadeChange = false; 824 825 // Cache all successors, sorted by frequency info and cycle depth. 826 AllSuccsCache AllSuccessors; 827 828 // Walk the basic block bottom-up. Remember if we saw a store. 829 MachineBasicBlock::iterator I = MBB.end(); 830 --I; 831 bool ProcessedBegin, SawStore = false; 832 do { 833 MachineInstr &MI = *I; // The instruction to sink. 834 835 // Predecrement I (if it's not begin) so that it isn't invalidated by 836 // sinking. 837 ProcessedBegin = I == MBB.begin(); 838 if (!ProcessedBegin) 839 --I; 840 841 if (MI.isDebugOrPseudoInstr() || MI.isFakeUse()) { 842 if (MI.isDebugValue()) 843 ProcessDbgInst(MI); 844 continue; 845 } 846 847 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 848 MadeChange = true; 849 continue; 850 } 851 852 // Can't sink anything out of a block that has less than two successors. 853 if (MBB.succ_size() <= 1) 854 continue; 855 856 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 857 MadeChange = true; 858 continue; 859 } 860 861 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 862 ++NumSunk; 863 MadeChange = true; 864 } 865 866 // If we just processed the first instruction in the block, we're done. 867 } while (!ProcessedBegin); 868 869 SeenDbgUsers.clear(); 870 SeenDbgVars.clear(); 871 // recalculate the bb register pressure after sinking one BB. 872 CachedRegisterPressure.clear(); 873 return MadeChange; 874 } 875 876 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 877 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 878 // we know what to sink if the vreg def sinks. 879 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 880 881 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 882 MI.getDebugLoc()->getInlinedAt()); 883 bool SeenBefore = SeenDbgVars.contains(Var); 884 885 for (MachineOperand &MO : MI.debug_operands()) { 886 if (MO.isReg() && MO.getReg().isVirtual()) 887 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 888 } 889 890 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 891 SeenDbgVars.insert(Var); 892 } 893 894 bool MachineSinking::isWorthBreakingCriticalEdge( 895 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 896 MachineBasicBlock *&DeferredFromBlock) { 897 // FIXME: Need much better heuristics. 898 899 // If the pass has already considered breaking this edge (during this pass 900 // through the function), then let's go ahead and break it. This means 901 // sinking multiple "cheap" instructions into the same block. 902 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 903 return true; 904 905 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 906 return true; 907 908 // Check and record the register and the destination block we want to sink 909 // into. Note that we want to do the following before the next check on branch 910 // probability. Because we want to record the initial candidate even if it's 911 // on hot edge, so that other candidates that might not on hot edges can be 912 // sinked as well. 913 for (const auto &MO : MI.all_defs()) { 914 Register Reg = MO.getReg(); 915 if (!Reg) 916 continue; 917 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 918 auto Key = std::make_pair(SrcReg, To); 919 auto Res = CEMergeCandidates.try_emplace(Key, From); 920 // We wanted to sink the same register into the same block, consider it to 921 // be profitable. 922 if (!Res.second) { 923 // Return the source block that was previously held off. 924 DeferredFromBlock = Res.first->second; 925 return true; 926 } 927 } 928 929 if (From->isSuccessor(To) && 930 MBPI->getEdgeProbability(From, To) <= 931 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 932 return true; 933 934 // MI is cheap, we probably don't want to break the critical edge for it. 935 // However, if this would allow some definitions of its source operands 936 // to be sunk then it's probably worth it. 937 for (const MachineOperand &MO : MI.all_uses()) { 938 Register Reg = MO.getReg(); 939 if (Reg == 0) 940 continue; 941 942 // We don't move live definitions of physical registers, 943 // so sinking their uses won't enable any opportunities. 944 if (Reg.isPhysical()) 945 continue; 946 947 // If this instruction is the only user of a virtual register, 948 // check if breaking the edge will enable sinking 949 // both this instruction and the defining instruction. 950 if (MRI->hasOneNonDBGUse(Reg)) { 951 // If the definition resides in same MBB, 952 // claim it's likely we can sink these together. 953 // If definition resides elsewhere, we aren't 954 // blocking it from being sunk so don't break the edge. 955 MachineInstr *DefMI = MRI->getVRegDef(Reg); 956 if (DefMI->getParent() == MI.getParent()) 957 return true; 958 } 959 } 960 961 // Let the target decide if it's worth breaking this 962 // critical edge for a "cheap" instruction. 963 return TII->shouldBreakCriticalEdgeToSink(MI); 964 } 965 966 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 967 MachineBasicBlock *FromBB, 968 MachineBasicBlock *ToBB, 969 bool BreakPHIEdge) { 970 // Avoid breaking back edge. From == To means backedge for single BB cycle. 971 if (!SplitEdges || FromBB == ToBB || !FromBB->isSuccessor(ToBB)) 972 return false; 973 974 MachineCycle *FromCycle = CI->getCycle(FromBB); 975 MachineCycle *ToCycle = CI->getCycle(ToBB); 976 977 // Check for backedges of more "complex" cycles. 978 if (FromCycle == ToCycle && FromCycle && 979 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 980 return false; 981 982 // It's not always legal to break critical edges and sink the computation 983 // to the edge. 984 // 985 // %bb.1: 986 // v1024 987 // Beq %bb.3 988 // <fallthrough> 989 // %bb.2: 990 // ... no uses of v1024 991 // <fallthrough> 992 // %bb.3: 993 // ... 994 // = v1024 995 // 996 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 997 // 998 // %bb.1: 999 // ... 1000 // Bne %bb.2 1001 // %bb.4: 1002 // v1024 = 1003 // B %bb.3 1004 // %bb.2: 1005 // ... no uses of v1024 1006 // <fallthrough> 1007 // %bb.3: 1008 // ... 1009 // = v1024 1010 // 1011 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1012 // flow. We need to ensure the new basic block where the computation is 1013 // sunk to dominates all the uses. 1014 // It's only legal to break critical edge and sink the computation to the 1015 // new block if all the predecessors of "To", except for "From", are 1016 // not dominated by "From". Given SSA property, this means these 1017 // predecessors are dominated by "To". 1018 // 1019 // There is no need to do this check if all the uses are PHI nodes. PHI 1020 // sources are only defined on the specific predecessor edges. 1021 if (!BreakPHIEdge) { 1022 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1023 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1024 return false; 1025 } 1026 1027 return true; 1028 } 1029 1030 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1031 MachineBasicBlock *FromBB, 1032 MachineBasicBlock *ToBB, 1033 bool BreakPHIEdge) { 1034 bool Status = false; 1035 MachineBasicBlock *DeferredFromBB = nullptr; 1036 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1037 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1038 // of them are legal to split. 1039 if ((!DeferredFromBB || 1040 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1041 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1042 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1043 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1044 if (DeferredFromBB) 1045 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1046 Status = true; 1047 } 1048 } 1049 1050 return Status; 1051 } 1052 1053 std::vector<unsigned> & 1054 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 1055 // Currently to save compiling time, MBB's register pressure will not change 1056 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1057 // register pressure is changed after sinking any instructions into it. 1058 // FIXME: need a accurate and cheap register pressure estiminate model here. 1059 auto RP = CachedRegisterPressure.find(&MBB); 1060 if (RP != CachedRegisterPressure.end()) 1061 return RP->second; 1062 1063 RegionPressure Pressure; 1064 RegPressureTracker RPTracker(Pressure); 1065 1066 // Initialize the register pressure tracker. 1067 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1068 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1069 1070 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1071 MIE = MBB.instr_begin(); 1072 MII != MIE; --MII) { 1073 const MachineInstr &MI = *std::prev(MII); 1074 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1075 continue; 1076 RegisterOperands RegOpers; 1077 RegOpers.collect(MI, *TRI, *MRI, false, false); 1078 RPTracker.recedeSkipDebugValues(); 1079 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1080 RPTracker.recede(RegOpers); 1081 } 1082 1083 RPTracker.closeRegion(); 1084 auto It = CachedRegisterPressure.insert( 1085 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1086 return It.first->second; 1087 } 1088 1089 bool MachineSinking::registerPressureSetExceedsLimit( 1090 unsigned NRegs, const TargetRegisterClass *RC, 1091 const MachineBasicBlock &MBB) { 1092 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1093 const int *PS = TRI->getRegClassPressureSets(RC); 1094 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1095 for (; *PS != -1; PS++) 1096 if (Weight + BBRegisterPressure[*PS] >= 1097 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1098 return true; 1099 return false; 1100 } 1101 1102 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1103 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1104 MachineBasicBlock *MBB, 1105 MachineBasicBlock *SuccToSinkTo, 1106 AllSuccsCache &AllSuccessors) { 1107 assert(SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1108 1109 if (MBB == SuccToSinkTo) 1110 return false; 1111 1112 // It is profitable if SuccToSinkTo does not post dominate current block. 1113 if (!PDT->dominates(SuccToSinkTo, MBB)) 1114 return true; 1115 1116 // It is profitable to sink an instruction from a deeper cycle to a shallower 1117 // cycle, even if the latter post-dominates the former (PR21115). 1118 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1119 return true; 1120 1121 // Check if only use in post dominated block is PHI instruction. 1122 bool NonPHIUse = false; 1123 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1124 MachineBasicBlock *UseBlock = UseInst.getParent(); 1125 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1126 NonPHIUse = true; 1127 } 1128 if (!NonPHIUse) 1129 return true; 1130 1131 // If SuccToSinkTo post dominates then also it may be profitable if MI 1132 // can further profitably sinked into another block in next round. 1133 bool BreakPHIEdge = false; 1134 // FIXME - If finding successor is compile time expensive then cache results. 1135 if (MachineBasicBlock *MBB2 = 1136 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1137 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1138 1139 MachineCycle *MCycle = CI->getCycle(MBB); 1140 1141 // If the instruction is not inside a cycle, it is not profitable to sink MI 1142 // to a post dominate block SuccToSinkTo. 1143 if (!MCycle) 1144 return false; 1145 1146 // If this instruction is inside a Cycle and sinking this instruction can make 1147 // more registers live range shorten, it is still prifitable. 1148 for (const MachineOperand &MO : MI.operands()) { 1149 // Ignore non-register operands. 1150 if (!MO.isReg()) 1151 continue; 1152 Register Reg = MO.getReg(); 1153 if (Reg == 0) 1154 continue; 1155 1156 if (Reg.isPhysical()) { 1157 // Don't handle non-constant and non-ignorable physical register uses. 1158 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && 1159 !TII->isIgnorableUse(MO)) 1160 return false; 1161 continue; 1162 } 1163 1164 // Users for the defs are all dominated by SuccToSinkTo. 1165 if (MO.isDef()) { 1166 // This def register's live range is shortened after sinking. 1167 bool LocalUse = false; 1168 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1169 LocalUse)) 1170 return false; 1171 } else { 1172 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1173 if (!DefMI) 1174 continue; 1175 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1176 // DefMI is defined outside of cycle. There should be no live range 1177 // impact for this operand. Defination outside of cycle means: 1178 // 1: defination is outside of cycle. 1179 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1180 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1181 Cycle->getHeader() == DefMI->getParent())) 1182 continue; 1183 // The DefMI is defined inside the cycle. 1184 // If sinking this operand makes some register pressure set exceed limit, 1185 // it is not profitable. 1186 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1187 *SuccToSinkTo)) { 1188 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1189 return false; 1190 } 1191 } 1192 } 1193 1194 // If MI is in cycle and all its operands are alive across the whole cycle or 1195 // if no operand sinking make register pressure set exceed limit, it is 1196 // profitable to sink MI. 1197 return true; 1198 } 1199 1200 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1201 /// computing it if it was not already cached. 1202 SmallVector<MachineBasicBlock *, 4> & 1203 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1204 AllSuccsCache &AllSuccessors) const { 1205 // Do we have the sorted successors in cache ? 1206 auto Succs = AllSuccessors.find(MBB); 1207 if (Succs != AllSuccessors.end()) 1208 return Succs->second; 1209 1210 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1211 1212 // Handle cases where sinking can happen but where the sink point isn't a 1213 // successor. For example: 1214 // 1215 // x = computation 1216 // if () {} else {} 1217 // use x 1218 // 1219 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1220 // DomTree children of MBB that have MBB as immediate dominator are added. 1221 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1222 // Skip MBBs already added to the AllSuccs vector above. 1223 !MBB->isSuccessor(DTChild->getBlock())) 1224 AllSuccs.push_back(DTChild->getBlock()); 1225 } 1226 1227 // Sort Successors according to their cycle depth or block frequency info. 1228 llvm::stable_sort( 1229 AllSuccs, [&](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1230 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1231 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1232 if (llvm::shouldOptimizeForSize(MBB, PSI, MBFI) || 1233 (!LHSFreq && !RHSFreq)) 1234 return CI->getCycleDepth(L) < CI->getCycleDepth(R); 1235 return LHSFreq < RHSFreq; 1236 }); 1237 1238 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1239 1240 return it.first->second; 1241 } 1242 1243 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1244 MachineBasicBlock * 1245 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1246 bool &BreakPHIEdge, 1247 AllSuccsCache &AllSuccessors) { 1248 assert(MBB && "Invalid MachineBasicBlock!"); 1249 1250 // loop over all the operands of the specified instruction. If there is 1251 // anything we can't handle, bail out. 1252 1253 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1254 // decide. 1255 MachineBasicBlock *SuccToSinkTo = nullptr; 1256 for (const MachineOperand &MO : MI.operands()) { 1257 if (!MO.isReg()) 1258 continue; // Ignore non-register operands. 1259 1260 Register Reg = MO.getReg(); 1261 if (Reg == 0) 1262 continue; 1263 1264 if (Reg.isPhysical()) { 1265 if (MO.isUse()) { 1266 // If the physreg has no defs anywhere, it's just an ambient register 1267 // and we can freely move its uses. Alternatively, if it's allocatable, 1268 // it could get allocated to something with a def during allocation. 1269 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1270 return nullptr; 1271 } else if (!MO.isDead()) { 1272 // A def that isn't dead. We can't move it. 1273 return nullptr; 1274 } 1275 } else { 1276 // Virtual register uses are always safe to sink. 1277 if (MO.isUse()) 1278 continue; 1279 1280 // If it's not safe to move defs of the register class, then abort. 1281 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1282 return nullptr; 1283 1284 // Virtual register defs can only be sunk if all their uses are in blocks 1285 // dominated by one of the successors. 1286 if (SuccToSinkTo) { 1287 // If a previous operand picked a block to sink to, then this operand 1288 // must be sinkable to the same block. 1289 bool LocalUse = false; 1290 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1291 LocalUse)) 1292 return nullptr; 1293 1294 continue; 1295 } 1296 1297 // Otherwise, we should look at all the successors and decide which one 1298 // we should sink to. If we have reliable block frequency information 1299 // (frequency != 0) available, give successors with smaller frequencies 1300 // higher priority, otherwise prioritize smaller cycle depths. 1301 for (MachineBasicBlock *SuccBlock : 1302 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1303 bool LocalUse = false; 1304 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, BreakPHIEdge, 1305 LocalUse)) { 1306 SuccToSinkTo = SuccBlock; 1307 break; 1308 } 1309 if (LocalUse) 1310 // Def is used locally, it's never safe to move this def. 1311 return nullptr; 1312 } 1313 1314 // If we couldn't find a block to sink to, ignore this instruction. 1315 if (!SuccToSinkTo) 1316 return nullptr; 1317 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1318 return nullptr; 1319 } 1320 } 1321 1322 // It is not possible to sink an instruction into its own block. This can 1323 // happen with cycles. 1324 if (MBB == SuccToSinkTo) 1325 return nullptr; 1326 1327 // It's not safe to sink instructions to EH landing pad. Control flow into 1328 // landing pad is implicitly defined. 1329 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1330 return nullptr; 1331 1332 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1333 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1334 // the source block (which this code does not yet do). So for now, forbid 1335 // doing so. 1336 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1337 return nullptr; 1338 1339 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1340 return nullptr; 1341 1342 return SuccToSinkTo; 1343 } 1344 1345 /// Return true if MI is likely to be usable as a memory operation by the 1346 /// implicit null check optimization. 1347 /// 1348 /// This is a "best effort" heuristic, and should not be relied upon for 1349 /// correctness. This returning true does not guarantee that the implicit null 1350 /// check optimization is legal over MI, and this returning false does not 1351 /// guarantee MI cannot possibly be used to do a null check. 1352 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1353 const TargetInstrInfo *TII, 1354 const TargetRegisterInfo *TRI) { 1355 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1356 1357 auto *MBB = MI.getParent(); 1358 if (MBB->pred_size() != 1) 1359 return false; 1360 1361 auto *PredMBB = *MBB->pred_begin(); 1362 auto *PredBB = PredMBB->getBasicBlock(); 1363 1364 // Frontends that don't use implicit null checks have no reason to emit 1365 // branches with make.implicit metadata, and this function should always 1366 // return false for them. 1367 if (!PredBB || 1368 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1369 return false; 1370 1371 const MachineOperand *BaseOp; 1372 int64_t Offset; 1373 bool OffsetIsScalable; 1374 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1375 return false; 1376 1377 if (!BaseOp->isReg()) 1378 return false; 1379 1380 if (!(MI.mayLoad() && !MI.isPredicable())) 1381 return false; 1382 1383 MachineBranchPredicate MBP; 1384 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1385 return false; 1386 1387 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1388 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1389 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1390 MBP.LHS.getReg() == BaseOp->getReg(); 1391 } 1392 1393 /// If the sunk instruction is a copy, try to forward the copy instead of 1394 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1395 /// there's any subregister weirdness involved. Returns true if copy 1396 /// propagation occurred. 1397 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1398 Register Reg) { 1399 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1400 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1401 1402 // Copy DBG_VALUE operand and set the original to undef. We then check to 1403 // see whether this is something that can be copy-forwarded. If it isn't, 1404 // continue around the loop. 1405 1406 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1407 auto CopyOperands = TII.isCopyInstr(SinkInst); 1408 if (!CopyOperands) 1409 return false; 1410 SrcMO = CopyOperands->Source; 1411 DstMO = CopyOperands->Destination; 1412 1413 // Check validity of forwarding this copy. 1414 bool PostRA = MRI.getNumVirtRegs() == 0; 1415 1416 // Trying to forward between physical and virtual registers is too hard. 1417 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1418 return false; 1419 1420 // Only try virtual register copy-forwarding before regalloc, and physical 1421 // register copy-forwarding after regalloc. 1422 bool arePhysRegs = !Reg.isVirtual(); 1423 if (arePhysRegs != PostRA) 1424 return false; 1425 1426 // Pre-regalloc, only forward if all subregisters agree (or there are no 1427 // subregs at all). More analysis might recover some forwardable copies. 1428 if (!PostRA) 1429 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1430 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1431 DbgMO.getSubReg() != DstMO->getSubReg()) 1432 return false; 1433 1434 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1435 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1436 // matches the copy destination. 1437 if (PostRA && Reg != DstMO->getReg()) 1438 return false; 1439 1440 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1441 DbgMO.setReg(SrcMO->getReg()); 1442 DbgMO.setSubReg(SrcMO->getSubReg()); 1443 } 1444 return true; 1445 } 1446 1447 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1448 /// Sink an instruction and its associated debug instructions. 1449 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1450 MachineBasicBlock::iterator InsertPos, 1451 ArrayRef<MIRegs> DbgValuesToSink) { 1452 // If we cannot find a location to use (merge with), then we erase the debug 1453 // location to prevent debug-info driven tools from potentially reporting 1454 // wrong location information. 1455 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1456 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1457 InsertPos->getDebugLoc())); 1458 else 1459 MI.setDebugLoc(DebugLoc()); 1460 1461 // Move the instruction. 1462 MachineBasicBlock *ParentBlock = MI.getParent(); 1463 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1464 ++MachineBasicBlock::iterator(MI)); 1465 1466 // Sink a copy of debug users to the insert position. Mark the original 1467 // DBG_VALUE location as 'undef', indicating that any earlier variable 1468 // location should be terminated as we've optimised away the value at this 1469 // point. 1470 for (const auto &DbgValueToSink : DbgValuesToSink) { 1471 MachineInstr *DbgMI = DbgValueToSink.first; 1472 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1473 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1474 1475 bool PropagatedAllSunkOps = true; 1476 for (unsigned Reg : DbgValueToSink.second) { 1477 if (DbgMI->hasDebugOperandForReg(Reg)) { 1478 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1479 PropagatedAllSunkOps = false; 1480 break; 1481 } 1482 } 1483 } 1484 if (!PropagatedAllSunkOps) 1485 DbgMI->setDebugValueUndef(); 1486 } 1487 } 1488 1489 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1490 /// and To. 1491 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1492 MachineBasicBlock *To, MachineInstr &MI) { 1493 // Make sure From and To are in straight line which means From dominates To 1494 // and To post dominates From. 1495 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1496 return true; 1497 1498 auto BlockPair = std::make_pair(From, To); 1499 1500 // Does these two blocks pair be queried before and have a definite cached 1501 // result? 1502 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1503 return It->second; 1504 1505 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1506 return llvm::any_of(It->second, [&](MachineInstr *I) { 1507 return I->mayAlias(AA, MI, false); 1508 }); 1509 1510 bool SawStore = false; 1511 bool HasAliasedStore = false; 1512 DenseSet<MachineBasicBlock *> HandledBlocks; 1513 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1514 // Go through all reachable blocks from From. 1515 for (MachineBasicBlock *BB : depth_first(From)) { 1516 // We insert the instruction at the start of block To, so no need to worry 1517 // about stores inside To. 1518 // Store in block From should be already considered when just enter function 1519 // SinkInstruction. 1520 if (BB == To || BB == From) 1521 continue; 1522 1523 // We already handle this BB in previous iteration. 1524 if (HandledBlocks.count(BB)) 1525 continue; 1526 1527 HandledBlocks.insert(BB); 1528 // To post dominates BB, it must be a path from block From. 1529 if (PDT->dominates(To, BB)) { 1530 if (!HandledDomBlocks.count(BB)) 1531 HandledDomBlocks.insert(BB); 1532 1533 // If this BB is too big or the block number in straight line between From 1534 // and To is too big, stop searching to save compiling time. 1535 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1536 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1537 for (auto *DomBB : HandledDomBlocks) { 1538 if (DomBB != BB && DT->dominates(DomBB, BB)) 1539 HasStoreCache[std::make_pair(DomBB, To)] = true; 1540 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1541 HasStoreCache[std::make_pair(From, DomBB)] = true; 1542 } 1543 HasStoreCache[BlockPair] = true; 1544 return true; 1545 } 1546 1547 for (MachineInstr &I : *BB) { 1548 // Treat as alias conservatively for a call or an ordered memory 1549 // operation. 1550 if (I.isCall() || I.hasOrderedMemoryRef()) { 1551 for (auto *DomBB : HandledDomBlocks) { 1552 if (DomBB != BB && DT->dominates(DomBB, BB)) 1553 HasStoreCache[std::make_pair(DomBB, To)] = true; 1554 else if (DomBB != BB && DT->dominates(BB, DomBB)) 1555 HasStoreCache[std::make_pair(From, DomBB)] = true; 1556 } 1557 HasStoreCache[BlockPair] = true; 1558 return true; 1559 } 1560 1561 if (I.mayStore()) { 1562 SawStore = true; 1563 // We still have chance to sink MI if all stores between are not 1564 // aliased to MI. 1565 // Cache all store instructions, so that we don't need to go through 1566 // all From reachable blocks for next load instruction. 1567 if (I.mayAlias(AA, MI, false)) 1568 HasAliasedStore = true; 1569 StoreInstrCache[BlockPair].push_back(&I); 1570 } 1571 } 1572 } 1573 } 1574 // If there is no store at all, cache the result. 1575 if (!SawStore) 1576 HasStoreCache[BlockPair] = false; 1577 return HasAliasedStore; 1578 } 1579 1580 /// Sink instructions into cycles if profitable. This especially tries to 1581 /// prevent register spills caused by register pressure if there is little to no 1582 /// overhead moving instructions into cycles. 1583 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1584 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1585 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1586 assert(Preheader && "Cycle sink needs a preheader block"); 1587 MachineBasicBlock *SinkBlock = nullptr; 1588 bool CanSink = true; 1589 const MachineOperand &MO = I.getOperand(0); 1590 1591 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1592 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1593 if (!Cycle->contains(MI.getParent())) { 1594 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1595 CanSink = false; 1596 break; 1597 } 1598 1599 // FIXME: Come up with a proper cost model that estimates whether sinking 1600 // the instruction (and thus possibly executing it on every cycle 1601 // iteration) is more expensive than a register. 1602 // For now assumes that copies are cheap and thus almost always worth it. 1603 if (!MI.isCopy()) { 1604 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1605 CanSink = false; 1606 break; 1607 } 1608 if (!SinkBlock) { 1609 SinkBlock = MI.getParent(); 1610 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1611 << printMBBReference(*SinkBlock) << "\n"); 1612 continue; 1613 } 1614 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1615 if (!SinkBlock) { 1616 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1617 CanSink = false; 1618 break; 1619 } 1620 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " 1621 << printMBBReference(*SinkBlock) << "\n"); 1622 } 1623 1624 if (!CanSink) { 1625 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1626 return false; 1627 } 1628 if (!SinkBlock) { 1629 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1630 return false; 1631 } 1632 if (SinkBlock == Preheader) { 1633 LLVM_DEBUG( 1634 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1635 return false; 1636 } 1637 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1638 LLVM_DEBUG( 1639 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1640 return false; 1641 } 1642 1643 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1644 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1645 I); 1646 1647 // Conservatively clear any kill flags on uses of sunk instruction 1648 for (MachineOperand &MO : I.operands()) { 1649 if (MO.isReg() && MO.readsReg()) 1650 RegsToClearKillFlags.insert(MO.getReg()); 1651 } 1652 1653 // The instruction is moved from its basic block, so do not retain the 1654 // debug information. 1655 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1656 I.setDebugLoc(DebugLoc()); 1657 return true; 1658 } 1659 1660 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1661 /// instruction out of its current block into a successor. 1662 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1663 AllSuccsCache &AllSuccessors) { 1664 // Don't sink instructions that the target prefers not to sink. 1665 if (!TII->shouldSink(MI)) 1666 return false; 1667 1668 // Check if it's safe to move the instruction. 1669 if (!MI.isSafeToMove(SawStore)) 1670 return false; 1671 1672 // Convergent operations may not be made control-dependent on additional 1673 // values. 1674 if (MI.isConvergent()) 1675 return false; 1676 1677 // Don't break implicit null checks. This is a performance heuristic, and not 1678 // required for correctness. 1679 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1680 return false; 1681 1682 // FIXME: This should include support for sinking instructions within the 1683 // block they are currently in to shorten the live ranges. We often get 1684 // instructions sunk into the top of a large block, but it would be better to 1685 // also sink them down before their first use in the block. This xform has to 1686 // be careful not to *increase* register pressure though, e.g. sinking 1687 // "x = y + z" down if it kills y and z would increase the live ranges of y 1688 // and z and only shrink the live range of x. 1689 1690 bool BreakPHIEdge = false; 1691 MachineBasicBlock *ParentBlock = MI.getParent(); 1692 MachineBasicBlock *SuccToSinkTo = 1693 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1694 1695 // If there are no outputs, it must have side-effects. 1696 if (!SuccToSinkTo) 1697 return false; 1698 1699 // If the instruction to move defines a dead physical register which is live 1700 // when leaving the basic block, don't move it because it could turn into a 1701 // "zombie" define of that preg. E.g., EFLAGS. 1702 for (const MachineOperand &MO : MI.all_defs()) { 1703 Register Reg = MO.getReg(); 1704 if (Reg == 0 || !Reg.isPhysical()) 1705 continue; 1706 if (SuccToSinkTo->isLiveIn(Reg)) 1707 return false; 1708 } 1709 1710 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1711 1712 // If the block has multiple predecessors, this is a critical edge. 1713 // Decide if we can sink along it or need to break the edge. 1714 if (SuccToSinkTo->pred_size() > 1) { 1715 // We cannot sink a load across a critical edge - there may be stores in 1716 // other code paths. 1717 bool TryBreak = false; 1718 bool Store = 1719 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1720 if (!MI.isSafeToMove(Store)) { 1721 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1722 TryBreak = true; 1723 } 1724 1725 // We don't want to sink across a critical edge if we don't dominate the 1726 // successor. We could be introducing calculations to new code paths. 1727 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1728 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1729 TryBreak = true; 1730 } 1731 1732 // Don't sink instructions into a cycle. 1733 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1734 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1735 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1736 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1737 TryBreak = true; 1738 } 1739 1740 // Otherwise we are OK with sinking along a critical edge. 1741 if (!TryBreak) 1742 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1743 else { 1744 // Mark this edge as to be split. 1745 // If the edge can actually be split, the next iteration of the main loop 1746 // will sink MI in the newly created block. 1747 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, 1748 BreakPHIEdge); 1749 if (!Status) 1750 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1751 "break critical edge\n"); 1752 // The instruction will not be sunk this time. 1753 return false; 1754 } 1755 } 1756 1757 if (BreakPHIEdge) { 1758 // BreakPHIEdge is true if all the uses are in the successor MBB being 1759 // sunken into and they are all PHI nodes. In this case, machine-sink must 1760 // break the critical edge first. 1761 bool Status = 1762 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1763 if (!Status) 1764 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1765 "break critical edge\n"); 1766 // The instruction will not be sunk this time. 1767 return false; 1768 } 1769 1770 // Determine where to insert into. Skip phi nodes. 1771 MachineBasicBlock::iterator InsertPos = 1772 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1773 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1774 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1775 return false; 1776 } 1777 1778 // Collect debug users of any vreg that this inst defines. 1779 SmallVector<MIRegs, 4> DbgUsersToSink; 1780 for (auto &MO : MI.all_defs()) { 1781 if (!MO.getReg().isVirtual()) 1782 continue; 1783 if (!SeenDbgUsers.count(MO.getReg())) 1784 continue; 1785 1786 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1787 auto &Users = SeenDbgUsers[MO.getReg()]; 1788 for (auto &User : Users) { 1789 MachineInstr *DbgMI = User.getPointer(); 1790 if (User.getInt()) { 1791 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1792 // it, it can't be recovered. Set it undef. 1793 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1794 DbgMI->setDebugValueUndef(); 1795 } else { 1796 DbgUsersToSink.push_back( 1797 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1798 } 1799 } 1800 } 1801 1802 // After sinking, some debug users may not be dominated any more. If possible, 1803 // copy-propagate their operands. As it's expensive, don't do this if there's 1804 // no debuginfo in the program. 1805 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1806 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1807 1808 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1809 1810 // Conservatively, clear any kill flags, since it's possible that they are no 1811 // longer correct. 1812 // Note that we have to clear the kill flags for any register this instruction 1813 // uses as we may sink over another instruction which currently kills the 1814 // used registers. 1815 for (MachineOperand &MO : MI.all_uses()) 1816 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1817 1818 return true; 1819 } 1820 1821 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1822 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1823 assert(MI.isCopy()); 1824 assert(MI.getOperand(1).isReg()); 1825 1826 // Enumerate all users of vreg operands that are def'd. Skip those that will 1827 // be sunk. For the rest, if they are not dominated by the block we will sink 1828 // MI into, propagate the copy source to them. 1829 SmallVector<MachineInstr *, 4> DbgDefUsers; 1830 SmallVector<Register, 4> DbgUseRegs; 1831 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1832 for (auto &MO : MI.all_defs()) { 1833 if (!MO.getReg().isVirtual()) 1834 continue; 1835 DbgUseRegs.push_back(MO.getReg()); 1836 for (auto &User : MRI.use_instructions(MO.getReg())) { 1837 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1838 continue; 1839 1840 // If is in same block, will either sink or be use-before-def. 1841 if (User.getParent() == MI.getParent()) 1842 continue; 1843 1844 assert(User.hasDebugOperandForReg(MO.getReg()) && 1845 "DBG_VALUE user of vreg, but has no operand for it?"); 1846 DbgDefUsers.push_back(&User); 1847 } 1848 } 1849 1850 // Point the users of this copy that are no longer dominated, at the source 1851 // of the copy. 1852 for (auto *User : DbgDefUsers) { 1853 for (auto &Reg : DbgUseRegs) { 1854 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1855 DbgOp.setReg(MI.getOperand(1).getReg()); 1856 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1857 } 1858 } 1859 } 1860 } 1861 1862 //===----------------------------------------------------------------------===// 1863 // This pass is not intended to be a replacement or a complete alternative 1864 // for the pre-ra machine sink pass. It is only designed to sink COPY 1865 // instructions which should be handled after RA. 1866 // 1867 // This pass sinks COPY instructions into a successor block, if the COPY is not 1868 // used in the current block and the COPY is live-in to a single successor 1869 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1870 // copy on paths where their results aren't needed. This also exposes 1871 // additional opportunites for dead copy elimination and shrink wrapping. 1872 // 1873 // These copies were either not handled by or are inserted after the MachineSink 1874 // pass. As an example of the former case, the MachineSink pass cannot sink 1875 // COPY instructions with allocatable source registers; for AArch64 these type 1876 // of copy instructions are frequently used to move function parameters (PhyReg) 1877 // into virtual registers in the entry block. 1878 // 1879 // For the machine IR below, this pass will sink %w19 in the entry into its 1880 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1881 // %bb.0: 1882 // %wzr = SUBSWri %w1, 1 1883 // %w19 = COPY %w0 1884 // Bcc 11, %bb.2 1885 // %bb.1: 1886 // Live Ins: %w19 1887 // BL @fun 1888 // %w0 = ADDWrr %w0, %w19 1889 // RET %w0 1890 // %bb.2: 1891 // %w0 = COPY %wzr 1892 // RET %w0 1893 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1894 // able to see %bb.0 as a candidate. 1895 //===----------------------------------------------------------------------===// 1896 namespace { 1897 1898 class PostRAMachineSinking : public MachineFunctionPass { 1899 public: 1900 bool runOnMachineFunction(MachineFunction &MF) override; 1901 1902 static char ID; 1903 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1904 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1905 1906 void getAnalysisUsage(AnalysisUsage &AU) const override { 1907 AU.setPreservesCFG(); 1908 MachineFunctionPass::getAnalysisUsage(AU); 1909 } 1910 1911 MachineFunctionProperties getRequiredProperties() const override { 1912 return MachineFunctionProperties().set( 1913 MachineFunctionProperties::Property::NoVRegs); 1914 } 1915 1916 private: 1917 /// Track which register units have been modified and used. 1918 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1919 1920 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1921 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1922 /// consists of a pointer to the instruction itself, and a vector of registers 1923 /// referred to by the instruction that overlap the key register unit. 1924 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1925 1926 /// Sink Copy instructions unused in the same block close to their uses in 1927 /// successors. 1928 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1929 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1930 }; 1931 } // namespace 1932 1933 char PostRAMachineSinking::ID = 0; 1934 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1935 1936 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1937 "PostRA Machine Sink", false, false) 1938 1939 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1940 const TargetRegisterInfo *TRI) { 1941 LiveRegUnits LiveInRegUnits(*TRI); 1942 LiveInRegUnits.addLiveIns(MBB); 1943 return !LiveInRegUnits.available(Reg); 1944 } 1945 1946 static MachineBasicBlock * 1947 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1948 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1949 unsigned Reg, const TargetRegisterInfo *TRI) { 1950 // Try to find a single sinkable successor in which Reg is live-in. 1951 MachineBasicBlock *BB = nullptr; 1952 for (auto *SI : SinkableBBs) { 1953 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1954 // If BB is set here, Reg is live-in to at least two sinkable successors, 1955 // so quit. 1956 if (BB) 1957 return nullptr; 1958 BB = SI; 1959 } 1960 } 1961 // Reg is not live-in to any sinkable successors. 1962 if (!BB) 1963 return nullptr; 1964 1965 // Check if any register aliased with Reg is live-in in other successors. 1966 for (auto *SI : CurBB.successors()) { 1967 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1968 return nullptr; 1969 } 1970 return BB; 1971 } 1972 1973 static MachineBasicBlock * 1974 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1975 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1976 ArrayRef<unsigned> DefedRegsInCopy, 1977 const TargetRegisterInfo *TRI) { 1978 MachineBasicBlock *SingleBB = nullptr; 1979 for (auto DefReg : DefedRegsInCopy) { 1980 MachineBasicBlock *BB = 1981 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1982 if (!BB || (SingleBB && SingleBB != BB)) 1983 return nullptr; 1984 SingleBB = BB; 1985 } 1986 return SingleBB; 1987 } 1988 1989 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1990 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1991 LiveRegUnits &UsedRegUnits, 1992 const TargetRegisterInfo *TRI) { 1993 for (auto U : UsedOpsInCopy) { 1994 MachineOperand &MO = MI->getOperand(U); 1995 Register SrcReg = MO.getReg(); 1996 if (!UsedRegUnits.available(SrcReg)) { 1997 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1998 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1999 if (UI.killsRegister(SrcReg, TRI)) { 2000 UI.clearRegisterKills(SrcReg, TRI); 2001 MO.setIsKill(true); 2002 break; 2003 } 2004 } 2005 } 2006 } 2007 } 2008 2009 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 2010 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2011 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 2012 MachineFunction &MF = *SuccBB->getParent(); 2013 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2014 for (unsigned DefReg : DefedRegsInCopy) 2015 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2016 SuccBB->removeLiveIn(S); 2017 for (auto U : UsedOpsInCopy) 2018 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2019 SuccBB->sortUniqueLiveIns(); 2020 } 2021 2022 static bool hasRegisterDependency(MachineInstr *MI, 2023 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2024 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2025 LiveRegUnits &ModifiedRegUnits, 2026 LiveRegUnits &UsedRegUnits) { 2027 bool HasRegDependency = false; 2028 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2029 MachineOperand &MO = MI->getOperand(i); 2030 if (!MO.isReg()) 2031 continue; 2032 Register Reg = MO.getReg(); 2033 if (!Reg) 2034 continue; 2035 if (MO.isDef()) { 2036 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2037 HasRegDependency = true; 2038 break; 2039 } 2040 DefedRegsInCopy.push_back(Reg); 2041 2042 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2043 // For example, we can ignore modifications in reg with undef. However, 2044 // it's not perfectly clear if skipping the internal read is safe in all 2045 // other targets. 2046 } else if (MO.isUse()) { 2047 if (!ModifiedRegUnits.available(Reg)) { 2048 HasRegDependency = true; 2049 break; 2050 } 2051 UsedOpsInCopy.push_back(i); 2052 } 2053 } 2054 return HasRegDependency; 2055 } 2056 2057 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2058 MachineFunction &MF, 2059 const TargetRegisterInfo *TRI, 2060 const TargetInstrInfo *TII) { 2061 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2062 // FIXME: For now, we sink only to a successor which has a single predecessor 2063 // so that we can directly sink COPY instructions to the successor without 2064 // adding any new block or branch instruction. 2065 for (MachineBasicBlock *SI : CurBB.successors()) 2066 if (!SI->livein_empty() && SI->pred_size() == 1) 2067 SinkableBBs.insert(SI); 2068 2069 if (SinkableBBs.empty()) 2070 return false; 2071 2072 bool Changed = false; 2073 2074 // Track which registers have been modified and used between the end of the 2075 // block and the current instruction. 2076 ModifiedRegUnits.clear(); 2077 UsedRegUnits.clear(); 2078 SeenDbgInstrs.clear(); 2079 2080 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2081 // Track the operand index for use in Copy. 2082 SmallVector<unsigned, 2> UsedOpsInCopy; 2083 // Track the register number defed in Copy. 2084 SmallVector<unsigned, 2> DefedRegsInCopy; 2085 2086 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2087 // for DBG_VALUEs later, record them when they're encountered. 2088 if (MI.isDebugValue() && !MI.isDebugRef()) { 2089 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2090 bool IsValid = true; 2091 for (MachineOperand &MO : MI.debug_operands()) { 2092 if (MO.isReg() && MO.getReg().isPhysical()) { 2093 // Bail if we can already tell the sink would be rejected, rather 2094 // than needlessly accumulating lots of DBG_VALUEs. 2095 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2096 ModifiedRegUnits, UsedRegUnits)) { 2097 IsValid = false; 2098 break; 2099 } 2100 2101 // Record debug use of each reg unit. 2102 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2103 MIUnits[Unit].push_back(MO.getReg()); 2104 } 2105 } 2106 if (IsValid) { 2107 for (auto &RegOps : MIUnits) 2108 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2109 std::move(RegOps.second)); 2110 } 2111 continue; 2112 } 2113 2114 if (MI.isDebugOrPseudoInstr()) 2115 continue; 2116 2117 // Do not move any instruction across function call. 2118 if (MI.isCall()) 2119 return false; 2120 2121 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2122 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2123 TRI); 2124 continue; 2125 } 2126 2127 // Don't sink the COPY if it would violate a register dependency. 2128 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2129 ModifiedRegUnits, UsedRegUnits)) { 2130 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2131 TRI); 2132 continue; 2133 } 2134 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2135 "Unexpect SrcReg or DefReg"); 2136 MachineBasicBlock *SuccBB = 2137 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2138 // Don't sink if we cannot find a single sinkable successor in which Reg 2139 // is live-in. 2140 if (!SuccBB) { 2141 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2142 TRI); 2143 continue; 2144 } 2145 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2146 "Unexpected predecessor"); 2147 2148 // Collect DBG_VALUEs that must sink with this copy. We've previously 2149 // recorded which reg units that DBG_VALUEs read, if this instruction 2150 // writes any of those units then the corresponding DBG_VALUEs must sink. 2151 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2152 for (auto &MO : MI.all_defs()) { 2153 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2154 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2155 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2156 for (unsigned Reg : MIRegs.second) 2157 Regs.push_back(Reg); 2158 } 2159 } 2160 } 2161 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2162 2163 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2164 2165 MachineBasicBlock::iterator InsertPos = 2166 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2167 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2168 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2169 TRI); 2170 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 2171 continue; 2172 } 2173 2174 // Clear the kill flag if SrcReg is killed between MI and the end of the 2175 // block. 2176 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2177 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2178 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2179 2180 Changed = true; 2181 ++NumPostRACopySink; 2182 } 2183 return Changed; 2184 } 2185 2186 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2187 if (skipFunction(MF.getFunction())) 2188 return false; 2189 2190 bool Changed = false; 2191 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2192 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2193 2194 ModifiedRegUnits.init(*TRI); 2195 UsedRegUnits.init(*TRI); 2196 for (auto &BB : MF) 2197 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2198 2199 return Changed; 2200 } 2201