1 //===- MachineSink.cpp - Sinking for machine instructions -----------------===// 2 // 3 // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. 4 // See https://llvm.org/LICENSE.txt for license information. 5 // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception 6 // 7 //===----------------------------------------------------------------------===// 8 // 9 // This pass moves instructions into successor blocks when possible, so that 10 // they aren't executed on paths where their results aren't needed. 11 // 12 // This pass is not intended to be a replacement or a complete alternative 13 // for an LLVM-IR-level sinking pass. It is only designed to sink simple 14 // constructs that are not exposed before lowering and instruction selection. 15 // 16 //===----------------------------------------------------------------------===// 17 18 #include "llvm/ADT/DenseSet.h" 19 #include "llvm/ADT/PointerIntPair.h" 20 #include "llvm/ADT/SetVector.h" 21 #include "llvm/ADT/SmallSet.h" 22 #include "llvm/ADT/SmallVector.h" 23 #include "llvm/ADT/SparseBitVector.h" 24 #include "llvm/ADT/Statistic.h" 25 #include "llvm/Analysis/AliasAnalysis.h" 26 #include "llvm/CodeGen/MachineBasicBlock.h" 27 #include "llvm/CodeGen/MachineBlockFrequencyInfo.h" 28 #include "llvm/CodeGen/MachineBranchProbabilityInfo.h" 29 #include "llvm/CodeGen/MachineDominators.h" 30 #include "llvm/CodeGen/MachineFunction.h" 31 #include "llvm/CodeGen/MachineFunctionPass.h" 32 #include "llvm/CodeGen/MachineInstr.h" 33 #include "llvm/CodeGen/MachineLoopInfo.h" 34 #include "llvm/CodeGen/MachineOperand.h" 35 #include "llvm/CodeGen/MachinePostDominators.h" 36 #include "llvm/CodeGen/MachineRegisterInfo.h" 37 #include "llvm/CodeGen/TargetInstrInfo.h" 38 #include "llvm/CodeGen/TargetRegisterInfo.h" 39 #include "llvm/CodeGen/TargetSubtargetInfo.h" 40 #include "llvm/IR/BasicBlock.h" 41 #include "llvm/IR/DebugInfoMetadata.h" 42 #include "llvm/IR/LLVMContext.h" 43 #include "llvm/InitializePasses.h" 44 #include "llvm/MC/MCRegisterInfo.h" 45 #include "llvm/Pass.h" 46 #include "llvm/Support/BranchProbability.h" 47 #include "llvm/Support/CommandLine.h" 48 #include "llvm/Support/Debug.h" 49 #include "llvm/Support/raw_ostream.h" 50 #include <algorithm> 51 #include <cassert> 52 #include <cstdint> 53 #include <map> 54 #include <utility> 55 #include <vector> 56 57 using namespace llvm; 58 59 #define DEBUG_TYPE "machine-sink" 60 61 static cl::opt<bool> 62 SplitEdges("machine-sink-split", 63 cl::desc("Split critical edges during machine sinking"), 64 cl::init(true), cl::Hidden); 65 66 static cl::opt<bool> 67 UseBlockFreqInfo("machine-sink-bfi", 68 cl::desc("Use block frequency info to find successors to sink"), 69 cl::init(true), cl::Hidden); 70 71 static cl::opt<unsigned> SplitEdgeProbabilityThreshold( 72 "machine-sink-split-probability-threshold", 73 cl::desc( 74 "Percentage threshold for splitting single-instruction critical edge. " 75 "If the branch threshold is higher than this threshold, we allow " 76 "speculative execution of up to 1 instruction to avoid branching to " 77 "splitted critical edge"), 78 cl::init(40), cl::Hidden); 79 80 STATISTIC(NumSunk, "Number of machine instructions sunk"); 81 STATISTIC(NumSplit, "Number of critical edges split"); 82 STATISTIC(NumCoalesces, "Number of copies coalesced"); 83 STATISTIC(NumPostRACopySink, "Number of copies sunk after RA"); 84 85 namespace { 86 87 class MachineSinking : public MachineFunctionPass { 88 const TargetInstrInfo *TII; 89 const TargetRegisterInfo *TRI; 90 MachineRegisterInfo *MRI; // Machine register information 91 MachineDominatorTree *DT; // Machine dominator tree 92 MachinePostDominatorTree *PDT; // Machine post dominator tree 93 MachineLoopInfo *LI; 94 MachineBlockFrequencyInfo *MBFI; 95 const MachineBranchProbabilityInfo *MBPI; 96 AliasAnalysis *AA; 97 98 // Remember which edges have been considered for breaking. 99 SmallSet<std::pair<MachineBasicBlock*, MachineBasicBlock*>, 8> 100 CEBCandidates; 101 // Remember which edges we are about to split. 102 // This is different from CEBCandidates since those edges 103 // will be split. 104 SetVector<std::pair<MachineBasicBlock *, MachineBasicBlock *>> ToSplit; 105 106 SparseBitVector<> RegsToClearKillFlags; 107 108 using AllSuccsCache = 109 std::map<MachineBasicBlock *, SmallVector<MachineBasicBlock *, 4>>; 110 111 /// DBG_VALUE pointer and flag. The flag is true if this DBG_VALUE is 112 /// post-dominated by another DBG_VALUE of the same variable location. 113 /// This is necessary to detect sequences such as: 114 /// %0 = someinst 115 /// DBG_VALUE %0, !123, !DIExpression() 116 /// %1 = anotherinst 117 /// DBG_VALUE %1, !123, !DIExpression() 118 /// Where if %0 were to sink, the DBG_VAUE should not sink with it, as that 119 /// would re-order assignments. 120 using SeenDbgUser = PointerIntPair<MachineInstr *, 1>; 121 122 /// Record of DBG_VALUE uses of vregs in a block, so that we can identify 123 /// debug instructions to sink. 124 SmallDenseMap<unsigned, TinyPtrVector<SeenDbgUser>> SeenDbgUsers; 125 126 /// Record of debug variables that have had their locations set in the 127 /// current block. 128 DenseSet<DebugVariable> SeenDbgVars; 129 130 public: 131 static char ID; // Pass identification 132 133 MachineSinking() : MachineFunctionPass(ID) { 134 initializeMachineSinkingPass(*PassRegistry::getPassRegistry()); 135 } 136 137 bool runOnMachineFunction(MachineFunction &MF) override; 138 139 void getAnalysisUsage(AnalysisUsage &AU) const override { 140 MachineFunctionPass::getAnalysisUsage(AU); 141 AU.addRequired<AAResultsWrapperPass>(); 142 AU.addRequired<MachineDominatorTree>(); 143 AU.addRequired<MachinePostDominatorTree>(); 144 AU.addRequired<MachineLoopInfo>(); 145 AU.addRequired<MachineBranchProbabilityInfo>(); 146 AU.addPreserved<MachineLoopInfo>(); 147 if (UseBlockFreqInfo) 148 AU.addRequired<MachineBlockFrequencyInfo>(); 149 } 150 151 void releaseMemory() override { 152 CEBCandidates.clear(); 153 } 154 155 private: 156 bool ProcessBlock(MachineBasicBlock &MBB); 157 void ProcessDbgInst(MachineInstr &MI); 158 bool isWorthBreakingCriticalEdge(MachineInstr &MI, 159 MachineBasicBlock *From, 160 MachineBasicBlock *To); 161 162 /// Postpone the splitting of the given critical 163 /// edge (\p From, \p To). 164 /// 165 /// We do not split the edges on the fly. Indeed, this invalidates 166 /// the dominance information and thus triggers a lot of updates 167 /// of that information underneath. 168 /// Instead, we postpone all the splits after each iteration of 169 /// the main loop. That way, the information is at least valid 170 /// for the lifetime of an iteration. 171 /// 172 /// \return True if the edge is marked as toSplit, false otherwise. 173 /// False can be returned if, for instance, this is not profitable. 174 bool PostponeSplitCriticalEdge(MachineInstr &MI, 175 MachineBasicBlock *From, 176 MachineBasicBlock *To, 177 bool BreakPHIEdge); 178 bool SinkInstruction(MachineInstr &MI, bool &SawStore, 179 AllSuccsCache &AllSuccessors); 180 181 /// If we sink a COPY inst, some debug users of it's destination may no 182 /// longer be dominated by the COPY, and will eventually be dropped. 183 /// This is easily rectified by forwarding the non-dominated debug uses 184 /// to the copy source. 185 void SalvageUnsunkDebugUsersOfCopy(MachineInstr &, 186 MachineBasicBlock *TargetBlock); 187 bool AllUsesDominatedByBlock(unsigned Reg, MachineBasicBlock *MBB, 188 MachineBasicBlock *DefMBB, 189 bool &BreakPHIEdge, bool &LocalUse) const; 190 MachineBasicBlock *FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 191 bool &BreakPHIEdge, AllSuccsCache &AllSuccessors); 192 bool isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 193 MachineBasicBlock *MBB, 194 MachineBasicBlock *SuccToSinkTo, 195 AllSuccsCache &AllSuccessors); 196 197 bool PerformTrivialForwardCoalescing(MachineInstr &MI, 198 MachineBasicBlock *MBB); 199 200 SmallVector<MachineBasicBlock *, 4> & 201 GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 202 AllSuccsCache &AllSuccessors) const; 203 }; 204 205 } // end anonymous namespace 206 207 char MachineSinking::ID = 0; 208 209 char &llvm::MachineSinkingID = MachineSinking::ID; 210 211 INITIALIZE_PASS_BEGIN(MachineSinking, DEBUG_TYPE, 212 "Machine code sinking", false, false) 213 INITIALIZE_PASS_DEPENDENCY(MachineBranchProbabilityInfo) 214 INITIALIZE_PASS_DEPENDENCY(MachineDominatorTree) 215 INITIALIZE_PASS_DEPENDENCY(MachineLoopInfo) 216 INITIALIZE_PASS_DEPENDENCY(AAResultsWrapperPass) 217 INITIALIZE_PASS_END(MachineSinking, DEBUG_TYPE, 218 "Machine code sinking", false, false) 219 220 bool MachineSinking::PerformTrivialForwardCoalescing(MachineInstr &MI, 221 MachineBasicBlock *MBB) { 222 if (!MI.isCopy()) 223 return false; 224 225 Register SrcReg = MI.getOperand(1).getReg(); 226 Register DstReg = MI.getOperand(0).getReg(); 227 if (!Register::isVirtualRegister(SrcReg) || 228 !Register::isVirtualRegister(DstReg) || !MRI->hasOneNonDBGUse(SrcReg)) 229 return false; 230 231 const TargetRegisterClass *SRC = MRI->getRegClass(SrcReg); 232 const TargetRegisterClass *DRC = MRI->getRegClass(DstReg); 233 if (SRC != DRC) 234 return false; 235 236 MachineInstr *DefMI = MRI->getVRegDef(SrcReg); 237 if (DefMI->isCopyLike()) 238 return false; 239 LLVM_DEBUG(dbgs() << "Coalescing: " << *DefMI); 240 LLVM_DEBUG(dbgs() << "*** to: " << MI); 241 MRI->replaceRegWith(DstReg, SrcReg); 242 MI.eraseFromParent(); 243 244 // Conservatively, clear any kill flags, since it's possible that they are no 245 // longer correct. 246 MRI->clearKillFlags(SrcReg); 247 248 ++NumCoalesces; 249 return true; 250 } 251 252 /// AllUsesDominatedByBlock - Return true if all uses of the specified register 253 /// occur in blocks dominated by the specified block. If any use is in the 254 /// definition block, then return false since it is never legal to move def 255 /// after uses. 256 bool 257 MachineSinking::AllUsesDominatedByBlock(unsigned Reg, 258 MachineBasicBlock *MBB, 259 MachineBasicBlock *DefMBB, 260 bool &BreakPHIEdge, 261 bool &LocalUse) const { 262 assert(Register::isVirtualRegister(Reg) && "Only makes sense for vregs"); 263 264 // Ignore debug uses because debug info doesn't affect the code. 265 if (MRI->use_nodbg_empty(Reg)) 266 return true; 267 268 // BreakPHIEdge is true if all the uses are in the successor MBB being sunken 269 // into and they are all PHI nodes. In this case, machine-sink must break 270 // the critical edge first. e.g. 271 // 272 // %bb.1: 273 // Predecessors according to CFG: %bb.0 274 // ... 275 // %def = DEC64_32r %x, implicit-def dead %eflags 276 // ... 277 // JE_4 <%bb.37>, implicit %eflags 278 // Successors according to CFG: %bb.37 %bb.2 279 // 280 // %bb.2: 281 // %p = PHI %y, %bb.0, %def, %bb.1 282 if (all_of(MRI->use_nodbg_operands(Reg), [&](MachineOperand &MO) { 283 MachineInstr *UseInst = MO.getParent(); 284 unsigned OpNo = UseInst->getOperandNo(&MO); 285 MachineBasicBlock *UseBlock = UseInst->getParent(); 286 return UseBlock == MBB && UseInst->isPHI() && 287 UseInst->getOperand(OpNo + 1).getMBB() == DefMBB; 288 })) { 289 BreakPHIEdge = true; 290 return true; 291 } 292 293 for (MachineOperand &MO : MRI->use_nodbg_operands(Reg)) { 294 // Determine the block of the use. 295 MachineInstr *UseInst = MO.getParent(); 296 unsigned OpNo = &MO - &UseInst->getOperand(0); 297 MachineBasicBlock *UseBlock = UseInst->getParent(); 298 if (UseInst->isPHI()) { 299 // PHI nodes use the operand in the predecessor block, not the block with 300 // the PHI. 301 UseBlock = UseInst->getOperand(OpNo+1).getMBB(); 302 } else if (UseBlock == DefMBB) { 303 LocalUse = true; 304 return false; 305 } 306 307 // Check that it dominates. 308 if (!DT->dominates(MBB, UseBlock)) 309 return false; 310 } 311 312 return true; 313 } 314 315 bool MachineSinking::runOnMachineFunction(MachineFunction &MF) { 316 if (skipFunction(MF.getFunction())) 317 return false; 318 319 LLVM_DEBUG(dbgs() << "******** Machine Sinking ********\n"); 320 321 TII = MF.getSubtarget().getInstrInfo(); 322 TRI = MF.getSubtarget().getRegisterInfo(); 323 MRI = &MF.getRegInfo(); 324 DT = &getAnalysis<MachineDominatorTree>(); 325 PDT = &getAnalysis<MachinePostDominatorTree>(); 326 LI = &getAnalysis<MachineLoopInfo>(); 327 MBFI = UseBlockFreqInfo ? &getAnalysis<MachineBlockFrequencyInfo>() : nullptr; 328 MBPI = &getAnalysis<MachineBranchProbabilityInfo>(); 329 AA = &getAnalysis<AAResultsWrapperPass>().getAAResults(); 330 331 bool EverMadeChange = false; 332 333 while (true) { 334 bool MadeChange = false; 335 336 // Process all basic blocks. 337 CEBCandidates.clear(); 338 ToSplit.clear(); 339 for (auto &MBB: MF) 340 MadeChange |= ProcessBlock(MBB); 341 342 // If we have anything we marked as toSplit, split it now. 343 for (auto &Pair : ToSplit) { 344 auto NewSucc = Pair.first->SplitCriticalEdge(Pair.second, *this); 345 if (NewSucc != nullptr) { 346 LLVM_DEBUG(dbgs() << " *** Splitting critical edge: " 347 << printMBBReference(*Pair.first) << " -- " 348 << printMBBReference(*NewSucc) << " -- " 349 << printMBBReference(*Pair.second) << '\n'); 350 if (MBFI) { 351 auto NewSuccFreq = MBFI->getBlockFreq(Pair.first) * 352 MBPI->getEdgeProbability(Pair.first, NewSucc); 353 MBFI->setBlockFreq(NewSucc, NewSuccFreq.getFrequency()); 354 } 355 MadeChange = true; 356 ++NumSplit; 357 } else 358 LLVM_DEBUG(dbgs() << " *** Not legal to break critical edge\n"); 359 } 360 // If this iteration over the code changed anything, keep iterating. 361 if (!MadeChange) break; 362 EverMadeChange = true; 363 } 364 365 // Now clear any kill flags for recorded registers. 366 for (auto I : RegsToClearKillFlags) 367 MRI->clearKillFlags(I); 368 RegsToClearKillFlags.clear(); 369 370 return EverMadeChange; 371 } 372 373 bool MachineSinking::ProcessBlock(MachineBasicBlock &MBB) { 374 // Can't sink anything out of a block that has less than two successors. 375 if (MBB.succ_size() <= 1 || MBB.empty()) return false; 376 377 // Don't bother sinking code out of unreachable blocks. In addition to being 378 // unprofitable, it can also lead to infinite looping, because in an 379 // unreachable loop there may be nowhere to stop. 380 if (!DT->isReachableFromEntry(&MBB)) return false; 381 382 bool MadeChange = false; 383 384 // Cache all successors, sorted by frequency info and loop depth. 385 AllSuccsCache AllSuccessors; 386 387 // Walk the basic block bottom-up. Remember if we saw a store. 388 MachineBasicBlock::iterator I = MBB.end(); 389 --I; 390 bool ProcessedBegin, SawStore = false; 391 do { 392 MachineInstr &MI = *I; // The instruction to sink. 393 394 // Predecrement I (if it's not begin) so that it isn't invalidated by 395 // sinking. 396 ProcessedBegin = I == MBB.begin(); 397 if (!ProcessedBegin) 398 --I; 399 400 if (MI.isDebugInstr()) { 401 if (MI.isDebugValue()) 402 ProcessDbgInst(MI); 403 continue; 404 } 405 406 bool Joined = PerformTrivialForwardCoalescing(MI, &MBB); 407 if (Joined) { 408 MadeChange = true; 409 continue; 410 } 411 412 if (SinkInstruction(MI, SawStore, AllSuccessors)) { 413 ++NumSunk; 414 MadeChange = true; 415 } 416 417 // If we just processed the first instruction in the block, we're done. 418 } while (!ProcessedBegin); 419 420 SeenDbgUsers.clear(); 421 SeenDbgVars.clear(); 422 423 return MadeChange; 424 } 425 426 void MachineSinking::ProcessDbgInst(MachineInstr &MI) { 427 // When we see DBG_VALUEs for registers, record any vreg it reads, so that 428 // we know what to sink if the vreg def sinks. 429 assert(MI.isDebugValue() && "Expected DBG_VALUE for processing"); 430 431 DebugVariable Var(MI.getDebugVariable(), MI.getDebugExpression(), 432 MI.getDebugLoc()->getInlinedAt()); 433 bool SeenBefore = SeenDbgVars.count(Var) != 0; 434 435 MachineOperand &MO = MI.getDebugOperand(0); 436 if (MO.isReg() && MO.getReg().isVirtual()) 437 SeenDbgUsers[MO.getReg()].push_back(SeenDbgUser(&MI, SeenBefore)); 438 439 // Record the variable for any DBG_VALUE, to avoid re-ordering any of them. 440 SeenDbgVars.insert(Var); 441 } 442 443 bool MachineSinking::isWorthBreakingCriticalEdge(MachineInstr &MI, 444 MachineBasicBlock *From, 445 MachineBasicBlock *To) { 446 // FIXME: Need much better heuristics. 447 448 // If the pass has already considered breaking this edge (during this pass 449 // through the function), then let's go ahead and break it. This means 450 // sinking multiple "cheap" instructions into the same block. 451 if (!CEBCandidates.insert(std::make_pair(From, To)).second) 452 return true; 453 454 if (!MI.isCopy() && !TII->isAsCheapAsAMove(MI)) 455 return true; 456 457 if (From->isSuccessor(To) && MBPI->getEdgeProbability(From, To) <= 458 BranchProbability(SplitEdgeProbabilityThreshold, 100)) 459 return true; 460 461 // MI is cheap, we probably don't want to break the critical edge for it. 462 // However, if this would allow some definitions of its source operands 463 // to be sunk then it's probably worth it. 464 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 465 const MachineOperand &MO = MI.getOperand(i); 466 if (!MO.isReg() || !MO.isUse()) 467 continue; 468 Register Reg = MO.getReg(); 469 if (Reg == 0) 470 continue; 471 472 // We don't move live definitions of physical registers, 473 // so sinking their uses won't enable any opportunities. 474 if (Register::isPhysicalRegister(Reg)) 475 continue; 476 477 // If this instruction is the only user of a virtual register, 478 // check if breaking the edge will enable sinking 479 // both this instruction and the defining instruction. 480 if (MRI->hasOneNonDBGUse(Reg)) { 481 // If the definition resides in same MBB, 482 // claim it's likely we can sink these together. 483 // If definition resides elsewhere, we aren't 484 // blocking it from being sunk so don't break the edge. 485 MachineInstr *DefMI = MRI->getVRegDef(Reg); 486 if (DefMI->getParent() == MI.getParent()) 487 return true; 488 } 489 } 490 491 return false; 492 } 493 494 bool MachineSinking::PostponeSplitCriticalEdge(MachineInstr &MI, 495 MachineBasicBlock *FromBB, 496 MachineBasicBlock *ToBB, 497 bool BreakPHIEdge) { 498 if (!isWorthBreakingCriticalEdge(MI, FromBB, ToBB)) 499 return false; 500 501 // Avoid breaking back edge. From == To means backedge for single BB loop. 502 if (!SplitEdges || FromBB == ToBB) 503 return false; 504 505 // Check for backedges of more "complex" loops. 506 if (LI->getLoopFor(FromBB) == LI->getLoopFor(ToBB) && 507 LI->isLoopHeader(ToBB)) 508 return false; 509 510 // It's not always legal to break critical edges and sink the computation 511 // to the edge. 512 // 513 // %bb.1: 514 // v1024 515 // Beq %bb.3 516 // <fallthrough> 517 // %bb.2: 518 // ... no uses of v1024 519 // <fallthrough> 520 // %bb.3: 521 // ... 522 // = v1024 523 // 524 // If %bb.1 -> %bb.3 edge is broken and computation of v1024 is inserted: 525 // 526 // %bb.1: 527 // ... 528 // Bne %bb.2 529 // %bb.4: 530 // v1024 = 531 // B %bb.3 532 // %bb.2: 533 // ... no uses of v1024 534 // <fallthrough> 535 // %bb.3: 536 // ... 537 // = v1024 538 // 539 // This is incorrect since v1024 is not computed along the %bb.1->%bb.2->%bb.3 540 // flow. We need to ensure the new basic block where the computation is 541 // sunk to dominates all the uses. 542 // It's only legal to break critical edge and sink the computation to the 543 // new block if all the predecessors of "To", except for "From", are 544 // not dominated by "From". Given SSA property, this means these 545 // predecessors are dominated by "To". 546 // 547 // There is no need to do this check if all the uses are PHI nodes. PHI 548 // sources are only defined on the specific predecessor edges. 549 if (!BreakPHIEdge) { 550 for (MachineBasicBlock::pred_iterator PI = ToBB->pred_begin(), 551 E = ToBB->pred_end(); PI != E; ++PI) { 552 if (*PI == FromBB) 553 continue; 554 if (!DT->dominates(ToBB, *PI)) 555 return false; 556 } 557 } 558 559 ToSplit.insert(std::make_pair(FromBB, ToBB)); 560 561 return true; 562 } 563 564 /// isProfitableToSinkTo - Return true if it is profitable to sink MI. 565 bool MachineSinking::isProfitableToSinkTo(unsigned Reg, MachineInstr &MI, 566 MachineBasicBlock *MBB, 567 MachineBasicBlock *SuccToSinkTo, 568 AllSuccsCache &AllSuccessors) { 569 assert (SuccToSinkTo && "Invalid SinkTo Candidate BB"); 570 571 if (MBB == SuccToSinkTo) 572 return false; 573 574 // It is profitable if SuccToSinkTo does not post dominate current block. 575 if (!PDT->dominates(SuccToSinkTo, MBB)) 576 return true; 577 578 // It is profitable to sink an instruction from a deeper loop to a shallower 579 // loop, even if the latter post-dominates the former (PR21115). 580 if (LI->getLoopDepth(MBB) > LI->getLoopDepth(SuccToSinkTo)) 581 return true; 582 583 // Check if only use in post dominated block is PHI instruction. 584 bool NonPHIUse = false; 585 for (MachineInstr &UseInst : MRI->use_nodbg_instructions(Reg)) { 586 MachineBasicBlock *UseBlock = UseInst.getParent(); 587 if (UseBlock == SuccToSinkTo && !UseInst.isPHI()) 588 NonPHIUse = true; 589 } 590 if (!NonPHIUse) 591 return true; 592 593 // If SuccToSinkTo post dominates then also it may be profitable if MI 594 // can further profitably sinked into another block in next round. 595 bool BreakPHIEdge = false; 596 // FIXME - If finding successor is compile time expensive then cache results. 597 if (MachineBasicBlock *MBB2 = 598 FindSuccToSinkTo(MI, SuccToSinkTo, BreakPHIEdge, AllSuccessors)) 599 return isProfitableToSinkTo(Reg, MI, SuccToSinkTo, MBB2, AllSuccessors); 600 601 // If SuccToSinkTo is final destination and it is a post dominator of current 602 // block then it is not profitable to sink MI into SuccToSinkTo block. 603 return false; 604 } 605 606 /// Get the sorted sequence of successors for this MachineBasicBlock, possibly 607 /// computing it if it was not already cached. 608 SmallVector<MachineBasicBlock *, 4> & 609 MachineSinking::GetAllSortedSuccessors(MachineInstr &MI, MachineBasicBlock *MBB, 610 AllSuccsCache &AllSuccessors) const { 611 // Do we have the sorted successors in cache ? 612 auto Succs = AllSuccessors.find(MBB); 613 if (Succs != AllSuccessors.end()) 614 return Succs->second; 615 616 SmallVector<MachineBasicBlock *, 4> AllSuccs(MBB->succ_begin(), 617 MBB->succ_end()); 618 619 // Handle cases where sinking can happen but where the sink point isn't a 620 // successor. For example: 621 // 622 // x = computation 623 // if () {} else {} 624 // use x 625 // 626 const std::vector<MachineDomTreeNode *> &Children = 627 DT->getNode(MBB)->getChildren(); 628 for (const auto &DTChild : Children) 629 // DomTree children of MBB that have MBB as immediate dominator are added. 630 if (DTChild->getIDom()->getBlock() == MI.getParent() && 631 // Skip MBBs already added to the AllSuccs vector above. 632 !MBB->isSuccessor(DTChild->getBlock())) 633 AllSuccs.push_back(DTChild->getBlock()); 634 635 // Sort Successors according to their loop depth or block frequency info. 636 llvm::stable_sort( 637 AllSuccs, [this](const MachineBasicBlock *L, const MachineBasicBlock *R) { 638 uint64_t LHSFreq = MBFI ? MBFI->getBlockFreq(L).getFrequency() : 0; 639 uint64_t RHSFreq = MBFI ? MBFI->getBlockFreq(R).getFrequency() : 0; 640 bool HasBlockFreq = LHSFreq != 0 && RHSFreq != 0; 641 return HasBlockFreq ? LHSFreq < RHSFreq 642 : LI->getLoopDepth(L) < LI->getLoopDepth(R); 643 }); 644 645 auto it = AllSuccessors.insert(std::make_pair(MBB, AllSuccs)); 646 647 return it.first->second; 648 } 649 650 /// FindSuccToSinkTo - Find a successor to sink this instruction to. 651 MachineBasicBlock * 652 MachineSinking::FindSuccToSinkTo(MachineInstr &MI, MachineBasicBlock *MBB, 653 bool &BreakPHIEdge, 654 AllSuccsCache &AllSuccessors) { 655 assert (MBB && "Invalid MachineBasicBlock!"); 656 657 // Loop over all the operands of the specified instruction. If there is 658 // anything we can't handle, bail out. 659 660 // SuccToSinkTo - This is the successor to sink this instruction to, once we 661 // decide. 662 MachineBasicBlock *SuccToSinkTo = nullptr; 663 for (unsigned i = 0, e = MI.getNumOperands(); i != e; ++i) { 664 const MachineOperand &MO = MI.getOperand(i); 665 if (!MO.isReg()) continue; // Ignore non-register operands. 666 667 Register Reg = MO.getReg(); 668 if (Reg == 0) continue; 669 670 if (Register::isPhysicalRegister(Reg)) { 671 if (MO.isUse()) { 672 // If the physreg has no defs anywhere, it's just an ambient register 673 // and we can freely move its uses. Alternatively, if it's allocatable, 674 // it could get allocated to something with a def during allocation. 675 if (!MRI->isConstantPhysReg(Reg)) 676 return nullptr; 677 } else if (!MO.isDead()) { 678 // A def that isn't dead. We can't move it. 679 return nullptr; 680 } 681 } else { 682 // Virtual register uses are always safe to sink. 683 if (MO.isUse()) continue; 684 685 // If it's not safe to move defs of the register class, then abort. 686 if (!TII->isSafeToMoveRegClassDefs(MRI->getRegClass(Reg))) 687 return nullptr; 688 689 // Virtual register defs can only be sunk if all their uses are in blocks 690 // dominated by one of the successors. 691 if (SuccToSinkTo) { 692 // If a previous operand picked a block to sink to, then this operand 693 // must be sinkable to the same block. 694 bool LocalUse = false; 695 if (!AllUsesDominatedByBlock(Reg, SuccToSinkTo, MBB, 696 BreakPHIEdge, LocalUse)) 697 return nullptr; 698 699 continue; 700 } 701 702 // Otherwise, we should look at all the successors and decide which one 703 // we should sink to. If we have reliable block frequency information 704 // (frequency != 0) available, give successors with smaller frequencies 705 // higher priority, otherwise prioritize smaller loop depths. 706 for (MachineBasicBlock *SuccBlock : 707 GetAllSortedSuccessors(MI, MBB, AllSuccessors)) { 708 bool LocalUse = false; 709 if (AllUsesDominatedByBlock(Reg, SuccBlock, MBB, 710 BreakPHIEdge, LocalUse)) { 711 SuccToSinkTo = SuccBlock; 712 break; 713 } 714 if (LocalUse) 715 // Def is used locally, it's never safe to move this def. 716 return nullptr; 717 } 718 719 // If we couldn't find a block to sink to, ignore this instruction. 720 if (!SuccToSinkTo) 721 return nullptr; 722 if (!isProfitableToSinkTo(Reg, MI, MBB, SuccToSinkTo, AllSuccessors)) 723 return nullptr; 724 } 725 } 726 727 // It is not possible to sink an instruction into its own block. This can 728 // happen with loops. 729 if (MBB == SuccToSinkTo) 730 return nullptr; 731 732 // It's not safe to sink instructions to EH landing pad. Control flow into 733 // landing pad is implicitly defined. 734 if (SuccToSinkTo && SuccToSinkTo->isEHPad()) 735 return nullptr; 736 737 // It ought to be okay to sink instructions into an INLINEASM_BR target, but 738 // only if we make sure that MI occurs _before_ an INLINEASM_BR instruction in 739 // the source block (which this code does not yet do). So for now, forbid 740 // doing so. 741 if (SuccToSinkTo && SuccToSinkTo->isInlineAsmBrIndirectTarget()) 742 return nullptr; 743 744 return SuccToSinkTo; 745 } 746 747 /// Return true if MI is likely to be usable as a memory operation by the 748 /// implicit null check optimization. 749 /// 750 /// This is a "best effort" heuristic, and should not be relied upon for 751 /// correctness. This returning true does not guarantee that the implicit null 752 /// check optimization is legal over MI, and this returning false does not 753 /// guarantee MI cannot possibly be used to do a null check. 754 static bool SinkingPreventsImplicitNullCheck(MachineInstr &MI, 755 const TargetInstrInfo *TII, 756 const TargetRegisterInfo *TRI) { 757 using MachineBranchPredicate = TargetInstrInfo::MachineBranchPredicate; 758 759 auto *MBB = MI.getParent(); 760 if (MBB->pred_size() != 1) 761 return false; 762 763 auto *PredMBB = *MBB->pred_begin(); 764 auto *PredBB = PredMBB->getBasicBlock(); 765 766 // Frontends that don't use implicit null checks have no reason to emit 767 // branches with make.implicit metadata, and this function should always 768 // return false for them. 769 if (!PredBB || 770 !PredBB->getTerminator()->getMetadata(LLVMContext::MD_make_implicit)) 771 return false; 772 773 const MachineOperand *BaseOp; 774 int64_t Offset; 775 bool OffsetIsScalable; 776 if (!TII->getMemOperandWithOffset(MI, BaseOp, Offset, OffsetIsScalable, TRI)) 777 return false; 778 779 if (!BaseOp->isReg()) 780 return false; 781 782 if (!(MI.mayLoad() && !MI.isPredicable())) 783 return false; 784 785 MachineBranchPredicate MBP; 786 if (TII->analyzeBranchPredicate(*PredMBB, MBP, false)) 787 return false; 788 789 return MBP.LHS.isReg() && MBP.RHS.isImm() && MBP.RHS.getImm() == 0 && 790 (MBP.Predicate == MachineBranchPredicate::PRED_NE || 791 MBP.Predicate == MachineBranchPredicate::PRED_EQ) && 792 MBP.LHS.getReg() == BaseOp->getReg(); 793 } 794 795 /// If the sunk instruction is a copy, try to forward the copy instead of 796 /// leaving an 'undef' DBG_VALUE in the original location. Don't do this if 797 /// there's any subregister weirdness involved. Returns true if copy 798 /// propagation occurred. 799 static bool attemptDebugCopyProp(MachineInstr &SinkInst, MachineInstr &DbgMI) { 800 const MachineRegisterInfo &MRI = SinkInst.getMF()->getRegInfo(); 801 const TargetInstrInfo &TII = *SinkInst.getMF()->getSubtarget().getInstrInfo(); 802 803 // Copy DBG_VALUE operand and set the original to undef. We then check to 804 // see whether this is something that can be copy-forwarded. If it isn't, 805 // continue around the loop. 806 MachineOperand &DbgMO = DbgMI.getDebugOperand(0); 807 808 const MachineOperand *SrcMO = nullptr, *DstMO = nullptr; 809 auto CopyOperands = TII.isCopyInstr(SinkInst); 810 if (!CopyOperands) 811 return false; 812 SrcMO = CopyOperands->Source; 813 DstMO = CopyOperands->Destination; 814 815 // Check validity of forwarding this copy. 816 bool PostRA = MRI.getNumVirtRegs() == 0; 817 818 // Trying to forward between physical and virtual registers is too hard. 819 if (DbgMO.getReg().isVirtual() != SrcMO->getReg().isVirtual()) 820 return false; 821 822 // Only try virtual register copy-forwarding before regalloc, and physical 823 // register copy-forwarding after regalloc. 824 bool arePhysRegs = !DbgMO.getReg().isVirtual(); 825 if (arePhysRegs != PostRA) 826 return false; 827 828 // Pre-regalloc, only forward if all subregisters agree (or there are no 829 // subregs at all). More analysis might recover some forwardable copies. 830 if (!PostRA && (DbgMO.getSubReg() != SrcMO->getSubReg() || 831 DbgMO.getSubReg() != DstMO->getSubReg())) 832 return false; 833 834 // Post-regalloc, we may be sinking a DBG_VALUE of a sub or super-register 835 // of this copy. Only forward the copy if the DBG_VALUE operand exactly 836 // matches the copy destination. 837 if (PostRA && DbgMO.getReg() != DstMO->getReg()) 838 return false; 839 840 DbgMO.setReg(SrcMO->getReg()); 841 DbgMO.setSubReg(SrcMO->getSubReg()); 842 return true; 843 } 844 845 /// Sink an instruction and its associated debug instructions. 846 static void performSink(MachineInstr &MI, MachineBasicBlock &SuccToSinkTo, 847 MachineBasicBlock::iterator InsertPos, 848 SmallVectorImpl<MachineInstr *> &DbgValuesToSink) { 849 850 // If we cannot find a location to use (merge with), then we erase the debug 851 // location to prevent debug-info driven tools from potentially reporting 852 // wrong location information. 853 if (!SuccToSinkTo.empty() && InsertPos != SuccToSinkTo.end()) 854 MI.setDebugLoc(DILocation::getMergedLocation(MI.getDebugLoc(), 855 InsertPos->getDebugLoc())); 856 else 857 MI.setDebugLoc(DebugLoc()); 858 859 // Move the instruction. 860 MachineBasicBlock *ParentBlock = MI.getParent(); 861 SuccToSinkTo.splice(InsertPos, ParentBlock, MI, 862 ++MachineBasicBlock::iterator(MI)); 863 864 // Sink a copy of debug users to the insert position. Mark the original 865 // DBG_VALUE location as 'undef', indicating that any earlier variable 866 // location should be terminated as we've optimised away the value at this 867 // point. 868 for (SmallVectorImpl<MachineInstr *>::iterator DBI = DbgValuesToSink.begin(), 869 DBE = DbgValuesToSink.end(); 870 DBI != DBE; ++DBI) { 871 MachineInstr *DbgMI = *DBI; 872 MachineInstr *NewDbgMI = DbgMI->getMF()->CloneMachineInstr(*DBI); 873 SuccToSinkTo.insert(InsertPos, NewDbgMI); 874 875 if (!attemptDebugCopyProp(MI, *DbgMI)) 876 DbgMI->setDebugValueUndef(); 877 } 878 } 879 880 /// SinkInstruction - Determine whether it is safe to sink the specified machine 881 /// instruction out of its current block into a successor. 882 bool MachineSinking::SinkInstruction(MachineInstr &MI, bool &SawStore, 883 AllSuccsCache &AllSuccessors) { 884 // Don't sink instructions that the target prefers not to sink. 885 if (!TII->shouldSink(MI)) 886 return false; 887 888 // Check if it's safe to move the instruction. 889 if (!MI.isSafeToMove(AA, SawStore)) 890 return false; 891 892 // Convergent operations may not be made control-dependent on additional 893 // values. 894 if (MI.isConvergent()) 895 return false; 896 897 // Don't break implicit null checks. This is a performance heuristic, and not 898 // required for correctness. 899 if (SinkingPreventsImplicitNullCheck(MI, TII, TRI)) 900 return false; 901 902 // FIXME: This should include support for sinking instructions within the 903 // block they are currently in to shorten the live ranges. We often get 904 // instructions sunk into the top of a large block, but it would be better to 905 // also sink them down before their first use in the block. This xform has to 906 // be careful not to *increase* register pressure though, e.g. sinking 907 // "x = y + z" down if it kills y and z would increase the live ranges of y 908 // and z and only shrink the live range of x. 909 910 bool BreakPHIEdge = false; 911 MachineBasicBlock *ParentBlock = MI.getParent(); 912 MachineBasicBlock *SuccToSinkTo = 913 FindSuccToSinkTo(MI, ParentBlock, BreakPHIEdge, AllSuccessors); 914 915 // If there are no outputs, it must have side-effects. 916 if (!SuccToSinkTo) 917 return false; 918 919 // If the instruction to move defines a dead physical register which is live 920 // when leaving the basic block, don't move it because it could turn into a 921 // "zombie" define of that preg. E.g., EFLAGS. (<rdar://problem/8030636>) 922 for (unsigned I = 0, E = MI.getNumOperands(); I != E; ++I) { 923 const MachineOperand &MO = MI.getOperand(I); 924 if (!MO.isReg()) continue; 925 Register Reg = MO.getReg(); 926 if (Reg == 0 || !Register::isPhysicalRegister(Reg)) 927 continue; 928 if (SuccToSinkTo->isLiveIn(Reg)) 929 return false; 930 } 931 932 LLVM_DEBUG(dbgs() << "Sink instr " << MI << "\tinto block " << *SuccToSinkTo); 933 934 // If the block has multiple predecessors, this is a critical edge. 935 // Decide if we can sink along it or need to break the edge. 936 if (SuccToSinkTo->pred_size() > 1) { 937 // We cannot sink a load across a critical edge - there may be stores in 938 // other code paths. 939 bool TryBreak = false; 940 bool store = true; 941 if (!MI.isSafeToMove(AA, store)) { 942 LLVM_DEBUG(dbgs() << " *** NOTE: Won't sink load along critical edge.\n"); 943 TryBreak = true; 944 } 945 946 // We don't want to sink across a critical edge if we don't dominate the 947 // successor. We could be introducing calculations to new code paths. 948 if (!TryBreak && !DT->dominates(ParentBlock, SuccToSinkTo)) { 949 LLVM_DEBUG(dbgs() << " *** NOTE: Critical edge found\n"); 950 TryBreak = true; 951 } 952 953 // Don't sink instructions into a loop. 954 if (!TryBreak && LI->isLoopHeader(SuccToSinkTo)) { 955 LLVM_DEBUG(dbgs() << " *** NOTE: Loop header found\n"); 956 TryBreak = true; 957 } 958 959 // Otherwise we are OK with sinking along a critical edge. 960 if (!TryBreak) 961 LLVM_DEBUG(dbgs() << "Sinking along critical edge.\n"); 962 else { 963 // Mark this edge as to be split. 964 // If the edge can actually be split, the next iteration of the main loop 965 // will sink MI in the newly created block. 966 bool Status = 967 PostponeSplitCriticalEdge(MI, ParentBlock, SuccToSinkTo, BreakPHIEdge); 968 if (!Status) 969 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 970 "break critical edge\n"); 971 // The instruction will not be sunk this time. 972 return false; 973 } 974 } 975 976 if (BreakPHIEdge) { 977 // BreakPHIEdge is true if all the uses are in the successor MBB being 978 // sunken into and they are all PHI nodes. In this case, machine-sink must 979 // break the critical edge first. 980 bool Status = PostponeSplitCriticalEdge(MI, ParentBlock, 981 SuccToSinkTo, BreakPHIEdge); 982 if (!Status) 983 LLVM_DEBUG(dbgs() << " *** PUNTING: Not legal or profitable to " 984 "break critical edge\n"); 985 // The instruction will not be sunk this time. 986 return false; 987 } 988 989 // Determine where to insert into. Skip phi nodes. 990 MachineBasicBlock::iterator InsertPos = SuccToSinkTo->begin(); 991 while (InsertPos != SuccToSinkTo->end() && InsertPos->isPHI()) 992 ++InsertPos; 993 994 // Collect debug users of any vreg that this inst defines. 995 SmallVector<MachineInstr *, 4> DbgUsersToSink; 996 for (auto &MO : MI.operands()) { 997 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 998 continue; 999 if (!SeenDbgUsers.count(MO.getReg())) 1000 continue; 1001 1002 // Sink any users that don't pass any other DBG_VALUEs for this variable. 1003 auto &Users = SeenDbgUsers[MO.getReg()]; 1004 for (auto &User : Users) { 1005 MachineInstr *DbgMI = User.getPointer(); 1006 if (User.getInt()) { 1007 // This DBG_VALUE would re-order assignments. If we can't copy-propagate 1008 // it, it can't be recovered. Set it undef. 1009 if (!attemptDebugCopyProp(MI, *DbgMI)) 1010 DbgMI->setDebugValueUndef(); 1011 } else { 1012 DbgUsersToSink.push_back(DbgMI); 1013 } 1014 } 1015 } 1016 1017 // After sinking, some debug users may not be dominated any more. If possible, 1018 // copy-propagate their operands. As it's expensive, don't do this if there's 1019 // no debuginfo in the program. 1020 if (MI.getMF()->getFunction().getSubprogram() && MI.isCopy()) 1021 SalvageUnsunkDebugUsersOfCopy(MI, SuccToSinkTo); 1022 1023 performSink(MI, *SuccToSinkTo, InsertPos, DbgUsersToSink); 1024 1025 // Conservatively, clear any kill flags, since it's possible that they are no 1026 // longer correct. 1027 // Note that we have to clear the kill flags for any register this instruction 1028 // uses as we may sink over another instruction which currently kills the 1029 // used registers. 1030 for (MachineOperand &MO : MI.operands()) { 1031 if (MO.isReg() && MO.isUse()) 1032 RegsToClearKillFlags.set(MO.getReg()); // Remember to clear kill flags. 1033 } 1034 1035 return true; 1036 } 1037 1038 void MachineSinking::SalvageUnsunkDebugUsersOfCopy( 1039 MachineInstr &MI, MachineBasicBlock *TargetBlock) { 1040 assert(MI.isCopy()); 1041 assert(MI.getOperand(1).isReg()); 1042 1043 // Enumerate all users of vreg operands that are def'd. Skip those that will 1044 // be sunk. For the rest, if they are not dominated by the block we will sink 1045 // MI into, propagate the copy source to them. 1046 SmallVector<MachineInstr *, 4> DbgDefUsers; 1047 const MachineRegisterInfo &MRI = MI.getMF()->getRegInfo(); 1048 for (auto &MO : MI.operands()) { 1049 if (!MO.isReg() || !MO.isDef() || !MO.getReg().isVirtual()) 1050 continue; 1051 for (auto &User : MRI.use_instructions(MO.getReg())) { 1052 if (!User.isDebugValue() || DT->dominates(TargetBlock, User.getParent())) 1053 continue; 1054 1055 // If is in same block, will either sink or be use-before-def. 1056 if (User.getParent() == MI.getParent()) 1057 continue; 1058 1059 assert(User.getDebugOperand(0).isReg() && 1060 "DBG_VALUE user of vreg, but non reg operand?"); 1061 DbgDefUsers.push_back(&User); 1062 } 1063 } 1064 1065 // Point the users of this copy that are no longer dominated, at the source 1066 // of the copy. 1067 for (auto *User : DbgDefUsers) { 1068 User->getDebugOperand(0).setReg(MI.getOperand(1).getReg()); 1069 User->getDebugOperand(0).setSubReg(MI.getOperand(1).getSubReg()); 1070 } 1071 } 1072 1073 //===----------------------------------------------------------------------===// 1074 // This pass is not intended to be a replacement or a complete alternative 1075 // for the pre-ra machine sink pass. It is only designed to sink COPY 1076 // instructions which should be handled after RA. 1077 // 1078 // This pass sinks COPY instructions into a successor block, if the COPY is not 1079 // used in the current block and the COPY is live-in to a single successor 1080 // (i.e., doesn't require the COPY to be duplicated). This avoids executing the 1081 // copy on paths where their results aren't needed. This also exposes 1082 // additional opportunites for dead copy elimination and shrink wrapping. 1083 // 1084 // These copies were either not handled by or are inserted after the MachineSink 1085 // pass. As an example of the former case, the MachineSink pass cannot sink 1086 // COPY instructions with allocatable source registers; for AArch64 these type 1087 // of copy instructions are frequently used to move function parameters (PhyReg) 1088 // into virtual registers in the entry block. 1089 // 1090 // For the machine IR below, this pass will sink %w19 in the entry into its 1091 // successor (%bb.1) because %w19 is only live-in in %bb.1. 1092 // %bb.0: 1093 // %wzr = SUBSWri %w1, 1 1094 // %w19 = COPY %w0 1095 // Bcc 11, %bb.2 1096 // %bb.1: 1097 // Live Ins: %w19 1098 // BL @fun 1099 // %w0 = ADDWrr %w0, %w19 1100 // RET %w0 1101 // %bb.2: 1102 // %w0 = COPY %wzr 1103 // RET %w0 1104 // As we sink %w19 (CSR in AArch64) into %bb.1, the shrink-wrapping pass will be 1105 // able to see %bb.0 as a candidate. 1106 //===----------------------------------------------------------------------===// 1107 namespace { 1108 1109 class PostRAMachineSinking : public MachineFunctionPass { 1110 public: 1111 bool runOnMachineFunction(MachineFunction &MF) override; 1112 1113 static char ID; 1114 PostRAMachineSinking() : MachineFunctionPass(ID) {} 1115 StringRef getPassName() const override { return "PostRA Machine Sink"; } 1116 1117 void getAnalysisUsage(AnalysisUsage &AU) const override { 1118 AU.setPreservesCFG(); 1119 MachineFunctionPass::getAnalysisUsage(AU); 1120 } 1121 1122 MachineFunctionProperties getRequiredProperties() const override { 1123 return MachineFunctionProperties().set( 1124 MachineFunctionProperties::Property::NoVRegs); 1125 } 1126 1127 private: 1128 /// Track which register units have been modified and used. 1129 LiveRegUnits ModifiedRegUnits, UsedRegUnits; 1130 1131 /// Track DBG_VALUEs of (unmodified) register units. Each DBG_VALUE has an 1132 /// entry in this map for each unit it touches. 1133 DenseMap<unsigned, TinyPtrVector<MachineInstr *>> SeenDbgInstrs; 1134 1135 /// Sink Copy instructions unused in the same block close to their uses in 1136 /// successors. 1137 bool tryToSinkCopy(MachineBasicBlock &BB, MachineFunction &MF, 1138 const TargetRegisterInfo *TRI, const TargetInstrInfo *TII); 1139 }; 1140 } // namespace 1141 1142 char PostRAMachineSinking::ID = 0; 1143 char &llvm::PostRAMachineSinkingID = PostRAMachineSinking::ID; 1144 1145 INITIALIZE_PASS(PostRAMachineSinking, "postra-machine-sink", 1146 "PostRA Machine Sink", false, false) 1147 1148 static bool aliasWithRegsInLiveIn(MachineBasicBlock &MBB, unsigned Reg, 1149 const TargetRegisterInfo *TRI) { 1150 LiveRegUnits LiveInRegUnits(*TRI); 1151 LiveInRegUnits.addLiveIns(MBB); 1152 return !LiveInRegUnits.available(Reg); 1153 } 1154 1155 static MachineBasicBlock * 1156 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1157 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1158 unsigned Reg, const TargetRegisterInfo *TRI) { 1159 // Try to find a single sinkable successor in which Reg is live-in. 1160 MachineBasicBlock *BB = nullptr; 1161 for (auto *SI : SinkableBBs) { 1162 if (aliasWithRegsInLiveIn(*SI, Reg, TRI)) { 1163 // If BB is set here, Reg is live-in to at least two sinkable successors, 1164 // so quit. 1165 if (BB) 1166 return nullptr; 1167 BB = SI; 1168 } 1169 } 1170 // Reg is not live-in to any sinkable successors. 1171 if (!BB) 1172 return nullptr; 1173 1174 // Check if any register aliased with Reg is live-in in other successors. 1175 for (auto *SI : CurBB.successors()) { 1176 if (!SinkableBBs.count(SI) && aliasWithRegsInLiveIn(*SI, Reg, TRI)) 1177 return nullptr; 1178 } 1179 return BB; 1180 } 1181 1182 static MachineBasicBlock * 1183 getSingleLiveInSuccBB(MachineBasicBlock &CurBB, 1184 const SmallPtrSetImpl<MachineBasicBlock *> &SinkableBBs, 1185 ArrayRef<unsigned> DefedRegsInCopy, 1186 const TargetRegisterInfo *TRI) { 1187 MachineBasicBlock *SingleBB = nullptr; 1188 for (auto DefReg : DefedRegsInCopy) { 1189 MachineBasicBlock *BB = 1190 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefReg, TRI); 1191 if (!BB || (SingleBB && SingleBB != BB)) 1192 return nullptr; 1193 SingleBB = BB; 1194 } 1195 return SingleBB; 1196 } 1197 1198 static void clearKillFlags(MachineInstr *MI, MachineBasicBlock &CurBB, 1199 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1200 LiveRegUnits &UsedRegUnits, 1201 const TargetRegisterInfo *TRI) { 1202 for (auto U : UsedOpsInCopy) { 1203 MachineOperand &MO = MI->getOperand(U); 1204 Register SrcReg = MO.getReg(); 1205 if (!UsedRegUnits.available(SrcReg)) { 1206 MachineBasicBlock::iterator NI = std::next(MI->getIterator()); 1207 for (MachineInstr &UI : make_range(NI, CurBB.end())) { 1208 if (UI.killsRegister(SrcReg, TRI)) { 1209 UI.clearRegisterKills(SrcReg, TRI); 1210 MO.setIsKill(true); 1211 break; 1212 } 1213 } 1214 } 1215 } 1216 } 1217 1218 static void updateLiveIn(MachineInstr *MI, MachineBasicBlock *SuccBB, 1219 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1220 SmallVectorImpl<unsigned> &DefedRegsInCopy) { 1221 MachineFunction &MF = *SuccBB->getParent(); 1222 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1223 for (unsigned DefReg : DefedRegsInCopy) 1224 for (MCSubRegIterator S(DefReg, TRI, true); S.isValid(); ++S) 1225 SuccBB->removeLiveIn(*S); 1226 for (auto U : UsedOpsInCopy) { 1227 Register SrcReg = MI->getOperand(U).getReg(); 1228 LaneBitmask Mask; 1229 for (MCRegUnitMaskIterator S(SrcReg, TRI); S.isValid(); ++S) { 1230 Mask |= (*S).second; 1231 } 1232 SuccBB->addLiveIn(SrcReg, Mask.any() ? Mask : LaneBitmask::getAll()); 1233 } 1234 SuccBB->sortUniqueLiveIns(); 1235 } 1236 1237 static bool hasRegisterDependency(MachineInstr *MI, 1238 SmallVectorImpl<unsigned> &UsedOpsInCopy, 1239 SmallVectorImpl<unsigned> &DefedRegsInCopy, 1240 LiveRegUnits &ModifiedRegUnits, 1241 LiveRegUnits &UsedRegUnits) { 1242 bool HasRegDependency = false; 1243 for (unsigned i = 0, e = MI->getNumOperands(); i != e; ++i) { 1244 MachineOperand &MO = MI->getOperand(i); 1245 if (!MO.isReg()) 1246 continue; 1247 Register Reg = MO.getReg(); 1248 if (!Reg) 1249 continue; 1250 if (MO.isDef()) { 1251 if (!ModifiedRegUnits.available(Reg) || !UsedRegUnits.available(Reg)) { 1252 HasRegDependency = true; 1253 break; 1254 } 1255 DefedRegsInCopy.push_back(Reg); 1256 1257 // FIXME: instead of isUse(), readsReg() would be a better fix here, 1258 // For example, we can ignore modifications in reg with undef. However, 1259 // it's not perfectly clear if skipping the internal read is safe in all 1260 // other targets. 1261 } else if (MO.isUse()) { 1262 if (!ModifiedRegUnits.available(Reg)) { 1263 HasRegDependency = true; 1264 break; 1265 } 1266 UsedOpsInCopy.push_back(i); 1267 } 1268 } 1269 return HasRegDependency; 1270 } 1271 1272 static SmallSet<unsigned, 4> getRegUnits(unsigned Reg, 1273 const TargetRegisterInfo *TRI) { 1274 SmallSet<unsigned, 4> RegUnits; 1275 for (auto RI = MCRegUnitIterator(Reg, TRI); RI.isValid(); ++RI) 1276 RegUnits.insert(*RI); 1277 return RegUnits; 1278 } 1279 1280 bool PostRAMachineSinking::tryToSinkCopy(MachineBasicBlock &CurBB, 1281 MachineFunction &MF, 1282 const TargetRegisterInfo *TRI, 1283 const TargetInstrInfo *TII) { 1284 SmallPtrSet<MachineBasicBlock *, 2> SinkableBBs; 1285 // FIXME: For now, we sink only to a successor which has a single predecessor 1286 // so that we can directly sink COPY instructions to the successor without 1287 // adding any new block or branch instruction. 1288 for (MachineBasicBlock *SI : CurBB.successors()) 1289 if (!SI->livein_empty() && SI->pred_size() == 1) 1290 SinkableBBs.insert(SI); 1291 1292 if (SinkableBBs.empty()) 1293 return false; 1294 1295 bool Changed = false; 1296 1297 // Track which registers have been modified and used between the end of the 1298 // block and the current instruction. 1299 ModifiedRegUnits.clear(); 1300 UsedRegUnits.clear(); 1301 SeenDbgInstrs.clear(); 1302 1303 for (auto I = CurBB.rbegin(), E = CurBB.rend(); I != E;) { 1304 MachineInstr *MI = &*I; 1305 ++I; 1306 1307 // Track the operand index for use in Copy. 1308 SmallVector<unsigned, 2> UsedOpsInCopy; 1309 // Track the register number defed in Copy. 1310 SmallVector<unsigned, 2> DefedRegsInCopy; 1311 1312 // We must sink this DBG_VALUE if its operand is sunk. To avoid searching 1313 // for DBG_VALUEs later, record them when they're encountered. 1314 if (MI->isDebugValue()) { 1315 auto &MO = MI->getDebugOperand(0); 1316 if (MO.isReg() && Register::isPhysicalRegister(MO.getReg())) { 1317 // Bail if we can already tell the sink would be rejected, rather 1318 // than needlessly accumulating lots of DBG_VALUEs. 1319 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1320 ModifiedRegUnits, UsedRegUnits)) 1321 continue; 1322 1323 // Record debug use of each reg unit. 1324 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1325 for (unsigned Reg : Units) 1326 SeenDbgInstrs[Reg].push_back(MI); 1327 } 1328 continue; 1329 } 1330 1331 if (MI->isDebugInstr()) 1332 continue; 1333 1334 // Do not move any instruction across function call. 1335 if (MI->isCall()) 1336 return false; 1337 1338 if (!MI->isCopy() || !MI->getOperand(0).isRenamable()) { 1339 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1340 TRI); 1341 continue; 1342 } 1343 1344 // Don't sink the COPY if it would violate a register dependency. 1345 if (hasRegisterDependency(MI, UsedOpsInCopy, DefedRegsInCopy, 1346 ModifiedRegUnits, UsedRegUnits)) { 1347 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1348 TRI); 1349 continue; 1350 } 1351 assert((!UsedOpsInCopy.empty() && !DefedRegsInCopy.empty()) && 1352 "Unexpect SrcReg or DefReg"); 1353 MachineBasicBlock *SuccBB = 1354 getSingleLiveInSuccBB(CurBB, SinkableBBs, DefedRegsInCopy, TRI); 1355 // Don't sink if we cannot find a single sinkable successor in which Reg 1356 // is live-in. 1357 if (!SuccBB) { 1358 LiveRegUnits::accumulateUsedDefed(*MI, ModifiedRegUnits, UsedRegUnits, 1359 TRI); 1360 continue; 1361 } 1362 assert((SuccBB->pred_size() == 1 && *SuccBB->pred_begin() == &CurBB) && 1363 "Unexpected predecessor"); 1364 1365 // Collect DBG_VALUEs that must sink with this copy. We've previously 1366 // recorded which reg units that DBG_VALUEs read, if this instruction 1367 // writes any of those units then the corresponding DBG_VALUEs must sink. 1368 SetVector<MachineInstr *> DbgValsToSinkSet; 1369 SmallVector<MachineInstr *, 4> DbgValsToSink; 1370 for (auto &MO : MI->operands()) { 1371 if (!MO.isReg() || !MO.isDef()) 1372 continue; 1373 1374 SmallSet<unsigned, 4> Units = getRegUnits(MO.getReg(), TRI); 1375 for (unsigned Reg : Units) 1376 for (auto *MI : SeenDbgInstrs.lookup(Reg)) 1377 DbgValsToSinkSet.insert(MI); 1378 } 1379 DbgValsToSink.insert(DbgValsToSink.begin(), DbgValsToSinkSet.begin(), 1380 DbgValsToSinkSet.end()); 1381 1382 // Clear the kill flag if SrcReg is killed between MI and the end of the 1383 // block. 1384 clearKillFlags(MI, CurBB, UsedOpsInCopy, UsedRegUnits, TRI); 1385 MachineBasicBlock::iterator InsertPos = SuccBB->getFirstNonPHI(); 1386 performSink(*MI, *SuccBB, InsertPos, DbgValsToSink); 1387 updateLiveIn(MI, SuccBB, UsedOpsInCopy, DefedRegsInCopy); 1388 1389 Changed = true; 1390 ++NumPostRACopySink; 1391 } 1392 return Changed; 1393 } 1394 1395 bool PostRAMachineSinking::runOnMachineFunction(MachineFunction &MF) { 1396 if (skipFunction(MF.getFunction())) 1397 return false; 1398 1399 bool Changed = false; 1400 const TargetRegisterInfo *TRI = MF.getSubtarget().getRegisterInfo(); 1401 const TargetInstrInfo *TII = MF.getSubtarget().getInstrInfo(); 1402 1403 ModifiedRegUnits.init(*TRI); 1404 UsedRegUnits.init(*TRI); 1405 for (auto &BB : MF) 1406 Changed |= tryToSinkCopy(BB, MF, TRI, TII); 1407 1408 return Changed; 1409 } 1410