1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/DepthFirstIterator.h" 20 #include "llvm/ADT/MapVector.h" 21 #include "llvm/ADT/PointerIntPair.h" 22 #include "llvm/ADT/PostOrderIterator.h" 23 #include "llvm/ADT/SetVector.h" 24 #include "llvm/ADT/SmallSet.h" 25 #include "llvm/ADT/SmallVector.h" 26 #include "llvm/ADT/Statistic.h" 27 #include "llvm/Analysis/AliasAnalysis.h" 28 #include "llvm/Analysis/CFG.h" 29 #include "llvm/CodeGen/MachineBasicBlock.h" 30 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 31 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 32 #include "llvm/CodeGen/MachineCycleAnalysis.h" 33 #include "llvm/CodeGen/MachineDominators.h" 34 #include "llvm/CodeGen/MachineFunction.h" 35 #include "llvm/CodeGen/MachineFunctionPass.h" 36 #include "llvm/CodeGen/MachineInstr.h" 37 #include "llvm/CodeGen/MachineLoopInfo.h" 38 #include "llvm/CodeGen/MachineOperand.h" 39 #include "llvm/CodeGen/MachinePostDominators.h" 40 #include "llvm/CodeGen/MachineRegisterInfo.h" 41 #include "llvm/CodeGen/RegisterClassInfo.h" 42 #include "llvm/CodeGen/RegisterPressure.h" 43 #include "llvm/CodeGen/TargetInstrInfo.h" 44 #include "llvm/CodeGen/TargetPassConfig.h" 45 #include "llvm/CodeGen/TargetRegisterInfo.h" 46 #include "llvm/CodeGen/TargetSubtargetInfo.h" 47 #include "llvm/IR/BasicBlock.h" 48 #include "llvm/IR/DebugInfoMetadata.h" 49 #include "llvm/IR/LLVMContext.h" 50 #include "llvm/InitializePasses.h" 51 #include "llvm/MC/MCRegisterInfo.h" 52 #include "llvm/Pass.h" 53 #include "llvm/Support/BranchProbability.h" 54 #include "llvm/Support/CommandLine.h" 55 #include "llvm/Support/Debug.h" 56 #include "llvm/Support/raw_ostream.h" 57 #include <algorithm> 58 #include <cassert> 59 #include <cstdint> 60 #include <utility> 61 #include <vector> 62 63 using namespace llvm; 64 65 #define DEBUG_TYPE "machine-sink" 66 67 static cl::opt<bool> 68 SplitEdges("machine-sink-split", 69 cl::desc("Split critical edges during machine sinking"), 70 cl::init(true), cl::Hidden); 71 72 static cl::opt<bool> 73 UseBlockFreqInfo("machine-sink-bfi", 74 cl::desc("Use block frequency info to find successors to sink"), 75 cl::init(true), cl::Hidden); 76 77 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 78 "machine-sink-split-probability-threshold", 79 cl::desc( 80 "Percentage threshold for splitting single-instruction critical edge. " 81 "If the branch threshold is higher than this threshold, we allow " 82 "speculative execution of up to 1 instruction to avoid branching to " 83 "splitted critical edge"), 84 cl::init(40), cl::Hidden); 85 86 static cl::opt<unsigned> SinkLoadInstsPerBlockThreshold( 87 "machine-sink-load-instrs-threshold", 88 cl::desc("Do not try to find alias store for a load if there is a in-path " 89 "block whose instruction number is higher than this threshold."), 90 cl::init(2000), cl::Hidden); 91 92 static cl::opt<unsigned> SinkLoadBlocksThreshold( 93 "machine-sink-load-blocks-threshold", 94 cl::desc("Do not try to find alias store for a load if the block number in " 95 "the straight line is higher than this threshold."), 96 cl::init(20), cl::Hidden); 97 98 static cl::opt<bool> 99 SinkInstsIntoCycle("sink-insts-to-avoid-spills", 100 cl::desc("Sink instructions into cycles to avoid " 101 "register spills"), 102 cl::init(false), cl::Hidden); 103 104 static cl::opt<unsigned> SinkIntoCycleLimit( 105 "machine-sink-cycle-limit", 106 cl::desc("The maximum number of instructions considered for cycle sinking."), 107 cl::init(50), cl::Hidden); 108 109 STATISTIC(NumSunk, "Number of machine instructions sunk"); 110 STATISTIC(NumCycleSunk, "Number of machine instructions sunk into a cycle"); 111 STATISTIC(NumSplit, "Number of critical edges split"); 112 STATISTIC(NumCoalesces, "Number of copies coalesced"); 113 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 114 115 namespace { 116 117 class MachineSinking : public MachineFunctionPass { 118 const TargetSubtargetInfo *STI = nullptr; 119 const TargetInstrInfo *TII = nullptr; 120 const TargetRegisterInfo *TRI = nullptr; 121 MachineRegisterInfo *MRI = nullptr; // Machine register information 122 MachineDominatorTree *DT = nullptr; // Machine dominator tree 123 MachinePostDominatorTree *PDT = nullptr; // Machine post dominator tree 124 MachineCycleInfo *CI = nullptr; 125 MachineBlockFrequencyInfo *MBFI = nullptr; 126 const MachineBranchProbabilityInfo *MBPI = nullptr; 127 AliasAnalysis *AA = nullptr; 128 RegisterClassInfo RegClassInfo; 129 130 // Remember which edges have been considered for breaking. 131 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 132 CEBCandidates; 133 // Memorize the register that also wanted to sink into the same block along 134 // a different critical edge. 135 // {register to sink, sink-to block} -> the first sink-from block. 136 // We're recording the first sink-from block because that (critical) edge 137 // was deferred until we see another register that's going to sink into the 138 // same block. 139 DenseMap<std::pair<Register, MachineBasicBlock *>, MachineBasicBlock *> 140 CEMergeCandidates; 141 // Remember which edges we are about to split. 142 // This is different from CEBCandidates since those edges 143 // will be split. 144 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 145 146 DenseSet<Register> RegsToClearKillFlags; 147 148 using AllSuccsCache = 149 SmallDenseMap<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 150 151 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 152 /// post-dominated by another DBG_VALUE of the same variable location. 153 /// This is necessary to detect sequences such as: 154 /// %0 = someinst 155 /// DBG_VALUE %0, !123, !DIExpression() 156 /// %1 = anotherinst 157 /// DBG_VALUE %1, !123, !DIExpression() 158 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 159 /// would re-order assignments. 160 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 161 162 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 163 /// debug instructions to sink. 164 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 165 166 /// Record of debug variables that have had their locations set in the 167 /// current block. 168 DenseSet<DebugVariable> SeenDbgVars; 169 170 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, bool> 171 HasStoreCache; 172 173 DenseMap<std::pair<MachineBasicBlock *, MachineBasicBlock *>, 174 SmallVector<MachineInstr *>> 175 StoreInstrCache; 176 177 /// Cached BB's register pressure. 178 DenseMap<const MachineBasicBlock *, std::vector<unsigned>> 179 CachedRegisterPressure; 180 181 bool EnableSinkAndFold; 182 183 public: 184 static char ID; // Pass identification 185 186 MachineSinking() : MachineFunctionPass(ID) { 187 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 188 } 189 190 bool runOnMachineFunction(MachineFunction &MF) override; 191 192 void getAnalysisUsage(AnalysisUsage &AU) const override { 193 MachineFunctionPass::getAnalysisUsage(AU); 194 AU.addRequired<AAResultsWrapperPass>(); 195 AU.addRequired<MachineDominatorTreeWrapperPass>(); 196 AU.addRequired<MachinePostDominatorTreeWrapperPass>(); 197 AU.addRequired<MachineCycleInfoWrapperPass>(); 198 AU.addRequired<MachineBranchProbabilityInfoWrapperPass>(); 199 AU.addPreserved<MachineCycleInfoWrapperPass>(); 200 AU.addPreserved<MachineLoopInfoWrapperPass>(); 201 if (UseBlockFreqInfo) 202 AU.addRequired<MachineBlockFrequencyInfo>(); 203 AU.addRequired<TargetPassConfig>(); 204 } 205 206 void releaseMemory() override { 207 CEBCandidates.clear(); 208 CEMergeCandidates.clear(); 209 } 210 211 private: 212 bool ProcessBlock(MachineBasicBlock &MBB); 213 void ProcessDbgInst(MachineInstr &MI); 214 bool isLegalToBreakCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 215 MachineBasicBlock *To, bool BreakPHIEdge); 216 bool isWorthBreakingCriticalEdge(MachineInstr &MI, MachineBasicBlock *From, 217 MachineBasicBlock *To, 218 MachineBasicBlock *&DeferredFromBlock); 219 220 bool hasStoreBetween(MachineBasicBlock *From, MachineBasicBlock *To, 221 MachineInstr &MI); 222 223 /// Postpone the splitting of the given critical 224 /// edge (\p From, \p To). 225 /// 226 /// We do not split the edges on the fly. Indeed, this invalidates 227 /// the dominance information and thus triggers a lot of updates 228 /// of that information underneath. 229 /// Instead, we postpone all the splits after each iteration of 230 /// the main loop. That way, the information is at least valid 231 /// for the lifetime of an iteration. 232 /// 233 /// \return True if the edge is marked as toSplit, false otherwise. 234 /// False can be returned if, for instance, this is not profitable. 235 bool PostponeSplitCriticalEdge(MachineInstr &MI, 236 MachineBasicBlock *From, 237 MachineBasicBlock *To, 238 bool BreakPHIEdge); 239 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 240 AllSuccsCache &AllSuccessors); 241 242 /// If we sink a COPY inst, some debug users of it's destination may no 243 /// longer be dominated by the COPY, and will eventually be dropped. 244 /// This is easily rectified by forwarding the non-dominated debug uses 245 /// to the copy source. 246 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 247 MachineBasicBlock *TargetBlock); 248 bool AllUsesDominatedByBlock(Register Reg, MachineBasicBlock *MBB, 249 MachineBasicBlock *DefMBB, bool &BreakPHIEdge, 250 bool &LocalUse) const; 251 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 252 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 253 254 void FindCycleSinkCandidates(MachineCycle *Cycle, MachineBasicBlock *BB, 255 SmallVectorImpl<MachineInstr *> &Candidates); 256 bool SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I); 257 258 bool isProfitableToSinkTo(Register Reg, MachineInstr &MI, 259 MachineBasicBlock *MBB, 260 MachineBasicBlock *SuccToSinkTo, 261 AllSuccsCache &AllSuccessors); 262 263 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 264 MachineBasicBlock *MBB); 265 266 bool PerformSinkAndFold(MachineInstr &MI, MachineBasicBlock *MBB); 267 268 SmallVector<MachineBasicBlock *, 4> & 269 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 270 AllSuccsCache &AllSuccessors) const; 271 272 std::vector<unsigned> &getBBRegisterPressure(const MachineBasicBlock &MBB); 273 274 bool registerPressureSetExceedsLimit(unsigned NRegs, 275 const TargetRegisterClass *RC, 276 const MachineBasicBlock &MBB); 277 }; 278 279 } // end anonymous namespace 280 281 char MachineSinking::ID = 0; 282 283 char &llvm::MachineSinkingID = MachineSinking::ID; 284 285 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 286 "Machine code sinking", false, false) 287 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfoWrapperPass) 288 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTreeWrapperPass) 289 INITIALIZE_PASS_DEPENDENCY(MachineCycleInfoWrapperPass) 290 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 291 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 292 "Machine code sinking", false, false) 293 294 /// Return true if a target defined block prologue instruction interferes 295 /// with a sink candidate. 296 static bool blockPrologueInterferes(const MachineBasicBlock *BB, 297 MachineBasicBlock::const_iterator End, 298 const MachineInstr &MI, 299 const TargetRegisterInfo *TRI, 300 const TargetInstrInfo *TII, 301 const MachineRegisterInfo *MRI) { 302 for (MachineBasicBlock::const_iterator PI = BB->getFirstNonPHI(); PI != End; 303 ++PI) { 304 // Only check target defined prologue instructions 305 if (!TII->isBasicBlockPrologue(*PI)) 306 continue; 307 for (auto &MO : MI.operands()) { 308 if (!MO.isReg()) 309 continue; 310 Register Reg = MO.getReg(); 311 if (!Reg) 312 continue; 313 if (MO.isUse()) { 314 if (Reg.isPhysical() && 315 (TII->isIgnorableUse(MO) || (MRI && MRI->isConstantPhysReg(Reg)))) 316 continue; 317 if (PI->modifiesRegister(Reg, TRI)) 318 return true; 319 } else { 320 if (PI->readsRegister(Reg, TRI)) 321 return true; 322 // Check for interference with non-dead defs 323 auto *DefOp = PI->findRegisterDefOperand(Reg, TRI, false, true); 324 if (DefOp && !DefOp->isDead()) 325 return true; 326 } 327 } 328 } 329 330 return false; 331 } 332 333 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 334 MachineBasicBlock *MBB) { 335 if (!MI.isCopy()) 336 return false; 337 338 Register SrcReg = MI.getOperand(1).getReg(); 339 Register DstReg = MI.getOperand(0).getReg(); 340 if (!SrcReg.isVirtual() || !DstReg.isVirtual() || 341 !MRI->hasOneNonDBGUse(SrcReg)) 342 return false; 343 344 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 345 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 346 if (SRC != DRC) 347 return false; 348 349 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 350 if (DefMI->isCopyLike()) 351 return false; 352 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 353 LLVM_DEBUG(dbgs() << "*** to: " << MI); 354 MRI->replaceRegWith(DstReg, SrcReg); 355 MI.eraseFromParent(); 356 357 // Conservatively, clear any kill flags, since it's possible that they are no 358 // longer correct. 359 MRI->clearKillFlags(SrcReg); 360 361 ++NumCoalesces; 362 return true; 363 } 364 365 bool MachineSinking::PerformSinkAndFold(MachineInstr &MI, 366 MachineBasicBlock *MBB) { 367 if (MI.isCopy() || MI.mayLoadOrStore() || 368 MI.getOpcode() == TargetOpcode::REG_SEQUENCE) 369 return false; 370 371 // Don't sink instructions that the target prefers not to sink. 372 if (!TII->shouldSink(MI)) 373 return false; 374 375 // Check if it's safe to move the instruction. 376 bool SawStore = true; 377 if (!MI.isSafeToMove(AA, SawStore)) 378 return false; 379 380 // Convergent operations may not be made control-dependent on additional 381 // values. 382 if (MI.isConvergent()) 383 return false; 384 385 // Don't sink defs/uses of hard registers or if the instruction defines more 386 // than one register. 387 // Don't sink more than two register uses - it'll cover most of the cases and 388 // greatly simplifies the register pressure checks. 389 Register DefReg; 390 Register UsedRegA, UsedRegB; 391 for (const MachineOperand &MO : MI.operands()) { 392 if (MO.isImm() || MO.isRegMask() || MO.isRegLiveOut() || MO.isMetadata() || 393 MO.isMCSymbol() || MO.isDbgInstrRef() || MO.isCFIIndex() || 394 MO.isIntrinsicID() || MO.isPredicate() || MO.isShuffleMask()) 395 continue; 396 if (!MO.isReg()) 397 return false; 398 399 Register Reg = MO.getReg(); 400 if (Reg == 0) 401 continue; 402 403 if (Reg.isVirtual()) { 404 if (MO.isDef()) { 405 if (DefReg) 406 return false; 407 DefReg = Reg; 408 continue; 409 } 410 411 if (UsedRegA == 0) 412 UsedRegA = Reg; 413 else if (UsedRegB == 0) 414 UsedRegB = Reg; 415 else 416 return false; 417 continue; 418 } 419 420 if (Reg.isPhysical() && 421 (MRI->isConstantPhysReg(Reg) || TII->isIgnorableUse(MO))) 422 continue; 423 424 return false; 425 } 426 427 // Scan uses of the destination register. Every use, except the last, must be 428 // a copy, with a chain of copies terminating with either a copy into a hard 429 // register, or a load/store instruction where the use is part of the 430 // address (*not* the stored value). 431 using SinkInfo = std::pair<MachineInstr *, ExtAddrMode>; 432 SmallVector<SinkInfo> SinkInto; 433 SmallVector<Register> Worklist; 434 435 const TargetRegisterClass *RC = MRI->getRegClass(DefReg); 436 const TargetRegisterClass *RCA = 437 UsedRegA == 0 ? nullptr : MRI->getRegClass(UsedRegA); 438 const TargetRegisterClass *RCB = 439 UsedRegB == 0 ? nullptr : MRI->getRegClass(UsedRegB); 440 441 Worklist.push_back(DefReg); 442 while (!Worklist.empty()) { 443 Register Reg = Worklist.pop_back_val(); 444 445 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 446 ExtAddrMode MaybeAM; 447 MachineInstr &UseInst = *MO.getParent(); 448 if (UseInst.isCopy()) { 449 Register DstReg; 450 if (const MachineOperand &O = UseInst.getOperand(0); O.isReg()) 451 DstReg = O.getReg(); 452 if (DstReg == 0) 453 return false; 454 if (DstReg.isVirtual()) { 455 Worklist.push_back(DstReg); 456 continue; 457 } 458 // If we are going to replace a copy, the original instruction must be 459 // as cheap as a copy. 460 if (!TII->isAsCheapAsAMove(MI)) 461 return false; 462 // The hard register must be in the register class of the original 463 // instruction's destination register. 464 if (!RC->contains(DstReg)) 465 return false; 466 } else if (UseInst.mayLoadOrStore()) { 467 ExtAddrMode AM; 468 if (!TII->canFoldIntoAddrMode(UseInst, Reg, MI, AM)) 469 return false; 470 MaybeAM = AM; 471 } else { 472 return false; 473 } 474 475 if (UseInst.getParent() != MI.getParent()) { 476 // If the register class of the register we are replacing is a superset 477 // of any of the register classes of the operands of the materialized 478 // instruction don't consider that live range extended. 479 const TargetRegisterClass *RCS = MRI->getRegClass(Reg); 480 if (RCA && RCA->hasSuperClassEq(RCS)) 481 RCA = nullptr; 482 else if (RCB && RCB->hasSuperClassEq(RCS)) 483 RCB = nullptr; 484 if (RCA || RCB) { 485 if (RCA == nullptr) { 486 RCA = RCB; 487 RCB = nullptr; 488 } 489 490 unsigned NRegs = !!RCA + !!RCB; 491 if (RCA == RCB) 492 RCB = nullptr; 493 494 // Check we don't exceed register pressure at the destination. 495 const MachineBasicBlock &MBB = *UseInst.getParent(); 496 if (RCB == nullptr) { 497 if (registerPressureSetExceedsLimit(NRegs, RCA, MBB)) 498 return false; 499 } else if (registerPressureSetExceedsLimit(1, RCA, MBB) || 500 registerPressureSetExceedsLimit(1, RCB, MBB)) { 501 return false; 502 } 503 } 504 } 505 506 SinkInto.emplace_back(&UseInst, MaybeAM); 507 } 508 } 509 510 if (SinkInto.empty()) 511 return false; 512 513 // Now we know we can fold the instruction in all its users. 514 for (auto &[SinkDst, MaybeAM] : SinkInto) { 515 MachineInstr *New = nullptr; 516 LLVM_DEBUG(dbgs() << "Sinking copy of"; MI.dump(); dbgs() << "into"; 517 SinkDst->dump()); 518 if (SinkDst->isCopy()) { 519 // TODO: After performing the sink-and-fold, the original instruction is 520 // deleted. Its value is still available (in a hard register), so if there 521 // are debug instructions which refer to the (now deleted) virtual 522 // register they could be updated to refer to the hard register, in 523 // principle. However, it's not clear how to do that, moreover in some 524 // cases the debug instructions may need to be replicated proportionally 525 // to the number of the COPY instructions replaced and in some extreme 526 // cases we can end up with quadratic increase in the number of debug 527 // instructions. 528 529 // Sink a copy of the instruction, replacing a COPY instruction. 530 MachineBasicBlock::iterator InsertPt = SinkDst->getIterator(); 531 Register DstReg = SinkDst->getOperand(0).getReg(); 532 TII->reMaterialize(*SinkDst->getParent(), InsertPt, DstReg, 0, MI, *TRI); 533 New = &*std::prev(InsertPt); 534 if (!New->getDebugLoc()) 535 New->setDebugLoc(SinkDst->getDebugLoc()); 536 537 // The operand registers of the "sunk" instruction have their live range 538 // extended and their kill flags may no longer be correct. Conservatively 539 // clear the kill flags. 540 if (UsedRegA) 541 MRI->clearKillFlags(UsedRegA); 542 if (UsedRegB) 543 MRI->clearKillFlags(UsedRegB); 544 } else { 545 // Fold instruction into the addressing mode of a memory instruction. 546 New = TII->emitLdStWithAddr(*SinkDst, MaybeAM); 547 548 // The registers of the addressing mode may have their live range extended 549 // and their kill flags may no longer be correct. Conservatively clear the 550 // kill flags. 551 if (Register R = MaybeAM.BaseReg; R.isValid() && R.isVirtual()) 552 MRI->clearKillFlags(R); 553 if (Register R = MaybeAM.ScaledReg; R.isValid() && R.isVirtual()) 554 MRI->clearKillFlags(R); 555 } 556 LLVM_DEBUG(dbgs() << "yielding"; New->dump()); 557 // Clear the StoreInstrCache, since we may invalidate it by erasing. 558 if (SinkDst->mayStore() && !SinkDst->hasOrderedMemoryRef()) 559 StoreInstrCache.clear(); 560 SinkDst->eraseFromParent(); 561 } 562 563 // Collect operands that need to be cleaned up because the registers no longer 564 // exist (in COPYs and debug instructions). We cannot delete instructions or 565 // clear operands while traversing register uses. 566 SmallVector<MachineOperand *> Cleanup; 567 Worklist.push_back(DefReg); 568 while (!Worklist.empty()) { 569 Register Reg = Worklist.pop_back_val(); 570 for (MachineOperand &MO : MRI->use_operands(Reg)) { 571 MachineInstr *U = MO.getParent(); 572 assert((U->isCopy() || U->isDebugInstr()) && 573 "Only debug uses and copies must remain"); 574 if (U->isCopy()) 575 Worklist.push_back(U->getOperand(0).getReg()); 576 Cleanup.push_back(&MO); 577 } 578 } 579 580 // Delete the dead COPYs and clear operands in debug instructions 581 for (MachineOperand *MO : Cleanup) { 582 MachineInstr *I = MO->getParent(); 583 if (I->isCopy()) { 584 I->eraseFromParent(); 585 } else { 586 MO->setReg(0); 587 MO->setSubReg(0); 588 } 589 } 590 591 MI.eraseFromParent(); 592 return true; 593 } 594 595 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 596 /// occur in blocks dominated by the specified block. If any use is in the 597 /// definition block, then return false since it is never legal to move def 598 /// after uses. 599 bool MachineSinking::AllUsesDominatedByBlock(Register Reg, 600 MachineBasicBlock *MBB, 601 MachineBasicBlock *DefMBB, 602 bool &BreakPHIEdge, 603 bool &LocalUse) const { 604 assert(Reg.isVirtual() && "Only makes sense for vregs"); 605 606 // Ignore debug uses because debug info doesn't affect the code. 607 if (MRI->use_nodbg_empty(Reg)) 608 return true; 609 610 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 611 // into and they are all PHI nodes. In this case, machine-sink must break 612 // the critical edge first. e.g. 613 // 614 // %bb.1: 615 // Predecessors according to CFG: %bb.0 616 // ... 617 // %def = DEC64_32r %x, implicit-def dead %eflags 618 // ... 619 // JE_4 <%bb.37>, implicit %eflags 620 // Successors according to CFG: %bb.37 %bb.2 621 // 622 // %bb.2: 623 // %p = PHI %y, %bb.0, %def, %bb.1 624 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 625 MachineInstr *UseInst = MO.getParent(); 626 unsigned OpNo = MO.getOperandNo(); 627 MachineBasicBlock *UseBlock = UseInst->getParent(); 628 return UseBlock == MBB && UseInst->isPHI() && 629 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 630 })) { 631 BreakPHIEdge = true; 632 return true; 633 } 634 635 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 636 // Determine the block of the use. 637 MachineInstr *UseInst = MO.getParent(); 638 unsigned OpNo = &MO - &UseInst->getOperand(0); 639 MachineBasicBlock *UseBlock = UseInst->getParent(); 640 if (UseInst->isPHI()) { 641 // PHI nodes use the operand in the predecessor block, not the block with 642 // the PHI. 643 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 644 } else if (UseBlock == DefMBB) { 645 LocalUse = true; 646 return false; 647 } 648 649 // Check that it dominates. 650 if (!DT->dominates(MBB, UseBlock)) 651 return false; 652 } 653 654 return true; 655 } 656 657 /// Return true if this machine instruction loads from global offset table or 658 /// constant pool. 659 static bool mayLoadFromGOTOrConstantPool(MachineInstr &MI) { 660 assert(MI.mayLoad() && "Expected MI that loads!"); 661 662 // If we lost memory operands, conservatively assume that the instruction 663 // reads from everything.. 664 if (MI.memoperands_empty()) 665 return true; 666 667 for (MachineMemOperand *MemOp : MI.memoperands()) 668 if (const PseudoSourceValue *PSV = MemOp->getPseudoValue()) 669 if (PSV->isGOT() || PSV->isConstantPool()) 670 return true; 671 672 return false; 673 } 674 675 void MachineSinking::FindCycleSinkCandidates( 676 MachineCycle *Cycle, MachineBasicBlock *BB, 677 SmallVectorImpl<MachineInstr *> &Candidates) { 678 for (auto &MI : *BB) { 679 LLVM_DEBUG(dbgs() << "CycleSink: Analysing candidate: " << MI); 680 if (!TII->shouldSink(MI)) { 681 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not a candidate for this " 682 "target\n"); 683 continue; 684 } 685 if (!isCycleInvariant(Cycle, MI)) { 686 LLVM_DEBUG(dbgs() << "CycleSink: Instruction is not cycle invariant\n"); 687 continue; 688 } 689 bool DontMoveAcrossStore = true; 690 if (!MI.isSafeToMove(AA, DontMoveAcrossStore)) { 691 LLVM_DEBUG(dbgs() << "CycleSink: Instruction not safe to move.\n"); 692 continue; 693 } 694 if (MI.mayLoad() && !mayLoadFromGOTOrConstantPool(MI)) { 695 LLVM_DEBUG(dbgs() << "CycleSink: Dont sink GOT or constant pool loads\n"); 696 continue; 697 } 698 if (MI.isConvergent()) 699 continue; 700 701 const MachineOperand &MO = MI.getOperand(0); 702 if (!MO.isReg() || !MO.getReg() || !MO.isDef()) 703 continue; 704 if (!MRI->hasOneDef(MO.getReg())) 705 continue; 706 707 LLVM_DEBUG(dbgs() << "CycleSink: Instruction added as candidate.\n"); 708 Candidates.push_back(&MI); 709 } 710 } 711 712 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 713 if (skipFunction(MF.getFunction())) 714 return false; 715 716 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 717 718 STI = &MF.getSubtarget(); 719 TII = STI->getInstrInfo(); 720 TRI = STI->getRegisterInfo(); 721 MRI = &MF.getRegInfo(); 722 DT = &getAnalysis<MachineDominatorTreeWrapperPass>().getDomTree(); 723 PDT = &getAnalysis<MachinePostDominatorTreeWrapperPass>().getPostDomTree(); 724 CI = &getAnalysis<MachineCycleInfoWrapperPass>().getCycleInfo(); 725 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 726 MBPI = &getAnalysis<MachineBranchProbabilityInfoWrapperPass>().getMBPI(); 727 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 728 RegClassInfo.runOnMachineFunction(MF); 729 TargetPassConfig *PassConfig = &getAnalysis<TargetPassConfig>(); 730 EnableSinkAndFold = PassConfig->getEnableSinkAndFold(); 731 732 bool EverMadeChange = false; 733 734 while (true) { 735 bool MadeChange = false; 736 737 // Process all basic blocks. 738 CEBCandidates.clear(); 739 CEMergeCandidates.clear(); 740 ToSplit.clear(); 741 for (auto &MBB: MF) 742 MadeChange |= ProcessBlock(MBB); 743 744 // If we have anything we marked as toSplit, split it now. 745 for (const auto &Pair : ToSplit) { 746 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 747 if (NewSucc != nullptr) { 748 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 749 << printMBBReference(*Pair.first) << " -- " 750 << printMBBReference(*NewSucc) << " -- " 751 << printMBBReference(*Pair.second) << '\n'); 752 if (MBFI) 753 MBFI->onEdgeSplit(*Pair.first, *NewSucc, *MBPI); 754 755 MadeChange = true; 756 ++NumSplit; 757 CI->splitCriticalEdge(Pair.first, Pair.second, NewSucc); 758 } else 759 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 760 } 761 // If this iteration over the code changed anything, keep iterating. 762 if (!MadeChange) break; 763 EverMadeChange = true; 764 } 765 766 if (SinkInstsIntoCycle) { 767 SmallVector<MachineCycle *, 8> Cycles(CI->toplevel_begin(), 768 CI->toplevel_end()); 769 for (auto *Cycle : Cycles) { 770 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 771 if (!Preheader) { 772 LLVM_DEBUG(dbgs() << "CycleSink: Can't find preheader\n"); 773 continue; 774 } 775 SmallVector<MachineInstr *, 8> Candidates; 776 FindCycleSinkCandidates(Cycle, Preheader, Candidates); 777 778 // Walk the candidates in reverse order so that we start with the use 779 // of a def-use chain, if there is any. 780 // TODO: Sort the candidates using a cost-model. 781 unsigned i = 0; 782 for (MachineInstr *I : llvm::reverse(Candidates)) { 783 if (i++ == SinkIntoCycleLimit) { 784 LLVM_DEBUG(dbgs() << "CycleSink: Limit reached of instructions to " 785 "be analysed."); 786 break; 787 } 788 789 if (!SinkIntoCycle(Cycle, *I)) 790 break; 791 EverMadeChange = true; 792 ++NumCycleSunk; 793 } 794 } 795 } 796 797 HasStoreCache.clear(); 798 StoreInstrCache.clear(); 799 800 // Now clear any kill flags for recorded registers. 801 for (auto I : RegsToClearKillFlags) 802 MRI->clearKillFlags(I); 803 RegsToClearKillFlags.clear(); 804 805 return EverMadeChange; 806 } 807 808 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 809 if ((!EnableSinkAndFold && MBB.succ_size() <= 1) || MBB.empty()) 810 return false; 811 812 // Don't bother sinking code out of unreachable blocks. In addition to being 813 // unprofitable, it can also lead to infinite looping, because in an 814 // unreachable cycle there may be nowhere to stop. 815 if (!DT->isReachableFromEntry(&MBB)) return false; 816 817 bool MadeChange = false; 818 819 // Cache all successors, sorted by frequency info and cycle depth. 820 AllSuccsCache AllSuccessors; 821 822 // Walk the basic block bottom-up. Remember if we saw a store. 823 MachineBasicBlock::iterator I = MBB.end(); 824 --I; 825 bool ProcessedBegin, SawStore = false; 826 do { 827 MachineInstr &MI = *I; // The instruction to sink. 828 829 // Predecrement I (if it's not begin) so that it isn't invalidated by 830 // sinking. 831 ProcessedBegin = I == MBB.begin(); 832 if (!ProcessedBegin) 833 --I; 834 835 if (MI.isDebugOrPseudoInstr()) { 836 if (MI.isDebugValue()) 837 ProcessDbgInst(MI); 838 continue; 839 } 840 841 if (EnableSinkAndFold && PerformSinkAndFold(MI, &MBB)) { 842 MadeChange = true; 843 continue; 844 } 845 846 // Can't sink anything out of a block that has less than two successors. 847 if (MBB.succ_size() <= 1) 848 continue; 849 850 if (PerformTrivialForwardCoalescing(MI, &MBB)) { 851 MadeChange = true; 852 continue; 853 } 854 855 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 856 ++NumSunk; 857 MadeChange = true; 858 } 859 860 // If we just processed the first instruction in the block, we're done. 861 } while (!ProcessedBegin); 862 863 SeenDbgUsers.clear(); 864 SeenDbgVars.clear(); 865 // recalculate the bb register pressure after sinking one BB. 866 CachedRegisterPressure.clear(); 867 return MadeChange; 868 } 869 870 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 871 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 872 // we know what to sink if the vreg def sinks. 873 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 874 875 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 876 MI.getDebugLoc()->getInlinedAt()); 877 bool SeenBefore = SeenDbgVars.contains(Var); 878 879 for (MachineOperand &MO : MI.debug_operands()) { 880 if (MO.isReg() && MO.getReg().isVirtual()) 881 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 882 } 883 884 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 885 SeenDbgVars.insert(Var); 886 } 887 888 bool MachineSinking::isWorthBreakingCriticalEdge( 889 MachineInstr &MI, MachineBasicBlock *From, MachineBasicBlock *To, 890 MachineBasicBlock *&DeferredFromBlock) { 891 // FIXME: Need much better heuristics. 892 893 // If the pass has already considered breaking this edge (during this pass 894 // through the function), then let's go ahead and break it. This means 895 // sinking multiple "cheap" instructions into the same block. 896 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 897 return true; 898 899 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 900 return true; 901 902 // Check and record the register and the destination block we want to sink 903 // into. Note that we want to do the following before the next check on branch 904 // probability. Because we want to record the initial candidate even if it's 905 // on hot edge, so that other candidates that might not on hot edges can be 906 // sinked as well. 907 for (const auto &MO : MI.all_defs()) { 908 Register Reg = MO.getReg(); 909 if (!Reg) 910 continue; 911 Register SrcReg = Reg.isVirtual() ? TRI->lookThruCopyLike(Reg, MRI) : Reg; 912 auto Key = std::make_pair(SrcReg, To); 913 auto Res = CEMergeCandidates.try_emplace(Key, From); 914 // We wanted to sink the same register into the same block, consider it to 915 // be profitable. 916 if (!Res.second && Res.first->second->isSuccessor(To)) { 917 // Return the source block that was previously held off. 918 DeferredFromBlock = Res.first->second; 919 return true; 920 } 921 } 922 923 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 924 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 925 return true; 926 927 // MI is cheap, we probably don't want to break the critical edge for it. 928 // However, if this would allow some definitions of its source operands 929 // to be sunk then it's probably worth it. 930 for (const MachineOperand &MO : MI.all_uses()) { 931 Register Reg = MO.getReg(); 932 if (Reg == 0) 933 continue; 934 935 // We don't move live definitions of physical registers, 936 // so sinking their uses won't enable any opportunities. 937 if (Reg.isPhysical()) 938 continue; 939 940 // If this instruction is the only user of a virtual register, 941 // check if breaking the edge will enable sinking 942 // both this instruction and the defining instruction. 943 if (MRI->hasOneNonDBGUse(Reg)) { 944 // If the definition resides in same MBB, 945 // claim it's likely we can sink these together. 946 // If definition resides elsewhere, we aren't 947 // blocking it from being sunk so don't break the edge. 948 MachineInstr *DefMI = MRI->getVRegDef(Reg); 949 if (DefMI->getParent() == MI.getParent()) 950 return true; 951 } 952 } 953 954 return false; 955 } 956 957 bool MachineSinking::isLegalToBreakCriticalEdge(MachineInstr &MI, 958 MachineBasicBlock *FromBB, 959 MachineBasicBlock *ToBB, 960 bool BreakPHIEdge) { 961 // Avoid breaking back edge. From == To means backedge for single BB cycle. 962 if (!SplitEdges || FromBB == ToBB) 963 return false; 964 965 MachineCycle *FromCycle = CI->getCycle(FromBB); 966 MachineCycle *ToCycle = CI->getCycle(ToBB); 967 968 // Check for backedges of more "complex" cycles. 969 if (FromCycle == ToCycle && FromCycle && 970 (!FromCycle->isReducible() || FromCycle->getHeader() == ToBB)) 971 return false; 972 973 // It's not always legal to break critical edges and sink the computation 974 // to the edge. 975 // 976 // %bb.1: 977 // v1024 978 // Beq %bb.3 979 // <fallthrough> 980 // %bb.2: 981 // ... no uses of v1024 982 // <fallthrough> 983 // %bb.3: 984 // ... 985 // = v1024 986 // 987 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 988 // 989 // %bb.1: 990 // ... 991 // Bne %bb.2 992 // %bb.4: 993 // v1024 = 994 // B %bb.3 995 // %bb.2: 996 // ... no uses of v1024 997 // <fallthrough> 998 // %bb.3: 999 // ... 1000 // = v1024 1001 // 1002 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 1003 // flow. We need to ensure the new basic block where the computation is 1004 // sunk to dominates all the uses. 1005 // It's only legal to break critical edge and sink the computation to the 1006 // new block if all the predecessors of "To", except for "From", are 1007 // not dominated by "From". Given SSA property, this means these 1008 // predecessors are dominated by "To". 1009 // 1010 // There is no need to do this check if all the uses are PHI nodes. PHI 1011 // sources are only defined on the specific predecessor edges. 1012 if (!BreakPHIEdge) { 1013 for (MachineBasicBlock *Pred : ToBB->predecessors()) 1014 if (Pred != FromBB && !DT->dominates(ToBB, Pred)) 1015 return false; 1016 } 1017 1018 return true; 1019 } 1020 1021 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 1022 MachineBasicBlock *FromBB, 1023 MachineBasicBlock *ToBB, 1024 bool BreakPHIEdge) { 1025 bool Status = false; 1026 MachineBasicBlock *DeferredFromBB = nullptr; 1027 if (isWorthBreakingCriticalEdge(MI, FromBB, ToBB, DeferredFromBB)) { 1028 // If there is a DeferredFromBB, we consider FromBB only if _both_ 1029 // of them are legal to split. 1030 if ((!DeferredFromBB || 1031 ToSplit.count(std::make_pair(DeferredFromBB, ToBB)) || 1032 isLegalToBreakCriticalEdge(MI, DeferredFromBB, ToBB, BreakPHIEdge)) && 1033 isLegalToBreakCriticalEdge(MI, FromBB, ToBB, BreakPHIEdge)) { 1034 ToSplit.insert(std::make_pair(FromBB, ToBB)); 1035 if (DeferredFromBB) 1036 ToSplit.insert(std::make_pair(DeferredFromBB, ToBB)); 1037 Status = true; 1038 } 1039 } 1040 1041 return Status; 1042 } 1043 1044 std::vector<unsigned> & 1045 MachineSinking::getBBRegisterPressure(const MachineBasicBlock &MBB) { 1046 // Currently to save compiling time, MBB's register pressure will not change 1047 // in one ProcessBlock iteration because of CachedRegisterPressure. but MBB's 1048 // register pressure is changed after sinking any instructions into it. 1049 // FIXME: need a accurate and cheap register pressure estiminate model here. 1050 auto RP = CachedRegisterPressure.find(&MBB); 1051 if (RP != CachedRegisterPressure.end()) 1052 return RP->second; 1053 1054 RegionPressure Pressure; 1055 RegPressureTracker RPTracker(Pressure); 1056 1057 // Initialize the register pressure tracker. 1058 RPTracker.init(MBB.getParent(), &RegClassInfo, nullptr, &MBB, MBB.end(), 1059 /*TrackLaneMasks*/ false, /*TrackUntiedDefs=*/true); 1060 1061 for (MachineBasicBlock::const_iterator MII = MBB.instr_end(), 1062 MIE = MBB.instr_begin(); 1063 MII != MIE; --MII) { 1064 const MachineInstr &MI = *std::prev(MII); 1065 if (MI.isDebugInstr() || MI.isPseudoProbe()) 1066 continue; 1067 RegisterOperands RegOpers; 1068 RegOpers.collect(MI, *TRI, *MRI, false, false); 1069 RPTracker.recedeSkipDebugValues(); 1070 assert(&*RPTracker.getPos() == &MI && "RPTracker sync error!"); 1071 RPTracker.recede(RegOpers); 1072 } 1073 1074 RPTracker.closeRegion(); 1075 auto It = CachedRegisterPressure.insert( 1076 std::make_pair(&MBB, RPTracker.getPressure().MaxSetPressure)); 1077 return It.first->second; 1078 } 1079 1080 bool MachineSinking::registerPressureSetExceedsLimit( 1081 unsigned NRegs, const TargetRegisterClass *RC, 1082 const MachineBasicBlock &MBB) { 1083 unsigned Weight = NRegs * TRI->getRegClassWeight(RC).RegWeight; 1084 const int *PS = TRI->getRegClassPressureSets(RC); 1085 std::vector<unsigned> BBRegisterPressure = getBBRegisterPressure(MBB); 1086 for (; *PS != -1; PS++) 1087 if (Weight + BBRegisterPressure[*PS] >= 1088 TRI->getRegPressureSetLimit(*MBB.getParent(), *PS)) 1089 return true; 1090 return false; 1091 } 1092 1093 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 1094 bool MachineSinking::isProfitableToSinkTo(Register Reg, MachineInstr &MI, 1095 MachineBasicBlock *MBB, 1096 MachineBasicBlock *SuccToSinkTo, 1097 AllSuccsCache &AllSuccessors) { 1098 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 1099 1100 if (MBB == SuccToSinkTo) 1101 return false; 1102 1103 // It is profitable if SuccToSinkTo does not post dominate current block. 1104 if (!PDT->dominates(SuccToSinkTo, MBB)) 1105 return true; 1106 1107 // It is profitable to sink an instruction from a deeper cycle to a shallower 1108 // cycle, even if the latter post-dominates the former (PR21115). 1109 if (CI->getCycleDepth(MBB) > CI->getCycleDepth(SuccToSinkTo)) 1110 return true; 1111 1112 // Check if only use in post dominated block is PHI instruction. 1113 bool NonPHIUse = false; 1114 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 1115 MachineBasicBlock *UseBlock = UseInst.getParent(); 1116 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 1117 NonPHIUse = true; 1118 } 1119 if (!NonPHIUse) 1120 return true; 1121 1122 // If SuccToSinkTo post dominates then also it may be profitable if MI 1123 // can further profitably sinked into another block in next round. 1124 bool BreakPHIEdge = false; 1125 // FIXME - If finding successor is compile time expensive then cache results. 1126 if (MachineBasicBlock *MBB2 = 1127 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 1128 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 1129 1130 MachineCycle *MCycle = CI->getCycle(MBB); 1131 1132 // If the instruction is not inside a cycle, it is not profitable to sink MI to 1133 // a post dominate block SuccToSinkTo. 1134 if (!MCycle) 1135 return false; 1136 1137 // If this instruction is inside a Cycle and sinking this instruction can make 1138 // more registers live range shorten, it is still prifitable. 1139 for (const MachineOperand &MO : MI.operands()) { 1140 // Ignore non-register operands. 1141 if (!MO.isReg()) 1142 continue; 1143 Register Reg = MO.getReg(); 1144 if (Reg == 0) 1145 continue; 1146 1147 if (Reg.isPhysical()) { 1148 // Don't handle non-constant and non-ignorable physical register uses. 1149 if (MO.isUse() && !MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1150 return false; 1151 continue; 1152 } 1153 1154 // Users for the defs are all dominated by SuccToSinkTo. 1155 if (MO.isDef()) { 1156 // This def register's live range is shortened after sinking. 1157 bool LocalUse = false; 1158 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, BreakPHIEdge, 1159 LocalUse)) 1160 return false; 1161 } else { 1162 MachineInstr *DefMI = MRI->getVRegDef(Reg); 1163 if (!DefMI) 1164 continue; 1165 MachineCycle *Cycle = CI->getCycle(DefMI->getParent()); 1166 // DefMI is defined outside of cycle. There should be no live range 1167 // impact for this operand. Defination outside of cycle means: 1168 // 1: defination is outside of cycle. 1169 // 2: defination is in this cycle, but it is a PHI in the cycle header. 1170 if (Cycle != MCycle || (DefMI->isPHI() && Cycle && Cycle->isReducible() && 1171 Cycle->getHeader() == DefMI->getParent())) 1172 continue; 1173 // The DefMI is defined inside the cycle. 1174 // If sinking this operand makes some register pressure set exceed limit, 1175 // it is not profitable. 1176 if (registerPressureSetExceedsLimit(1, MRI->getRegClass(Reg), 1177 *SuccToSinkTo)) { 1178 LLVM_DEBUG(dbgs() << "register pressure exceed limit, not profitable."); 1179 return false; 1180 } 1181 } 1182 } 1183 1184 // If MI is in cycle and all its operands are alive across the whole cycle or 1185 // if no operand sinking make register pressure set exceed limit, it is 1186 // profitable to sink MI. 1187 return true; 1188 } 1189 1190 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 1191 /// computing it if it was not already cached. 1192 SmallVector<MachineBasicBlock *, 4> & 1193 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 1194 AllSuccsCache &AllSuccessors) const { 1195 // Do we have the sorted successors in cache ? 1196 auto Succs = AllSuccessors.find(MBB); 1197 if (Succs != AllSuccessors.end()) 1198 return Succs->second; 1199 1200 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->successors()); 1201 1202 // Handle cases where sinking can happen but where the sink point isn't a 1203 // successor. For example: 1204 // 1205 // x = computation 1206 // if () {} else {} 1207 // use x 1208 // 1209 for (MachineDomTreeNode *DTChild : DT->getNode(MBB)->children()) { 1210 // DomTree children of MBB that have MBB as immediate dominator are added. 1211 if (DTChild->getIDom()->getBlock() == MI.getParent() && 1212 // Skip MBBs already added to the AllSuccs vector above. 1213 !MBB->isSuccessor(DTChild->getBlock())) 1214 AllSuccs.push_back(DTChild->getBlock()); 1215 } 1216 1217 // Sort Successors according to their cycle depth or block frequency info. 1218 llvm::stable_sort( 1219 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 1220 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 1221 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 1222 bool HasBlockFreq = LHSFreq != 0 || RHSFreq != 0; 1223 return HasBlockFreq ? LHSFreq < RHSFreq 1224 : CI->getCycleDepth(L) < CI->getCycleDepth(R); 1225 }); 1226 1227 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 1228 1229 return it.first->second; 1230 } 1231 1232 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 1233 MachineBasicBlock * 1234 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 1235 bool &BreakPHIEdge, 1236 AllSuccsCache &AllSuccessors) { 1237 assert (MBB && "Invalid MachineBasicBlock!"); 1238 1239 // loop over all the operands of the specified instruction. If there is 1240 // anything we can't handle, bail out. 1241 1242 // SuccToSinkTo - This is the successor to sink this instruction to, once we 1243 // decide. 1244 MachineBasicBlock *SuccToSinkTo = nullptr; 1245 for (const MachineOperand &MO : MI.operands()) { 1246 if (!MO.isReg()) continue; // Ignore non-register operands. 1247 1248 Register Reg = MO.getReg(); 1249 if (Reg == 0) continue; 1250 1251 if (Reg.isPhysical()) { 1252 if (MO.isUse()) { 1253 // If the physreg has no defs anywhere, it's just an ambient register 1254 // and we can freely move its uses. Alternatively, if it's allocatable, 1255 // it could get allocated to something with a def during allocation. 1256 if (!MRI->isConstantPhysReg(Reg) && !TII->isIgnorableUse(MO)) 1257 return nullptr; 1258 } else if (!MO.isDead()) { 1259 // A def that isn't dead. We can't move it. 1260 return nullptr; 1261 } 1262 } else { 1263 // Virtual register uses are always safe to sink. 1264 if (MO.isUse()) continue; 1265 1266 // If it's not safe to move defs of the register class, then abort. 1267 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 1268 return nullptr; 1269 1270 // Virtual register defs can only be sunk if all their uses are in blocks 1271 // dominated by one of the successors. 1272 if (SuccToSinkTo) { 1273 // If a previous operand picked a block to sink to, then this operand 1274 // must be sinkable to the same block. 1275 bool LocalUse = false; 1276 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 1277 BreakPHIEdge, LocalUse)) 1278 return nullptr; 1279 1280 continue; 1281 } 1282 1283 // Otherwise, we should look at all the successors and decide which one 1284 // we should sink to. If we have reliable block frequency information 1285 // (frequency != 0) available, give successors with smaller frequencies 1286 // higher priority, otherwise prioritize smaller cycle depths. 1287 for (MachineBasicBlock *SuccBlock : 1288 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 1289 bool LocalUse = false; 1290 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 1291 BreakPHIEdge, LocalUse)) { 1292 SuccToSinkTo = SuccBlock; 1293 break; 1294 } 1295 if (LocalUse) 1296 // Def is used locally, it's never safe to move this def. 1297 return nullptr; 1298 } 1299 1300 // If we couldn't find a block to sink to, ignore this instruction. 1301 if (!SuccToSinkTo) 1302 return nullptr; 1303 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 1304 return nullptr; 1305 } 1306 } 1307 1308 // It is not possible to sink an instruction into its own block. This can 1309 // happen with cycles. 1310 if (MBB == SuccToSinkTo) 1311 return nullptr; 1312 1313 // It's not safe to sink instructions to EH landing pad. Control flow into 1314 // landing pad is implicitly defined. 1315 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 1316 return nullptr; 1317 1318 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 1319 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 1320 // the source block (which this code does not yet do). So for now, forbid 1321 // doing so. 1322 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 1323 return nullptr; 1324 1325 if (SuccToSinkTo && !TII->isSafeToSink(MI, SuccToSinkTo, CI)) 1326 return nullptr; 1327 1328 return SuccToSinkTo; 1329 } 1330 1331 /// Return true if MI is likely to be usable as a memory operation by the 1332 /// implicit null check optimization. 1333 /// 1334 /// This is a "best effort" heuristic, and should not be relied upon for 1335 /// correctness. This returning true does not guarantee that the implicit null 1336 /// check optimization is legal over MI, and this returning false does not 1337 /// guarantee MI cannot possibly be used to do a null check. 1338 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 1339 const TargetInstrInfo *TII, 1340 const TargetRegisterInfo *TRI) { 1341 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 1342 1343 auto *MBB = MI.getParent(); 1344 if (MBB->pred_size() != 1) 1345 return false; 1346 1347 auto *PredMBB = *MBB->pred_begin(); 1348 auto *PredBB = PredMBB->getBasicBlock(); 1349 1350 // Frontends that don't use implicit null checks have no reason to emit 1351 // branches with make.implicit metadata, and this function should always 1352 // return false for them. 1353 if (!PredBB || 1354 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 1355 return false; 1356 1357 const MachineOperand *BaseOp; 1358 int64_t Offset; 1359 bool OffsetIsScalable; 1360 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 1361 return false; 1362 1363 if (!BaseOp->isReg()) 1364 return false; 1365 1366 if (!(MI.mayLoad() && !MI.isPredicable())) 1367 return false; 1368 1369 MachineBranchPredicate MBP; 1370 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 1371 return false; 1372 1373 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 1374 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 1375 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 1376 MBP.LHS.getReg() == BaseOp->getReg(); 1377 } 1378 1379 /// If the sunk instruction is a copy, try to forward the copy instead of 1380 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 1381 /// there's any subregister weirdness involved. Returns true if copy 1382 /// propagation occurred. 1383 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI, 1384 Register Reg) { 1385 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 1386 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 1387 1388 // Copy DBG_VALUE operand and set the original to undef. We then check to 1389 // see whether this is something that can be copy-forwarded. If it isn't, 1390 // continue around the loop. 1391 1392 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 1393 auto CopyOperands = TII.isCopyInstr(SinkInst); 1394 if (!CopyOperands) 1395 return false; 1396 SrcMO = CopyOperands->Source; 1397 DstMO = CopyOperands->Destination; 1398 1399 // Check validity of forwarding this copy. 1400 bool PostRA = MRI.getNumVirtRegs() == 0; 1401 1402 // Trying to forward between physical and virtual registers is too hard. 1403 if (Reg.isVirtual() != SrcMO->getReg().isVirtual()) 1404 return false; 1405 1406 // Only try virtual register copy-forwarding before regalloc, and physical 1407 // register copy-forwarding after regalloc. 1408 bool arePhysRegs = !Reg.isVirtual(); 1409 if (arePhysRegs != PostRA) 1410 return false; 1411 1412 // Pre-regalloc, only forward if all subregisters agree (or there are no 1413 // subregs at all). More analysis might recover some forwardable copies. 1414 if (!PostRA) 1415 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) 1416 if (DbgMO.getSubReg() != SrcMO->getSubReg() || 1417 DbgMO.getSubReg() != DstMO->getSubReg()) 1418 return false; 1419 1420 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 1421 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 1422 // matches the copy destination. 1423 if (PostRA && Reg != DstMO->getReg()) 1424 return false; 1425 1426 for (auto &DbgMO : DbgMI.getDebugOperandsForReg(Reg)) { 1427 DbgMO.setReg(SrcMO->getReg()); 1428 DbgMO.setSubReg(SrcMO->getSubReg()); 1429 } 1430 return true; 1431 } 1432 1433 using MIRegs = std::pair<MachineInstr *, SmallVector<unsigned, 2>>; 1434 /// Sink an instruction and its associated debug instructions. 1435 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 1436 MachineBasicBlock::iterator InsertPos, 1437 ArrayRef<MIRegs> DbgValuesToSink) { 1438 // If we cannot find a location to use (merge with), then we erase the debug 1439 // location to prevent debug-info driven tools from potentially reporting 1440 // wrong location information. 1441 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 1442 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 1443 InsertPos->getDebugLoc())); 1444 else 1445 MI.setDebugLoc(DebugLoc()); 1446 1447 // Move the instruction. 1448 MachineBasicBlock *ParentBlock = MI.getParent(); 1449 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 1450 ++MachineBasicBlock::iterator(MI)); 1451 1452 // Sink a copy of debug users to the insert position. Mark the original 1453 // DBG_VALUE location as 'undef', indicating that any earlier variable 1454 // location should be terminated as we've optimised away the value at this 1455 // point. 1456 for (const auto &DbgValueToSink : DbgValuesToSink) { 1457 MachineInstr *DbgMI = DbgValueToSink.first; 1458 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(DbgMI); 1459 SuccToSinkTo.insert(InsertPos, NewDbgMI); 1460 1461 bool PropagatedAllSunkOps = true; 1462 for (unsigned Reg : DbgValueToSink.second) { 1463 if (DbgMI->hasDebugOperandForReg(Reg)) { 1464 if (!attemptDebugCopyProp(MI, *DbgMI, Reg)) { 1465 PropagatedAllSunkOps = false; 1466 break; 1467 } 1468 } 1469 } 1470 if (!PropagatedAllSunkOps) 1471 DbgMI->setDebugValueUndef(); 1472 } 1473 } 1474 1475 /// hasStoreBetween - check if there is store betweeen straight line blocks From 1476 /// and To. 1477 bool MachineSinking::hasStoreBetween(MachineBasicBlock *From, 1478 MachineBasicBlock *To, MachineInstr &MI) { 1479 // Make sure From and To are in straight line which means From dominates To 1480 // and To post dominates From. 1481 if (!DT->dominates(From, To) || !PDT->dominates(To, From)) 1482 return true; 1483 1484 auto BlockPair = std::make_pair(From, To); 1485 1486 // Does these two blocks pair be queried before and have a definite cached 1487 // result? 1488 if (auto It = HasStoreCache.find(BlockPair); It != HasStoreCache.end()) 1489 return It->second; 1490 1491 if (auto It = StoreInstrCache.find(BlockPair); It != StoreInstrCache.end()) 1492 return llvm::any_of(It->second, [&](MachineInstr *I) { 1493 return I->mayAlias(AA, MI, false); 1494 }); 1495 1496 bool SawStore = false; 1497 bool HasAliasedStore = false; 1498 DenseSet<MachineBasicBlock *> HandledBlocks; 1499 DenseSet<MachineBasicBlock *> HandledDomBlocks; 1500 // Go through all reachable blocks from From. 1501 for (MachineBasicBlock *BB : depth_first(From)) { 1502 // We insert the instruction at the start of block To, so no need to worry 1503 // about stores inside To. 1504 // Store in block From should be already considered when just enter function 1505 // SinkInstruction. 1506 if (BB == To || BB == From) 1507 continue; 1508 1509 // We already handle this BB in previous iteration. 1510 if (HandledBlocks.count(BB)) 1511 continue; 1512 1513 HandledBlocks.insert(BB); 1514 // To post dominates BB, it must be a path from block From. 1515 if (PDT->dominates(To, BB)) { 1516 if (!HandledDomBlocks.count(BB)) 1517 HandledDomBlocks.insert(BB); 1518 1519 // If this BB is too big or the block number in straight line between From 1520 // and To is too big, stop searching to save compiling time. 1521 if (BB->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold) || 1522 HandledDomBlocks.size() > SinkLoadBlocksThreshold) { 1523 for (auto *DomBB : HandledDomBlocks) { 1524 if (DomBB != BB && DT->dominates(DomBB, BB)) 1525 HasStoreCache[std::make_pair(DomBB, To)] = true; 1526 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1527 HasStoreCache[std::make_pair(From, DomBB)] = true; 1528 } 1529 HasStoreCache[BlockPair] = true; 1530 return true; 1531 } 1532 1533 for (MachineInstr &I : *BB) { 1534 // Treat as alias conservatively for a call or an ordered memory 1535 // operation. 1536 if (I.isCall() || I.hasOrderedMemoryRef()) { 1537 for (auto *DomBB : HandledDomBlocks) { 1538 if (DomBB != BB && DT->dominates(DomBB, BB)) 1539 HasStoreCache[std::make_pair(DomBB, To)] = true; 1540 else if(DomBB != BB && DT->dominates(BB, DomBB)) 1541 HasStoreCache[std::make_pair(From, DomBB)] = true; 1542 } 1543 HasStoreCache[BlockPair] = true; 1544 return true; 1545 } 1546 1547 if (I.mayStore()) { 1548 SawStore = true; 1549 // We still have chance to sink MI if all stores between are not 1550 // aliased to MI. 1551 // Cache all store instructions, so that we don't need to go through 1552 // all From reachable blocks for next load instruction. 1553 if (I.mayAlias(AA, MI, false)) 1554 HasAliasedStore = true; 1555 StoreInstrCache[BlockPair].push_back(&I); 1556 } 1557 } 1558 } 1559 } 1560 // If there is no store at all, cache the result. 1561 if (!SawStore) 1562 HasStoreCache[BlockPair] = false; 1563 return HasAliasedStore; 1564 } 1565 1566 /// Sink instructions into cycles if profitable. This especially tries to 1567 /// prevent register spills caused by register pressure if there is little to no 1568 /// overhead moving instructions into cycles. 1569 bool MachineSinking::SinkIntoCycle(MachineCycle *Cycle, MachineInstr &I) { 1570 LLVM_DEBUG(dbgs() << "CycleSink: Finding sink block for: " << I); 1571 MachineBasicBlock *Preheader = Cycle->getCyclePreheader(); 1572 assert(Preheader && "Cycle sink needs a preheader block"); 1573 MachineBasicBlock *SinkBlock = nullptr; 1574 bool CanSink = true; 1575 const MachineOperand &MO = I.getOperand(0); 1576 1577 for (MachineInstr &MI : MRI->use_instructions(MO.getReg())) { 1578 LLVM_DEBUG(dbgs() << "CycleSink: Analysing use: " << MI); 1579 if (!Cycle->contains(MI.getParent())) { 1580 LLVM_DEBUG(dbgs() << "CycleSink: Use not in cycle, can't sink.\n"); 1581 CanSink = false; 1582 break; 1583 } 1584 1585 // FIXME: Come up with a proper cost model that estimates whether sinking 1586 // the instruction (and thus possibly executing it on every cycle 1587 // iteration) is more expensive than a register. 1588 // For now assumes that copies are cheap and thus almost always worth it. 1589 if (!MI.isCopy()) { 1590 LLVM_DEBUG(dbgs() << "CycleSink: Use is not a copy\n"); 1591 CanSink = false; 1592 break; 1593 } 1594 if (!SinkBlock) { 1595 SinkBlock = MI.getParent(); 1596 LLVM_DEBUG(dbgs() << "CycleSink: Setting sink block to: " 1597 << printMBBReference(*SinkBlock) << "\n"); 1598 continue; 1599 } 1600 SinkBlock = DT->findNearestCommonDominator(SinkBlock, MI.getParent()); 1601 if (!SinkBlock) { 1602 LLVM_DEBUG(dbgs() << "CycleSink: Can't find nearest dominator\n"); 1603 CanSink = false; 1604 break; 1605 } 1606 LLVM_DEBUG(dbgs() << "CycleSink: Setting nearest common dom block: " << 1607 printMBBReference(*SinkBlock) << "\n"); 1608 } 1609 1610 if (!CanSink) { 1611 LLVM_DEBUG(dbgs() << "CycleSink: Can't sink instruction.\n"); 1612 return false; 1613 } 1614 if (!SinkBlock) { 1615 LLVM_DEBUG(dbgs() << "CycleSink: Not sinking, can't find sink block.\n"); 1616 return false; 1617 } 1618 if (SinkBlock == Preheader) { 1619 LLVM_DEBUG( 1620 dbgs() << "CycleSink: Not sinking, sink block is the preheader\n"); 1621 return false; 1622 } 1623 if (SinkBlock->sizeWithoutDebugLargerThan(SinkLoadInstsPerBlockThreshold)) { 1624 LLVM_DEBUG( 1625 dbgs() << "CycleSink: Not Sinking, block too large to analyse.\n"); 1626 return false; 1627 } 1628 1629 LLVM_DEBUG(dbgs() << "CycleSink: Sinking instruction!\n"); 1630 SinkBlock->splice(SinkBlock->SkipPHIsAndLabels(SinkBlock->begin()), Preheader, 1631 I); 1632 1633 // Conservatively clear any kill flags on uses of sunk instruction 1634 for (MachineOperand &MO : I.operands()) { 1635 if (MO.isReg() && MO.readsReg()) 1636 RegsToClearKillFlags.insert(MO.getReg()); 1637 } 1638 1639 // The instruction is moved from its basic block, so do not retain the 1640 // debug information. 1641 assert(!I.isDebugInstr() && "Should not sink debug inst"); 1642 I.setDebugLoc(DebugLoc()); 1643 return true; 1644 } 1645 1646 /// SinkInstruction - Determine whether it is safe to sink the specified machine 1647 /// instruction out of its current block into a successor. 1648 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 1649 AllSuccsCache &AllSuccessors) { 1650 // Don't sink instructions that the target prefers not to sink. 1651 if (!TII->shouldSink(MI)) 1652 return false; 1653 1654 // Check if it's safe to move the instruction. 1655 if (!MI.isSafeToMove(AA, SawStore)) 1656 return false; 1657 1658 // Convergent operations may not be made control-dependent on additional 1659 // values. 1660 if (MI.isConvergent()) 1661 return false; 1662 1663 // Don't break implicit null checks. This is a performance heuristic, and not 1664 // required for correctness. 1665 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 1666 return false; 1667 1668 // FIXME: This should include support for sinking instructions within the 1669 // block they are currently in to shorten the live ranges. We often get 1670 // instructions sunk into the top of a large block, but it would be better to 1671 // also sink them down before their first use in the block. This xform has to 1672 // be careful not to *increase* register pressure though, e.g. sinking 1673 // "x = y + z" down if it kills y and z would increase the live ranges of y 1674 // and z and only shrink the live range of x. 1675 1676 bool BreakPHIEdge = false; 1677 MachineBasicBlock *ParentBlock = MI.getParent(); 1678 MachineBasicBlock *SuccToSinkTo = 1679 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 1680 1681 // If there are no outputs, it must have side-effects. 1682 if (!SuccToSinkTo) 1683 return false; 1684 1685 // If the instruction to move defines a dead physical register which is live 1686 // when leaving the basic block, don't move it because it could turn into a 1687 // "zombie" define of that preg. E.g., EFLAGS. 1688 for (const MachineOperand &MO : MI.all_defs()) { 1689 Register Reg = MO.getReg(); 1690 if (Reg == 0 || !Reg.isPhysical()) 1691 continue; 1692 if (SuccToSinkTo->isLiveIn(Reg)) 1693 return false; 1694 } 1695 1696 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 1697 1698 // If the block has multiple predecessors, this is a critical edge. 1699 // Decide if we can sink along it or need to break the edge. 1700 if (SuccToSinkTo->pred_size() > 1) { 1701 // We cannot sink a load across a critical edge - there may be stores in 1702 // other code paths. 1703 bool TryBreak = false; 1704 bool Store = 1705 MI.mayLoad() ? hasStoreBetween(ParentBlock, SuccToSinkTo, MI) : true; 1706 if (!MI.isSafeToMove(AA, Store)) { 1707 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 1708 TryBreak = true; 1709 } 1710 1711 // We don't want to sink across a critical edge if we don't dominate the 1712 // successor. We could be introducing calculations to new code paths. 1713 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 1714 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 1715 TryBreak = true; 1716 } 1717 1718 // Don't sink instructions into a cycle. 1719 if (!TryBreak && CI->getCycle(SuccToSinkTo) && 1720 (!CI->getCycle(SuccToSinkTo)->isReducible() || 1721 CI->getCycle(SuccToSinkTo)->getHeader() == SuccToSinkTo)) { 1722 LLVM_DEBUG(dbgs() << " *** NOTE: cycle header found\n"); 1723 TryBreak = true; 1724 } 1725 1726 // Otherwise we are OK with sinking along a critical edge. 1727 if (!TryBreak) 1728 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 1729 else { 1730 // Mark this edge as to be split. 1731 // If the edge can actually be split, the next iteration of the main loop 1732 // will sink MI in the newly created block. 1733 bool Status = 1734 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 1735 if (!Status) 1736 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1737 "break critical edge\n"); 1738 // The instruction will not be sunk this time. 1739 return false; 1740 } 1741 } 1742 1743 if (BreakPHIEdge) { 1744 // BreakPHIEdge is true if all the uses are in the successor MBB being 1745 // sunken into and they are all PHI nodes. In this case, machine-sink must 1746 // break the critical edge first. 1747 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 1748 SuccToSinkTo, BreakPHIEdge); 1749 if (!Status) 1750 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 1751 "break critical edge\n"); 1752 // The instruction will not be sunk this time. 1753 return false; 1754 } 1755 1756 // Determine where to insert into. Skip phi nodes. 1757 MachineBasicBlock::iterator InsertPos = 1758 SuccToSinkTo->SkipPHIsAndLabels(SuccToSinkTo->begin()); 1759 if (blockPrologueInterferes(SuccToSinkTo, InsertPos, MI, TRI, TII, MRI)) { 1760 LLVM_DEBUG(dbgs() << " *** Not sinking: prologue interference\n"); 1761 return false; 1762 } 1763 1764 // Collect debug users of any vreg that this inst defines. 1765 SmallVector<MIRegs, 4> DbgUsersToSink; 1766 for (auto &MO : MI.all_defs()) { 1767 if (!MO.getReg().isVirtual()) 1768 continue; 1769 if (!SeenDbgUsers.count(MO.getReg())) 1770 continue; 1771 1772 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1773 auto &Users = SeenDbgUsers[MO.getReg()]; 1774 for (auto &User : Users) { 1775 MachineInstr *DbgMI = User.getPointer(); 1776 if (User.getInt()) { 1777 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1778 // it, it can't be recovered. Set it undef. 1779 if (!attemptDebugCopyProp(MI, *DbgMI, MO.getReg())) 1780 DbgMI->setDebugValueUndef(); 1781 } else { 1782 DbgUsersToSink.push_back( 1783 {DbgMI, SmallVector<unsigned, 2>(1, MO.getReg())}); 1784 } 1785 } 1786 } 1787 1788 // After sinking, some debug users may not be dominated any more. If possible, 1789 // copy-propagate their operands. As it's expensive, don't do this if there's 1790 // no debuginfo in the program. 1791 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1792 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1793 1794 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1795 1796 // Conservatively, clear any kill flags, since it's possible that they are no 1797 // longer correct. 1798 // Note that we have to clear the kill flags for any register this instruction 1799 // uses as we may sink over another instruction which currently kills the 1800 // used registers. 1801 for (MachineOperand &MO : MI.all_uses()) 1802 RegsToClearKillFlags.insert(MO.getReg()); // Remember to clear kill flags. 1803 1804 return true; 1805 } 1806 1807 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1808 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1809 assert(MI.isCopy()); 1810 assert(MI.getOperand(1).isReg()); 1811 1812 // Enumerate all users of vreg operands that are def'd. Skip those that will 1813 // be sunk. For the rest, if they are not dominated by the block we will sink 1814 // MI into, propagate the copy source to them. 1815 SmallVector<MachineInstr *, 4> DbgDefUsers; 1816 SmallVector<Register, 4> DbgUseRegs; 1817 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1818 for (auto &MO : MI.all_defs()) { 1819 if (!MO.getReg().isVirtual()) 1820 continue; 1821 DbgUseRegs.push_back(MO.getReg()); 1822 for (auto &User : MRI.use_instructions(MO.getReg())) { 1823 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1824 continue; 1825 1826 // If is in same block, will either sink or be use-before-def. 1827 if (User.getParent() == MI.getParent()) 1828 continue; 1829 1830 assert(User.hasDebugOperandForReg(MO.getReg()) && 1831 "DBG_VALUE user of vreg, but has no operand for it?"); 1832 DbgDefUsers.push_back(&User); 1833 } 1834 } 1835 1836 // Point the users of this copy that are no longer dominated, at the source 1837 // of the copy. 1838 for (auto *User : DbgDefUsers) { 1839 for (auto &Reg : DbgUseRegs) { 1840 for (auto &DbgOp : User->getDebugOperandsForReg(Reg)) { 1841 DbgOp.setReg(MI.getOperand(1).getReg()); 1842 DbgOp.setSubReg(MI.getOperand(1).getSubReg()); 1843 } 1844 } 1845 } 1846 } 1847 1848 //===----------------------------------------------------------------------===// 1849 // This pass is not intended to be a replacement or a complete alternative 1850 // for the pre-ra machine sink pass. It is only designed to sink COPY 1851 // instructions which should be handled after RA. 1852 // 1853 // This pass sinks COPY instructions into a successor block, if the COPY is not 1854 // used in the current block and the COPY is live-in to a single successor 1855 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1856 // copy on paths where their results aren't needed. This also exposes 1857 // additional opportunites for dead copy elimination and shrink wrapping. 1858 // 1859 // These copies were either not handled by or are inserted after the MachineSink 1860 // pass. As an example of the former case, the MachineSink pass cannot sink 1861 // COPY instructions with allocatable source registers; for AArch64 these type 1862 // of copy instructions are frequently used to move function parameters (PhyReg) 1863 // into virtual registers in the entry block. 1864 // 1865 // For the machine IR below, this pass will sink %w19 in the entry into its 1866 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1867 // %bb.0: 1868 // %wzr = SUBSWri %w1, 1 1869 // %w19 = COPY %w0 1870 // Bcc 11, %bb.2 1871 // %bb.1: 1872 // Live Ins: %w19 1873 // BL @fun 1874 // %w0 = ADDWrr %w0, %w19 1875 // RET %w0 1876 // %bb.2: 1877 // %w0 = COPY %wzr 1878 // RET %w0 1879 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1880 // able to see %bb.0 as a candidate. 1881 //===----------------------------------------------------------------------===// 1882 namespace { 1883 1884 class PostRAMachineSinking : public MachineFunctionPass { 1885 public: 1886 bool runOnMachineFunction(MachineFunction &MF) override; 1887 1888 static char ID; 1889 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1890 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1891 1892 void getAnalysisUsage(AnalysisUsage &AU) const override { 1893 AU.setPreservesCFG(); 1894 MachineFunctionPass::getAnalysisUsage(AU); 1895 } 1896 1897 MachineFunctionProperties getRequiredProperties() const override { 1898 return MachineFunctionProperties().set( 1899 MachineFunctionProperties::Property::NoVRegs); 1900 } 1901 1902 private: 1903 /// Track which register units have been modified and used. 1904 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1905 1906 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1907 /// entry in this map for each unit it touches. The DBG_VALUE's entry 1908 /// consists of a pointer to the instruction itself, and a vector of registers 1909 /// referred to by the instruction that overlap the key register unit. 1910 DenseMap<unsigned, SmallVector<MIRegs, 2>> SeenDbgInstrs; 1911 1912 /// Sink Copy instructions unused in the same block close to their uses in 1913 /// successors. 1914 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1915 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1916 }; 1917 } // namespace 1918 1919 char PostRAMachineSinking::ID = 0; 1920 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1921 1922 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1923 "PostRA Machine Sink", false, false) 1924 1925 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1926 const TargetRegisterInfo *TRI) { 1927 LiveRegUnits LiveInRegUnits(*TRI); 1928 LiveInRegUnits.addLiveIns(MBB); 1929 return !LiveInRegUnits.available(Reg); 1930 } 1931 1932 static MachineBasicBlock * 1933 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1934 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1935 unsigned Reg, const TargetRegisterInfo *TRI) { 1936 // Try to find a single sinkable successor in which Reg is live-in. 1937 MachineBasicBlock *BB = nullptr; 1938 for (auto *SI : SinkableBBs) { 1939 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1940 // If BB is set here, Reg is live-in to at least two sinkable successors, 1941 // so quit. 1942 if (BB) 1943 return nullptr; 1944 BB = SI; 1945 } 1946 } 1947 // Reg is not live-in to any sinkable successors. 1948 if (!BB) 1949 return nullptr; 1950 1951 // Check if any register aliased with Reg is live-in in other successors. 1952 for (auto *SI : CurBB.successors()) { 1953 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1954 return nullptr; 1955 } 1956 return BB; 1957 } 1958 1959 static MachineBasicBlock * 1960 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1961 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1962 ArrayRef<unsigned> DefedRegsInCopy, 1963 const TargetRegisterInfo *TRI) { 1964 MachineBasicBlock *SingleBB = nullptr; 1965 for (auto DefReg : DefedRegsInCopy) { 1966 MachineBasicBlock *BB = 1967 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1968 if (!BB || (SingleBB && SingleBB != BB)) 1969 return nullptr; 1970 SingleBB = BB; 1971 } 1972 return SingleBB; 1973 } 1974 1975 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1976 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1977 LiveRegUnits &UsedRegUnits, 1978 const TargetRegisterInfo *TRI) { 1979 for (auto U : UsedOpsInCopy) { 1980 MachineOperand &MO = MI->getOperand(U); 1981 Register SrcReg = MO.getReg(); 1982 if (!UsedRegUnits.available(SrcReg)) { 1983 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1984 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1985 if (UI.killsRegister(SrcReg, TRI)) { 1986 UI.clearRegisterKills(SrcReg, TRI); 1987 MO.setIsKill(true); 1988 break; 1989 } 1990 } 1991 } 1992 } 1993 } 1994 1995 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1996 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1997 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1998 MachineFunction &MF = *SuccBB->getParent(); 1999 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2000 for (unsigned DefReg : DefedRegsInCopy) 2001 for (MCPhysReg S : TRI->subregs_inclusive(DefReg)) 2002 SuccBB->removeLiveIn(S); 2003 for (auto U : UsedOpsInCopy) 2004 SuccBB->addLiveIn(MI->getOperand(U).getReg()); 2005 SuccBB->sortUniqueLiveIns(); 2006 } 2007 2008 static bool hasRegisterDependency(MachineInstr *MI, 2009 SmallVectorImpl<unsigned> &UsedOpsInCopy, 2010 SmallVectorImpl<unsigned> &DefedRegsInCopy, 2011 LiveRegUnits &ModifiedRegUnits, 2012 LiveRegUnits &UsedRegUnits) { 2013 bool HasRegDependency = false; 2014 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 2015 MachineOperand &MO = MI->getOperand(i); 2016 if (!MO.isReg()) 2017 continue; 2018 Register Reg = MO.getReg(); 2019 if (!Reg) 2020 continue; 2021 if (MO.isDef()) { 2022 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 2023 HasRegDependency = true; 2024 break; 2025 } 2026 DefedRegsInCopy.push_back(Reg); 2027 2028 // FIXME: instead of isUse(), readsReg() would be a better fix here, 2029 // For example, we can ignore modifications in reg with undef. However, 2030 // it's not perfectly clear if skipping the internal read is safe in all 2031 // other targets. 2032 } else if (MO.isUse()) { 2033 if (!ModifiedRegUnits.available(Reg)) { 2034 HasRegDependency = true; 2035 break; 2036 } 2037 UsedOpsInCopy.push_back(i); 2038 } 2039 } 2040 return HasRegDependency; 2041 } 2042 2043 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 2044 MachineFunction &MF, 2045 const TargetRegisterInfo *TRI, 2046 const TargetInstrInfo *TII) { 2047 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 2048 // FIXME: For now, we sink only to a successor which has a single predecessor 2049 // so that we can directly sink COPY instructions to the successor without 2050 // adding any new block or branch instruction. 2051 for (MachineBasicBlock *SI : CurBB.successors()) 2052 if (!SI->livein_empty() && SI->pred_size() == 1) 2053 SinkableBBs.insert(SI); 2054 2055 if (SinkableBBs.empty()) 2056 return false; 2057 2058 bool Changed = false; 2059 2060 // Track which registers have been modified and used between the end of the 2061 // block and the current instruction. 2062 ModifiedRegUnits.clear(); 2063 UsedRegUnits.clear(); 2064 SeenDbgInstrs.clear(); 2065 2066 for (MachineInstr &MI : llvm::make_early_inc_range(llvm::reverse(CurBB))) { 2067 // Track the operand index for use in Copy. 2068 SmallVector<unsigned, 2> UsedOpsInCopy; 2069 // Track the register number defed in Copy. 2070 SmallVector<unsigned, 2> DefedRegsInCopy; 2071 2072 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 2073 // for DBG_VALUEs later, record them when they're encountered. 2074 if (MI.isDebugValue() && !MI.isDebugRef()) { 2075 SmallDenseMap<MCRegister, SmallVector<unsigned, 2>, 4> MIUnits; 2076 bool IsValid = true; 2077 for (MachineOperand &MO : MI.debug_operands()) { 2078 if (MO.isReg() && MO.getReg().isPhysical()) { 2079 // Bail if we can already tell the sink would be rejected, rather 2080 // than needlessly accumulating lots of DBG_VALUEs. 2081 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2082 ModifiedRegUnits, UsedRegUnits)) { 2083 IsValid = false; 2084 break; 2085 } 2086 2087 // Record debug use of each reg unit. 2088 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) 2089 MIUnits[Unit].push_back(MO.getReg()); 2090 } 2091 } 2092 if (IsValid) { 2093 for (auto &RegOps : MIUnits) 2094 SeenDbgInstrs[RegOps.first].emplace_back(&MI, 2095 std::move(RegOps.second)); 2096 } 2097 continue; 2098 } 2099 2100 if (MI.isDebugOrPseudoInstr()) 2101 continue; 2102 2103 // Do not move any instruction across function call. 2104 if (MI.isCall()) 2105 return false; 2106 2107 if (!MI.isCopy() || !MI.getOperand(0).isRenamable()) { 2108 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2109 TRI); 2110 continue; 2111 } 2112 2113 // Don't sink the COPY if it would violate a register dependency. 2114 if (hasRegisterDependency(&MI, UsedOpsInCopy, DefedRegsInCopy, 2115 ModifiedRegUnits, UsedRegUnits)) { 2116 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2117 TRI); 2118 continue; 2119 } 2120 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 2121 "Unexpect SrcReg or DefReg"); 2122 MachineBasicBlock *SuccBB = 2123 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 2124 // Don't sink if we cannot find a single sinkable successor in which Reg 2125 // is live-in. 2126 if (!SuccBB) { 2127 LiveRegUnits::accumulateUsedDefed(MI, ModifiedRegUnits, UsedRegUnits, 2128 TRI); 2129 continue; 2130 } 2131 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 2132 "Unexpected predecessor"); 2133 2134 // Collect DBG_VALUEs that must sink with this copy. We've previously 2135 // recorded which reg units that DBG_VALUEs read, if this instruction 2136 // writes any of those units then the corresponding DBG_VALUEs must sink. 2137 MapVector<MachineInstr *, MIRegs::second_type> DbgValsToSinkMap; 2138 for (auto &MO : MI.all_defs()) { 2139 for (MCRegUnit Unit : TRI->regunits(MO.getReg())) { 2140 for (const auto &MIRegs : SeenDbgInstrs.lookup(Unit)) { 2141 auto &Regs = DbgValsToSinkMap[MIRegs.first]; 2142 for (unsigned Reg : MIRegs.second) 2143 Regs.push_back(Reg); 2144 } 2145 } 2146 } 2147 auto DbgValsToSink = DbgValsToSinkMap.takeVector(); 2148 2149 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccBB); 2150 2151 MachineBasicBlock::iterator InsertPos = 2152 SuccBB->SkipPHIsAndLabels(SuccBB->begin()); 2153 if (blockPrologueInterferes(SuccBB, InsertPos, MI, TRI, TII, nullptr)) { 2154 LLVM_DEBUG( 2155 dbgs() << " *** Not sinking: prologue interference\n"); 2156 continue; 2157 } 2158 2159 // Clear the kill flag if SrcReg is killed between MI and the end of the 2160 // block. 2161 clearKillFlags(&MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 2162 performSink(MI, *SuccBB, InsertPos, DbgValsToSink); 2163 updateLiveIn(&MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 2164 2165 Changed = true; 2166 ++NumPostRACopySink; 2167 } 2168 return Changed; 2169 } 2170 2171 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 2172 if (skipFunction(MF.getFunction())) 2173 return false; 2174 2175 bool Changed = false; 2176 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 2177 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 2178 2179 ModifiedRegUnits.init(*TRI); 2180 UsedRegUnits.init(*TRI); 2181 for (auto &BB : MF) 2182 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 2183 2184 return Changed; 2185 } 2186